JP2007162493A - Compression expansion turbine system - Google Patents
Compression expansion turbine system Download PDFInfo
- Publication number
- JP2007162493A JP2007162493A JP2005356177A JP2005356177A JP2007162493A JP 2007162493 A JP2007162493 A JP 2007162493A JP 2005356177 A JP2005356177 A JP 2005356177A JP 2005356177 A JP2005356177 A JP 2005356177A JP 2007162493 A JP2007162493 A JP 2007162493A
- Authority
- JP
- Japan
- Prior art keywords
- compression
- bearing
- turbine
- main shaft
- expansion turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
この発明は、冷媒として空気が用いられ、冷凍倉庫、零度以下の低温室、空調等に利用される空気サイクル冷凍冷却システムの圧縮膨張タービンシステムに関する。 The present invention relates to a compression / expansion turbine system of an air cycle refrigeration cooling system in which air is used as a refrigerant and is used in a refrigeration warehouse, a low-temperature room below zero degrees, air conditioning, and the like.
空気サイクル冷凍冷却システムは、冷媒として空気を用いるため、フロンやアンモニアガス等を用いる場合に比べてエネルギー効率が不足するが、環境保護の面では好ましい。また、冷凍倉庫等のように、冷媒空気を直接に吹き込むことができる施設では、庫内ファンやデフロストの省略等によってトータルコストを引下げられる可能性があり、このような用途で空気サイクル冷凍冷却システムが提案されている(例えば特許文献1)。 Since the air cycle refrigeration cooling system uses air as a refrigerant, energy efficiency is insufficient as compared with the case where chlorofluorocarbon, ammonia gas, or the like is used. In addition, in facilities where refrigerant air can be directly blown into, such as a refrigerated warehouse, the total cost may be reduced by omitting the internal fan and defrost, etc. In such applications, the air cycle refrigeration cooling system Has been proposed (for example, Patent Document 1).
また、−30℃〜−60℃のディープ・コール領域では、空気冷却の理論効率は、フロンやアンモニアガスと同等以上になることが知られている。ただし、上記空気冷却の理論効率を得ることは、最適に設計された周辺装置があって、始めて成り立つとも述べられている。周辺装置は、圧縮機や膨張タービン等である。
圧縮機,膨張タービンとしては、コンプレッサ翼車および膨張タービン翼車を共通の主軸に取付けたタービンユニットが用いられている(特許文献1)。
Further, it is known that the theoretical efficiency of air cooling is equal to or higher than that of Freon or ammonia gas in a deep coal region of -30 ° C to -60 ° C. However, it is also stated that obtaining the theoretical efficiency of the air cooling is not possible until there is an optimally designed peripheral device. The peripheral device is a compressor, an expansion turbine, or the like.
As the compressor and the expansion turbine, a turbine unit in which a compressor impeller and an expansion turbine impeller are attached to a common main shaft is used (Patent Document 1).
なお、プロセスガスを処理するタービン・コンプレッサとしては、主軸の一端にタービン翼車、他端にコンプレッサ翼車を取付け、前記主軸を電磁石の電流で制御するジャーナルおよびスラスト軸受で支承した磁気軸受式タービン・コンプレッサが提案されている(特許文献2)。
また、ガスタービンエンジンにおける提案ではあるが、主軸支持用の転がり軸受に作用するスラスト荷重が軸受寿命の短縮を招くことを回避するため、転がり軸受に作用するスラスト荷重をスラスト磁気軸受により低減することが提案されている(特許文献3)。
In addition, although it is a proposal for a gas turbine engine, in order to avoid the thrust load acting on the rolling bearing for supporting the main shaft from shortening the bearing life, the thrust load acting on the rolling bearing should be reduced by the thrust magnetic bearing. Has been proposed (Patent Document 3).
上記のように、空気サイクル冷凍冷却システムとして、ディープ・コール領域で高効率となる空気冷却の理論効率を得るためには、最適に設計された圧縮機や膨張タービンが必要となる。
圧縮機,膨張タービンとしては、上記のようにコンプレッサ翼車および膨張タービン翼車を共通の主軸に取付けたタービンユニットが用いられている。このタービンユニットは、膨張タービンの生じる動力によりコンプレッサ翼車を駆動できることで空気サイクル冷凍機の効率を向上させている。
As described above, as the air cycle refrigeration cooling system, in order to obtain the theoretical efficiency of air cooling that is highly efficient in the deep coal region, an optimally designed compressor and expansion turbine are required.
As the compressor and the expansion turbine, a turbine unit in which the compressor wheel and the expansion turbine wheel are attached to a common main shaft as described above is used. In this turbine unit, the compressor impeller can be driven by the power generated by the expansion turbine, thereby improving the efficiency of the air cycle refrigerator.
しかし、実用的な効率を得るためには、各翼車とハウジングとの隙間を微小に保つ必要がある。この隙間の変動は、安定した高速回転の妨げとなり効率の低下を招く。
また、コンプレッサ翼車やタービン翼車に作用する空気により、主軸にスラスト力が作用し、主軸を支持する軸受にスラスト荷重が荷される。空気サイクル冷凍冷却システムにおけるタービンユニットの主軸の回転速度は、1分間に8万〜10万回転であり、一般的な用途の軸受に比べて非常に高速となる。そのため、上記のようなスラスト荷重は、主軸を支持する軸受の長期耐久性の低下、寿命低下を招き、空気サイクル冷凍冷却用タービンユニットの信頼性を低下させる。このような軸受の長期耐久性の課題を解消しなくては、空気サイクル冷凍冷却用タービンユニットの実用化が難しい。しかし、上記特許文献1に開示の技術は、この高速回転下におけるスラスト荷重の負荷に対する軸受の長期耐久性の低下については解決されるに至っていない。
However, in order to obtain practical efficiency, it is necessary to keep the gap between each impeller and the housing minute. The fluctuation of the gap hinders stable high-speed rotation and causes a decrease in efficiency.
In addition, a thrust force acts on the main shaft by the air acting on the compressor impeller and the turbine impeller, and a thrust load is applied to the bearing that supports the main shaft. The rotation speed of the main shaft of the turbine unit in the air cycle refrigeration cooling system is 80,000 to 100,000 rotations per minute, which is very high compared with a bearing for general use. For this reason, the thrust load as described above causes a decrease in long-term durability and life of the bearing supporting the main shaft, and decreases the reliability of the turbine unit for air cycle refrigeration cooling. Unless such a problem of long-term durability of the bearing is solved, it is difficult to put the air cycle refrigeration cooling turbine unit into practical use. However, the technique disclosed in
特許文献2の磁気軸受式タービン・コンプレッサのように、主軸を磁気軸受からなるジャーナル軸受およびスラスト軸受で支承したものでは、ジャーナル軸受にアキシアル方向の規制機能がない。そのため、スラスト軸受の制御の不安定要因等があると、上記翼車とディフューザ間の微小隙間を保って安定した高速回転を行うことが難しい。磁気軸受の場合は、電源停止時における接触の問題もある。
In the case where the main shaft is supported by a journal bearing made of a magnetic bearing and a thrust bearing, such as the magnetic bearing type turbine compressor of
そこで、この発明の発明者等は、上記課題を解決するものとして、先に図12に示すような構成の空気サイクル冷凍冷却用の圧縮膨張タービンユニットを提案した(特願2005−239464)。このタービンユニットでは、主軸63の両端にコンプレッサ56のコンプレッサ翼車56aおよび膨張タービン57のタービン翼車57aを取付け、主軸63を回転自在に支持する軸受として、グリース潤滑の転がり軸受65,66と、磁気軸受を構成する電磁石67とを併用し、転がり軸受65,66がラジアル負荷を支持し、磁気軸受がアキシアル負荷を支持し、電磁石67は、主軸63に垂直かつ同軸に設けられたスラスト板63aに非接触で対向するように配置し、アキシアル方向の力を検出するセンサ68の出力に応じてコントローラ69で電磁石67を制御する。
また、コンプレッサ翼車56aとでコンプレッサ56を構成するコンプレッサ側ケーシング56bにおける転がり軸受65よりもコンプレッサ翼車56a側の部分、およびタービン翼車57aとで膨張タービン57を構成するタービン側ケーシング57bにおける転がり軸受66よりもタービン翼車57a側の部分は、それぞれ内径面が主軸63に近接する径に形成し、これらの内径面に非接触シール71,72を形成している。非接触シール71,72は、前記各ケーシング56b,57bの内径面に複数の円周溝を軸方向に並べて形成したラビリンスシールやねじ溝シールとしている。
Accordingly, the inventors of the present invention have proposed a compression / expansion turbine unit for air cycle refrigeration cooling having a structure as shown in FIG. 12 as a means for solving the above problems (Japanese Patent Application No. 2005-239464). In this turbine unit, a roller wheel 65a for the
In addition, a portion in the
しかし、上記構成のタービンユニットにおいて、非接触シール71,72がラビリンスシールである場合には、シール隙間を10μm以下に保ちながら主軸63を高速回転させることが難しい。そこで、シールフィンと主軸63との接触を回避するために、シール隙間を広げた場合、コンプレッサ56側と膨張タービン57側の圧力差により、各転がり軸受65,66内や各転がり軸受65,66と各ケーシング56b,57bとの接触面から空気が漏れ、タービンユニットの効率が低下するという問題がある。また、通過空気による転がり軸受65,66内のグリースの乾燥や飛散が生じ、転がり軸受65,66の長期耐久性を低下させることにもなる。
However, in the turbine unit configured as described above, when the
この発明の目的は、シール性能に起因する効率低下を改善し、転がり軸受の長期耐久性を向上させることができ、また簡単な構成のコントローラで安定した制御が行える圧縮膨張タービンシステムを提供することである。 An object of the present invention is to provide a compression / expansion turbine system that can improve efficiency reduction due to sealing performance, improve the long-term durability of a rolling bearing, and can be stably controlled with a controller having a simple configuration. It is.
この発明の第1の発明にかかる圧縮膨張タービンシステムは、転がり軸受と磁気軸受を併用し、転がり軸受がラジアル負荷を支持し、磁気軸受がアキシアル負荷と軸受予圧のどちらか一方または両方を支持し、前記磁気軸受の電磁石は主軸に設けられた強磁性体からなるフランジ状のスラスト板に非接触で対向するように、スピンドルハウジングに取付けられており、コンプレッサ側翼車およびタービン側翼車は、前記スラスト板と共通の主軸に嵌合し、タービン側翼車で発生した動力により、コンプレッサ側翼車を駆動させるものであり、アキシアル方向の力を検出するセンサの出力に応じて前記電磁石を制御するコントローラを有し、前記転がり軸受とこの転がり軸受の支持系とで形成される合成バネの剛性値が、前記電磁石の負の剛性値よりも大である関係を有し、圧縮膨張タービンユニットのハウジングが、スピンドルハウジング、転がり軸受支持部、タービン側ケーシング、およびコンプレッサ側ケーシングから構成され、前記コンプレッサ側翼車とその近傍の軸受との間、またはタービン側翼車とその近傍の軸受との間に、圧縮膨張タービンユニットのハウジングに弾性的に支持されて主軸の外周にシール隙間を形成する非接触シールを設けたことを特徴とする。 A compression / expansion turbine system according to a first aspect of the present invention uses a rolling bearing and a magnetic bearing in combination, the rolling bearing supports a radial load, and the magnetic bearing supports one or both of an axial load and a bearing preload. The electromagnet of the magnetic bearing is attached to the spindle housing so as to face a flange-shaped thrust plate made of a ferromagnetic material provided on the main shaft in a non-contact manner, and the compressor side impeller and the turbine side impeller include the thrust side A compressor-side impeller is driven by the power generated by the turbine-side impeller, which is fitted to the main shaft common to the plate, and has a controller that controls the electromagnet according to the output of the sensor that detects the axial force. The stiffness value of the composite spring formed by the rolling bearing and the support system of the rolling bearing is the negative stiffness of the electromagnet. The compression / expansion turbine unit housing is composed of a spindle housing, a rolling bearing support, a turbine side casing, and a compressor side casing, between the compressor side impeller and the nearby bearings. Alternatively, a non-contact seal that is elastically supported by the housing of the compression / expansion turbine unit and forms a seal gap on the outer periphery of the main shaft is provided between the turbine side impeller and the bearing in the vicinity thereof.
この構成によると、コンプレッサ側翼車とその近傍の軸受との間、またはタービン側翼車とその近傍の軸受との間に、弾性支持された非接触シールを有していることから、優れたシール性能が得られる。すなわち、非接触シールは、例えばスリーブからなり、弾性支持部材によって弾性的に支持される。そのため、スリーブ等からなる非接触シールが弾性支持部材の弾性変形範囲内で径方向に移動可能となり、またスリーブ等からなる非接触シールと主軸とでいわゆる真円軸受が構成されるため、スリーブが主軸の振れ回りに追従することが可能となる。このようにシール性能が向上することにより、コンプレッサ側とタービン側との圧力差による転がり軸受内や、転がり軸受と軸受支持部との接触面からの空気漏れを低減することができ、圧縮膨張タービンユニットの効率低下を改善することができる。また、通過空気による転がり軸受でのグリースの乾燥や飛散が生じなくなったため、転がり軸受の長期耐久性を向上させることができる。
また、転がり軸受とこの転がり軸受の支持系とで形成される合成バネの剛性値が、電磁石部の負の剛性値よりも大である関係に設定されているので、制御帯域において、機械システムの位相が180°遅れとなることを防止できて、制御対象を安定なものとでき、コントローラの回路構成を比例または比例積分等の簡単な構成のものとしても、安定した制御が行える。
According to this configuration, since the non-contact seal is elastically supported between the compressor side wheel and the nearby bearing, or between the turbine side wheel and the nearby bearing, excellent sealing performance is achieved. Is obtained. That is, the non-contact seal is made of, for example, a sleeve and is elastically supported by the elastic support member. Therefore, the non-contact seal made of a sleeve or the like can move in the radial direction within the elastic deformation range of the elastic support member, and the non-contact seal made of the sleeve or the like and the main shaft constitute a so-called circular bearing. It is possible to follow the swing of the main shaft. By improving the sealing performance in this way, it is possible to reduce air leakage in the rolling bearing due to the pressure difference between the compressor side and the turbine side, or from the contact surface between the rolling bearing and the bearing support portion. The efficiency reduction of the unit can be improved. Further, since the grease does not dry or scatter in the rolling bearing due to the passing air, the long-term durability of the rolling bearing can be improved.
In addition, since the stiffness value of the composite spring formed by the rolling bearing and the support system of the rolling bearing is set to be larger than the negative stiffness value of the electromagnet portion, the mechanical system of the mechanical system is controlled in the control band. The phase can be prevented from being delayed by 180 °, the controlled object can be made stable, and stable control can be performed even if the circuit configuration of the controller is simple such as proportional or proportional integration.
この発明の第2の発明にかかる圧縮膨張タービンシステムは、転がり軸受と磁気軸受を併用し、転がり軸受がラジアル負荷を支持し、磁気軸受がアキシアル負荷と軸受予圧のどちらか一方または両方を支持し、前記磁気軸受の電磁石は主軸に設けられた強磁性体からなるフランジ状のスラスト板に非接触で対向するように、スピンドルハウジングに取付けられており、コンプレッサ側翼車とタービン側翼車およびモータロータは前記スラスト板と共通の主軸に嵌合し、モータロータは両側にある前記転がり軸受の間に配置され、モータステータは前記モータロータと対向して配置され、前記モータステータからの磁気力ないしはローレンツ力によって、主軸を駆動させるものであり、アキシアル方向の力を検出するセンサの出力に応じて前記電磁石の支持力を制御するコントローラを有し、前記転がり軸受とこの転がり軸受の支持系とで形成される合成バネの剛性値が、前記電磁石とモータとで形成される合成バネの負の剛性値よりも大である関係を有し、圧縮膨張タービンユニットのハウジングが、スピンドルハウジング、モータハウジング、転がり軸受支持部、タービン側ケーシング、およびコンプレッサ側ケーシングから構成され、前記コンプレッサ側翼車とその近傍の軸受との間、またはタービン側翼車とその近傍の軸受との間に、圧縮膨張タービンユニットのハウジングに弾性的に支持されて主軸の外周にシール隙間を形成する非接触シールを設けたことを特徴とする。
この場合も、第1の発明と同様に、シール性能に起因する効率低下を改善し、転がり軸受の長期耐久性を向上させることができる。
また、転がり軸受と転がり軸受の支持系とで形成される合成バネの剛性値が、電磁石部とモータ部とで形成される合成バネの負の剛性値よりも大である関係に設定されているので、制御帯域において、機械システムの位相が180°遅れとなることを防止できて、制御対象を安定なものとでき、コントローラの回路構成を比例または比例積分等の簡単な構成としても安定した制御が行える。
A compression / expansion turbine system according to a second aspect of the present invention uses a rolling bearing and a magnetic bearing in combination, the rolling bearing supports a radial load, and the magnetic bearing supports one or both of an axial load and a bearing preload. The electromagnet of the magnetic bearing is attached to the spindle housing so as to face the flange-shaped thrust plate made of a ferromagnetic material provided on the main shaft in a non-contact manner. The compressor side impeller, the turbine side impeller, and the motor rotor are The main shaft is fitted to the common main shaft with the thrust plate, the motor rotor is disposed between the rolling bearings on both sides, the motor stator is disposed to face the motor rotor, and the main shaft is driven by magnetic force or Lorentz force from the motor stator. According to the output of the sensor that detects the force in the axial direction. Having a controller for controlling the support force of the magnet, the stiffness value of the composite spring formed by the rolling bearing and the support system of the rolling bearing is a negative stiffness value of the composite spring formed by the electromagnet and the motor The compression expansion turbine unit housing is composed of a spindle housing, a motor housing, a rolling bearing support, a turbine side casing, and a compressor side casing, and the compressor side impeller and bearings in the vicinity thereof. Or a non-contact seal that is elastically supported by the housing of the compression / expansion turbine unit to form a seal gap on the outer periphery of the main shaft between the turbine side impeller and the bearing in the vicinity thereof. To do.
Also in this case, similarly to the first invention, it is possible to improve efficiency reduction due to the sealing performance and to improve the long-term durability of the rolling bearing.
Further, the stiffness value of the synthetic spring formed by the rolling bearing and the rolling bearing support system is set to be larger than the negative stiffness value of the synthetic spring formed by the electromagnet portion and the motor portion. Therefore, in the control band, the phase of the mechanical system can be prevented from being delayed by 180 °, the controlled object can be stabilized, and the controller circuit configuration can be controlled with a simple configuration such as proportional or proportional integration. Can be done.
これら第1,第2の発明において、前記非接触シールを圧縮膨張タービンユニットのハウジングに弾性的に支持する弾性支持部材としてOリングを用いても良い。弾性支持部材としてOリングを用いると、非接触シールを主軸の振れ回りに追従可能なように弾性支持する作用が良好に得られる。 In these first and second inventions, an O-ring may be used as an elastic support member that elastically supports the non-contact seal on the housing of the compression / expansion turbine unit. When an O-ring is used as the elastic support member, the effect of elastically supporting the non-contact seal so as to be able to follow the swing of the main shaft can be obtained satisfactorily.
前記各構成において、前記非接触シールはスリーブであっても良い。スリーブとすることで、非接触でシールする適切な軸受隙間が容易に得られる。また、非接触シールをスリーブとすることで、このスリーブと主軸とが、いわゆる真円軸受を形成するものとでき、主軸の振れ回りへの非接触シールの追従性が優れたものとなる。
非接触シールを形成するスリーブはカーボンまたは銅合金または純銅で構成されていても良い。スリーブがカーボン,銅合金,純銅からなると、鋼製の主軸が接触しても主軸の損傷が生じず、多少の接触が許容される。
In each configuration, the non-contact seal may be a sleeve. By using a sleeve, an appropriate bearing gap that can be sealed without contact can be easily obtained. In addition, by using a non-contact seal as a sleeve, the sleeve and the main shaft can form a so-called circular bearing, and the follow-up property of the non-contact seal to the swing of the main shaft is excellent.
The sleeve forming the non-contact seal may be made of carbon, a copper alloy, or pure copper. When the sleeve is made of carbon, copper alloy, or pure copper, even if the steel main shaft comes into contact, the main shaft is not damaged, and some contact is allowed.
この発明において、前記圧縮膨張タービンシステムが、流入空気に対して、タービンユニットのコンプレッサによる圧縮、他の熱交換器による冷却、前記タービンユニットの膨張タービンによる断熱膨張、もしくは予圧縮手段による圧縮、熱交換器による冷却、タービンユニットのコンプレッサによる圧縮、他の熱交換器による冷却、前記タービンユニットの膨張タービンによる断熱膨張、を順次行う空気サイクル冷凍冷却システムに使用されたものであっても良い。
前記圧縮膨張タービンシステムを、このような空気サイクル冷凍冷却システムに適用した場合、圧縮膨張タービンシステムにおいて、各翼車の適切な隙間を保って主軸の安定した高速回転が得られ、かつ軸受長期耐久性の向上、寿命の向上が得られることから、圧縮膨張タービンシステムの全体として、しいては空気サイクル冷凍冷却システムの全体としても信頼性が向上する。また、空気サイクル冷凍冷却システムのネックとなっている圧縮膨張タービンシステムの主軸軸受の安定した高速回転、長期耐久性、信頼性が向上することから、空気サイクル冷凍冷却システムの実用化が可能となる。
In this invention, the compression / expansion turbine system may compress the inflow air by a compressor of the turbine unit, cooling by another heat exchanger, adiabatic expansion by the expansion turbine of the turbine unit, compression by pre-compression means, heat It may be used in an air cycle refrigeration cooling system that sequentially performs cooling by an exchanger, compression by a compressor of a turbine unit, cooling by another heat exchanger, and adiabatic expansion of the turbine unit by an expansion turbine.
When the compression / expansion turbine system is applied to such an air cycle refrigeration / cooling system, in the compression / expansion turbine system, a stable high-speed rotation of the main shaft can be obtained while maintaining an appropriate clearance of each impeller, and the bearing has a long-term durability. Therefore, the reliability is improved as a whole of the compression / expansion turbine system and, as a whole, the air cycle refrigeration cooling system. In addition, stable high-speed rotation, long-term durability, and reliability of the main shaft bearing of the compression / expansion turbine system, which is the bottleneck of the air cycle refrigeration cooling system, improve the practical use of the air cycle refrigeration cooling system. .
この発明の第1の発明にかかる圧縮膨張タービンシステムは、転がり軸受と磁気軸受を併用し、転がり軸受がラジアル負荷を支持し、磁気軸受がアキシアル負荷と軸受予圧のどちらか一方または両方を支持し、前記磁気軸受の電磁石は主軸に設けられた強磁性体からなるフランジ状のスラスト板に非接触で対向するように、スピンドルハウジングに取付けられており、コンプレッサ側翼車およびタービン側翼車は、前記スラスト板と共通の主軸に嵌合し、タービン側翼車で発生した動力により、コンプレッサ側翼車を駆動させるものであり、アキシアル方向の力を検出するセンサの出力に応じて前記電磁石を制御するコントローラを有し、前記転がり軸受とこの転がり軸受の支持系とで形成される合成バネの剛性値が、前記電磁石の負の剛性値よりも大である関係を有し、圧縮膨張タービンユニットのハウジングが、スピンドルハウジング、転がり軸受支持部、タービン側ケーシング、およびコンプレッサ側ケーシングから構成され、前記コンプレッサ側翼車とその近傍の軸受との間、またはタービン側翼車とその近傍の軸受との間に、圧縮膨張タービンユニットのハウジングに弾性的に支持されて主軸の外周にシール隙間を形成する非接触シールを設けたため、シール性能に起因する効率低下を改善し、転がり軸受の長期耐久性を向上させることができ、また簡単な構成のコントローラで安定した制御が行える。 A compression / expansion turbine system according to a first aspect of the present invention uses a rolling bearing and a magnetic bearing in combination, the rolling bearing supports a radial load, and the magnetic bearing supports one or both of an axial load and a bearing preload. The electromagnet of the magnetic bearing is attached to the spindle housing so as to face a flange-shaped thrust plate made of a ferromagnetic material provided on the main shaft in a non-contact manner, and the compressor side impeller and the turbine side impeller include the thrust side A compressor-side impeller is driven by the power generated by the turbine-side impeller, which is fitted to the main shaft common to the plate, and has a controller that controls the electromagnet according to the output of the sensor that detects the axial force. The stiffness value of the composite spring formed by the rolling bearing and the support system of the rolling bearing is the negative stiffness of the electromagnet. The compression / expansion turbine unit housing is composed of a spindle housing, a rolling bearing support, a turbine side casing, and a compressor side casing, between the compressor side impeller and the nearby bearings. Or a non-contact seal that is elastically supported by the housing of the compression / expansion turbine unit and forms a seal gap on the outer periphery of the main shaft between the turbine side impeller and the bearing in the vicinity thereof. It is possible to improve the drop, improve the long-term durability of the rolling bearing, and perform stable control with a controller having a simple configuration.
この発明の第2の発明にかかる圧縮膨張タービンシステムは、転がり軸受と磁気軸受を併用し、転がり軸受がラジアル負荷を支持し、磁気軸受がアキシアル負荷と軸受予圧のどちらか一方または両方を支持し、前記磁気軸受の電磁石は主軸に設けられた強磁性体からなるフランジ状のスラスト板に非接触で対向するように、スピンドルハウジングに取付けられており、コンプレッサ側翼車とタービン側翼車およびモータロータは前記スラスト板と共通の主軸に嵌合し、モータロータは両側にある前記転がり軸受の間に配置され、モータステータは前記モータロータと対向して配置され、前記モータステータからの磁気力ないしはローレンツ力によって、主軸を駆動させるものであり、アキシアル方向の力を検出するセンサの出力に応じて前記電磁石の支持力を制御するコントローラを有し、前記転がり軸受とこの転がり軸受の支持系とで形成される合成バネの剛性値が、前記電磁石とモータ部とで形成される合成バネの負の剛性値よりも大である関係を有し、圧縮膨張タービンユニットのハウジングが、スピンドルハウジング、モータハウジング、転がり軸受支持部、タービン側ケーシング、およびコンプレッサ側ケーシングから構成され、前記コンプレッサ側翼車とその近傍の軸受との間、またはタービン側翼車とその近傍の軸受との間に、圧縮膨張タービンユニットのハウジングに弾性的に支持されて主軸の外周にシール隙間を形成する非接触シールを設けたため、シール性能に起因する効率低下を改善し、転がり軸受の長期耐久性を向上させることができ、また簡単な構成のコントローラで安定した制御が行える。 A compression / expansion turbine system according to a second aspect of the present invention uses a rolling bearing and a magnetic bearing in combination, the rolling bearing supports a radial load, and the magnetic bearing supports one or both of an axial load and a bearing preload. The electromagnet of the magnetic bearing is attached to the spindle housing so as to face the flange-shaped thrust plate made of a ferromagnetic material provided on the main shaft in a non-contact manner. The compressor side impeller, the turbine side impeller, and the motor rotor are The main shaft is fitted to the common main shaft with the thrust plate, the motor rotor is disposed between the rolling bearings on both sides, the motor stator is disposed to face the motor rotor, and the main shaft is driven by magnetic force or Lorentz force from the motor stator. According to the output of the sensor that detects the force in the axial direction. The controller has a controller for controlling the support force of the magnet, and the stiffness value of the combined spring formed by the rolling bearing and the support system of the rolling bearing is the negative stiffness of the combined spring formed by the electromagnet and the motor unit. The compression expansion turbine unit housing is composed of a spindle housing, a motor housing, a rolling bearing support, a turbine side casing, and a compressor side casing, and the compressor side impeller and the vicinity thereof A non-contact seal that is elastically supported by the housing of the compression / expansion turbine unit and forms a seal gap on the outer periphery of the main shaft is provided between the bearings or between the turbine side impeller and the bearings in the vicinity thereof. This reduces the efficiency drop caused by rolling, improves the long-term durability of rolling bearings, and has a simple configuration. Stable control can be performed in the controller.
この発明の第1の実施形態を図1ないし図3と共に説明する。図1は、この実施形態の圧縮膨張タービンシステムを構成する圧縮膨張タービンユニット5の断面図を示す。この圧縮膨張タービンユニット5は、コンプレッサ6および膨張タービン7を有し、コンプレッサ6のコンプレッサ翼車6aおよび膨張タービン7のタービン翼車7aが主軸13の両端にそれぞれ取付けられている。また、タービン翼車7aで発生した動力によりコンプレッサ翼車6aが駆動されるものであり、別の駆動源は設けられていない。
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a cross-sectional view of a compression /
圧縮膨張タービンユニット5のハウジング12は、コンプレッサ側ケーシング6bと、スピンドルハウジング14と、前記コンプレッサ側ケーシング6bとスピンドルハウジング14との間に介在する転がり軸受支持部20と、タービン側ケーシング7bとを結合して構成される。
図1において、コンプレッサ6は、コンプレッサ翼車6aと、このコンプレッサ翼車6aと微小の隙間d1を介して対向する前記コンプレッサ側ケーシング6bとでなり、中心部の吸込口6cから軸方向に吸入した空気を、コンプレッサ翼車6aで圧縮し、外周部の出口(図示せず)から矢印6dで示すように排出する。
膨張タービン7は、タービン翼車7aと、このタービン翼車7aと微小の隙間d2を介して対向するタービン側ケーシング7bとでなり、外周部から矢印7cで示すように吸い込んだ空気を、タービン翼車7aで断熱膨張させ、中心部の排出口7dから軸方向に排出する。
The
In FIG. 1, the
The
この圧縮膨張タービンユニット5では、主軸13をラジアル方向に対し複数の転がり軸受15,16で支持し、主軸13にかかるアキシアル荷重と軸受予圧のどちらか一方もしくは両方を磁気軸受である電磁石17により支持するものとされる。この圧縮膨張タービンユニット5は、転がり軸受16に作用するアキシアル方向の負荷を検出するセンサ18と、このセンサ18の出力に応じて前記電磁石17による支持力を制御する磁気軸受用コントローラ19とを有している。電磁石17は、主軸13の中央で主軸13に垂直かつ同軸に一体構造として設けられた強磁性体からなるフランジ状のスラスト板13aの両面に非接触で対向するように、スピンドルハウジング14に設置され、スラスト板13aが電磁石ターゲットとされる。主軸13の材料には、磁気特性の良好な低炭素鋼が使用される。
In this compression /
主軸13を支持する転がり軸受15,16は、アキシアル方向位置の規制機能を有するものであり、例えば深溝玉軸受やアンギュラ玉軸受が用いられる。深溝玉軸受の場合、両方向のスラスト支持機能を有し、内外輪のアキシアル方向位置を中立位置に戻す作用を持つ。これら2個の転がり軸受15,16は、それぞれユニットハウジング12におけるコンプレッサ翼車6aおよびタービン翼車7aの近傍に配置されている。
The rolling
主軸13は、中央部の大径部13cと、両端部の小径部13dとを有する段付き軸とされている。両側の軸受15,16は、その内輪15a,16aが小径部13dに圧入状態に嵌合し、片方の幅面が大径部13cと小径部13d間の段差面に係合する。また、主軸13の両端部の小径部13dに、前記コンプレッサ翼車6aおよびタービン翼車7aの中央部に設けられた貫通孔(図示せず)を圧入状態に嵌合させることで、コンプレッサ翼車6aおよびタービン翼車7aが主軸13に取付けられる。
The
前記センサ18は、タービン翼車7a側の転がり軸受16の近傍における静止側、つまりスピンドルハウジング14側に設けられている。このセンサ18を近傍に設けた転がり軸受16は、その外輪16bが軸受ハウジング23内に固定状態に嵌合している。軸受ハウジング23は、リング状に形成されて一端に軸受16の外輪16bの幅面に係合する内鍔23aを有しており、スピンドルハウジング14に設けられた内径面24にアキシアル方向に移動自在に嵌合している。内鍔23aは、アキシアル方向の中央側端に設けられている。
The
センサ18は主軸13の回りの円周方向複数箇所(例えば2箇所)に分配配置され、軸受ハウジング23の内鍔23a側の幅面と、スピンドルハウジング14に固定された部材である片方の電磁石17との間に介在させてある。また、センサ18は、センサ予圧ばね25により予圧が印加されている。センサ予圧ばね25は、タービン側ケーシング7bに設けられた収容凹部内に収容されて転がり軸受16の外輪16bをアキシアル方向に付勢するものとされ、外輪16bおよび軸受ハウジング23を介してセンサ18を予圧する。センサ予圧ばね25は、例えば主軸13の回りの円周方向複数箇所に設けられたコイルばね等からなる。
The
センサ予圧ばね25による予圧は、押し付け力によってスラスト力を検出するセンサ18が、主軸13のアキシアル方向のいずれの向きの移動に対しても検出できるようにするためであり、圧縮膨張タービンユニット5の通常の運転状態で主軸13に作用する平均的なスラスト力以上の大きさとされる。
The preload by the
センサ18の非配置側の転がり軸受15は、転がり軸受支持部20に対してアキシアル方向に移動自在に設置され、かつ軸受予圧ばね26によって弾性支持されている。この例では転がり軸受15の外輪15bが、転がり軸受支持部20の内径面にアキシアル方向移動自在に嵌合していて、軸受予圧ばね26は、外輪15bとコンプレッサ側ケーシング6bとの間に介在している。軸受予圧ばね26は、内輪15aの幅面が係合した主軸13の段面に対向して外輪15bを付勢するものとされ、転がり軸受15に予圧を与えている。軸受予圧ばね26は、主軸13回りの円周方向複数箇所に設けられたコイルばね等からなり、それぞれコンプレッサ側ケーシング6bに設けられた収容凹部内に収容されている。軸受予圧ばね26は、センサ予圧ばね25よりもばね定数が小さいものとされる。
The rolling
コンプレッサ翼車6aとその近傍の転がり軸受15との間、およびタービン翼車7aとその近傍の転がり軸受16との間には、それぞれ内径面が主軸13に近接する径に形成されて主軸13の外周にシール隙間を形成するスリーブ21A,21Bからなる非接触シールが配置されている。非接触シールは、隙間シールとも呼ばれる。
コンプレッサ翼車6a側の非接触シールであるスリーブ21Aは、その部分を拡大して示す図2(A)のように、コンプレッサ側ケーシング6bにおける転がり軸受15に隣接する部分6baの内径面に、弾性支持部材21Bにより弾性的に径方向に変位可能に支持される。スリーブ21Aの外径面の軸方向中間位置には溝50が形成されると共に、この溝50に対向する前記コンプレッサ側ケーシング6bの軸受隣接部分6baの内径面にも溝51が形成され、両溝50,51に渡って弾性支持部材21Bが係合している。
タービン翼車7a側の非接触シールであるスリーブ22Aも、その部分を拡大して示す図2(B)のように、タービン側ケーシング7bにおける転がり軸受16に隣接する部分7baの内径面に、弾性支持部材22Bにより弾性的に径方向に変移可能に支持される。スリーブ22Aの外径面の軸方向中間位置には溝52が形成されると共に、この溝52に対向する前記タービン側ケーシング7bの軸受隣接部分7baの内径面にも溝53が形成され、両溝52,53に渡って前記弾性支持部材22Bが係合している。
Between the
The
The
前記各スリーブ21A,22Aと主軸13との間のシール隙間は15μm以下であることが好ましく、10μm以下であれば隙間での空気漏れはほとんど無くなる。各スリーブ21A,22Aはカーボンもしくは銅合金(純銅含む)からなり、主軸13とスリーブ21A,22Aの多少の接触は許容される。
なお、ここでは、前記非接触シールとなるスリーブ21A,22Aの支持部を、コンプレッサ側ケーシング6bおよびタービン側ケーシング7bとしているが、ユニットハウジング12の構造によっては、コンプレッサ翼車6a側のスリーブ21Aを転がり軸受支持部20の内径面で、またタービン翼車7a側のスリーブ22Aをスピンドルハウジング14の内径面でそれぞれ支持しても良い。また、このようなスリーブ21,22Aからなる構成の非接触シールは、コンプレッサ翼車6a側のみに適用しても、タービン翼車7a側のみに適用しても良い。
The seal gap between the
Here, the support portions of the
コンプレッサ側ケーシング6bと前記コンプレッサ6側の転がり軸受支持部20の両端面が結合する面には、コンプレッサ側ケーシング6bから転がり軸受支持部20への熱流入を絞るための隙間27が形成されている。この実施形態では、転がり軸受支持部20の端面の外径側に突起20aを形成し、この突起20aのコンプレッサ側ケーシング6bへの面接触もしくは点接触により前記隙間27を形成しているが、コンプレッサ側ケーシング6bの端面に突起を形成しても良い。前記突起20aは、円周方向の全周にわたってリング状に形成したものでも、円周方向に断続的に分散配置して形成したものでも良い。
A
また、転がり軸受支持部20における前記隙間27の近傍には、ユニットハウジング12を冷却する冷却経路28が形成されている。冷却経路28はコンプレッサ側ケーシング6bに形成しても良い。この冷却経路28に流す冷却用の媒体には、水、油ないし空気が使用される。このように、前記冷却経路28に冷却用媒体を流す冷却システムを構成することで、転がり軸受支持部20の温度、さらには転がり軸受15の温度が、使用する転がり軸受15の許容温度以下の適温に制御される。
A cooling
上記圧縮膨張タービンユニット5における磁気軸受装置の力学モデルは簡単なバネ系で構成することができる。すなわち、このバネ系は、転がり軸受15,16とこれら軸受の支持系(センサ予圧ばね25、軸受予圧ばね26、軸受ハウジング23など)とで構成される合成バネと、電磁石17のバネとが並列となった構成である。このバネ系において、転がり軸受15,16とこれら軸受の支持系とで構成される合成バネは、変位した方向と逆の方向に変位量に比例して作用する剛性となるのに対し、電磁石17のバネは、変位した方向に変位量に比例して作用する負の剛性となる。
このため、上記した合成バネの剛性と電磁石17のバネの負の剛性との大小関係を、
合成バネの剛性値<電磁石の負の剛性値……(1)
とした場合、機械システムの位相は180°遅れとなり不安定な系となることから、電磁石17を制御する磁気軸受用コントローラ19において、予め位相補償回路を付加する必要が生じ、コントローラ19の構成が複雑なものになる。
The dynamic model of the magnetic bearing device in the compression /
For this reason, the magnitude relationship between the stiffness of the composite spring and the negative stiffness of the spring of the
Synthetic spring stiffness <electromagnet negative stiffness (1)
In this case, the phase of the mechanical system is delayed by 180 ° and becomes an unstable system. Therefore, in the
そこで、この実施形態では、上記した合成バネの剛性と電磁石17のバネの負の剛性との大小関係を、
合成バネの剛性値>電磁石の負の剛性値……(2)
としている。これにより、制御帯域において、機械システムの位相が180°遅れとなることを防止できるので、コントローラ19の制御対象を安定なものとでき、コントローラ19の回路構成を図3のように比例もしくは比例積分で簡単に構成できる。
ブロック図で示す図3のコントローラ19では、各センサ18の検出出力P1,P2をセンサ出力演算回路31で加減し、その演算結果を比較器32で基準値設定手段33の目標値と比較して偏差を演算し、さらに演算した偏差をPI補償回路(もしくはP補償回路)34により圧縮膨張タービンユニット5に応じて適宜設定される比例積分(もしくは比例)処理を行うことで、電磁石17の制御信号を演算するようにしている。PI補償回路(もしくはP補償回路)34の出力は、ダイオード35,36を介して各方向の電磁石171 ,172 を駆動するパワー回路37,38に入力される。電磁石171 ,172 は、図1に示したスラスト板13aに対向する一対の電磁石17であり、吸引力しか作用しないため、予めダイオード35,36で電流の向きを決め、2個の電磁石171 ,172 を選択的に駆動するようにしている。
Therefore, in this embodiment, the magnitude relationship between the stiffness of the composite spring and the negative stiffness of the spring of the
Rigidity value of synthetic spring> Negative stiffness value of electromagnet (2)
It is said. As a result, the phase of the mechanical system can be prevented from being delayed by 180 ° in the control band, so that the control target of the
In the
この構成の圧縮膨張タービンユニット5は、例えば空気サイクル冷凍冷却システムに適用されて、冷却媒体となる空気を後段の熱交換器(ここでは図示せず)により効率良く熱交換できるように、コンプレッサ6で圧縮して温度上昇させ、さらに後段の前記熱交換器で冷却された空気を、膨張タービン7により、目標温度、例えば−30℃〜−60℃程度の極低温まで断熱膨張により冷却して排出するように使用される。
このような使用例において、この圧縮膨張タービンユニット5は、コンプレッサ翼車6aおよびタービン翼車7aを共通の主軸13に取付け、タービン翼車7aで発生した動力によりコンプレッサ翼車6aを駆動される。
The compression /
In such a use example, the compressor-
このように、圧縮膨張タービンユニット5として構成されたこの実施形態の圧縮膨張タービンシステムでは、コンプレッサ翼車6aとその近傍の転がり軸受15との間、またはタービン翼車7aとその近傍の転がり軸受16との間に、弾性支持された非接触シールとなるスリーブ21A,22Aを有しているので、優れたシール性能が得られる。すなわち、具体的には、スリーブ21A,22Aが弾性支持部材21B,22Bの弾性変形範囲内で径方向に移動可能となり、またスリーブ21A,22Aと主軸13とで真円軸受が構成されるため、スリーブ21A,22Aが主軸13の振れ回りに追従することが可能となる。このようにシール性能が向上することにより、コンプレッサ6側と膨張タービン7側との圧力差による転がり軸受15,16内や、転がり軸受15,16と軸受支持部(転がり軸受支持部20やスピンドルハウジング14)との接触面からの空気漏れを低減することができ、圧縮膨張タービンユニット5の効率低下を改善することができる。また、通過空気による転がり軸受15,16でのグリースの乾燥や飛散が生じなくなるため、転がり軸受15,16の長期耐久性を向上させることができる。
In this way, in the compression / expansion turbine system of this embodiment configured as the compression /
また、この実施形態では、コンプレッサ翼車6aおよびタービン翼車7aが、スラスト板13aと共通の主軸13に嵌合し、タービン翼車7aで発生した動力により、コンプレッサ翼車6aを駆動させる圧縮膨張タービンシステムを構成する圧縮膨張タービンユニット5において、主軸13の支持に上記構成の磁気軸受装置を適用したので、各翼車6a,7aの適切な隙間d1,d2を保って主軸13の安定した高速回転が得られ、かつ転がり軸受15,16の長期耐久性の向上、寿命の向上が得られる。
Further, in this embodiment, the
すなわち、圧縮膨張タービンユニット5の圧縮,膨張の効率を確保するためには、各翼車6a,7aとケーシング6b,7bとの隙間d1,d2を微小に保つ必要がある。例えば,この圧縮膨張タービンユニット5を空気サイクル冷凍冷却システムに適用する場合には、この効率確保が重要となる。これに対して、主軸13を転がり軸受15,16により支持するため、転がり軸受の持つアキシアル方向位置の規制機能により、主軸13のアキシアル方向位置がある程度規制され、各翼車6a,7aとハウジング6b,7b間の微小隙間d1,d2を一定に保つことができる。
That is, in order to ensure the compression and expansion efficiency of the compression /
しかし、タービンユニット5の主軸13には、各翼車6a,7aに作用する空気の圧力等でスラスト力がかかる。また、空気冷却システムで使用するタービンユニット5では、1分間に例えば8万〜10万回転程度の非常に高速の回転となる。そのため、主軸13を回転支持する転がり軸受15,16に上記スラスト力が作用すると、転がり軸受15,16の長期耐久性が低下する。
この実施形態は、上記スラスト力を電磁石17で支持するため、非接触でトルクの増大を抑えながら、主軸13の支持用の転がり軸受15,16に作用するスラスト力を軽減することができる。この場合に転がり軸受16に作用するスラスト力を検出するセンサ18と、このセンサ18の出力に応じて前記電磁石17による支持力を制御する磁気軸受用コントローラ19とを設けたため、転がり軸受15,16を、その軸受仕様に応じてスラスト力に対し最適な状態で使用することができる。
However, a thrust force is applied to the
In this embodiment, since the thrust force is supported by the
図4および図5は、この発明の他の実施形態を示す。この実施形態の圧縮膨張タービンシステムでは、図1に示す第1の実施形態における非接触シールとなるスリーブ21A,22Aの弾性支持部材21B,22BとしてOリングが用いられている。図5(A)はコンプレッサ翼車6a側の非接触シール21の拡大断面図を示し、図5(B)はタービン翼車7a側の非接触シール22の拡大断面図を示す。その他の構成は、第1の実施形態の場合と同様である。この場合、Oリングからなる弾性支持部材21B,22Bの内径は、スリーブ21A,22Aの溝50,52の内径以下として、スリーブ21A,22Aの溝50,52にOリングからなる弾性支持部材21B,22Bを密着させている。また、Oリングからなる弾性支持部材21B,22Bの外径は、ケーシング6b,7bにおける軸受隣接部分6ba,7baの溝51,53底部の外径以下として、弾性支持部材21B,22Bが係合する各スリーブ21A,22Aの径方向への移動を可能としている。
4 and 5 show another embodiment of the present invention. In the compression / expansion turbine system of this embodiment, O-rings are used as the
この場合も、前記スリーブ21A,22Aと主軸13とで真円軸受が構成されるため、スリーブ21A,22Aが主軸13の振れ回りに追従可能となる。また、主軸13の回転時に、コンプレッサ6側と膨張タービン7側との間で発生する圧力差によって、前記各スリーブ21A,22Aが軸方向に移動し、スリーブ21A,22Aの外径面からはみ出たOリングからなる弾性支持部材21B,22Bの部分が、ケーシング6b,7bにおける軸受隣接部分6ba,7baの溝51,53の端面と接触する。これにより、非接触シールとなるスリーブ21A,22Aと弾性支持部材21B,22Bとによるシール性能が確保される。
Also in this case, since the
図6および図7は、この発明のさらに他の実施形態を示す。この実施形態の圧縮膨張タービンシステムでは、図1に示す第1の実施形態において、主軸13の小径部13dにおけるコンプレッサ翼車6aとその近傍の転がり軸受15との間、およびタービン翼車7aとその近傍の転がり軸受16との間に、リング状の転がり軸受押え部材54,55を介在させることで、スリーブ21A,22Aの内径面と転がり軸受押え部材54,55の外径面との間に非接触シールのシール隙間が形成されている。転がり軸受押え部材54,55は、主軸13の小径部13dに圧入状態で嵌合される。その他の構成は、第1の実施形態の場合と同様である。
6 and 7 show still another embodiment of the present invention. In the compression / expansion turbine system of this embodiment, in the first embodiment shown in FIG. 1, between the
先述したように、主軸13の材質には低炭素鋼を使用しているため、転がり軸受15,16の抜き差しにおいて、主軸13の外径面に擦傷が生じ、図1に示す実施形態の場合には、シール性能に影響する可能性がある。この実施形態の場合、主軸13の小径部13dの外径面が転がり軸受押え部材54,55で覆われ、転がり軸受押え部材54,55の外径面とスリーブ21A,22Aの内径面とでシール隙間が形成されるため、主軸13の外径面の擦傷に起因したシール性能の低下がなく、コンプレッサ6側と膨張タービン7側との圧力差による転がり軸受15,16内や、転がり軸受15,16と軸受支持部(転がり軸受支持部20やスピンドルハウジング14)との接触面からの空気漏れを低減することができ、圧縮膨張タービンユニット5の効率低下を改善することができる。
As described above, since the material of the
図8および図9は、この発明のさらに他の実施形態を示す。この実施形態の圧縮膨張タービンシステムは、図1に示す第1の実施形態において、主軸13を転がり軸受15,16と磁気軸受である電磁石17で支持すると共に、主軸13を回転駆動するアキシアルギャップ型のモータ39を設けたものである。モータ39は、電磁石17とは独立にモータ用コントローラ29で制御される。
8 and 9 show still another embodiment of the present invention. In the compression / expansion turbine system of this embodiment, in the first embodiment shown in FIG. 1, the
電磁石17は、主軸13の軸方向中間部において軸方向に並ぶように主軸13に垂直かつ同軸に一体構造として設けられた強磁性体からなるフランジ状の2つのスラスト板13a,13bの各片面に非接触で対向するように、一対のものがスピンドルハウジング14に設置されている。具体的には、磁気軸受ユニットを構成する一方の電磁石17は、膨張タービン7寄りに位置するスラスト板13aの膨張タービン7側に向く片面を電磁石ターゲットとして、この片面に非接触で対向するようにスピンドルハウジング14に設置される。また、磁気軸受ユニットを構成する他方の電磁石17は、コンプレッサ6寄りに位置するスラスト板13bのコンプレッサ6側に向く片面を電磁石ターゲットして、この片面に非接触で対向するようにスピンドルハウジング14に設置される。
The
モータ39は、前記電磁石17と並んで主軸13に設けられたモータロータ39aと、このモータロータ39aに対し軸方向に対向するモータステータ39bとでなるモータユニットである。具体的には、モータユニットの一部品を構成するモータロータ39aは、主軸13における前記各スラスト板13a,13bの電磁石17が対向する側とは反対側の各片面に、円周方向に等ピッチで並ぶ永久磁石39aaを配置することで左右一対のものが構成される。永久磁石39aaは接着剤により各スラスト板13a,13bの各片面に接着固定される。このように軸方向に対向配置される永久磁石39aaの間では、その磁極が互いに異極となるように設定される。主軸13には磁気特性の良好な低炭素鋼を使用しているので、主軸13と一体構造となるように設けられる前記各スラスト板13a,13bを、永久磁石39aaのバックヨークおよび電磁石ターゲットに兼用できる。
モータユニットの他の部品であるモータステータ39bは、前記左右一対のモータロータ39aに挟まれる軸方向中央の位置において、これら両モータロータ39aの各面に非接触で対向するようにコアの無い状態で配置したコイル39baを、モータハウジング40を介してスピンドルハウジング14に設置して構成される。このモータ39は、前記モータロータ39aとモータステータ39b間に作用するローレンツ力により、主軸13を回転させる。このように、このアキシアルギャップ型のモータ39はコアレスモータとされていることから、モータロータ39aとモータステータ39b間の磁気カップリングによる負の剛性はゼロとなっている。なお、モータステータ39bはコア付きとして、モータロータ39aとモータステータ39b間に作用する磁気力により、主軸13を回転させても良い。
The
The
上記圧縮膨張タービンユニット5におけるモータ一体型の磁気軸受装置の力学モデルは、転がり軸受15,16とこれら軸受の支持系(センサ予圧ばね25、軸受予圧ばね26、軸受ハウジング23など)とで形成される合成バネと、モータ部(モータ39と電磁石17)で形成される合成バネとが並列となったバネ系で構成することができる。このバネ系において、転がり軸受15,16とこれら軸受の支持系とで形成される合成バネは、変位した方向と逆の方向に変位量に比例して作用する剛性となるのに対し、モータ部で形成される合成バネは、変位した方向に変位量に比例して作用する負の剛性となる。
このため、上記した両合成バネの剛性の大小関係を、
軸受等による合成バネの剛性値<モータ部による合成バネの負の剛性値…(3)
とした場合、機械システムの位相は180°遅れとなり不安定な系となることから、電磁石17を制御する磁気軸受用コントローラ19において、予め位相補償回路を負荷する必要が生じ、コントローラ19の構成が複雑なものになる。
The dynamic model of the motor-integrated magnetic bearing device in the compression /
For this reason, the magnitude relationship between the stiffnesses of the two composite springs described above is
Rigidity value of synthetic spring by bearings etc. <Negative stiffness value of synthetic spring by motor unit ... (3)
In this case, the phase of the mechanical system is delayed by 180 ° and becomes an unstable system. Therefore, in the
そこで、この実施形態におけるモータ一体型の磁気軸受装置では、上記した両合成バネの剛性の大小関係を、
軸受等による合成バネの剛性値>モータ部による合成バネの負の剛性値…(4)
としている。とくに、このモータ一体型の磁気軸受装置では、上記したようにアキシアルギャップ型のモータ39をコアレスモータとしているので、モータ39に作用する負の剛性値をゼロとすることができ、モータ39が高負荷動作し過大なアキシアル荷重が作用した状態においても上記(4)式の大小関係を保つことができる。
その結果、制御帯域において、機械システムの位相が180°遅れとなることを防止できるので、モータ39が高負荷動作し過大なアキシアル荷重が作用した状態でも磁気軸受用コントローラ19の制御対象を安定なものとでき、コントローラ19の回路構成を第1の実施形態における図3のように比例もしくは比例積分を用いた簡単なものに構成できる。
Therefore, in the motor-integrated magnetic bearing device in this embodiment, the magnitude relationship between the stiffnesses of the two combined springs is as follows.
Rigidity value of the composite spring by the bearing etc.> Negative rigidity value of the synthetic spring by the motor unit (4)
It is said. In particular, in this motor-integrated magnetic bearing device, since the
As a result, since the phase of the mechanical system can be prevented from being delayed by 180 ° in the control band, the control target of the
図9にブロック図で示すモータ用コントローラ29では、回転同期指令信号を基に、モータロータ39aの回転角をフィードバック信号として位相調整回路41でモータ駆動電流の位相調整が行われ、その調整結果に応じたモータ駆動電流をモータ駆動回路42からモータステータ39bに供給することによって、定回転制御が行われる。前記回転同期指令信号は、モータロータ39aに設けられた回転角度検出センサ(図示せず)の出力に応じて演算される。この実施形態におけるその他の構成は、第1の実施形態の場合と同様である。なお、この実施形態において、非接触シールとなるスリーブ21A,22Aを支持する弾性支持部材21B,22Bとして、図4および図5に示す実施形態のようにOリングを用いても良い。
In the
図10は、この発明のさらに他の実施形態を示す。この実施形態の圧縮膨張タービンシステムでは、図8に示す実施形態における非接触シールとなるスリーブ21A,22Aの周辺構成において、図6および図7に示す実施形態のように転がり軸受押え部材54,55を付加したものである。その他の構成は図8の実施形態の場合と同様である。
FIG. 10 shows still another embodiment of the present invention. In the compression / expansion turbine system of this embodiment, in the peripheral configuration of the
図11は、例えば前記第1の実施形態における圧縮膨張タービンユニット5を用いた空気サイクル冷凍冷却システムの全体の構成を示すが、図8の実施形態等におけるモータ一体型の圧縮膨張タービンユニット5を用いても良い。この空気サイクル冷凍冷却システムは、冷凍倉庫等の被冷却空間10の空気を直接に冷媒として冷却するシステムであり、被冷却空間10にそれぞれ開口した空気の取入口1aから排出口1bに至る空気循環経路1を有している。この空気循環経路1に、予圧縮手段2、第1の熱交換器3、空気サイクル冷凍冷却用タービンユニット5のコンプレッサ6、第2の熱交換器8、中間熱交換器9、および前記タービンユニット5の膨張タービン7が順に設けられている。中間熱交換器9は、同じ空気循環経路1内で取入口1aの付近の流入空気と、後段の圧縮で昇温し、冷却された空気との間で熱交換を行うものであり、取入口1aの付近の空気は熱交換器9a内を通る。
FIG. 11 shows the overall configuration of the air cycle refrigeration cooling system using the compression /
予圧縮手段2はブロア等からなり、モータ2aにより駆動される。第1の熱交換器3および第2の熱交換器8は、冷却媒体を循環させる熱交換器3a,8aをそれぞれ有し、熱交換器3a,8a内の水等の冷却媒体と空気循環経路1の空気との間で熱交換を行う。各熱交換器3a,8aは、冷却塔11に配管接続されており、熱交換で昇温した冷却媒体が冷却塔11で冷却される。なお、前記予圧縮手段2を含まない構成の空気サイクル冷凍冷却システムでもよい。
The pre-compression means 2 comprises a blower or the like and is driven by a
この空気サイクル冷凍冷却システムは、被冷却空間10を0℃〜−60℃程度に保つシステムであり、被冷却空間10から空気循環経路1の取入口1aに0℃〜−60℃程度で1気圧の空気が流入する。なお、以下に示す温度および気圧の数値は、一応の目安となる一例である。取入口1aに流入した空気は、中間熱交換器9により、空気循環経路1中の後段の空気の冷却に使用され、30℃まで昇温する。この昇温した空気は1気圧のままであるが、予圧縮手段2により1.4気圧に圧縮させられ、その圧縮により、70℃まで昇温する。第1の熱交換器3は、昇温した70℃の空気を冷却すれば良いため、常温程度の冷水であっても効率良く冷却することができ、40℃に冷却する。
This air cycle refrigeration cooling system is a system that keeps the space to be cooled 10 at about 0 ° C. to −60 ° C., and is 1 atmosphere at about 0 ° C. to −60 ° C. from the space to be cooled 10 to the inlet 1a of the
熱交換により冷却された40℃,1.4気圧の空気が、タービンユニット5のコンプレッサ6により、1.8気圧まで圧縮され、この圧縮により70℃程度に昇温した状態で、第2の熱交換器8により40℃に冷却される。この40℃の空気は、中間熱交換器9で−30℃の空気により−20℃まで冷却される。気圧はコンプレッサ6から排出された1.8気圧が維持される。
中間熱交換器9で−20℃まで冷却された空気は、タービンユニット5の膨張タービン7により断熱膨張され、−55℃まで冷却されて排出口1bから被冷却空間10に排出される。この空気サイクル冷凍冷却システムは、このような冷凍サイクルを行う。
The air at 40 ° C. and 1.4 atm cooled by heat exchange is compressed to 1.8 atm by the
The air cooled to −20 ° C. by the
この空気サイクル冷凍冷却システムでは、タービンユニット5において、各翼車6a,7aの適切な隙間d1,d2を保って主軸13の安定した高速回転が得られ、かつ軸受15,16の長期耐久性の向上、寿命の向上が得られることで、軸受15,16の長期耐久性が向上することから、タービンユニット5の全体として、しいては空気サイクル冷凍冷却システムの全体としての信頼性が向上する。このように、空気サイクル冷凍冷却システムのネックとなっているタービンユニット5の主軸軸受15,16の安定した高速回転、長期耐久性、信頼性が向上するため、空気サイクル冷凍冷却システムの実用化が可能となる。
In this air cycle refrigeration cooling system, in the
2…予圧縮手段
3…第1の熱交換器
5…圧縮膨張タービンユニット
6…コンプレッサ
6a…コンプレッサ翼車
6b…コンプレッサ側ケーシング
7…膨張タービン
7a…タービン翼車
7b…タービン側ケーシング
8…第2の熱交換器
12…ユニットハウジング
13…主軸
13a,13b…スラスト板
14…スピンドルハウジング
15,16…転がり軸受
17…電磁石
18…センサ
19…磁気軸受用コントローラ
20…転がり軸受支持部
21A,22A…スリーブ(非接触シール)
21B,22B…弾性支持部材
39…モータ
39a…モータロータ
39b…モータステータ
40…モータハウジング
DESCRIPTION OF
21B, 22B ...
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005356177A JP2007162493A (en) | 2005-12-09 | 2005-12-09 | Compression expansion turbine system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005356177A JP2007162493A (en) | 2005-12-09 | 2005-12-09 | Compression expansion turbine system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007162493A true JP2007162493A (en) | 2007-06-28 |
Family
ID=38245708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005356177A Pending JP2007162493A (en) | 2005-12-09 | 2005-12-09 | Compression expansion turbine system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007162493A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100510572C (en) * | 2007-11-02 | 2009-07-08 | 西安交通大学 | Structure of wiper decompressor for trans-critical CO* refrigerating cycle system |
CN103742440A (en) * | 2014-01-17 | 2014-04-23 | 清华大学 | Thermomagnetic sliding bush stop sealing device for nuclear reactor coolant pump |
JP2016166536A (en) * | 2015-03-09 | 2016-09-15 | 大陽日酸株式会社 | Rotary machine |
WO2017014316A1 (en) * | 2015-07-23 | 2017-01-26 | 株式会社 豊田自動織機 | Centrifugal compressor |
JP2020526712A (en) * | 2017-07-12 | 2020-08-31 | ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company | Magnetic bearing Self-centering auxiliary bearing in cartridge |
CN113790089A (en) * | 2021-08-24 | 2021-12-14 | 鑫磊压缩机股份有限公司 | Low-temperature waste heat power generation system |
WO2023067967A1 (en) * | 2021-10-18 | 2023-04-27 | ダイキン工業株式会社 | Shaft seal structure, compressor, and refrigeration device |
-
2005
- 2005-12-09 JP JP2005356177A patent/JP2007162493A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100510572C (en) * | 2007-11-02 | 2009-07-08 | 西安交通大学 | Structure of wiper decompressor for trans-critical CO* refrigerating cycle system |
CN103742440A (en) * | 2014-01-17 | 2014-04-23 | 清华大学 | Thermomagnetic sliding bush stop sealing device for nuclear reactor coolant pump |
JP2016166536A (en) * | 2015-03-09 | 2016-09-15 | 大陽日酸株式会社 | Rotary machine |
WO2017014316A1 (en) * | 2015-07-23 | 2017-01-26 | 株式会社 豊田自動織機 | Centrifugal compressor |
JP2017025822A (en) * | 2015-07-23 | 2017-02-02 | 株式会社豊田自動織機 | Centrifugal compressor |
US10514041B2 (en) | 2015-07-23 | 2019-12-24 | Kabushiki Kaisha Toyota Jidoshokki | Centrifugal compressor |
JP2020526712A (en) * | 2017-07-12 | 2020-08-31 | ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company | Magnetic bearing Self-centering auxiliary bearing in cartridge |
JP7130007B2 (en) | 2017-07-12 | 2022-09-02 | ジョンソン コントロールズ テクノロジー カンパニー | Self-centering auxiliary bearing in magnetic bearing cartridge |
US11480215B2 (en) | 2017-07-12 | 2022-10-25 | Johnson Controls Tyco IP Holdings LLP | Self-centering auxiliary bearings in a magnetic bearing cartridge |
CN113790089A (en) * | 2021-08-24 | 2021-12-14 | 鑫磊压缩机股份有限公司 | Low-temperature waste heat power generation system |
WO2023067967A1 (en) * | 2021-10-18 | 2023-04-27 | ダイキン工業株式会社 | Shaft seal structure, compressor, and refrigeration device |
JP2023060670A (en) * | 2021-10-18 | 2023-04-28 | ダイキン工業株式会社 | Shaft seal structure, compressor, and freezer |
JP7364926B2 (en) | 2021-10-18 | 2023-10-19 | ダイキン工業株式会社 | Shaft seal structure, compressor and refrigeration equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008190376A (en) | Turbine unit for air cycle refrigerating machine | |
JP2007057143A (en) | Air cycle refrigerating and cooling system, and turbine unit for air cycle refrigerating and cooling | |
JP2008082425A (en) | Magnetic bearing device | |
JP2008283813A (en) | Motor-integrated magnetic bearing device | |
JP2008082216A (en) | Compression expansion turbine system | |
JP2007162723A (en) | Motor integrated magnetic bearing device | |
JP2008038970A (en) | Motor integrated magnetic bearing device | |
WO2008015777A1 (en) | Air cycle refrigerating machine turbine unit | |
JP2008072809A (en) | Magnetic bearing arrangement integral with motor | |
JP2009062848A (en) | Motor integrated type magnetic bearing device | |
JP2007162493A (en) | Compression expansion turbine system | |
JP2008082426A (en) | Magnetic bearing device | |
JP2008039228A (en) | Turbine unit for air cycle refrigerating machine | |
JP2009050066A (en) | Motor-integrated magnetic bearing apparatus | |
JP2008072810A (en) | Magnetic bearing arrangement integrated with motor | |
JP2007162726A (en) | Motor integrated magnetic bearing device | |
JP2007162725A (en) | Motor integrated magnetic bearing device | |
JP2007162492A (en) | Compression expansion turbine system | |
JP2007162714A (en) | Magnetic bearing device | |
JP2010007726A (en) | Motor-integrated magnetic bearing device | |
JP4969272B2 (en) | Motor-integrated magnetic bearing device | |
JP4799159B2 (en) | Motor-integrated magnetic bearing device | |
JP5042479B2 (en) | Air cycle refrigeration cooling system | |
JP2007162491A (en) | Compression expansion turbine system | |
JP2008072811A (en) | Motor-integrated magnetic bearing device |