[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007170250A - Micro air bubble generating apparatus of liquid storage tank such as bathtub, and liquid circulation system having the same - Google Patents

Micro air bubble generating apparatus of liquid storage tank such as bathtub, and liquid circulation system having the same Download PDF

Info

Publication number
JP2007170250A
JP2007170250A JP2005367911A JP2005367911A JP2007170250A JP 2007170250 A JP2007170250 A JP 2007170250A JP 2005367911 A JP2005367911 A JP 2005367911A JP 2005367911 A JP2005367911 A JP 2005367911A JP 2007170250 A JP2007170250 A JP 2007170250A
Authority
JP
Japan
Prior art keywords
fluid
cylinder
liquid
pump
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005367911A
Other languages
Japanese (ja)
Inventor
Shigeki Hirabayashi
茂樹 平林
Yoshito Umeda
義人 梅田
Kazuhide Nakamura
千秀 中村
Shohei Shiimura
尚平 椎村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SIV KK
Original Assignee
SIV KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SIV KK filed Critical SIV KK
Priority to JP2005367911A priority Critical patent/JP2007170250A/en
Publication of JP2007170250A publication Critical patent/JP2007170250A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized pump with reduced vibration noise, in which a relatively large discharge amount is secured without enlarging the diameter of a fluid introducing pipe in a reciprocating pump. <P>SOLUTION: An arbitrarily constituted piston member is installed in a cylinder sucking fluid so as to be free to reciprocate, and a drive means for making the piston member reciprocate is constituted of an eccentric cam installed on a rotational shaft of a drive motor or the like. The fluid introducing pipe is connected with the cylinder supplying the fluid through a suction valve, and a vibration insulating damper is disposed between the fluid introducing pipe and the suction valve so as to damp the vibration generated in the fluid. The vibration insulating damper may be constituted of a tank means, into which the fluid flowing from the fluid introducing pipe to the suction valve flows after branching and bypassing, and in which air or other expansive/contractive gas is stored. Or, the vibration insulating damper may be constituted of an elastically deformable bellows pipe pulsated according to fluid pressure in the fluid introducing pipe. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は2連以上の往復動ポンプ、例えばプランジャの往復動により開閉動作する吸入弁と吐出弁を備え液体或いは気体などの流体を高圧で吐出する往復動ポンプ及び2台以上のポンプ装置で吐出する流体に微細気泡を生起する洗浄或いは浴槽用微細気泡発生装置に関する。 The present invention provides two or more reciprocating pumps, for example, a reciprocating pump that includes a suction valve and a discharge valve that open and close by reciprocating movement of a plunger and discharges a fluid such as liquid or gas at a high pressure and two or more pump devices. The present invention relates to a fine bubble generating apparatus for cleaning or bathing that generates fine bubbles in a fluid to be used.

一般に、ポンプ装置はレシプロポンプと回転ポンプに大別され、それぞれ種々のものが知られている。前者のレシプロポンプはシリンダ室にピストン部材を往復動自在に装備し、このピストン部材を例えば駆動カムで往復動させて吸入弁を介してシリンダ室に導入した流体を高圧に吐出口から吐出させる構造として知られ、後者の回転ポンプはチェンバー内に回転羽根、スクリュー羽根などを回転自在に装備して羽根部材の回転で流入口からの流体を吐出口から吐出させる構造として知られている。   In general, pump devices are roughly classified into reciprocating pumps and rotary pumps, and various types are known. The former reciprocating pump is equipped with a piston member that can reciprocate in a cylinder chamber, and the piston member is reciprocated by, for example, a drive cam so that fluid introduced into the cylinder chamber via a suction valve is discharged from the discharge port to a high pressure. The latter rotary pump is known as a structure in which a rotary blade, a screw blade and the like are rotatably mounted in a chamber and fluid from an inlet is discharged from an outlet by rotation of the blade member.

一方、微細気泡発生装置は各種洗浄装置或いは浴槽などの槽内に気泡を生起する装置として使用され、特に最近槽内の洗浄液或いは温水などの流体を循環するのと同時に、この循環液に微細気泡を混入する装置が例えば浴槽水の循環システムとして使用されるに至っている。従来このような気泡発生装置としては、特許文献1に開示されているように槽内の流体を流入口から加圧ポンプで汲み上げる際にエアーポンプから空気を混入し、これをアキュムレータで更に加圧してノズルからジェツト噴流として気泡を含んだ液流を槽内に戻している。そして加圧ポンプとしては主に回転ポンプを用いて連続した液流を形成している。ところが浴槽、洗浄槽内にジェツト噴流を形成することなく静かに微細な気泡を混入させる為には、気泡の噴射ノズルの上流側に混合タンクを設け、この混合タンクで微細な気泡を分別した後に槽内に戻す装置が例えば特許文献2に提案されている。   On the other hand, the fine bubble generating device is used as a device for generating bubbles in various cleaning devices or a tank such as a bathtub, and in particular, at the same time as circulating cleaning fluid or hot water in the bath recently, For example, a device for mixing water has been used as a circulation system for bath water. Conventionally, as such a bubble generating device, as disclosed in Patent Document 1, air is mixed from an air pump when the fluid in the tank is pumped from the inlet by a pressure pump, and this is further pressurized by an accumulator. Then, a liquid flow containing bubbles is returned from the nozzle as a jet jet into the tank. As a pressurizing pump, a continuous liquid flow is formed mainly using a rotary pump. However, in order to quietly mix fine bubbles without forming jet jets in the bathtub and cleaning tank, a mixing tank is provided upstream of the bubble injection nozzle, and the fine bubbles are separated in this mixing tank. For example, Patent Document 2 proposes an apparatus for returning the tank.

本発明者はこのような流体循環装置を低消費電力で、小型にするために液体を循環させるポンプ手段を一次側ポンプと二次側ポンプで構成することを試みた。この場合浴槽システムなどで微細気泡を発生するためには循環する液体中に高圧空気を混入し、この混合した流体を勢いよく拡散させて微細気泡を発生する必要がある。また、循環ポンプを往復動ポンプで構成すると、比較的小型で微細な気泡を生成することが可能となるが往復動ポンプでは循環用の流入パイプから吸入弁を介してシリンダ室に流体を導入する際、吸入弁の開閉動作で流入パイプに振動と騒音が生ずることが判明した。
特許第2663538号公報(図1) 特開2004−261314号公報(図1) 特開2003−265938号公報
The inventor of the present invention tried to configure the pump means for circulating the liquid with a primary side pump and a secondary side pump in order to reduce the size of such a fluid circulation device with low power consumption. In this case, in order to generate fine bubbles in a bathtub system or the like, it is necessary to mix high-pressure air in the circulating liquid and generate a fine bubble by vigorously diffusing the mixed fluid. Further, when the circulation pump is constituted by a reciprocating pump, it is possible to generate relatively small and fine bubbles. However, in the reciprocating pump, fluid is introduced from the circulation inflow pipe into the cylinder chamber via the suction valve. At that time, it was found that the opening and closing operation of the intake valve causes vibration and noise in the inflow pipe.
Japanese Patent No. 2663538 (FIG. 1) JP 2004-261314 A (FIG. 1) JP 2003-265938 A


上述のように浴槽或いは洗浄槽などの貯液槽に液体を供給する際、或いは槽内の液体を循環させる際、微細気泡を発生するためには循環する流路に高圧空気を混入する必要がある。この場合、従来は例えば特許文献3に開示されているように循環経路(パイプ)中に揚水ポンプを配置し、このポンプの吐出側(下流側)にエアコンプレッサを配置し、更にその下流側に配置した気液混合タンクを介して浴槽などの貯液槽に還送している。このため、揚水ポンプからの高圧状態の液体に十分な空気を混入するためには大型のコンプレッサが必要であり、また流路中の液体の全体に空気を均等に混入することが出来ないためその下流側に混合タンクを配置しなければならない。従ってシステム全体が大型となることは勿論、特にエアコンプレッサ(エアーポンプ)の大型化と気液混合タンクの大型化が問題となっている。
9
As described above, when liquid is supplied to a liquid storage tank such as a bathtub or a washing tank , or when the liquid in the tank is circulated, it is necessary to mix high-pressure air into the circulating flow path in order to generate fine bubbles. is there. In this case, conventionally, for example, as disclosed in Patent Document 3, a pump is disposed in the circulation path (pipe), an air compressor is disposed on the discharge side (downstream side) of the pump, and further on the downstream side. It is returned to a storage tank such as a bathtub through the gas-liquid mixing tank. For this reason, in order to mix sufficient air into the high-pressure liquid from the pump, a large compressor is required, and air cannot be evenly mixed into the entire liquid in the flow path. A mixing tank must be located downstream. Therefore, not only the whole system becomes large, but also the size of the air compressor (air pump) and the size of the gas-liquid mixing tank are particularly problematic.

そこで本発明は、貯液槽に液体を供給又は循環する際に高圧空気を比較的小容量のエアーポンプから供給することが可能であり、同時にこの高圧空気と液体とが均等に混合される小型な微細気泡発生装置の提供をその主な課題としている。更に本発明は、浴槽などの貯液槽内の液体を循環する際に微細気泡を発生させ温浴効果を高める液体循環システムの提供をその課題としている。Therefore, the present invention is capable of supplying high-pressure air from a relatively small capacity air pump when supplying or circulating a liquid to a liquid storage tank, and at the same time, a small size in which this high-pressure air and liquid are evenly mixed. The main issue is to provide a simple microbubble generator. Furthermore, this invention makes it the subject to provide the liquid circulation system which produces | generates a fine bubble when circulating the liquid in liquid storage tanks, such as a bathtub, and raises a warm bath effect.

上記課題を達成するため本発明は以下の構成を採用する。貯液槽に液体を供給又は循環する液体導入パイプに一次側ポンプを連結し、この一次側ポンプに直列連結した二次側ポンプを設け、この二次ポンプの吐出口から液体を貯液槽に液体給送パイプで供給する。そして上記二次側ポンプの吸入口に高圧空気を混入するようにエアーポンプを連結する。これによって液体導入パイプからの液体は一次側ポンプで吸引し、二次側ポンプで加圧される。このとき二次側ポンプの吸入口には一次側ポンプからの液体と同時にエアーポンプから高圧空気が供給され、この液体と高圧空気とは二次側ポンプのチェンバー内で混合され、更に高圧化される。 To achieve the above object, the present invention employs the following configuration. A primary pump is connected to a liquid introduction pipe that supplies or circulates liquid to the liquid storage tank, a secondary pump connected in series to the primary pump is provided, and liquid is supplied from the discharge port of the secondary pump to the liquid storage tank. Supply with liquid feed pipe. Then, an air pump is connected so that high-pressure air is mixed into the suction port of the secondary pump. Thereby, the liquid from the liquid introduction pipe is sucked by the primary side pump and pressurized by the secondary side pump. At this time, high-pressure air is supplied from the air pump simultaneously to the liquid from the primary pump to the suction port of the secondary pump, and this liquid and high-pressure air are mixed in the chamber of the secondary pump and further increased in pressure. The

従って液体と空気はほぼ均一に攪拌され高圧で二次側ポンプの吐出口から給送パイプに送り出されることとなり比較的小容量のエアーポンプから十分な空気を供給することが可能であり、同時にポンプ内で気液攪拌が可能となる。尚、上述のエアーポンプからの高圧空気は、例えば一次側のポンプの吐出口と二次側ポンプの吸入口とを連結する連通パイプに高圧空気を供給するように連結する。Therefore, the liquid and air are agitated almost uniformly and sent from the discharge port of the secondary pump to the feed pipe at a high pressure, so that sufficient air can be supplied from a relatively small capacity air pump, and at the same time the pump Gas-liquid stirring can be performed in the inside. The high-pressure air from the above-described air pump is connected so as to supply high-pressure air to a communication pipe that connects, for example, the discharge port of the primary pump and the suction port of the secondary pump.

また、本発明に係わる液体循環システムは、液体を収容する浴槽などの貯液槽とこの貯液槽に液体ポンプ手段で液体に高圧空気を混入させて循環するシステムを構成する。この場合、液体を収容する浴槽などの貯液槽と、液体の吸入口と吐出口とを有する液体ポンプ手段と、上記吸入口に上記貯液槽からの液体を循環供給する液体循環パイプと、上記吐出口から上記貯液槽に液体を給送する液体給送パイプと、上記吸入口から上記吐出口に至る液体中に高圧空気を混入するエアーポンプとを備える。そして上記液体ポンプ手段は直列に配置された上記液体導入パイプから液体を吸入する一次側ポンプと上記液体給送パイプに液体を吐出する二次側ポンプとから構成し、上記エアーポンプは上記二次側ポンプの吸入口に高圧空気を混入するように連結する。これによって浴槽などの貯液槽内の流体を循環させながら槽内には微細気泡を充満させることが可能となる。The liquid circulation system according to the present invention constitutes a liquid storage tank such as a bathtub for storing liquid and a system for circulating high-pressure air in the liquid storage tank by liquid pump means. In this case, a liquid storage tank such as a bathtub for storing liquid, a liquid pump means having a liquid suction port and a discharge port, a liquid circulation pipe for circulating the liquid from the liquid storage tank to the suction port, A liquid feed pipe that feeds liquid from the discharge port to the liquid storage tank; and an air pump that mixes high-pressure air into the liquid from the suction port to the discharge port. The liquid pump means includes a primary side pump that sucks liquid from the liquid introduction pipe arranged in series and a secondary side pump that discharges liquid to the liquid supply pipe, and the air pump includes the secondary pump. Connect the high-pressure air to the inlet of the side pump. This makes it possible to fill the microbubbles in the tank while circulating the fluid in the liquid storage tank such as a bathtub.

本発明は上述のように一次側ポンプと二次側ポンプとの間にエアーポンプからの高圧空気を混入させるようにしたものであるから、従来のポンプから吐出した液体の流路中に高圧空気を噴入する場合に比べエアーポンプの容量を小さく構成しても一次側ポンプと二次側ポンプとの間の比較的低圧な流路中に十分な量の空気を混入することが出来る。これによって下流側の貯液槽内に微細気泡を充満させることが可能となる。また、これと同時に混入された空気は二次側ポンプ内で圧縮されながら攪拌されるため略々均一に混合されて給送パイプから貯液槽に向けて搬出される。なお、一次側,二次側ポンプを個別の2台のポンプを用いても同様の効果が得られる。この為、従来は給送パイプの下流側に大型な混合タンクを設けて、このタンク内で混合していたのに対し、この混合タンクを小型化或いは設けなくても良いなどシステム全体を至って小型、コンパクトに構成することが可能となるなど顕著な効果を奏する。 In the present invention, the high pressure air from the air pump is mixed between the primary pump and the secondary pump as described above, so the high pressure air is discharged into the flow path of the liquid discharged from the conventional pump. Even if the capacity of the air pump is made smaller than the case where the air pump is injected, a sufficient amount of air can be mixed in the relatively low pressure flow path between the primary pump and the secondary pump. This makes it possible to fill the downstream storage tank with fine bubbles. At the same time, the mixed air is agitated while being compressed in the secondary pump, so that it is almost uniformly mixed and carried out from the feed pipe toward the liquid storage tank. The same effect can be obtained by using two separate pumps for the primary and secondary pumps. For this reason, in the past, a large mixing tank was provided on the downstream side of the feed pipe, and mixing was performed in this tank. It is possible to achieve a compact effect such as a compact configuration.

以下図示の好適な実施の態様に基づいて本発明を詳述する。図1は本発明に係わる微細気泡発生装置を示す全体レイアウト図であり、図2は同装置に於ける流体の供給ポンプ構造及びこれに内蔵された防振ダンパ構造を示す説明図。図3は気泡と循環液を混合する混合タンク及び微細気泡の吐出ノズル構造を示す。図4は防振ダンパを構成するダンパタンクの構造を示す。   The present invention will be described in detail below based on the preferred embodiments shown in the drawings. FIG. 1 is an overall layout diagram showing a fine bubble generating apparatus according to the present invention, and FIG. 2 is an explanatory view showing a fluid supply pump structure and a vibration damping damper structure built in the apparatus. FIG. 3 shows a mixing tank for mixing bubbles and circulating liquid and a discharge nozzle structure for fine bubbles. FIG. 4 shows the structure of a damper tank that constitutes a vibration damping damper.

まず本発明に係わる微細気泡発生装置について説明すると、図1に示すように微細気泡発生装置Aは洗浄槽、浴槽などの貯液槽(以下処理槽Bという)に連結され、この処理槽B内に洗浄液、温浴水などの液体Lを供給する過程で気体を注入して処理槽B内に微細気泡を混入して充満させ、この微細気泡によって洗浄効果と温浴効果を得るシステムを構成する。この微細気泡発生装置Aは処理槽B内の液体を循環する過程で気泡を混入する循環システムとして構成するか或いは処理槽B内に循環液でない新たな液体を供給し処理槽B内の液体を排出する処理液を入れ替える過程で気泡を混入する気液供給システムとして構成する。図示のものは前者の循環システムを示し、以下この循環システムについて本発明を説明するが後者の気液供給システムであっても同様である。 First, the fine bubble generating apparatus according to the present invention will be described. As shown in FIG. 1, the fine bubble generating apparatus A is connected to a liquid storage tank (hereinafter referred to as a processing tank B) such as a cleaning tank or a bathtub. In the process of supplying a liquid L such as a cleaning liquid or warm bath water, a gas is injected and fine bubbles are mixed and filled in the processing tank B, and a system that obtains a cleaning effect and a warm bath effect by the fine bubbles is configured. This fine bubble generating apparatus A is configured as a circulation system that mixes bubbles in the process of circulating the liquid in the processing tank B, or supplies a new liquid that is not a circulating liquid into the processing tank B to supply the liquid in the processing tank B. It is configured as a gas-liquid supply system that mixes bubbles in the process of replacing the discharged processing liquid. The illustrated one shows the former circulation system. Hereinafter, the present invention will be described with respect to this circulation system, but the same applies to the latter gas-liquid supply system.

そこで微細気泡発生装置Aは、図1に示すように防音処置を施したケーシング20内に液体Lを供給する液体供給ポンプ25と、気体供給用のエアーポンプ50と、混合タンク9を内蔵して構成される。液体供給ポンプ25は吸入口26と吐出口27とシリンダ室Sとピストン部材Pを備え、吸入口26に液体導入パイプ2が連結してある。図示のものはこの液体導入パイプ2を処理槽Bに接続して処理槽B内の液体を循環するシステムを構成している。液体供給ポンプ25の詳細は後述するが、シリンダ室S内でピストン部材Pがレシプロ運動する往復動ポンプで構成する。この液体供給ポンプ25は大容量の1つのシリンダ室Sとピストン部材Pで構成しても良いが、図示のものは小型化と高圧化及び低騒音化を図るため一次二次複数の往復動ポンプで構成している。   Therefore, the fine bubble generating device A includes a liquid supply pump 25 for supplying the liquid L into the casing 20 subjected to soundproofing as shown in FIG. 1, an air pump 50 for supplying gas, and a mixing tank 9. Composed. The liquid supply pump 25 includes a suction port 26, a discharge port 27, a cylinder chamber S, and a piston member P, and the liquid introduction pipe 2 is connected to the suction port 26. The illustrated one forms a system in which the liquid introduction pipe 2 is connected to the processing tank B to circulate the liquid in the processing tank B. Although details of the liquid supply pump 25 will be described later, the liquid supply pump 25 is constituted by a reciprocating pump in which the piston member P reciprocates in the cylinder chamber S. The liquid supply pump 25 may be composed of a large-capacity single cylinder chamber S and a piston member P, but the illustrated one is a primary / secondary reciprocating pump for miniaturization, high pressure and low noise. It consists of.

図1に示すように水平方向に対向する一次側ポンプヘッド25aと二次側ポンプヘッド25bで構成され、一次側ポンプヘッド25aで流入圧縮した流体を二次側ポンプヘッド25bで更に圧縮して高圧化した液体を気液供給パイプ31で混合タンク9に供給する。この為、一次側ポンプヘッド25aはブロック部材にシリンダ室S1と吸入弁1aと、吐出弁8aと、流体導入パイプ2のジョイントバルブ2aがそれぞれ組み込まれている。また二次側ポンプヘッド25bも同様にブロック部材にシリンダ室S2と吸入弁29bと、吐出弁8bと、この吐出弁8bに連なる気液供給パイプ31のジョイントバルブ31aがそれぞれ組み込まれている。そして上記一次側ポンプヘッド25aと二次側ポンプヘッド25bはそれぞれユニットフレーム21にビスで固定され、このユニットフレーム21はゴム、フェルト、綿、スポンジなどの波動吸収体22を介してケーシング20の底板に据え付けられている。   As shown in FIG. 1, it is composed of a primary pump head 25a and a secondary pump head 25b opposed in the horizontal direction, and the fluid flowing in and compressed by the primary pump head 25a is further compressed by the secondary pump head 25b to increase the pressure. The converted liquid is supplied to the mixing tank 9 through the gas-liquid supply pipe 31. For this reason, in the primary pump head 25a, the cylinder chamber S1, the suction valve 1a, the discharge valve 8a, and the joint valve 2a of the fluid introduction pipe 2 are respectively incorporated in the block member. Similarly, in the secondary pump head 25b, the cylinder chamber S2, the suction valve 29b, the discharge valve 8b, and the joint valve 31a of the gas-liquid supply pipe 31 connected to the discharge valve 8b are respectively incorporated in the block member. The primary pump head 25a and the secondary pump head 25b are fixed to the unit frame 21 with screws. The unit frame 21 is a bottom plate of the casing 20 through a wave absorber 22 such as rubber, felt, cotton, sponge, or the like. Is installed.

一次側の吐出弁8aと二次側の吸入弁29bとは連通パイプ70で連結され、一次側の吐出口27から吐出された流体を二次側の吸入弁29bから流入する。この連通パイプ70にはエアーポンプ50が連結され、このエアーポンプ50から圧搾空気が供給され、二次側シリンダ室S2内に液体と同時に高圧空気を供給して圧縮し、二次側吐出弁8bを介して気液供給パイプ31から混合タンク9内に気液流体を供給する。これは気液供給パイプ31にエアーポンプ50の気体供給パイプ56を連結しても良いが、流体が比較的低圧の一次側ポンプと二次側ポンプとの間の連通パイプ70から高圧空気を導入することによって空気の混入量を大きくするためである。図示のエアーポンプ50は、先の液体供給ポンプ25と同一構造で構成され、小型化と高圧化を図るため一次側ポンプ50aと二次側ポンプ50bで構成され、一次側ポンプ50aの吸入口51から外気を吸入し、二次側ポンプ50bの吐出口55から上記液体供給ポンプ25に高圧空気を供給する。   The primary side discharge valve 8a and the secondary side suction valve 29b are connected by a communication pipe 70, and the fluid discharged from the primary side discharge port 27 flows into the secondary side suction valve 29b. An air pump 50 is connected to the communication pipe 70, compressed air is supplied from the air pump 50, and high pressure air is supplied into the secondary side cylinder chamber S2 simultaneously with the liquid to be compressed, and the secondary side discharge valve 8b. The gas-liquid fluid is supplied from the gas-liquid supply pipe 31 into the mixing tank 9 via the. In this case, the gas supply pipe 56 of the air pump 50 may be connected to the gas-liquid supply pipe 31, but the high-pressure air is introduced from the communication pipe 70 between the primary pump and the secondary pump where the fluid is relatively low in pressure. This is to increase the amount of air mixed in. The illustrated air pump 50 has the same structure as the previous liquid supply pump 25, and is composed of a primary side pump 50a and a secondary side pump 50b to reduce the size and pressure, and an inlet 51 of the primary side pump 50a. From the discharge port 55 of the secondary pump 50b, and high pressure air is supplied to the liquid supply pump 25.

尚、上記エアーポンプ50は一次側ポンプ50aと二次側ポンプ50bとを上下縦方向に配置し、上記水平方向に配置した液体供給ポンプ25との関係で省スペース化を図っている。上記液体供給ポンプ25及びエアーポンプ50の構造については後述するが、いずれも一次側ポンプと二次側ポンプで構成し、略々同一構造でそれぞれシリンダ室S1,S2(S3,S4)とピストン部材P1,P2(P3,P4)とを備え、各ピストン部材P1,P2(P3,P4)は駆動手段Dで相反的に給排動作を行うようになっている。   In the air pump 50, a primary pump 50a and a secondary pump 50b are arranged vertically in the vertical direction, and space saving is achieved in relation to the liquid supply pump 25 arranged in the horizontal direction. The structures of the liquid supply pump 25 and the air pump 50 will be described later, but both are constituted by a primary side pump and a secondary side pump. The cylinder chambers S1, S2 (S3, S4) and the piston member have substantially the same structure. P1 and P2 (P3, P4) are provided, and each piston member P1, P2 (P3, P4) is reciprocally operated by the driving means D.

この駆動手段Dは、駆動モータに連結された回転軸66に軸承した回転カム部材65を中心に180度対向した位置にシリンダ室S1(S3)とシリンダ室S2(S4)を配置し、各シリンダ室S1,S2(S3,S4)に装着したピストン部材P1とP2(P3とP4)を回転カム部材65に取付けている。そしてピストン部材P1(P3)が上死点のときピストン部材P2(P4)は下死点に位置するように回転カム部材65に連結され相反的に給排動作を行うようになっている。   This drive means D has a cylinder chamber S1 (S3) and a cylinder chamber S2 (S4) arranged at positions opposed to each other by 180 degrees around a rotary cam member 65 supported by a rotary shaft 66 connected to a drive motor. Piston members P1 and P2 (P3 and P4) mounted in the chambers S1, S2 (S3, S4) are attached to the rotating cam member 65. When the piston member P1 (P3) is at the top dead center, the piston member P2 (P4) is connected to the rotating cam member 65 so as to be positioned at the bottom dead center, and performs a reciprocal supply / discharge operation.

そこで図2及び図4に示すように一次側ポンプヘッド25aの吸入口26には吸入弁1aが逆止弁構造で配置してあり、吸入口26に接続した流体導入パイプ2から液体を吸入し、シリンダ室S1に供給する。またこのシリンダ室S1の吐出口27には吐出弁8aが通常の逆止弁構造で配置してありシリンダ室S1で圧縮された液体を吐出口27から排出する。この一次側ポンプヘッド25a側の吐出口27は連通パイプ70で二次側ポンプヘッド25b側の吸入口29に連結してあり、シリンダ室S1から吐出した流体をシリンダ室S2に供給する。このシリンダ室S2にも吸入口29に吸入弁29bが、吐出口30に吐出弁8bがそれぞれ通常の逆止弁構造で配置されている。このような構成によって一次側ポンプヘッド25aの吸入口26から吸入した液体を二次側ポンプヘッド25bの吐出口30から高圧流体として吐出する。   Therefore, as shown in FIGS. 2 and 4, the suction valve 1 a is arranged in a check valve structure at the suction port 26 of the primary pump head 25 a, and sucks liquid from the fluid introduction pipe 2 connected to the suction port 26. , Supplied to the cylinder chamber S1. Further, a discharge valve 8a is arranged in the normal check valve structure at the discharge port 27 of the cylinder chamber S1, and the liquid compressed in the cylinder chamber S1 is discharged from the discharge port 27. The discharge port 27 on the primary pump head 25a side is connected to the suction port 29 on the secondary pump head 25b side by a communication pipe 70, and supplies the fluid discharged from the cylinder chamber S1 to the cylinder chamber S2. Also in this cylinder chamber S2, a suction valve 29b is disposed at the suction port 29, and a discharge valve 8b is disposed at the discharge port 30 with a normal check valve structure. With such a configuration, the liquid sucked from the suction port 26 of the primary pump head 25a is discharged as a high-pressure fluid from the discharge port 30 of the secondary pump head 25b.

上述のエアーポンプ50も小型高圧化のために一次側ポンプ50aと二次側ポンプ50bで構成してあり、図6及び図7に示すように一次側ポンプ50aの吸入口51から逆止弁51aを介して空気を吸入し、シリンダ室S3で圧縮して吐出口52から連通パイプ53を経て二次側ポンプ50bのシリンダ室S4に供給する。この吐出口52には吐出弁52aが二次側ポンプ50bの吸入口54には吸入弁54aがそれぞれ通常の逆止弁構造で配置され、二次側ポンプ50bの吐出口55から吐出弁55aを介して高圧空気を気体供給パイプ56に送出する。   The above-described air pump 50 is also composed of a primary side pump 50a and a secondary side pump 50b for miniaturization and high pressure. As shown in FIGS. 6 and 7, a check valve 51a is provided from the suction port 51 of the primary side pump 50a. Then, the air is sucked in through the air, compressed in the cylinder chamber S3, and supplied from the discharge port 52 to the cylinder chamber S4 of the secondary pump 50b through the communication pipe 53. The discharge valve 52a is disposed in the discharge port 52, and the suction valve 54a is disposed in the suction port 54 of the secondary pump 50b in a normal check valve structure. The discharge valve 55a is connected to the discharge port 55 of the secondary pump 50b. The high-pressure air is sent to the gas supply pipe 56 via the air supply pipe 56.

混合タンク9は液体を収納するタンク室9aで構成され、気液供給パイプ31から供給された液体と気体を混合して気泡を発生するように構成されている。この混合タンク9には発生した気泡を粗大気泡と微細気泡に分別する気泡分別手段57が次のいずれかの手段で構成されている。   The mixing tank 9 is composed of a tank chamber 9a for storing a liquid, and is configured to generate bubbles by mixing the liquid and gas supplied from the gas-liquid supply pipe 31 with each other. In the mixing tank 9, a bubble separating means 57 for separating generated bubbles into coarse bubbles and fine bubbles is constituted by any one of the following means.

第1の気泡分別手段57は隔壁57aであり、タンク室9aを略々2分割する分割壁で構成され、気液供給パイプ31の気液流入口31aと気液搬出パイプ59の気液流出口59aとを隔壁57aで区割する。これによって粗大気泡はタンク室の上方に浮上し、微細気泡はこれより下方に沈下するため隔壁57aで微細気泡のみが気液流出口に導かれる。   The first bubble separation means 57 is a partition wall 57a, which is composed of a partition wall that substantially divides the tank chamber 9a into two parts. The gas-liquid inlet 31a of the gas-liquid supply pipe 31 and the gas-liquid outlet of the gas-liquid carry-out pipe 59 59a is divided by a partition wall 57a. As a result, the coarse bubbles rise above the tank chamber, and the fine bubbles sink below, so that only the fine bubbles are guided to the gas-liquid outlet by the partition wall 57a.

第2の気泡分別手段57は気液供給パイプ31の気液流入口31aを重力の作用方向上方に配置し、気液搬出パイプ59の気液流出口59aを下方に配置し、この気液流入口31aと気液流出口59aとの間に高低段差H(図示57b)を形成する。これによって粗大気泡が上方に浮上し微細気泡が下方に沈下するため微細気泡が気液搬出パイプ59に導かれる。   The second bubble sorting means 57 arranges the gas-liquid inlet 31a of the gas-liquid supply pipe 31 above the direction of the action of gravity, and arranges the gas-liquid outlet 59a of the gas-liquid carry-out pipe 59 below. A height difference H (57b in the drawing) is formed between the inlet 31a and the gas-liquid outlet 59a. As a result, the coarse bubbles rise upward and the fine bubbles sink downward, so that the fine bubbles are guided to the gas-liquid carry-out pipe 59.

第3の気泡分別手段57は網状フィルタ57cであり、気液搬出パイプ59の気液流出口59aの周辺に網状フィルタ57cを設け、この網状フィルタ57cのメッシュを所定の微細気泡のみが通過する大きさに形成する。このような気泡分別手段57はそのいずれか1つをタンク室9aに配置しても図示のように第1,第2,第3の各構成を設けてもいずれでも良い。尚、図示58は過剰気泡搬出パイプであり、タンク室9a内に残留する粗大気泡を流出口58aから外部に搬出する。図示のものは前述のケーシング20の底部にドレントレイ60が設けてあり、このドレントレイ60に粗大気泡を滴下し、前述のエアーポンプ50の吸入口51にドレントレイ60に排出された水滴を外気と同時に吸入するようにしてある。   The third bubble sorting means 57 is a mesh filter 57c. A mesh filter 57c is provided around the gas-liquid outlet 59a of the gas-liquid carry-out pipe 59, and only a predetermined fine bubble passes through the mesh of the mesh filter 57c. To form. Such bubble separation means 57 may be arranged in the tank chamber 9a, or may be provided with the first, second and third configurations as shown. In addition, 58 shown in the figure is an excess bubble carry-out pipe, and the coarse bubbles remaining in the tank chamber 9a are carried out from the outlet 58a to the outside. In the figure, a drain tray 60 is provided at the bottom of the casing 20 described above. Coarse bubbles are dropped on the drain tray 60, and water droplets discharged to the drain tray 60 are discharged to the suction port 51 of the air pump 50 from the outside air. At the same time inhalation.

これにより、微細気泡発生装置A内で生じた余剰水をエアーポンプ50から外気と共に吸入して混合タンク9に環流する。このためドレントレイ60にはスポンジなどの多孔質部材61が敷設してあり、この多孔質部材61で余剰水を蒸発させる。つまり微細気泡発生装置A内にはこの混合タンク9に生じた粗大気泡を除去するため余剰気泡の搬出と、後述する流体導入パイプの振動を減衰するダンパタンクから液体が流出するが、これらの液体は特別なドレンパイプを配設して外部に搬出することなく、上記ドレントレイ60に集積して気化を促し、このドレントレイ60からエアーポンプ50の吸入口51に導いて混合タンク9に環流するようになっている。   As a result, surplus water generated in the fine bubble generator A is sucked together with the outside air from the air pump 50 and circulated to the mixing tank 9. Therefore, a porous member 61 such as a sponge is laid on the drain tray 60, and excess water is evaporated by the porous member 61. That is, in the fine bubble generating device A, liquid flows out from a damper tank that damps excess bubbles to remove coarse bubbles generated in the mixing tank 9 and attenuates vibration of a fluid introduction pipe, which will be described later. Is arranged in the drain tray 60 to promote vaporization without being provided with a special drain pipe and led to the suction port 51 of the air pump 50 from the drain tray 60 to be circulated to the mixing tank 9. It is like that.

以上のように構成された微細気泡発生装置Aは後述するポンプ動作で流体導入パイプ2から吸入弁1aを介して一次側ポンプヘッド25aのシリンダ室S1に洗浄水、浴水などの液体が供給される。このとき図4に示すようにピストン部材Pのレシプロサイクルを高速にするとシリンダ室Sの容積を小さく構成しても時間当りの吐出量は所定の出力が得られる。ところが吸入弁1aの開閉動作で流体導入パイプ2内を流れる液体に脈動が生じ流体導入パイプ2が振動する。この振動は流体導入パイプ2内に液体が充満した状態で脈動するため質量が大きく、その振幅も大きくなる。例えば吸入弁1aの開閉動作数を10Hzにすると流体導入パイプ2が大きな振動で振れてパイプの接合部(連結バルブなど)が外れて漏水の事故を招き、また大きな運転音となるなど騒音を発する。この流体導入パイプ2の脈動による振動は、パイプ径を小さくするとこれに比例して大きな振動と騒音を発し、これを抑えるためパイプ径を大きくすると循環システムの場合、装置の大型化を招く。   In the fine bubble generating apparatus A configured as described above, liquids such as washing water and bath water are supplied from the fluid introduction pipe 2 to the cylinder chamber S1 of the primary pump head 25a through the suction valve 1a by a pump operation described later. The At this time, if the reciprocating cycle of the piston member P is made fast as shown in FIG. However, pulsation occurs in the liquid flowing in the fluid introduction pipe 2 by the opening / closing operation of the suction valve 1a, and the fluid introduction pipe 2 vibrates. Since this vibration pulsates in a state where the fluid introduction pipe 2 is filled with liquid, the mass is large and the amplitude is also large. For example, when the number of opening / closing operations of the suction valve 1a is 10 Hz, the fluid introduction pipe 2 is shaken by a large vibration, and the joint portion (connecting valve, etc.) of the pipe is disconnected, causing a water leakage accident and generating a noise such as a loud driving sound. . The vibration due to the pulsation of the fluid introduction pipe 2 generates large vibrations and noise in proportion to the pipe diameter, and increasing the pipe diameter to suppress this causes an increase in the size of the apparatus in the case of a circulation system.

そこで本発明は液体供給ポンプ25の吸入口26と流体導入パイプ2との間に流体に生ずる振動を減衰する防振ダンパ3を設けたものであり、以下その構造を詳述する。図4に示すように、流体供給ポンプ25の吸入口26には吸入弁1aが設けられ、図示の吸入弁1aは吸入口26からシリンダ室S1に連なる流路に弁体1aを配置し、この弁体1aを弾性部材から構成した弁座1bにスプリング1cで圧接する構造を採用している。そしてシリンダ室S1内のピストン部材P1を往復動することによって弁体1aが弁座1bに圧接及び離反することによって、ピストン部材P1の吸気時には流体導入パイプ2から流体を流入し、ピストン部材P1の圧縮時には弁体1aが逆流を防止するように閉鎖する。この弁体1aの開閉動作と同期して流体導入パイプ2内には脈動が生じ、パイプ或いはこれと接する部品が振動する。   In view of this, the present invention is provided with an anti-vibration damper 3 for attenuating vibration generated in the fluid between the suction port 26 of the liquid supply pump 25 and the fluid introduction pipe 2, and the structure thereof will be described in detail below. As shown in FIG. 4, a suction valve 1a is provided at the suction port 26 of the fluid supply pump 25. The illustrated suction valve 1a has a valve body 1a disposed in a flow path extending from the suction port 26 to the cylinder chamber S1. A structure is adopted in which the valve body 1a is pressed against a valve seat 1b formed of an elastic member by a spring 1c. Then, by reciprocating the piston member P1 in the cylinder chamber S1, the valve body 1a comes into pressure contact with and separates from the valve seat 1b, so that the fluid flows in from the fluid introduction pipe 2 during the intake of the piston member P1, and the piston member P1 During compression, the valve body 1a is closed to prevent backflow. In synchronism with the opening / closing operation of the valve body 1a, pulsation is generated in the fluid introduction pipe 2, and the pipe or a component in contact with the pipe vibrates.

そこでこの流体導入パイプ2に防振ダンパ3を設ける。図4に示す防振ダンパはタンク手段4で構成した場合を示す。タンク手段4は流体導入パイプ2中の液体が流入するタンクで構成され、流体導入パイプ2から分岐して入出路4aと、液体を貯蔵する貯液部4bが備えられている。そして吸入弁1aが閉じられ流体導入パイプ2中の液体が高圧となったときには流体導入パイプ2から液体が貯液部4bに進入し、吸入弁1aが開放されたときは流体導入パイプ2側に流出するような構成になっている。そしてこのタンク手段4は流体導入パイプ2中の液体の圧力に応じた高さ位置に配置される。つまり循環システムの時には処理層の水位と同レベル位置に設置され、また処理槽に新しい液体を供給する気液供給システムの時には流体導入パイプ2に供給される液体の水圧に応じた高さ位置に設置する。   Therefore, a vibration damping damper 3 is provided on the fluid introduction pipe 2. 4 shows a case where the vibration damping damper shown in FIG. The tank means 4 is constituted by a tank into which the liquid in the fluid introduction pipe 2 flows, and is provided with an inlet / outlet path 4a branched from the fluid introduction pipe 2 and a liquid storage portion 4b for storing the liquid. When the suction valve 1a is closed and the liquid in the fluid introduction pipe 2 becomes high pressure, the liquid enters the liquid storage part 4b from the fluid introduction pipe 2, and when the suction valve 1a is opened, the liquid introduction pipe 2 side is opened. It is configured to flow out. The tank means 4 is arranged at a height position corresponding to the pressure of the liquid in the fluid introduction pipe 2. In other words, in the case of a circulation system, it is installed at the same level as the water level of the treatment layer, and in the case of a gas-liquid supply system for supplying new liquid to the treatment tank, it is at a height position corresponding to the water pressure of the liquid supplied to the fluid introduction pipe 2. Install.

このように流体導入パイプ2から分岐してパイプ中の流体が迂回して環流するように構成されたタンク手段4は、図4に示すように吸入弁1aが閉じられたときには、吸入口26近傍のパイプ中の水圧は密となり、振動を生起する原因となるがパイプ中の液体は入出路4aから貯液部4bに流入し、パイプ中に発生する振動を減衰(軽減)する。また吸入弁1aが開放されたときにはパイプ中の液体がシリンダ室S1内に勢いよく吸入されパイプ中に水圧の粗密が生じて振動の原因となる。このとき流入口近傍が粗となるが、これがタンク手段4からパイプ中に環流する液体で緩和され振動を軽減することとなる。   The tank means 4 configured to branch off from the fluid introduction pipe 2 so that the fluid in the pipe bypasses and circulates in the vicinity of the suction port 26 when the suction valve 1a is closed as shown in FIG. The water pressure in the pipe becomes dense and causes vibration, but the liquid in the pipe flows from the inlet / outlet path 4a into the liquid storage part 4b, and attenuates (reduces) the vibration generated in the pipe. When the intake valve 1a is opened, the liquid in the pipe is vigorously drawn into the cylinder chamber S1 and the water pressure becomes dense and causes vibrations in the pipe. At this time, the vicinity of the inlet becomes rough, but this is relieved by the liquid circulating from the tank means 4 into the pipe to reduce vibration.

次に、図5には防振ダンパ3を伸縮自在なベローズ管12で構成した場合を示す。図5に示す防振ダンパ3はベローズ管12で構成され、流体導入パイプ2から分岐して液体を流入及び環流する入出路12aと、この入出路12aを備えた伸縮自在の貯液部12bで構成する。そして吸入弁1aが閉じられパイプ中の液体が高圧となったときにはパイプから液体が貯液部12bに進入し、ベローズ管12は伸張する。逆に吸入弁1aが開放され流体導入パイプ2の水圧が低下すると貯液部12bから流体導入パイプ2側に流出するような構成になっている。そしてこの貯液部4bは伸縮自在のベローズ管12で形成されている。   Next, FIG. 5 shows a case where the vibration damping damper 3 is constituted by a bellows tube 12 that can be expanded and contracted. An anti-vibration damper 3 shown in FIG. 5 includes a bellows pipe 12, and includes an inlet / outlet path 12a that branches from the fluid introduction pipe 2 and flows in and circulates a liquid, and an elastic liquid storage section 12b that includes the inlet / outlet path 12a. Constitute. When the suction valve 1a is closed and the liquid in the pipe becomes high pressure, the liquid enters the liquid storage part 12b from the pipe, and the bellows pipe 12 expands. On the contrary, when the suction valve 1a is opened and the water pressure of the fluid introduction pipe 2 decreases, the suction valve 1a flows out from the liquid storage part 12b to the fluid introduction pipe 2 side. The liquid storage part 4b is formed by an expandable / contractible bellows tube 12.

このように流体導入パイプ2から分岐してパイプ中の流体が迂回して貯液部4bに流入するベローズ管12で構成された防振ダンパ3は、吸入弁1aが閉じられたときには、吸入口26近傍のパイプ中の水圧は密となり、振動を生起する原因となるがこのとき高圧となったパイプ中の液体は入出路12aから貯液部12bに流入し、パイプ中に発生する振動を減衰(軽減)する。また吸入弁1aが開放されたときにはパイプ中の液体がシリンダ室S1内に勢いよく吸入されパイプ中に水圧の粗密が生じて振動の原因となる。このとき流入口近傍が粗となるが、これがベローズ管12からパイプ中に環流する液体で緩和され振動を軽減することとなる。このようにベローズ管12は図5における管の長さHbは吸入弁1aの開閉に応じて伸縮することとなる。このように密封した状態で貯液部12bを伸縮自在なベローズ管12などで構成すると、内部の液体が漏出することがなく、この防振ダンパ3の設置位置(設置高さなど)を制限されることがなく、システムの設置作業が容易となる。   Thus, when the suction valve 1a is closed, the vibration damping damper 3 constituted by the bellows pipe 12 branching from the fluid introduction pipe 2 and detouring the fluid in the pipe and flowing into the liquid storage part 4b is formed in the suction port. The water pressure in the pipe in the vicinity of the pipe 26 becomes dense and causes vibration. At this time, the liquid in the pipe that has become high pressure flows into the liquid storage part 12b from the inlet / outlet path 12a and attenuates the vibration generated in the pipe. (Reduce). When the intake valve 1a is opened, the liquid in the pipe is vigorously drawn into the cylinder chamber S1 and the water pressure becomes dense and causes vibrations in the pipe. At this time, the vicinity of the inlet becomes rough, but this is relieved by the liquid circulating from the bellows pipe 12 into the pipe, thereby reducing vibration. In this way, the bellows pipe 12 expands and contracts in accordance with the opening and closing of the suction valve 1a in the length Hb of the pipe in FIG. If the liquid storage part 12b is configured by the telescopic bellows tube 12 or the like in such a sealed state, the liquid inside does not leak and the installation position (installation height, etc.) of the vibration damper 3 is limited. System installation work becomes easier.

次に前述の液体供給ポンプ25およびエアーポンプ50の構成について、図6に基づいて詳述する。図5及び6はシリンダ室Sとこのシリンダ室S内をレシプロ運動するピストン部材Pで空気を吐出部に送るエアーポンプ50の構造を示す。図示のものは前面フレーム63と背面フレーム64との間に一対のポンプヘッド50a,50bとこの各ポンプヘッド50a,50bに流体を送るピストンを駆動する駆動機構が組込んである。このポンプヘッドP3、P4は同一構造でそれぞれ吐出室62a、62bとこの吐出室62a、62bに空気を流入するシリンダ室S3、S4と、ピストン部材P3、P4を備えている。以下同一構造であるのでその一方について説明する。   Next, the configuration of the liquid supply pump 25 and the air pump 50 will be described in detail with reference to FIG. 5 and 6 show the structure of the air pump 50 that sends air to the discharge portion by the cylinder chamber S and the piston member P that reciprocally moves in the cylinder chamber S. FIG. In the illustrated example, a pair of pump heads 50a and 50b and a drive mechanism for driving a piston that sends fluid to the pump heads 50a and 50b are incorporated between a front frame 63 and a back frame 64. The pump heads P3 and P4 have the same structure and are provided with discharge chambers 62a and 62b, cylinder chambers S3 and S4 into which air flows into the discharge chambers 62a and 62b, and piston members P3 and P4, respectively. Since the structure is the same, one of them will be described below.

図示のシリンダ室S3、S4は前面フレーム63と背面フレーム64との間に取付けられた上部フレームと下部フレームにそれぞれ穿設した中空円筒形状の開口で構成されている。このシリンダ室S3には通気孔51cを有するポンプヘッド50a、50bが連結してあり、シリンダ室S3には外気を流入する吸入口51と通気孔51cが設けられ、ピストン部材P3の往復動作で通気孔51cから気体を流入し、吐出口52から連通パイプ53に送る。   The illustrated cylinder chambers S3 and S4 are configured by hollow cylindrical openings respectively drilled in an upper frame and a lower frame attached between the front frame 63 and the rear frame 64. Pump heads 50a and 50b having a vent hole 51c are connected to the cylinder chamber S3, and a suction port 51 and a vent hole 51c through which outside air flows are provided in the cylinder chamber S3. Gas is introduced from the air holes 51 c and sent from the discharge port 52 to the communication pipe 53.

そこでシリンダ室S3、S4にはピストン部材P3、P4が往復動自在に嵌合してあり、このピストン部材P3、P4は回転カム部材65で駆動される。この回転カム部材65は、前面フレーム63と背面フレーム64との間に軸受支持された回転軸66に固定(例えば圧入)した偏心回転体67a、67bで構成され、この偏心回転体67a、67bは図6に示すように軸心に対して180度隔てた位置に対称となるように配置され、偏心回転体67aがピストン部材P3を、偏心回転体67bがピストン部材P4を従動するように連結されている。   Therefore, piston members P3 and P4 are fitted in the cylinder chambers S3 and S4 so as to be able to reciprocate. The piston members P3 and P4 are driven by a rotating cam member 65. The rotating cam member 65 includes eccentric rotating bodies 67a and 67b fixed (for example, press-fitted) to a rotating shaft 66 supported by a bearing between the front frame 63 and the back frame 64. The eccentric rotating bodies 67a and 67b are As shown in FIG. 6, they are arranged so as to be symmetrical at positions separated by 180 degrees with respect to the axis, and are connected so that the eccentric rotating body 67a follows the piston member P3 and the eccentric rotating body 67b follows the piston member P4. ing.

本発明に係わる微細気泡発生装置の全体レイアウト説明図。BRIEF DESCRIPTION OF THE DRAWINGS The whole layout explanatory drawing of the microbubble generator concerning this invention. 図1の装置に於ける往復動ポンプの構成を示す説明図であり、同図(a)は正面図、同図(b)は側面図。It is explanatory drawing which shows the structure of the reciprocating pump in the apparatus of FIG. 1, The figure (a) is a front view, The figure (b) is a side view. 図1の装置に於ける混合タンクの内部構造を示す説明図。Explanatory drawing which shows the internal structure of the mixing tank in the apparatus of FIG. 図1の装置に於ける防振ダンパを示す説明図。Explanatory drawing which shows the vibration isolator in the apparatus of FIG. 図4と異なる防振ダンパの実施形態を示す説明図。Explanatory drawing which shows embodiment of the vibration isolator different from FIG. 図1の装置における往復動ポンプの細部構造の正面図。The front view of the detailed structure of the reciprocating pump in the apparatus of FIG. 図1の装置における往復動ポンプの細部構造の側面図。The side view of the detailed structure of the reciprocating pump in the apparatus of FIG.

符号の説明Explanation of symbols

1a 吸入弁
2 流体導入パイプ
3 防振ダンパ
4 タンク手段
9 混合タンク
12 ベローズ管
25 液体供給ポンプ
31 気液供給パイプ
50 エアーポンプ
57 気泡分別手段
A 微細気泡発生装置
B 処理槽(貯液層)
DESCRIPTION OF SYMBOLS 1a Suction valve 2 Fluid introduction pipe 3 Anti-vibration damper 4 Tank means 9 Mixing tank 12 Bellows pipe 25 Liquid supply pump 31 Gas-liquid supply pipe 50 Air pump 57 Bubble separation means A Fine bubble generator B Processing tank (liquid storage layer)

Claims (6)

流体を吸入するシリンダと、
上記シリンダに往復動自在に装着されたピストン部材と、
上記シリンダとピストン部材とを備えたポンプヘッドと、
上記ピストン部材を往復動する駆動手段と、
上記シリンダに配置された吸入弁と、
上記吸入弁を介して流体を上記シリンダに供給する流体導入パイプと、
を備えた往復動ポンプであって、
上記流体導入パイプと上記吸入弁との間に流体に生ずる振動を減衰する防振ダンパを設け、
上記流体導入パイプは逆止弁を介して上記シリンダに連結され、
上記ポンプヘッドには上記シリンダと、上記防振ダンパと、上記吸入弁とがそれぞれ備えられ、
上記ポンプヘッドと上記駆動手段とを取付けたユニットフレームをゴム、フェルト、綿、スポンジなどの波動吸収体を介してケースその他の構造物に据え付けることを特徴とする往復動ポンプ。
A cylinder for sucking fluid;
A piston member reciprocally mounted on the cylinder;
A pump head comprising the cylinder and the piston member;
Drive means for reciprocating the piston member;
A suction valve disposed in the cylinder;
A fluid introduction pipe for supplying fluid to the cylinder via the suction valve;
A reciprocating pump comprising:
An anti-vibration damper is provided between the fluid introduction pipe and the suction valve to dampen vibration generated in the fluid,
The fluid introduction pipe is connected to the cylinder via a check valve;
The pump head includes the cylinder, the vibration damping damper, and the suction valve,
A reciprocating pump characterized in that a unit frame to which the pump head and the driving means are attached is installed on a case or other structure through a wave absorber such as rubber, felt, cotton, sponge or the like.
前記防振ダンパは前記流体導入パイプと前記シリンダとの間に配置され、該流体導入パイプから前記吸入弁に至る流体を分岐して迂回流入するタンク手段で構成され、該タンク手段には空気その他の膨縮性気体が収容されていることを特徴とする請求項1に記載の往復動ポンプ。 The anti-vibration damper is disposed between the fluid introduction pipe and the cylinder, and is composed of tank means for diverting a fluid from the fluid introduction pipe to the intake valve and bypassing the air. The reciprocating pump according to claim 1, wherein the expansion / contraction gas is accommodated. 前記防振ダンパは前記流体導入パイプと前記シリンダとの間に配置され、前記流体導入パイプ中の流体圧力に応じて脈動する弾性変形可能なベローズ管で構成されていることを特徴とする請求項1に記載の往復動ポンプ。 The anti-vibration damper is disposed between the fluid introduction pipe and the cylinder, and is composed of an elastically deformable bellows pipe that pulsates according to a fluid pressure in the fluid introduction pipe. 2. A reciprocating pump according to 1. 流体を吸入するシリンダと、
上記シリンダに往復動自在に装着されたピストン部材と、
上記ピストン部材を往復動する駆動手段と、
上記シリンダに連結された吸入弁と、
上記吸入弁を介して流体を上記シリンダに供給する流体導入パイプと、
上記シリンダに設けた吐出弁と、
上記吐出弁からの流体を収容する混合タンクと、
上記混合タンクに高圧空気を導入するエアー噴出手段と
上記混合タンク中の気泡を分離する微細気泡分別手段と、
上記微細気泡分別手段で分別された気泡を噴出する気泡噴射手段とを有し、
上記流体導入パイプと上記吸入弁との間に流体に生ずる振動を減衰する防振ダンパを設けたことを特徴とする微細気泡発生装置。
A cylinder for sucking fluid;
A piston member reciprocally mounted on the cylinder;
Drive means for reciprocating the piston member;
A suction valve coupled to the cylinder;
A fluid introduction pipe for supplying fluid to the cylinder via the suction valve;
A discharge valve provided in the cylinder;
A mixing tank containing fluid from the discharge valve;
Air blowing means for introducing high-pressure air into the mixing tank, and fine bubble sorting means for separating bubbles in the mixing tank;
A bubble jetting means for jetting out the bubbles sorted by the fine bubble sorting means,
An apparatus for generating fine bubbles, characterized in that an anti-vibration damper for attenuating vibration generated in a fluid is provided between the fluid introduction pipe and the suction valve.
前記防振ダンパは前記請求項2乃至4の何れかに記載の構成を備えていることを特徴とする微細気泡発生装置。 The anti-vibration damper is provided with the structure according to any one of claims 2 to 4, and a fine bubble generator. 前記シリンダは第1、第2少なくとも2つのシリンダ室から構成され、前記ピストン部材は上記第1、第2のシリンダ室にそれぞれ装備され、
前記駆動手段は駆動回転軸と、この駆動回転軸に装着された偏心カム手段とで構成され、
この偏心カム手段は上記第1シリンダ室のピストン部材と上記第2シリンダ室のピストン部材に流体の吐出タイミングが異なるように連結され、
上記第1シリンダからの吐出流体を上記第2シリンダで加圧して前記混合タンクに流入するようにしたことを特徴とする請求項4又は5に記載の微細気泡発生装置。
The cylinder is composed of first and second at least two cylinder chambers, and the piston member is provided in each of the first and second cylinder chambers,
The drive means comprises a drive rotary shaft and an eccentric cam means mounted on the drive rotary shaft,
The eccentric cam means is connected to the piston member of the first cylinder chamber and the piston member of the second cylinder chamber so that the fluid discharge timing is different,
6. The fine bubble generating device according to claim 4, wherein the discharge fluid from the first cylinder is pressurized by the second cylinder and flows into the mixing tank.
JP2005367911A 2005-12-21 2005-12-21 Micro air bubble generating apparatus of liquid storage tank such as bathtub, and liquid circulation system having the same Pending JP2007170250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005367911A JP2007170250A (en) 2005-12-21 2005-12-21 Micro air bubble generating apparatus of liquid storage tank such as bathtub, and liquid circulation system having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005367911A JP2007170250A (en) 2005-12-21 2005-12-21 Micro air bubble generating apparatus of liquid storage tank such as bathtub, and liquid circulation system having the same

Publications (1)

Publication Number Publication Date
JP2007170250A true JP2007170250A (en) 2007-07-05

Family

ID=38297126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005367911A Pending JP2007170250A (en) 2005-12-21 2005-12-21 Micro air bubble generating apparatus of liquid storage tank such as bathtub, and liquid circulation system having the same

Country Status (1)

Country Link
JP (1) JP2007170250A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8201811B2 (en) 2009-01-12 2012-06-19 Jason International, Inc. Microbubble therapy method and generating apparatus
US8322634B2 (en) 2009-01-12 2012-12-04 Jason International, Inc. Microbubble therapy method and generating apparatus
US8579266B2 (en) 2009-01-12 2013-11-12 Jason International, Inc. Microbubble therapy method and generating apparatus
US8720867B2 (en) 2009-01-12 2014-05-13 Jason International, Inc. Microbubble therapy method and generating apparatus
US9060916B2 (en) 2009-01-12 2015-06-23 Jason International, Inc. Microbubble therapy method and generating apparatus
KR101861052B1 (en) * 2018-01-05 2018-05-24 박상원 Micro-bubble supplier for anodizing apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8201811B2 (en) 2009-01-12 2012-06-19 Jason International, Inc. Microbubble therapy method and generating apparatus
US8322634B2 (en) 2009-01-12 2012-12-04 Jason International, Inc. Microbubble therapy method and generating apparatus
US8579266B2 (en) 2009-01-12 2013-11-12 Jason International, Inc. Microbubble therapy method and generating apparatus
US8646759B2 (en) 2009-01-12 2014-02-11 Jason International, Inc. Microbubble therapy method and generating apparatus
US8720867B2 (en) 2009-01-12 2014-05-13 Jason International, Inc. Microbubble therapy method and generating apparatus
US9060916B2 (en) 2009-01-12 2015-06-23 Jason International, Inc. Microbubble therapy method and generating apparatus
US9475011B2 (en) 2009-01-12 2016-10-25 Jason International, Inc. Microbubble therapy method and generating apparatus
KR101861052B1 (en) * 2018-01-05 2018-05-24 박상원 Micro-bubble supplier for anodizing apparatus

Similar Documents

Publication Publication Date Title
KR100246905B1 (en) Fuel supplying apparatus
US6692238B2 (en) Muffler of compressor
KR100314063B1 (en) Apparatus for applying oil of linear compressor
JPWO2019124130A1 (en) Fluid device and its buffer tank
JP2007170250A (en) Micro air bubble generating apparatus of liquid storage tank such as bathtub, and liquid circulation system having the same
CN109891096B (en) Liquid pump
JPH10331735A (en) Supply device for engine
KR100832211B1 (en) Refrigerating compressor and refrigerating device using the same
JP2014148969A (en) Pulsatile pump device of warm water washing toilet seat
KR101000213B1 (en) Small bubble generating device
JP2007296430A (en) Apparatus for generating air bubble and system for generating air bubble provided with the same
JP4577364B2 (en) Compressor
KR200434503Y1 (en) Air pump having a prevention of noise
JP4631561B2 (en) Microbubble generator
JP6749226B2 (en) Fuel supply device
KR20220081726A (en) Fuel pump module
JP2008111244A (en) Hot water washing toilet seat device
CN112899990A (en) Water inlet method of washing equipment and washing equipment using water inlet method
JP2002188581A (en) Refrigerant pump system
KR102616399B1 (en) A Nano bubble dishwasher
RU2198020C2 (en) Foam generator
JP2021055324A (en) Water closet
US20060000669A1 (en) Acoustic fluid machine
KR102271439B1 (en) Compressor
KR20080016634A (en) Refrigerating compressor and refrigerating device using the same