JP2007156111A - 感光性組成物、パターン形成材料、感光性積層体、及びパターン形成方法 - Google Patents
感光性組成物、パターン形成材料、感光性積層体、及びパターン形成方法 Download PDFInfo
- Publication number
- JP2007156111A JP2007156111A JP2005351356A JP2005351356A JP2007156111A JP 2007156111 A JP2007156111 A JP 2007156111A JP 2005351356 A JP2005351356 A JP 2005351356A JP 2005351356 A JP2005351356 A JP 2005351356A JP 2007156111 A JP2007156111 A JP 2007156111A
- Authority
- JP
- Japan
- Prior art keywords
- group
- ring
- exposure
- compound
- photosensitive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Filters (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Materials For Photolithography (AREA)
Abstract
【課題】寸法安定性に優れた感光性組成物、該感光性組成物により形成された感光層を有するパターン形成材料、感光性積層体、及びパターン形成方法を提供する。
【解決手段】少なくともバインダー、重合性化合物、光重合開始剤及び炭素系ナノ材料を含む感光性組成物である。本発明の感光性組成物は、パターン情報に基づいて、光を変調しながら露光ヘッドと感光層の被露光面とを相対走査することによる前記被露光面上の二次元パターンの形成に用いられ、或いは、感光層を露光し現像した場合に、露光及び現像後において、前記感光層の被露光部の厚みが変化しない露光の最小エネルギー量が0.1mJ/cm2〜100mJ/cm2である感光層に含有されるものである。また本発明は、前記感光性組成物により形成された感光層を有するパターン形成材料、感光性積層体、及びパターン形成方法である。
【選択図】なし
【解決手段】少なくともバインダー、重合性化合物、光重合開始剤及び炭素系ナノ材料を含む感光性組成物である。本発明の感光性組成物は、パターン情報に基づいて、光を変調しながら露光ヘッドと感光層の被露光面とを相対走査することによる前記被露光面上の二次元パターンの形成に用いられ、或いは、感光層を露光し現像した場合に、露光及び現像後において、前記感光層の被露光部の厚みが変化しない露光の最小エネルギー量が0.1mJ/cm2〜100mJ/cm2である感光層に含有されるものである。また本発明は、前記感光性組成物により形成された感光層を有するパターン形成材料、感光性積層体、及びパターン形成方法である。
【選択図】なし
Description
本発明は、露光によりパターン形成可能なドライフィルムレジスト(DFR)、及び液状レジスト等に好適な感光性組成物に関する。特に、該感光性組成物を用いたパターン形成材料及び感光性積層体、並びに高精細な配線パターン、永久パターン(保護膜、層間絶縁膜、ソルダーレジストパターンなど)、カラーフィルタ、柱材、リブ材、スペーサー、隔壁等の液晶構造部材の製造、ホログラム、マイクロマシン、プルーフの製造等のパターン形成方法に関する。
プリント配線基板の分野では、通常は、まず銅張積層板に対してDFRを用いて銅の配線パターンを形成する。更に半導体やコンデンサ、抵抗等の部品が形成された配線パターンの上に半田付けされる。この場合、例えば、IRリフロー等のソルダリング工程において、半田が、半田付けの不必要な部分に付着するのを防ぐため、保護膜、絶縁膜として、前記半田付けの不要部分に相当する永久パターンを形成する方法が採用されている。また、保護膜の永久パターンとしては、ソルダーレジスト等のパターン形成材料が用いられている。他方、プリント配線板のパターンを形成した後、保護膜として残さないドライフィルムレジストなどのパターン形成材料も用いられている(例えば、特許文献1及び特許文献2参照)。
前記パターン形成材料への露光は、マスクを用いて露光を行うことが一般に行われてきたが、近年では、生産性、解像性等の観点からデジタル・マイクロミラー・デバイス(DMD)等を用いたレーザ光によるマスクレス露光装置も盛んに研究されている。
前記パターン形成材料への露光は、マスクを用いて露光を行うことが一般に行われてきたが、近年では、生産性、解像性等の観点からデジタル・マイクロミラー・デバイス(DMD)等を用いたレーザ光によるマスクレス露光装置も盛んに研究されている。
近年、益々微細化が進み、精細な配線パターンを形成できるパターン形成材料が望まれている。精細なパターンになる程、わずかな線幅寸法変動であっても、高密度なパターニングを行う際には、アライメント誤差としては大きくなるため、線幅寸法安定性に対しての要求は高まっている。
このような要求に対して、支持体であるポリエチレンテレフタレートフィルムのヘイズ値を下げることによる露光時の散乱防止などの技術によって、線幅寸法安定性の向上を図っている(例えば、特許文献3参照。)が、安定的に配線パターンを製造するにあたっては、更なる改善が望まれている。
このような要求に対して、支持体であるポリエチレンテレフタレートフィルムのヘイズ値を下げることによる露光時の散乱防止などの技術によって、線幅寸法安定性の向上を図っている(例えば、特許文献3参照。)が、安定的に配線パターンを製造するにあたっては、更なる改善が望まれている。
一方、プリント配線基板のパターン形成材料において、カーボンナノチューブを含有した感光性組成物が開示されている(例えば、特許文献4参照。)。この技術では、帯電防止性や機械強度の向上を目的として、カーボンナノチューブを添加している。
しかしながら、上記課題については言及されておらず、線幅寸法安定性の向上や線幅のぎざつき(エッジラフネス)の低下についての技術開発が切望されている。
国際公開第01/071428号パンフレット
特開2004−252421号公報
特開昭60−262156号公報
特開2005−24893号公報
しかしながら、上記課題については言及されておらず、線幅寸法安定性の向上や線幅のぎざつき(エッジラフネス)の低下についての技術開発が切望されている。
本発明は、かかる現状に鑑みてなされたものであり、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、寸法安定性に優れた感光性組成物、該感光性組成物により形成された感光層を有するパターン形成材料、感光性積層体、及びパターン形成方法を提供することを目的とする。
前記課題を解決するための手段としては、以下の通りである。即ち、
<1> パターン情報に基づいて、光を変調しながら、露光ヘッドと感光層の被露光面とを相対走査して露光することにより、前記被露光面上に二次元パターンを形成する前記感光層に含有される感光性組成物であって、
少なくともバインダー、重合性化合物、光重合開始剤、及び炭素系ナノ材料を含むことを特徴とする感光性組成物である。
<1> パターン情報に基づいて、光を変調しながら、露光ヘッドと感光層の被露光面とを相対走査して露光することにより、前記被露光面上に二次元パターンを形成する前記感光層に含有される感光性組成物であって、
少なくともバインダー、重合性化合物、光重合開始剤、及び炭素系ナノ材料を含むことを特徴とする感光性組成物である。
<2> 感光層を露光し現像した場合に、露光及び現像後において、前記感光層の被露光部の厚みが変化しない露光の最小エネルギー量が、0.1mJ/cm2〜100mJ/cm2である前記感光層に含有される感光性組成物であって、
少なくともバインダー、重合性化合物、光重合開始剤、及び炭素系ナノ材料を含むことを特徴とする感光性組成物である。
少なくともバインダー、重合性化合物、光重合開始剤、及び炭素系ナノ材料を含むことを特徴とする感光性組成物である。
<3> パターン情報に基づいて、光を変調しながら、露光ヘッドと感光層の被露光面とを相対走査して露光することにより、前記被露光面上に二次元パターンを形成する露光に用いられる前記感光層に含有される感光性組成物であって、
前記感光層を露光し現像した場合に、露光及び現像後において、前記感光層の被露光部の厚みが変化しない露光の最小エネルギー量が、0.1mJ/cm2〜100mJ/cm2であり、
少なくともバインダー、重合性化合物、光重合開始剤、及び炭素系ナノ材料を含むことを特徴とする感光性組成物である。
前記感光層を露光し現像した場合に、露光及び現像後において、前記感光層の被露光部の厚みが変化しない露光の最小エネルギー量が、0.1mJ/cm2〜100mJ/cm2であり、
少なくともバインダー、重合性化合物、光重合開始剤、及び炭素系ナノ材料を含むことを特徴とする感光性組成物である。
<4> 前記炭素系ナノ材料が、カーボンナノチューブ、フラーレン、及びカーボンマイクロコイルからなる群より選択される少なくとも1種であることを特徴とする前記<1>〜<3>のいずれか1項に記載の感光性組成物である。
<5> 増感剤を含有することを特徴とする前記<1>〜<4>のいずれか1項に記載の感光性組成物である。
<6> 前記増感剤が、縮環系化合物、ジ置換アミノベンゼンを部分構造として有する化合物、塩基性核を有する化合物、酸性核を有する化合物、及び蛍光増白剤からなる群より選択される少なくとも1種を含むことを特徴とする前記<5>に記載の感光性組成物である。
<7> 前記縮環系化合物が、アクリドン系化合物、チオキサントン系化合物、クマリン系化合物、及びアクリジン系化合物からなる群より選択される少なくとも1種を含むことを特徴とする前記<6>に記載の感光性組成物である。
<8> ジ置換アミノベンゼンを部分構造として有する化合物が、下記一般式(I)〜(VII)で表される少なくとも1種の化合物であることを特徴とする前記<6>又は<7>に記載の感光性組成物である。
〔一般式(I)中、R1、R2、R5、及びR6は、それぞれ独立して、脂肪族基及び芳香族基のいずれかを表し、R3、R4、R7、R8、及びR9〜R12は、それぞれ独立して、水素原子又は一価の置換基を表す。R1とR2、R5とR6、R1とR3、R2とR4、R5とR7、及びR6とR8は、それぞれ独立して、互いに結合し、含窒素複素環を形成していてもよい。〕
〔一般式(I)中、R1、R2、R5、及びR6は、それぞれ独立して、脂肪族基及び芳香族基のいずれかを表し、R3、R4、R7、R8、及びR9〜R12は、それぞれ独立して、水素原子又は一価の置換基を表す。R1とR2、R5とR6、R1とR3、R2とR4、R5とR7、及びR6とR8は、それぞれ独立して、互いに結合し、含窒素複素環を形成していてもよい。〕
〔一般式(II)中、R21及びR22は、それぞれ独立して、脂肪族基及び芳香族基のいずれかを表し、R23〜R30は、それぞれ独立して、水素原子及び一価の置換基のいずれかを表し、Xは、酸素原子、硫黄原子、ジアルキルメチレン基、イミノ基、及び脂肪族基若しくは芳香族基が置換したイミノ基のいずれかを表す。R21とR22、R21とR23、及びR22とR24は、それぞれ独立して、互いに結合し、含窒素複素環を形成していてもよく、複素環に縮合するベンゼン環は置換基を有していてもよい。〕
〔一般式(III)中、R31及びR32は、それぞれ独立して、脂肪族基及び芳香族基のいずれかを表し、R33〜R37は、それぞれ独立して、水素原子及び一価の置換基のいずれかを表し、R38は、一価の置換基を表す。R31とR32、R31とR33、及びR32とR34は、それぞれ独立して、互いに結合し、含窒素複素環を形成していてもよい。〕
〔一般式(IV)中、R41及びR42は、それぞれ独立して、脂肪族基及び芳香族基のいずれかを表し、R43〜R47は、それぞれ独立して、水素原子及び一価の置換基を表し、Yは、酸素原子及びNR48のいずれかを表し、R48は、水素原子及び一価の置換基のいずれかを表す。R41とR42、R41とR43、及びR42とR44は、それぞれ独立して、互いに結合し、含窒素複素環を形成していてもよい。〕
〔一般式(V)〜(VII)中、環A〜Gは、それぞれ独立に芳香族炭化水素環及び芳香族複素環のいずれかを基本骨格とするものであり、環Aと環B、環Dと環E、環Fと環Gは、それぞれ独立に、互いに結合してNを含む結合環を形成していても良い。
前記一般式(VI)中、連結基Lは、芳香族炭化水素環及び芳香族複素環の少なくともいずれかを含む連結基を表し、連結基LとNとは、該芳香族炭化水素環及び芳香族複素環のいずれかで結合しており、nは2以上のいずれかの整数を表す。
前記一般式(VII)中、Rは、置換基を有していても良いアルキル基を表す。
なお、環A〜G及び連結基Lは、置換基を有していても良く、これらの置換基同士が互いに結合して環を形成していても良い。〕
<9> 前記塩基性核を有する化合物が、シアニン系色素、ヘミシアニン系色素、スチリル系色素、ストレプトシアニン系色素からなる群より選択される少なくとも1種であることを特徴とする前記<6>〜<8>のいずれか1項に記載の感光性組成物である。
<10> 前記酸性核を有する化合物が、メロシアニン化合物及びロダシアニン化合物空なる群より選択される少なくとも1種であることを特徴とする前記<6>〜<9>のいずれか1項に記載の感光性組成物である。
<11> 前記蛍光増白剤が、非イオン性核を有する化合物であることを特徴とする前記<6>〜<10>のいずれか1項に記載の感光性組成物である。
<12> 前記光重合開始剤が、ハロゲン化炭化水素誘導体、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、メタロセン類、及びアシルホスフィンオキシド化合物からなる群より選択される少なくとも1種のラジカル発生剤であることを特徴とする前記<1>〜<11>のいずれか1項に記載の感光性組成物である。
<13> 前記重合性化合物が、ウレタン基及びアリール基の少なくともいずれかを有するモノマーを含むことを特徴とする前記<1>〜<12>のいずれか1項に記載の感光性組成物である。
<14> 前記重合性化合物が、エチレンオキサイド基及びプロピレンオキサイド基の少なくともいずれかを有するモノマーであることを特徴とする前記<1>〜<12>のいずれか1項に記載の感光性組成物である。
<15> 前記バインダーが共重合体を含み、該共重合体がスチレン及びスチレン誘導体の少なくともいずれかに由来する構造単位を有することを特徴とする前記<1>〜<14>のいずれか1項に記載の感光性組成物である。
<16> 前記バインダーのガラス転移温度(Tg)が、80℃以上であることを特徴とする前記<1>〜<15>のいずれか1項に記載の感光性組成物である。
<17> バインダーの酸価が、70〜250(mgKOH/g)であることを特徴とする前記<1>から<16>のいずれか1項に記載の感光性組成物である。
<18> 熱架橋剤を含み、
且つ、バインダーがエポキシアクリレート化合物の少なくとも1種、並びに、側鎖に(メタ)アクリロイル基及び酸性基を有するビニル共重合体の少なくとも1種の少なくともいずれかを含むことを特徴とする前記<1>〜<17>のいずれか1項に記載の感光性組成物である。
且つ、バインダーがエポキシアクリレート化合物の少なくとも1種、並びに、側鎖に(メタ)アクリロイル基及び酸性基を有するビニル共重合体の少なくとも1種の少なくともいずれかを含むことを特徴とする前記<1>〜<17>のいずれか1項に記載の感光性組成物である。
<19> 熱架橋剤を含み、
且つ、バインダーが無水マレイン酸共重合体の無水物基に対して0.1〜1.2当量の1級アミン化合物を反応させて得られる共重合体であることを特徴とする前記<1>〜<18>のいずれかに記載の感光性組成物である。
且つ、バインダーが無水マレイン酸共重合体の無水物基に対して0.1〜1.2当量の1級アミン化合物を反応させて得られる共重合体であることを特徴とする前記<1>〜<18>のいずれかに記載の感光性組成物である。
<20> 熱架橋剤を含み、
且つ、バインダーが(a)無水マレイン酸と、(b)芳香族ビニル単量体と、(c)ビニル単量体であって、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体と、からなる共重合体の無水物基に対して0.1〜1.0当量の1級アミン化合物を反応させて得られることを特徴とする前記<1>〜<19>のいずれか1項に記載の感光性組成物である。
且つ、バインダーが(a)無水マレイン酸と、(b)芳香族ビニル単量体と、(c)ビニル単量体であって、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体と、からなる共重合体の無水物基に対して0.1〜1.0当量の1級アミン化合物を反応させて得られることを特徴とする前記<1>〜<19>のいずれか1項に記載の感光性組成物である。
<21> 前記熱架橋剤が、
エポキシ化合物、オキセタン化合物、ポリイソシアネート化合物、ポリイソシアネート化合物にブロック剤を反応させて得られる化合物、及びメラミン誘導体からなる群より選択される少なくとも1種であることを特徴とする前記<18>〜<20>のいずれかに記載の感光性組成物である。
エポキシ化合物、オキセタン化合物、ポリイソシアネート化合物、ポリイソシアネート化合物にブロック剤を反応させて得られる化合物、及びメラミン誘導体からなる群より選択される少なくとも1種であることを特徴とする前記<18>〜<20>のいずれかに記載の感光性組成物である。
<22> 前記エポキシ化合物が、β位がアルキル基で置換されたエポキシ化合物であることを特徴とする前記<21>に記載の感光性組成物である。
<23> 前記メラミン誘導体が、アルキル化メチロールメラミンであることを特徴とする前記<21>又は<22>に記載の感光性組成物である。
<24> バインダーを30〜90質量%含有し、重合性化合物を5〜60質量%含有し、光重合開始剤を0.1〜30質量%含有することを特徴とする前記<1>〜<23>のいずれか1項に記載の感光性組成物である。
<25> 支持体と、該支持体上に前記<1>〜<24>のいずれか1項に記載の感光性組成物を含む感光層を設けてなることを特徴とするパターン形成材料である。
<26> 支持体上に、該支持体に近い側から順に、クッション層と感光層とを設けてなることを特徴とする前記<25>に記載のパターン形成材料である。
<27> 前記支持体が、合成樹脂を含み、かつ透明であることを特徴とする前記<25>又は<26>に記載のパターン形成材料である。
<28> 前記支持体が、長尺状であることを特徴とする前記<25>〜<27>のいずれか1項に記載のパターン形成材料である。
<29> 長尺状であり、ロール状に巻かれてなることを特徴とする前記<25>〜<28>のいずれか1項に記載のパターン形成材料である。
<30> 前記感光層上に保護フィルムを有することを特徴とする前記<25>〜<29>のいずれか1項に記載のパターン形成材料である。
<31> 基体上に、前記<1>〜<24>のいずれか1項に記載の感光性組成物を含む感光層を設けてなることを特徴とする感光性積層体である。
<32> 前記感光層が、前記<25>〜<30>のいずれか1項に記載のパターン形成材料により形成されてなることを特徴とする前記<31>に記載の感光性積層体である。
<33> 前記感光層の厚みが1〜100μmであることを特徴とする前記<31>又は<32>に記載の感光性積層体である。
<34> 前記<31>〜<33>のいずれか1項に記載の感光性積層体の感光層に対して、露光を行う露光工程を少なくとも含むことを特徴とするパターン形成方法である。
<35> 前記<25>〜<30>のいずれか1項に記載のパターン形成材料における感光層を、加熱及び加圧の少なくともいずれかの下において基材の表面に積層した後、該感光層に対して露光を行うことを特徴とする前記<34>に記載のパターン形成方法である。
<36> 前記露光工程において、350〜415nmの波長のレーザ光で露光することを特徴とする前記<34>又は<35>に記載のパターン形成方法である。
<37> 前記露光工程において、形成するパターン情報に基づいて像様に露光することを特徴とする前記<34>〜<36>のいずれか1項に記載のパターン形成方法である。
<38> 前記露光工程において、感光層に対し、光照射手段、及び前記光照射手段からの光を受光し出射するn個(ただし、nは2以上の自然数)の2次元状に配列された描素部を有し、パターン情報に応じて前記描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露光ヘッドの走査方向に対し、前記描素部の列方向が所定の設定傾斜角度θをなすように配置された露光ヘッドを用い、
前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部を指定し、
前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部の制御を行い、
前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて行われることを特徴とする前記<34>〜<37>のいずれか1項に記載のパターン形成方法である。
前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部を指定し、
前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部の制御を行い、
前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて行われることを特徴とする前記<34>〜<37>のいずれか1項に記載のパターン形成方法である。
上記<38>に記載のパターン形成方法においては、前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部が指定され、描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部が制御される。前記露光ヘッドを、前記感光層に対し走査方向に相対的に移動させて露光が行われることにより、前記露光ヘッドの取付位置や取付角度のずれによる前記感光層の被露光面上に形成される前記パターンの解像度のばらつきや濃度のむらが均される。この結果、前記感光層への露光が高精細に行われ、その後、前記感光層を現像することにより、高精細なパターンが形成される。
<39> 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域の露光に関与する描素部のうち、前記ヘッド間つなぎ領域におけるN重露光を実現するために使用する前記描素部を指定することを特徴とする前記<38>に記載のパターン形成方法である。
上記<39>に記載のパターン形成方法においては、露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域の露光に関与する描素部のうち、前記ヘッド間つなぎ領域におけるN重露光を実現するために使用する前記描素部が指定されることにより、前記露光ヘッドの取付位置や取付角度のずれによる前記感光層の被露光面上のヘッド間つなぎ領域に形成される前記パターンの解像度のばらつきや濃度のむらが均される。この結果、前記感光層への露光が高精細に行われ、その後、前記感光層を現像することにより、高精細なパターンが形成される。
<40> 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外の領域におけるN重露光を実現するために使用する前記描素部を指定することを特徴とする前記<38>又は<39>に記載のパターン形成方法である。
上記<40>に記載のパターン形成方法においては、露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外におけるN重露光を実現するために使用する前記描素部が指定されることにより、前記露光ヘッドの取付位置や取付角度のずれによる前記感光層の被露光面上のヘッド間つなぎ領域以外に形成される前記パターンの解像度のばらつきや濃度のむらが均される。この結果、前記感光層への露光が高精細に行われ、その後、前記感光層を現像することにより、高精細なパターンが形成される。
<41> 設定傾斜角度θが、N重露光数のN、描素部の列方向の個数s、前記描素部の列方向の間隔p、及び露光ヘッドを傾斜させた状態において該露光ヘッドの走査方向と直交する方向に沿った描素部の列方向のピッチδに対し、次式、spsinθideal≧Nδを満たすθidealに対し、θ≧θidealの関係を満たすように設定されることを特徴とする前記<38>〜<40>のいずれか1項に記載のパターン形成方法である。
<42> N重露光のNが、3以上の自然数であることを特徴とする前記<38>〜<41>のいずれか1項に記載のパターン形成方法である。
上記<42>に記載のパターン形成方法においては、N重露光のNが、3以上の自然数であることにより、多重描画が行われる。この結果、埋め合わせの効果により、前記露光ヘッドの取付位置や取付角度のずれによる前記感光層の被露光面上に形成される前記パターンの解像度のばらつきや濃度のむらが、より精密に均される。
<43> 使用描素部指定手段が、
描素部により生成されて被露光面上の露光領域を構成する描素単位としての光点位置を、被露光面上において検出する光点位置検出手段と、
前記光点位置検出手段による検出結果に基づき、N重露光を実現するために使用する描素部を選択する描素部選択手段と
を備えることを特徴とする前記<38>〜<42>のいずれか1項に記載のパターン形成方法である。
描素部により生成されて被露光面上の露光領域を構成する描素単位としての光点位置を、被露光面上において検出する光点位置検出手段と、
前記光点位置検出手段による検出結果に基づき、N重露光を実現するために使用する描素部を選択する描素部選択手段と
を備えることを特徴とする前記<38>〜<42>のいずれか1項に記載のパターン形成方法である。
<44> 使用描素部指定手段が、N重露光を実現するために使用する使用描素部を、行単位で指定することを特徴とする前記<38>〜<43>のいずれか1項に記載のパターン形成方法である。
<45>光点位置検出手段が、検出した少なくとも2つの光点位置に基づき、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向とがなす実傾斜角度θ’を特定し、描素部選択手段が、前記実傾斜角度θ’と設定傾斜角度θとの誤差を吸収するように使用描素部を選択することを特徴とする前記<43>又は<44>に記載のパターン形成方法である。
<46> 実傾斜角度θ’が、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向とがなす複数の実傾斜角度の平均値、中央値、最大値、及び最小値のいずれかであることを特徴とする前記<45>に記載のパターン形成方法である。
<47> 描素部選択手段が、実傾斜角度θ’に基づき、ttanθ’=N(ただし、NはN重露光数のNを表す)の関係を満たすtに近い自然数Tを導出し、m行(ただし、mは2以上の自然数を表す)配列された描素部における1行目から前記T行目の前記描素部を、使用描素部として選択することを特徴とする前記<45>又は<46>に記載のパターン形成方法である。
<48> 描素部選択手段が、実傾斜角度θ’に基づき、ttanθ’=N(ただし、NはN重露光数のNを表す)の関係を満たすtに近い自然数Tを導出し、m行(ただし、mは2以上の自然数を表す)配列された描素部における、(T+1)行目からm行目の前記描素部を、不使用描素部として特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択することを特徴とする前記<45>〜<47>のいずれか1項に記載のパターン形成方法である。
<49> 描素部選択手段が、複数の描素部列により形成される被露光面上の重複露光領域を少なくとも含む領域において、
(1)理想的なN重露光に対し、露光過多となる領域、及び露光不足となる領域の合計面積が最小となるように、使用描素部を選択する手段、
(2)理想的なN重露光に対し、露光過多となる領域の描素単位数と、露光不足となる領域の描素単位数とが等しくなるように、使用描素部を選択する手段、
(3)理想的なN重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光不足となる領域が生じないように、使用描素部を選択する手段、及び
(4)理想的なN重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光過多となる領域が生じないように、使用描素部を選択する手段
のいずれかであることを特徴とする前記<43>〜<48>のいずれか1項に記載のパターン形成方法である。
(1)理想的なN重露光に対し、露光過多となる領域、及び露光不足となる領域の合計面積が最小となるように、使用描素部を選択する手段、
(2)理想的なN重露光に対し、露光過多となる領域の描素単位数と、露光不足となる領域の描素単位数とが等しくなるように、使用描素部を選択する手段、
(3)理想的なN重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光不足となる領域が生じないように、使用描素部を選択する手段、及び
(4)理想的なN重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光過多となる領域が生じないように、使用描素部を選択する手段
のいずれかであることを特徴とする前記<43>〜<48>のいずれか1項に記載のパターン形成方法である。
<50> 描素部選択手段が、複数の露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域において、
(1)理想的なN重露光に対し、露光過多となる領域、及び露光不足となる領域の合計面積が最小となるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
(2)理想的なN重露光に対し、露光過多となる領域の描素単位数と、露光不足となる領域の描素単位数とが等しくなるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
(3)理想的なN重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光不足となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、及び、
(4)理想的なN重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光過多となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
のいずれかであることを特徴とする前記<43>〜<49>のいずれか1項に記載のパターン形成方法である。
(1)理想的なN重露光に対し、露光過多となる領域、及び露光不足となる領域の合計面積が最小となるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
(2)理想的なN重露光に対し、露光過多となる領域の描素単位数と、露光不足となる領域の描素単位数とが等しくなるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
(3)理想的なN重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光不足となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、及び、
(4)理想的なN重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光過多となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
のいずれかであることを特徴とする前記<43>〜<49>のいずれか1項に記載のパターン形成方法である。
<51> 不使用描素部が、行単位で特定されることを特徴とする前記<50>に記載のパターン形成方法である。
<52> 使用描素部指定手段において使用描素部を指定するために、使用可能な前記描素部のうち、N重露光のNに対し、(N−1)列毎の描素部列を構成する前記描素部のみを使用して参照露光を行うことを特徴とする前記<38>〜<51>のいずれか1項に記載のパターン形成方法である。
上記<52>に記載のパターン形成方法においては、使用描素部指定手段において使用描素部を指定するために、使用可能な前記描素部のうち、N重露光のNに対し、(N−1)列毎の描素部列を構成する前記描素部のみを使用して参照露光が行われ、略1重描画の単純なパターンが得られる。この結果、前記ヘッド間つなぎ領域における前記描素部が容易に指定される。
<53> 使用描素部指定手段において使用描素部を指定するために、使用可能な前記描素部のうち、N重露光のNに対し、1/N行毎の描素部行を構成する前記描素部のみを使用して参照露光を行うことを特徴とする前記<38>〜<52>のいずれか1項に記載のパターン形成方法である。
上記<53>に記載のパターン形成方法においては、使用描素部指定手段において使用描素部を指定するために、使用可能な前記描素部のうち、N重露光のNに対し、1/N行毎の描素部列を構成する前記描素部のみを使用して参照露光が行われ、略1重描画の単純なパターンが得られる。この結果、前記ヘッド間つなぎ領域における前記描素部が容易に指定される。
<54> 使用描素部指定手段が、光点位置検出手段としてスリット及び光検出器、並びに描素部選択手段として前記光検出器と接続された演算装置を有することを特徴とする前記<38>〜<53>のいずれか1項に記載のパターン形成方法である。
<55> N重露光のNが、3以上7以下の自然数であることを特徴とする前記<38>〜<54>のいずれか1項に記載のパターン形成方法である。
<56> パターン情報が表すパターンの所定部分の寸法が、指定された使用描素部により実現できる対応部分の寸法と一致するように前記パターン情報を変換することを特徴とする前記<38>〜<55>のいずれか1項に記載のパターン形成方法である。
<57> 露光工程の後に、感光層を現像する現像工程を有することを特徴とする前記<34>〜<56>のいずれか1項に記載のパターン形成方法である。
<58> 現像工程の後に、エッチング処理工程及びめっき処理工程の少なくとも一方の工程を有することを特徴とする前記<57>に記載のパターン形成方法である。
<59> 配線パターンを形成することを特徴とする前記<58>に記載のパターン形成方法である。
<60> 現像工程の後に、感光層に対して硬化処理を行う硬化処理工程を有することを特徴とする前記<57>に記載のパターン形成方法である。
<61> 前記硬化処理工程が、全面露光、又は120〜200℃で行われる全面加熱の少なくともいずれかの処理であることを特徴とする前記<60>に記載のパターン形成方法である。
上記<61>に記載のパターン形成方法においては、前記全面露光処理において、前記感光性組成物中の樹脂の硬化が促進される。また、前記温度条件で行われる全面加熱処理において、硬化膜の膜強度が高められる。
<62> 前記感光体積層体に、保護膜、層間絶縁膜、又はソルダーレジストパターンの少なくともいずれかを形成することを特徴とする前記<61>に記載のパターン形成方法である。
本発明によると、従来における問題を解決することができ、寸法安定性に優れた感光性組成物、該感光性組成物により形成された感光層を有するパターン形成材料、感光性積層体、及びパターン形成方法を提供することができる。
本発明は、感光性組成物、該感光性組成物からなる感光層を積層してなるパターン形成材料及び感光性積層体、及びパターン形成方法であり、以下順に説明する。
(感光性組成物)
本発明の感光性組成物は、少なくともバインダー、重合性化合物、光重合開始剤、及び炭素系ナノ材料を含むことを特徴とする。
本発明の感光性組成物は、パターン情報に基づいて、光を変調しながら、露光ヘッドと感光層の被露光面とを相対走査して露光することにより、前記被露光面上の二次元パターンを形成する前記感光層に含有され、或いは、感光層を露光し現像した場合に、露光及び現像後において、前記感光層の被露光部の厚みが変化しない露光の最小エネルギー量が、0.1mJ/cm2〜100mJ/cm2である感光層に含有されるものである。
本発明の感光性組成物は、少なくともバインダー、重合性化合物、光重合開始剤、及び炭素系ナノ材料を含むことを特徴とする。
本発明の感光性組成物は、パターン情報に基づいて、光を変調しながら、露光ヘッドと感光層の被露光面とを相対走査して露光することにより、前記被露光面上の二次元パターンを形成する前記感光層に含有され、或いは、感光層を露光し現像した場合に、露光及び現像後において、前記感光層の被露光部の厚みが変化しない露光の最小エネルギー量が、0.1mJ/cm2〜100mJ/cm2である感光層に含有されるものである。
好ましくは、前記最小エネルギー量は、0.1〜40mJ/cm2であり、0.5〜30mJ/cm2であることがより好ましい。
前記最小エネルギーが、0.1mJ/cm2未満であると、処理工程にてカブリが発生することがあり、100mJ/cm2を超えると、露光に必要な時間が長くなり、処理スピードが遅くなることがある。かかる最小エネルギー量を上記範囲内とするための方法は、感光性組成物の各々の成分の説明において述べる。
前記最小エネルギーが、0.1mJ/cm2未満であると、処理工程にてカブリが発生することがあり、100mJ/cm2を超えると、露光に必要な時間が長くなり、処理スピードが遅くなることがある。かかる最小エネルギー量を上記範囲内とするための方法は、感光性組成物の各々の成分の説明において述べる。
ここで、「該感光層の露光する部分の厚みを該露光及び現像後において変化させない前記露光に用いる光の最小エネルギー」とは、いわゆる現像感度であり、例えば、前記感光層を露光したときの前記露光に用いた光のエネルギー量(露光量)と、前記露光に続く前記現像処理により生成した前記硬化層の厚みとの関係を示すグラフ(感度曲線)から求めることができる。
前記硬化層の厚みは、前記露光量が増えるに従い増加していき、その後、前記露光前の前記感光層の厚みと略同一かつ略一定となる。前記現像感度は、前記硬化層の厚みが略一定となったときの最小露光量を読み取ることにより求められる値である。
ここで、前記硬化層の厚みと前記露光前の前記感光層の厚みとが±1μm以内であるとき、前記硬化層の厚みが露光及び現像により変化していないとみなす。
前記硬化層及び前記露光前の前記感光層の厚みの測定方法としては、特に制限はなく、目的に応じて適宜選択することができるが、膜厚測定装置、表面粗さ測定機(例えば、サーフコム1400D(東京精密社製))などを用いて測定する方法が挙げられる。
前記硬化層の厚みは、前記露光量が増えるに従い増加していき、その後、前記露光前の前記感光層の厚みと略同一かつ略一定となる。前記現像感度は、前記硬化層の厚みが略一定となったときの最小露光量を読み取ることにより求められる値である。
ここで、前記硬化層の厚みと前記露光前の前記感光層の厚みとが±1μm以内であるとき、前記硬化層の厚みが露光及び現像により変化していないとみなす。
前記硬化層及び前記露光前の前記感光層の厚みの測定方法としては、特に制限はなく、目的に応じて適宜選択することができるが、膜厚測定装置、表面粗さ測定機(例えば、サーフコム1400D(東京精密社製))などを用いて測定する方法が挙げられる。
本発明者らの研究によって、本発明の感光性組成物を用いると、環境温度を変化させて露光した場合であっても、感度変動が少ないことが明らかとなった。つまり、露光量を同一とした場合には、本発明の感光性組成物は、従来の感光性組成物に比べ、パターンの線幅寸法変動が小さい。
このメカニズムについては明らかとなっていないが、本発明の感光性組成物では、炭素系ナノ材料を含有するため、比熱が大きくなり、環境温度の変動という外的環境要因に左右されにくくなっているものと推測する。
このメカニズムについては明らかとなっていないが、本発明の感光性組成物では、炭素系ナノ材料を含有するため、比熱が大きくなり、環境温度の変動という外的環境要因に左右されにくくなっているものと推測する。
特に、パターン情報に基づいて、光を変調しながら、露光ヘッドと感光層の被露光面とを相対走査して露光することにより、前記被露光面上の二次元パターンを形成する場合、該露光装置が複数の露光用レーザスポットを備えているので、レンズの製造精度やレンズの取り付け誤差等により、感光性組成物上のレーザスポット径にはバラツキが生じる。このように、パターン情報に基づいて光を変調しながら、露光ヘッドと感光層の被露光面とを相対走査して露光することにより、前記被露光面上の二次元パターンを形成する感光層においては、露光されたパターン、例えば線の幅には、バラツキが生じてしまうことがあり、環境温度の影響などによりそのバラツキはさらに大きくなりやすい。しかし、感光層に本発明の感光性組成物を含有すると、特に環境温度の変動という外的環境要因の影響を受けにくくなるため線幅のバラツキが少なくなり、良好な結果を得ることができる。
また、露光及び現像後において、前記感光層の被露光部の厚みが変化しない露光の最小エネルギー量が0.1mJ/cm2〜100mJ/cm2である感光層においては、露光エネルギーが小さいところで露光することになるので、露光機のパワー変動を受けやすくなり線幅のバラツキが出やすい。しかし、感光層に本発明の感光性組成物を含有すると、特に環境温度の変動という外的環境要因の影響を受けにくくなるため線幅のバラツキが少なくなり、良好な結果を得ることができる。
前記感光性組成物としては、配線パターン等を形成する際に用いられる回路形成用レジストとしての感光性組成物、及び保護膜、層間絶縁膜、ソルダーレジストパターン等の永久パターンを形成する際に用いられるソルダーレジストとしての感光性組成物が含まれる。
以下では、配線パターンとして回路形成用レジストを例にその組成について詳細に説明し、永久パターンとしてソルダーレジストを例にその組成について詳細に説明するが、本発明の感光性組成物は、回路形成用レジストやソルダーレジストに限定されない。
以下では、配線パターンとして回路形成用レジストを例にその組成について詳細に説明し、永久パターンとしてソルダーレジストを例にその組成について詳細に説明するが、本発明の感光性組成物は、回路形成用レジストやソルダーレジストに限定されない。
〔回路形成用レジスト〕
前記回路形成用レジストとしての感光性組成物としては、少なくともバインダー、重合性化合物、光重合開始剤、及び炭素系ナノ材料を含み、必要に応じて、増感剤等、適宜選択したその他の成分を含む。
前記回路形成用レジストとしての感光性組成物としては、少なくともバインダー、重合性化合物、光重合開始剤、及び炭素系ナノ材料を含み、必要に応じて、増感剤等、適宜選択したその他の成分を含む。
<炭素系ナノ材料>
本発明において、炭素系ナノ材料とは、炭素原子からなるナノサイズの物質をいい、例えば、カーボンナノチューブ、フラーレン、カーボンマイクロコイル等を挙げることができる。炭素系ナノ材料の構造的特長、物理特性等に関しては「最新カーボンブラック技術大全」((株)技術情報教会発行)に詳しい。この中でも、熱的特性、物理特性変更の容易さの観点から、カーボンナノチューブが好適である。
炭素系ナノ材料は、単一種で用いても、複数種を併用してもよい。
本発明において、炭素系ナノ材料とは、炭素原子からなるナノサイズの物質をいい、例えば、カーボンナノチューブ、フラーレン、カーボンマイクロコイル等を挙げることができる。炭素系ナノ材料の構造的特長、物理特性等に関しては「最新カーボンブラック技術大全」((株)技術情報教会発行)に詳しい。この中でも、熱的特性、物理特性変更の容易さの観点から、カーボンナノチューブが好適である。
炭素系ナノ材料は、単一種で用いても、複数種を併用してもよい。
カーボンナノチューブはチューブの部分は炭素原子からなる円筒状の中空繊維物質である。一般的には、外径が1〜100nm程度で、長さが直径の100倍以上であり、円筒面はグラファイトの六方格子で構成される。カーボンナノチューブは円筒の巻き方によって多彩な立体構造が存在し、かかる立体構造によって金属ナノチューブと半導体ナノチューブが存在する。
本発明に適用し得るカーボンナノチューブの形状は特に限定されず、円筒形の層が1層の単層ナノチューブであっても、多層ナノチューブであってもよい。単層ナノチューブの端部が閉じていても、開いていてもよい。
カーボンナノチューブの製造方法は、公知の方法を適宜適用することができる。一般的に、カーボンナノチューブの製造方法は、黒鉛を高温でばらばらにしてつくる方法と、炭素を含む物質を熱分解し、炭素だけを集める方法とを挙げることができる。前者の代表的な方法として、アーク放電法、レーザーアブレーション法があり、後者の方法として化学気相合成法がある。生成した試料には不要なアモルファスカーボンやフラーレンが不純物として含まれる。これらは酸化しやすいので、試料を焼いたり酸化剤中で煮たりして精製することが好ましい。
また、生成方法にもよるが、カーボンナノチューブは高アスペクト比の材料であり、生成されたものも複雑に絡み合った構造を有している場合が多い。これらは超音波分散等で分散させても良いが、所定の条件で粉砕処理を行い、カーボンナノチューブの長さを生成時より短く加工することも好ましい。粉砕処理の方法は限定されないが、せん断、すりつぶし等の乾式粉砕法、分散剤や界面活性剤を含む水、分散剤を含む有機溶剤中で分散する方法等が採用される。
カーボンナノチューブの長さを1μm程度にするためには、1000℃の温度を1ミリ秒程度保つことが好ましい。また、Fe,Ni,Co,Pdなどの炭素と合金をつくる金属触媒を適用することが好ましい。
その他カーボンナノチューブの詳細は、「カーボンナノチューブの基礎と応用」(斉藤理一郎、篠原久典)、培風館(2004)を参照することができる。
また、入手容易なカーボンナノチューブの例としては、例えば、Graphite Fibrils・Grades BN(ハイペリオン・カタリシス・インターナショナル社製)、Carbolex−AP(製造元:Carbolex Inc.、販売元:和光純薬工業(株)、製造法:レーザー法)、SCI−SWNT(製造元:Strem Chemicals Inc.、販売元:和光純薬工業(株)、製造法:アーク法)、ROS−SWNT(製造元:Rosseter Holdings Ltd.、製造法:アーク法)、CNI−SWNT(製造元:Carbon Nanotech. Inc.、製造法:HiPco法)等を挙げることができる。
その他、バッキーUSA(USA)、カーボン・ソリューション(USA)、Guangzhou Yorkpoint Energy(中国)、 ハイペリオン・カタリシス (USA)、Iljin Nanotech(韓国)、マテリアル&エレクトロケミカル・リサーチコーポ (USA)、Mitsui Carbon Nanotech Research Institute(日本)、ナノカーボラボ(ロシア)、ナノス(USA)、ナノラボ(USA)、ナノレッジ(フランス)、ロゼッター・ホールディング(キプロス)、Showa Denko Inorganic Materials(日本)、サン・ナノテク(中国)などで製造されているカーボンナノチューブを挙げることができる。
その他、バッキーUSA(USA)、カーボン・ソリューション(USA)、Guangzhou Yorkpoint Energy(中国)、 ハイペリオン・カタリシス (USA)、Iljin Nanotech(韓国)、マテリアル&エレクトロケミカル・リサーチコーポ (USA)、Mitsui Carbon Nanotech Research Institute(日本)、ナノカーボラボ(ロシア)、ナノス(USA)、ナノラボ(USA)、ナノレッジ(フランス)、ロゼッター・ホールディング(キプロス)、Showa Denko Inorganic Materials(日本)、サン・ナノテク(中国)などで製造されているカーボンナノチューブを挙げることができる。
本発明に適用し得るフラーレンとしては、C60、C70、C76、C78、C82等を挙げることができ、これらは単独または2種以上併用して用いてもよい。フラーレンの製造方法は、公知の方法を適宜適用することができる。フラーレンの詳細に関しては、「フラーレンとカーボンナノチューブ」((株)ダイヤリサーチマーテック発行)に詳しい。
カーボンマイクロコイルは、例えば、炭素からなる、繊維直径が0.01〜2μm、コイル外径が繊維直径の2〜10倍であり、巻数が10μm当たり、5/コイル外径(μm)〜50/コイル外径(μm)であるコイル状繊維のものである。
カーボンマイクロコイルは、炭素含有ガスの気相分解反応によって得られる。
カーボンマイクロコイルは、炭素含有ガスの気相分解反応によって得られる。
回路形成用レジストとしての感光性組成物における炭素系ナノ材料の含有量としては、感光性組成物全体に対して、0.0001質量%〜10質量%であることが好ましく、0.0005質量%〜5質量%であることがより好ましく、0.001質量%〜1質量%であることが更に好ましい。
前記含有量が0.0001質量%未満であると、環境温度の変動という外的環境要因の影響を受けやすくなり線幅のバラツキが大きくなることがあり、10質量%を超えると、感光層の光の散乱が大きくなり逆に線幅のバラツキが大きくなることがある。
前記含有量が0.0001質量%未満であると、環境温度の変動という外的環境要因の影響を受けやすくなり線幅のバラツキが大きくなることがあり、10質量%を超えると、感光層の光の散乱が大きくなり逆に線幅のバラツキが大きくなることがある。
炭素系ナノ材料は、形成された感光層中に均一に分散されていることが好適であるため、炭素系ナノ材料の分散物を別途調整し、レジストとしての感光性組成物と混合することが好ましい。さらに炭素系ナノ材料を感光性組成物に添加し、その後分散してもよい。炭素ナノ材料の分散方法としては、炭素系ナノ材料または炭素系ナノ材料を含んだ溶液をあらかじめマイクロ波処理やプラズマ処理などをしておいても良く、ビーズミル分散、高圧湿式分散、超音波分散、ニーダーなどを使用して分散する。前記分散に関しては、「分散技術大全集」(情報協会(株)発行)に詳しい。
また、感光層中の炭素系ナノ材料は、電場、磁場などにより配向させてもよい。
<バインダー>
回路形成用レジストとしての感光性組成物におけるバインダーとしては、例えば、アルカリ性水溶液に対して膨潤性であることが好ましく、アルカリ性水溶液に対して可溶性であることがより好ましい。
アルカリ性水溶液に対して膨潤性又は溶解性を示すバインダーとしては、例えば、酸性基を有するものが好適に挙げられる。
回路形成用レジストとしての感光性組成物におけるバインダーとしては、例えば、アルカリ性水溶液に対して膨潤性であることが好ましく、アルカリ性水溶液に対して可溶性であることがより好ましい。
アルカリ性水溶液に対して膨潤性又は溶解性を示すバインダーとしては、例えば、酸性基を有するものが好適に挙げられる。
前記酸性基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カルボキシル基、スルホン酸基、リン酸基などが挙げられ、これらの中でもカルボキシル基が好ましい。
カルボキシル基を有するバインダーとしては、例えば、カルボキシル基を有するビニル共重合体、ポリウレタン樹脂、ポリアミド酸樹脂、変性エポキシ樹脂などが挙げられ、これらの中でも、塗布溶媒への溶解性、アルカリ現像液への溶解性、合成適性、膜物性の調整の容易さ等の観点からカルボキシル基を有するビニル共重合体が好ましい。また、現像性の観点から、スチレン及びスチレン誘導体の少なくともいずれかの共重合体も好ましい。
カルボキシル基を有するバインダーとしては、例えば、カルボキシル基を有するビニル共重合体、ポリウレタン樹脂、ポリアミド酸樹脂、変性エポキシ樹脂などが挙げられ、これらの中でも、塗布溶媒への溶解性、アルカリ現像液への溶解性、合成適性、膜物性の調整の容易さ等の観点からカルボキシル基を有するビニル共重合体が好ましい。また、現像性の観点から、スチレン及びスチレン誘導体の少なくともいずれかの共重合体も好ましい。
前記カルボキシル基を有するビニル共重合体は、少なくとも(1)カルボキシル基を有するビニルモノマー、及び(2)これらと共重合可能なモノマーとの共重合により得ることができる。
前記カルボキシル基を有するビニルモノマーとしては、例えば、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、アクリル酸ダイマー、水酸基を有する単量体(例えば、2−ヒドロキシエチル(メタ)アクリレート等)と環状無水物(例えば、無水マレイン酸や無水フタル酸、シクロヘキサンジカルボン酸無水物)との付加反応物、ω−カルボキシ−ポリカプロラクトンモノ(メタ)アクリレートなどが挙げられる。これらの中でも、共重合性やコスト、溶解性などの観点から(メタ)アクリル酸が特に好ましい。
また、カルボキシル基の前駆体として無水マレイン酸、無水イタコン酸、無水シトラコン酸等の無水物を有するモノマーを用いてもよい。
また、カルボキシル基の前駆体として無水マレイン酸、無水イタコン酸、無水シトラコン酸等の無水物を有するモノマーを用いてもよい。
前記その他の共重合可能なモノマーとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、(メタ)アクリルアミド類、ビニルエーテル類、ビニルアルコールのエステル類、スチレン類(例えば、スチレン、スチレン誘導体等)、(メタ)アクリロニトリル、ビニル基が置換した複素環式基(例えば、ビニルピリジン、ビニルピロリドン、ビニルカルバゾール等)、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニルイミダゾール、ビニルカプロラクトン、2−アクリルアミド−2−メチルプロパンスルホン酸、リン酸モノ(2―アクリロイルオキシエチルエステル)、リン酸モノ(1−メチル−2―アクリロイルオキシエチルエステル)、官能基(例えば、ウレタン基、ウレア基、スルホンアミド基、フェノール基、イミド基)を有するビニルモノマーなどが挙げられ、これらの中でも配線パターンなどの永久パターンを高精細に形成することができる点、及び前記テント性を向上させることができる点で、前記スチレン類(スチレン及びスチレン誘導体)が好ましい。
前記(メタ)アクリル酸エステル類としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、t−ブチルシクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、t−オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、アセトキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−メトキシエトキシ)エチル(メタ)アクリレート、3−フェノキシ−2−ヒドロキシプロピル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノフェニルエーテル(メタ)アクリレート、トリエチレングリコールモノメチルエーテル(メタ)アクリレート、トリエチレングリコールモノエチルエーテル(メタ)アクリレート、ポリエチレングリコールモノメチルエーテル(メタ)アクリレート、ポリエチレングリコールモノエチルエーテル(メタ)アクリレート、β−フェノキシエトキシエチルアクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、オクタフロロペンチル(メタ)アクリレート、パーフロロオクチルエチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、トリブロモフェニルオキシエチル(メタ)アクリレートなどが挙げられる。
前記クロトン酸エステル類としては、例えば、クロトン酸ブチル、クロトン酸ヘキシルなどが挙げられる。
前記ビニルエステル類としては、例えば、ビニルアセテート、ビニルプロピオネート、ビニルブチレート、ビニルメトキシアセテート、安息香酸ビニルなどが挙げられる。
前記マレイン酸ジエステル類としては、例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチルなどが挙げられる。
前記フマル酸ジエステル類としては、例えば、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジブチルなどが挙げられる。
前記イタコン酸ジエステル類としては、例えば、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジブチルなどが挙げられる。
前記(メタ)アクリルアミド類としては、例えば、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−n−ブチルアクリル(メタ)アミド、N−t−ブチル(メタ)アクリルアミド、N−シクロヘキシル(メタ)アクリルアミド、N−(2−メトキシエチル)(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−フェニル(メタ)アクリルアミド、N−ベンジル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ジアセトンアクリルアミドなどが挙げられる。
前記スチレン類としては、例えば、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、ヒドロキシスチレン、メトキシスチレン、ブトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、クロロメチルスチレン、酸性物質により脱保護可能な基(例えば、t−Boc等)で保護されたヒドロキシスチレン、ビニル安息香酸メチル、α−メチルスチレンなどが挙げられる。
前記ビニルエーテル類としては、例えば、メチルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、メトキシエチルビニルエーテルなどが挙げられる。
前記官能基を有するビニルモノマーの合成方法としては、例えば、イソシアナート基と水酸基又はアミノ基の付加反応が挙げられ、具体的には、イソシアナート基を有するモノマーと、水酸基を1個含有する化合物又は1級若しくは2級アミノ基を1個有する化合物との付加反応、水酸基を有するモノマー又は1級若しくは2級アミノ基を有するモノマーと、モノイソシアネートとの付加反応が挙げられる。
前記イソシアナート基を有するモノマーとしては、例えば、下記構造式(1)〜(3)で表される化合物が挙げられる。
但し、前記構造式(1)〜(3)中、R1aは水素原子又はメチル基を表す。
前記モノイソシアネートとしては、例えば、シクロヘキシルイソシアネート、n−ブチルイソシアネート、トルイルイソシアネート、ベンジルイソシアネート、フェニルイソシアネート等が挙げられる。
前記水酸基を有するモノマーとしては、例えば、下記構造式(4)〜(12)で表される化合物が挙げられる。
但し、前記構造式(4)〜(12)中、R1bは水素原子又はメチル基を表し、n、n1及びn2は、各々独立に1以上のいずれかの整数を表す。
前記水酸基を1個含有する化合物としては、例えば、アルコール類(例えば、メタノール、エタノール、n−プロパノール、i―プロパノール、n−ブタノール、sec−ブタノール、t−ブタノール、n−ヘキサノール、2−エチルヘキサノール、n−デカノール、n−ドデカノール、n−オクタデカノール、シクロペンタノール、シクロへキサノール、ベンジルアルコール、フェニルエチルアルコール等)、フェノール類(例えば、フェノール、クレゾール、ナフトール等)、更に置換基を含むものとして、フロロエタノール、トリフロロエタノール、メトキシエタノール、フェノキシエタノール、クロロフェノール、ジクロロフェノール、メトキシフェノール、アセトキシフェノール等が挙げられる。
前記1級又は2級アミノ基を有するモノマーとしては、例えば、ビニルベンジルアミンなどが挙げられる。
前記1級又は2級アミノ基を1個含有する化合物としては、例えば、アルキルアミン(メチルアミン、エチルアミン、n−プロピルアミン、i―プロピルアミン、n−ブチルアミン、sec−ブチルアミン、t−ブチルアミン、ヘキシルアミン、2−エチルヘキシルアミン、デシルアミン、ドデシルアミン、オクタデシルアミン、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジオクチルアミン)、環状アルキルアミン(シクロペンチルアミン、シクロへキシルアミン等)、アラルキルアミン(ベンジルアミン、フェネチルアミン等)、アリールアミン(アニリン、トルイルアミン、キシリルアミン、ナフチルアミン等)、更にこれらの組合せ(N−メチル−N−ベンジルアミン等)、更に置換基を含むアミン(トリフロロエチルアミン、ヘキサフロロイソプロピルアミン、メトキシアニリン、メトキシプロピルアミン等)などが挙げられる。
また、上記以外の前記その他の共重合可能なモノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2−エチルヘキシル、スチレン、クロルスチレン、ブロモスチレン、ヒドロキシスチレンなどが好適に挙げられる。
前記その他の共重合可能なモノマーは、1種単独で使用してもよく、2種以上を併用してもよい。
前記ビニル共重合体は、それぞれ相当するモノマーを公知の方法により常法に従って共重合させることで調製することができる。例えば、前記モノマーを適当な溶媒中に溶解し、ここにラジカル重合開始剤を添加して溶液中で重合させる方法(溶液重合法)を利用することにより調製することができる。また、水性媒体中に前記モノマーを分散させた状態でいわゆる乳化重合等で重合を利用することにより調製することができる。
前記溶液重合法で用いられる適当な溶媒としては、特に制限はなく、使用するモノマー、及び生成する共重合体の溶解性等に応じて適宜選択することができ、例えば、メタノール、エタノール、プロパノール、イソプロパノール、1−メトキシ−2−プロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、メトキシプロピルアセテート、乳酸エチル、酢酸エチル、アセトニトリル、テトラヒドロフラン、ジメチルホルムアミド、クロロホルム、トルエンなどが挙げられる。これらの溶媒は、1種単独で使用してもよく、2種以上を併用してもよい。
前記ラジカル重合開始剤としては、特に制限はなく、例えば、2,2’−アゾビス(イソブチロニトリル)(AIBN)、2,2’−アゾビス−(2,4’−ジメチルバレロニトリル)等のアゾ化合物、ベンゾイルパーオキシド等の過酸化物、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩などが挙げられる。
前記ビニル共重合体におけるカルボキシル基を有する重合性化合物の含有率としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5〜50モル%が好ましく、10〜40モル%がより好ましく、15〜35モル%が特に好ましい。
前記含有率が、5モル%未満であると、アルカリ水への現像性が不足することがあり、50モル%を超えると、硬化部(画像部)の現像液耐性が不足することがある。
前記含有率が、5モル%未満であると、アルカリ水への現像性が不足することがあり、50モル%を超えると、硬化部(画像部)の現像液耐性が不足することがある。
前記カルボキシル基を有するバインダーの分子量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、質量平均分子量として、2,000〜300,000が好ましく、4,000〜150,000がより好ましい。
前記質量平均分子量が、2,000未満であると、膜の強度が不足しやすく、また安定な製造が困難になることがあり、300,000を超えると、現像性が低下することがある。
前記質量平均分子量が、2,000未満であると、膜の強度が不足しやすく、また安定な製造が困難になることがあり、300,000を超えると、現像性が低下することがある。
前記カルボキシル基を有するバインダーは、1種単独で使用してもよく、2種以上を併用してもよい。前記バインダーを2種以上併用する場合としては、例えば、異なる共重合成分からなる2種以上のバインダー、異なる質量平均分子量の2種以上のバインダー、異なる分散度の2種以上のバインダー、などの組合せが挙げられる。
前記カルボキシル基を有するバインダーは、そのカルボキシル基の一部又は全部が塩基性物質で中和されていてもよい。また、前記バインダーは、さらにポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリビニルアルコール、ゼラチン等の構造の異なる樹脂を併用してもよい。
また、前記バインダーとしては、特許2873889号等に記載のアルカリ性液に可溶な樹脂などを用いることができる。
前記感光性組成物における前記バインダーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、10〜90質量%が好ましく、20〜80質量%がより好ましく、40〜80質量%が特に好ましい。
前記含有量が10質量%未満であると、アルカリ現像性やプリント配線板形成用基板(例えば、銅張積層板)との密着性が低下することがあり、90質量%を超えると、現像時間に対する安定性や、硬化膜(テント膜)の強度が低下することがある。なお、前記含有量は、前記バインダーと必要に応じて併用される高分子結合剤との合計の含有量であってもよい。
前記含有量が10質量%未満であると、アルカリ現像性やプリント配線板形成用基板(例えば、銅張積層板)との密着性が低下することがあり、90質量%を超えると、現像時間に対する安定性や、硬化膜(テント膜)の強度が低下することがある。なお、前記含有量は、前記バインダーと必要に応じて併用される高分子結合剤との合計の含有量であってもよい。
<重合性化合物>
重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、ウレタン基(ウレタン結合)及びアリール基の少なくともいずれかを有するモノマー又はオリゴマーが好適に挙げられる。また、これらは、重合性基を2種以上有することが好ましい。
重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、ウレタン基(ウレタン結合)及びアリール基の少なくともいずれかを有するモノマー又はオリゴマーが好適に挙げられる。また、これらは、重合性基を2種以上有することが好ましい。
前記重合性基としては、例えば、エチレン性不飽和結合(例えば、(メタ)アクリロイル基、(メタ)アクリルアミド基、スチリル基、ビニルエステルやビニルエーテル等のビニル基、アリルエーテルやアリルエステル等のアリル基など)、重合可能な環状エーテル基(例えば、エポキシ基、オキセタン基等)などが挙げられ、これらの中でもエチレン性不飽和結合が好ましい。
(1)ウレタン基を有するモノマー
重合性化合物としての前記ウレタン基を有するモノマーとしては、ウレタン基を有する限り、特に制限は無く、目的に応じて適宜選択することができるが、例えば、特公昭48−41708、特開昭51−37193、特公平5−50737、特公平7−7208、特開2001−154346、特開2001−356476号公報等に記載されている化合物などが挙げられ、例えば、分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物と分子中に水酸基を有するビニルモノマーとの付加物などが挙げられる。
重合性化合物としての前記ウレタン基を有するモノマーとしては、ウレタン基を有する限り、特に制限は無く、目的に応じて適宜選択することができるが、例えば、特公昭48−41708、特開昭51−37193、特公平5−50737、特公平7−7208、特開2001−154346、特開2001−356476号公報等に記載されている化合物などが挙げられ、例えば、分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物と分子中に水酸基を有するビニルモノマーとの付加物などが挙げられる。
前記分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシレンジイソシアネート、トルエンジイソシアネート、フェニレンジイソシアネート、ノルボルネンジイソシアネート、ジフェニルジイソシアネート、ジフェニルメタンジイソシアネート、3,3’ジメチル−4,4’−ジフェニルジイソシアネート等のジイソシアネート;該ジイソシアネートを更に2官能アルコールとの重付加物(この場合も両末端はイソシアネート基);該ジイソシアネートのビュレット体やイソシアヌレート等の3量体;該ジイソシアネート若しくはジイソシアネート類と、トリメチロールプロパン、ペンタエリトリトール、グリセリン等の多官能アルコール、又はこれらのエチレンオキシド付加物等の得られる他官能アルコールとの付加体などが挙げられる。
前記分子中に水酸基を有するビニルモノマーとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、オクタエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ジブチレングリコールモノ(メタ)アクリレート、トリブチレングリコールモノ(メタ)アクリレート、テトラブチレングリコールモノ(メタ)アクリレート、オクタブチレングリコールモノ(メタ)アクリレート、ポリブチレングリコールモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリトリトールトリ(メタ)アクリレートなどが挙げられる。また、エチレンオキシドとプロピレンオキシドの共重合体(ランダム、ブロック等)などの異なるアルキレンオキシド部を有するジオール体の片末端(メタ)アクリレート体などが挙げられる。
また、前記ウレタン基を有するモノマーとしては、トリ((メタ)アクリロイルオキシエチル)イソシアヌレート、ジ(メタ)アクリル化イソシアヌレート、エチレンオキシド変性イソシアヌル酸のトリ(メタ)アクリレート等のイソシアヌレート環を有する化合物が挙げられる。これらの中でも、下記構造式(13)、又は構造式(14)で表される化合物が好ましく、テント性の観点から、前記構造式(14)で示される化合物を少なくとも含むことが特に好ましい。また、これらの化合物は、1種単独で使用してもよく、2種以上を併用してもよい。
前記構造式(13)及び(14)中、R1c〜R3cは、それぞれ独立に、水素原子又はメチル基を表す。X1c〜X3cは、アルキレンオキサイドを表し、1種単独でもよく、2種以上を併用してもよい。
前記アルキレンオキサイド基としては、例えば、エチレンオキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、ペンチレンオキサイド基、ヘキシレンオキサイド基、これらを組み合わせた基(ランダム、ブロックのいずれに組み合わされてもよい)などが好適に挙げられ、これらの中でも、エチレンオキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、又はこれらの組み合わせた基が好ましく、エチレンオキサイド基、プロピレンオキサイド基がより好ましい。
前記構造式(13)及び(14)中、m1〜m3は、各々独立に1〜60のいずれかの整数を表し、2〜30が好ましく、4〜15がより好ましい。
前記構造式(13)及び(14)中、Y1c及びY2cは、各々独立に炭素原子数2〜30の2価の有機基を表し、例えば、アルキレン基、アリーレン基、アルケニレン基、アルキニレン基、カルボニル基(−CO−)、酸素原子(−O−)、硫黄原子(−S−)、イミノ基(−NH−)、イミノ基の水素原子が1価の炭化水素基で置換された置換イミノ基、スルホニル基(−SO2−)又はこれらを組み合わせた基などが好適に挙げられ、これらの中でも、アルキレン基、アリーレン基、又はこれらを組み合わせた基が好ましい。
前記アルキレン基は、分岐構造又は環状構造を有していてもよく、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、ペンチレン基、ネオペンチレン基、ヘキシレン基、トリメチルヘキシレン基、シクロへキシレン基、ヘプチレン基、オクチレン基、2−エチルヘキシレン基、ノニレン基、デシレン基、ドデシレン基、オクタデシレン基、又は下記に示すいずれかの基などが好適に挙げられる。
前記アリーレン基としては、炭化水素基で置換されていてもよく、例えば、フェニレン基、トリレン基、ジフェニレン基、ナフチレン基、又は下記に示す基などが好適に挙げられる。
前記これらを組み合わせた基としては、例えば、キシリレン基などが挙げられる。
前記アルキレン基、アリーレン基、又はこれらを組み合わせた基としては、更に置換基を有していてもよく、該置換基としては、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アリール基、アルコキシ基(例えば、メトキシ基、エトキシ基、2−エトキシエトキシ基)、アリールオキシ基(例えば、フェノキシ基)、アシル基(例えば、アセチル基、プロピオニル基)、アシルオキシ基(例えば、アセトキシ基、ブチリルオキシ基)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基)などが挙げられる。
前記構造式(14)中、nは3〜6のいずれかの整数を表し、重合性モノマーを合成するための原料供給性などの観点から、3、4又は6が好ましい。
前記構造式(14)中、Zcはn価(3価〜6価)の連結基を表し、例えば、下記に示すいずれかの基などが挙げられる。
但し、X4cはアルキレンオキサイドを表す。m4は、1〜20のいずれかの整数を表す。nは、3〜6のいずれかの整数を表す。Aは、n価(3価〜6価)の有機基を表す。
前記Aとしては、例えば、n価の脂肪族基、n価の芳香族基、又はこれらとアルキレン基、アリーレン基、アルケニレン基、アルキニレン基、カルボニル基、酸素原子、硫黄原子、イミノ基、イミノ基の水素原子が1価の炭化水素基で置換された置換イミノ基、又はスルホニル基とを組み合わせた基が好ましく、n価の脂肪族基、n価の芳香族基、又はこれらとアルキレン基、アリーレン基、酸素原子とを組み合わせた基がより好ましく、n価の脂肪族基又はn価の脂肪族基と、アルキレン基及び/又は酸素原子とを組み合わせた基が特に好ましい。
前記Aの炭素原子数としては、例えば、1〜100のいずれかの整数が好ましく、1〜50のいずれかの整数がより好ましく、3〜30のいずれかの整数が特に好ましい。
前記n価の脂肪族基としては、分岐構造又は環状構造を有していてもよい。
前記脂肪族基の炭素原子数としては、例えば、1〜30のいずれかの整数が好ましく、1〜20のいずれかの整数がより好ましく、3〜10のいずれかの整数が特に好ましい。
前記芳香族基の炭素原子数としては、6〜100のいずれかの整数が好ましく、6〜50のいずれかの整数がより好ましく、6〜30のいずれかの整数が特に好ましい。
前記脂肪族基の炭素原子数としては、例えば、1〜30のいずれかの整数が好ましく、1〜20のいずれかの整数がより好ましく、3〜10のいずれかの整数が特に好ましい。
前記芳香族基の炭素原子数としては、6〜100のいずれかの整数が好ましく、6〜50のいずれかの整数がより好ましく、6〜30のいずれかの整数が特に好ましい。
前記n価の脂肪族基、又は芳香族基は、更に置換基を有していてもよく、該置換基としては、例えば、ヒドロキシル基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アリール基、アルコキシ基(例えば、メトキシ基、エトキシ基、2−エトキシエトキシ基)、アリールオキシ基(例えば、フェノキシ基)、アシル基(例えば、アセチル基、プロピオニル基)、アシルオキシ基(例えば、アセトキシ基、ブチリルオキシ基)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基)などが挙げられる。
前記Aとしての前記アルキレン基は、分岐構造又は環状構造を有していてもよい。
前記アルキレン基の炭素原子数としては、例えば、1〜18のいずれかの整数が好ましく、1〜10のいずれかの整数がより好ましい。
前記アルキレン基の炭素原子数としては、例えば、1〜18のいずれかの整数が好ましく、1〜10のいずれかの整数がより好ましい。
前記Aとしての前記アリーレン基は、炭化水素基で更に置換されていてもよい。
前記アリーレン基の炭素原子数としては、6〜18のいずれかの整数が好ましく、6〜10のいずれかの整数がより好ましい。
前記アリーレン基の炭素原子数としては、6〜18のいずれかの整数が好ましく、6〜10のいずれかの整数がより好ましい。
前記Aとしての前記置換イミノ基の1価の炭化水素基の炭素原子数としては、1〜18のいずれかの整数が好ましく、1〜10のいずれかの整数がより好ましい。
前記Aの好ましい例は以下の通りである。
前記(14)中、Zcに連結する複数の下記官能基は、それぞれ同一であっても異なっていてもよい。
前記構造式(13)及び(14)で表される化合物としては、例えば下記構造式(15)〜(34)で表される化合物などが挙げられる。
但し、前記構造式(15)〜(34)中、n、n1、n2及びmは、各々独立に1〜60のいずれかの整数を表し、lは、各々独立に1〜20のいずれかの整数を表し、Rは、水素原子又はメチル基を表す。
(2)アリール基を有するモノマー
重合性化合物としての前記アリール基を有するモノマーとしては、アリール基を有する限り、特に制限はなく、目的に応じて適宜選択することができるが、例えば、アリール基を有する多価アルコール化合物、多価アミン化合物及び多価アミノアルコール化合物の少なくともいずれかと不飽和カルボン酸とのエステル又はアミドなどが挙げられる。
重合性化合物としての前記アリール基を有するモノマーとしては、アリール基を有する限り、特に制限はなく、目的に応じて適宜選択することができるが、例えば、アリール基を有する多価アルコール化合物、多価アミン化合物及び多価アミノアルコール化合物の少なくともいずれかと不飽和カルボン酸とのエステル又はアミドなどが挙げられる。
前記アリール基を有する多価アルコール化合物、多価アミン化合物又は多価アミノアルコール化合物としては、例えば、ポリスチレンオキサイド、キシリレンジオール、ジ−(β−ヒドロキシエトキシ)ベンゼン、1,5−ジヒドロキシ−1,2,3,4−テトラヒドロナフタレン、2、2−ジフェニル−1,3−プロパンジオール、ヒドロキシベンジルアルコール、ヒドロキシエチルレゾルシノール、1−フェニル−1,2−エタンジオール、2,3,5,6−テトラメチル−p−キシレン−α,α’−ジオール、1,1,4,4−テトラフェニル−1,4−ブタンジオール、1,1,4,4−テトラフェニル−2−ブチン−1,4−ジオール、1,1’−ビ−2−ナフトール、ジヒドロキシナフタレン、1,1’−メチレン−ジ−2−ナフトール、1,2,4−ベンゼントリオール、ビフェノール、2,2’−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、ビス(ヒドロキシフェニル)メタン、カテコール、4−クロルレゾルシノール、ハイドロキノン、ヒドロキシベンジルアルコール、メチルハイドロキノン、メチレン−2,4,6−トリヒドロキシベンゾエート、フロログリシノール、ピロガロール、レゾルシノール、α−(1−アミノエチル)−p−ヒドロキシベンジルアルコール、α−(1−アミノエチル)−p−ヒドロキシベンジルアルコール、3−アミノ−4−ヒドロキシフェニルスルホンなどが挙げられる。また、この他、キシリレンビス(メタ)アクリルアミド、ノボラック型エポキシ樹脂やビスフェノールAジグリシジルエーテル等のグリシジル化合物にα、β−不飽和カルボン酸を付加して得られる化合物、フタル酸やトリメリット酸などと分子中に水酸基を含有するビニルモノマーから得られるエステル化物、フタル酸ジアリル、トリメリット酸トリアリル、ベンゼンジスルホン酸ジアリル、重合性モノマーとしてカチオン重合性のジビニルエーテル類(例えば、ビスフェノールAジビニルエーテル)、エポキシ化合物(例えば、ノボラック型エポキシ樹脂、ビスフェノールAジグリシジルエーテル等)、ビニルエステル類(例えば、ジビニルフタレート、ジビニルテレフタレート、ジビニルベンゼン−1,3−ジスルホネート等)、スチレン化合物(例えば、ジビニルベンゼン、p−アリルスチレン、p−イソプロペンスチレン等)が挙げられる。これらの中でも下記構造式(35)で表される化合物が好ましい。
前記構造式(35)中、R4c及びR5cは、各々独立に、水素原子又はアルキル基を表す。
前記構造式(35)中、X5c及びX6cは、アルキレンオキサイド基を表し、1種単独でもよく、2種以上を併用してもよい。該アルキレンオキサイド基としては、例えば、エチレンオキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、ペンチレンオキサイド基、ヘキシレンオキサイド基、これらを組み合わせた基(ランダム、ブロックのいずれに組み合わされてもよい)、などが好適に挙げられ、これらの中でも、エチレンオキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、又はこれらを組み合わせた基が好ましく、エチレンオキサイド基、プロピレンオキサイド基がより好ましい。
前記構造式(35)中、m5及びm6は、各々独立に、1〜60のいずれかの整数が好ましく、2〜30のいずれかの整数がより好ましく、4〜15のいずれかの整数が特に好ましい。
前記構造式(35)中、Tcは、2価の連結基を表し、例えば、メチレン、エチレン、CH3CCCH3、CF3CCF3、CO、SO2などが挙げられる。
前記構造式(35)中、Ar1及びAr2は、各々独立に、置換基を有していてもよいアリール基を表し、例えば、フェニレン、ナフチレンなどが挙げられる。前記置換基としては、例えば、アルキル基、アリール基、アラルキル基、ハロゲン基、アルコキシ基、又はこれらの組合せなどが挙げられる。
前記アリール基を有するモノマーの具体例としては、2,2−ビス〔4−(3−(メタ)アクリルオキシ−2−ヒドロキシプロポキシ)フェニル〕プロパン、2,2−ビス〔4−((メタ)アクリルオキシエトキシ)フェニル〕プロパン、フェノール性のOH基1個に置換しさせたエトキシ基の数が2から20である2,2−ビス(4−((メタ)アクリロイルオキシポリエトキシ)フェニル)プロパン(例えば、2,2−ビス(4−((メタ)アクリロイルオキシジエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシテトラエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシデカエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタデカエトキシ)フェニル)プロパン等)、2,2−ビス〔4−((メタ)アクリルオキシプロポキシ)フェニル〕プロパン、フェノール性のOH基1個に置換させたエトキシ基の数が2から20である2,2−ビス(4−((メタ)アクリロイルオキシポリプロポキシ)フェニル)プロパン(例えば、2,2−ビス(4−((メタ)アクリロイルオキシジプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシテトラプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシデカプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタデカプロポキシ)フェニル)プロパン等)、又はこれらの化合物のポリエーテル部位として同一分子中にポリエチレンオキシド骨格とポリプロピレンオキシド骨格の両方を含む化合物(例えば、WO01/98832号公報に記載の化合物等、又は、市販品として、新中村化学工業社製、BPE−200、BPE−500、BPE−1000)、ビスフェノール骨格とウレタン基とを有する重合性化合物などが挙げられる。なお、これらは、ビスフェノールA骨格に由来する部分をビスフェノールF又はビスフェノールS等に変更した化合物であってもよい。
前記ビスフェノール骨格とウレタン基とを有する重合性化合物としては、例えば、ビスフェノールとエチレンオキシド又はプロピレンオキシド等の付加物、重付加物として得られる末端に水酸基を有する化合物にイソシアネート基と重合性基とを有する化合物(例えば、2−イソシアネートエチル(メタ)アクリレート、α、α−ジメチル−ビニルベンジルイソシアネート等)などが挙げられる。
(3)その他の重合性モノマー
本発明の感光性組成物には、前記パターン形成材料としての特性を悪化させない範囲で、前記ウレタン基を含有するモノマー、アリール基を有するモノマー以外の重合性モノマーを併用してもよい。
本発明の感光性組成物には、前記パターン形成材料としての特性を悪化させない範囲で、前記ウレタン基を含有するモノマー、アリール基を有するモノマー以外の重合性モノマーを併用してもよい。
前記ウレタン基を含有するモノマー、芳香環を含有するモノマー以外の重合性モノマーとしては、例えば、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等)と脂肪族多価アルコール化合物とのエステル、不飽和カルボン酸と多価アミン化合物とのアミドなどが挙げられる。
前記不飽和カルボン酸と脂肪族多価アルコール化合物とのエステルのモノマーとしては、例えば、(メタ)アクリル酸エステルとして、エチレングリコールジ(メタ)アクリレート、エチレン基の数が2〜18であるポリエチレングリコールジ(メタ)アクリレート(例えば、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ノナエチレングリコールジ(メタ)アクリレート、ドデカエチレングリコールジ(メタ)アクリレート、テトラデカエチレングリコールジ(メタ)アクリレート等)、プロピレングリコールジ(メタ)アクリレート、プロピレン基の数が2から18であるポリプロピレングリコールジ(メタ)アクリレート(例えば、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ドデカプロピレングリコールジ(メタ)アクリレート等)、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性ネオペンチルグリコールジ(メタ)アクリレート、プロピレンオキシド変性ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ((メタ)アクリロイルオキシプロピル)エーテル、トリメチロールエタントリ(メタ)アクリレート、1,3−プロパンジオールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、1,4−シクロヘキサンジオールジ(メタ)アクリレート、1,2,4−ブタントリオールトリ(メタ)アクリレート、1,5−ベンタンジオール(メタ)アクリレート、ペンタエリトリトールジ(メタ)アクリレート、ペンタエリトリトールトリ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、ソルビトールトリ(メタ)アクリレート、ソルビトールテトラ(メタ)アクリレート、ソルビトールペンタ(メタ)アクリレート、ソルビトールヘキサ(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、トリシクロデカンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、エチレングリコール鎖/プロピレングリコール鎖を少なくとも各々一つずつ有するアルキレングリコール鎖のジ(メタ)アクリレート(例えば、WO01/98832号公報に記載の化合物等)、エチレンオキサイド及びプロピレンオキサイドの少なくともいずれかを付加したトリメチロールプロパンのトリ(メタ)アクリル酸エステル、ポリブチレングリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、キシレノールジ(メタ)アクリレートなどが挙げられる。
前記(メタ)アクリル酸エステル類の中でも、その入手の容易さ等の観点から、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エチレングリコール鎖/プロピレングリコール鎖を少なくとも各々一つずつ有するアルキレングリコール鎖のジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ペンタエリトリトールトリアクリレート、ペンタエリトリトールジ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ジグリセリンジ(メタ)アクリレート、1,3−プロパンジオールジ(メタ)アクリレート、1,2,4−ブタントリオールトリ(メタ)アクリレート、1,4−シクロヘキサンジオールジ(メタ)アクリレート、1,5−ペンタンジオール(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイド付加したトリメチロールプロパンのトリ(メタ)アクリル酸エステルなどが好ましい。
前記イタコン酸と前記脂肪族多価アルコール化合物とのエステル(イタコン酸エステル)としては、例えば、エチレングリコールジイタコネート、プロピレングリコールジイタコネート、1,3−ブタンジオールジイタコネート、1,4ーブタンジオールジイタコネート、テトラメチレングリコールジイタコネート、ペンタエリトリトールジイタコネート、及びソルビトールテトライタコネートなどが挙げられる。
前記クロトン酸と前記脂肪族多価アルコール化合物とのエステル(クロトン酸エステル)としては、例えば、エチレングリコールジクロトネート、テトラメチレングリコールジクロトネート、ペンタエリトリトールジクロトネート、ソルビトールテトラジクロトネートなどが挙げられる。
前記イソクロトン酸と前記脂肪族多価アルコール化合物とのエステル(イソクロトン酸エステル)としては、例えば、エチレングリコールジイソクロトネート、ペンタエリトリトールジイソクロトネート、ソルビトールテトライソクロトネートなどが挙げられる。
前記マレイン酸と前記脂肪族多価アルコール化合物とのエステル(マレイン酸エステル)としては、例えば、エチレングリコールジマレート、トリエチレングリコールジマレート、ペンタエリトリトールジマレート、ソルビトールテトラマレートなどが挙げられる。
前記多価アミン化合物と前記不飽和カルボン酸類から誘導されるアミドとしては、例えば、メチレンビス(メタ)アクリルアミド、エチレンビス(メタ)アクリルアミド、1,6−ヘキサメチレンビス(メタ)アクリルアミド、オクタメチレンビス(メタ)アクリルアミド、ジエチレントリアミントリス(メタ)アクリルアミド、ジエチレントリアミンビス(メタ)アクリルアミド、などが挙げられる。
また、上記以外にも、前記重合性モノマーとして、例えば、ブタンジオール−1,4−ジグリシジルエーテル、シクロヘキサンジメタノールグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリトリトールテトラグリシジルエーテル、グリセリントリグリシジルエーテル等のグリシジル基含有化合物にα,β−不飽和カルボン酸を付加して得られる化合物、特開昭48−64183号、特公昭49−43191号、特公昭52−30490号各公報に記載されているようなポリエステルアクリレートやポリエステル(メタ)アクリレートオリゴマー類、エポキシ化合物(例えば、ブタンジオール−1,4−ジグリシジルエーテル、シクロヘキサンジメタノールグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリトリトールテトラグリシジルエーテル、グリセリントリグリシジルエーテルなど)と(メタ)アクリル酸を反応させたエポキシアクリレート類等の多官能のアクリレートやメタクリレート、日本接着協会誌vol.20、No.7、300〜308ページ(1984年)に記載の光硬化性モノマー及びオリゴマー、アリルエステル(例えば、フタル酸ジアリル、アジピン酸ジアリル、マロン酸ジアリル、ジアリルアミド(例えば、ジアリルアセトアミド等)、カチオン重合性のジビニルエーテル類(例えば、ブタンジオール−1,4−ジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、ヘキサンジオールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ペンタエリトリトールテトラビニルエーテル、グリセリントリビニルエーテル等)、エポキシ化合物(例えば、ブタンジオール−1,4−ジグリシジルエーテル、シクロヘキサンジメタノールグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリトリトールテトラグリシジルエーテル、グリセリントリグリシジルエーテル等)、オキセタン類(例えば、1,4−ビス〔(3−エチルー3−オキセタニルメトキシ)メチル〕ベンゼン等)、エポキシ化合物、オキセタン類(例えば、WO01/22165号公報に記載の化合物)、N−β−ヒドロキシエチル−β−(メタクリルアミド)エチルアクリレート、N,N−ビス(β−メタクリロキシエチル)アクリルアミド、アリルメタクリレート等の異なったエチレン性不飽和二重結合を2個以上有する化合物などが挙げられる。
前記ビニルエステル類としては、例えば、ジビニルサクシネート、ジビニルアジペートなどが挙げられる。
これらの多官能モノマー又はオリゴマーは、1種単独で使用してもよく、2種以上を併用してもよい。
前記重合性モノマーは、必要に応じて、分子内に重合性基を1個含有する重合性化合物(単官能モノマー)を併用してもよい。
前記単官能モノマーとしては、例えば、前記バインダーの原料として例示した化合物、特開平6−236031号公報に記載されている2塩基のモノ((メタ)アクリロイルオキシアルキルエステル)モノ(ハロヒドロキシアルキルエステル)等の単官能モノマー(例えば、γ−クロロ−β−ヒドロキシプロピル−β’−メタクリロイルオキシエチル−o−フタレート等)、特許2744643号公報、WO00/52529号パンフレット、特許2548016号公報等に記載の化合物が挙げられる。
前記単官能モノマーとしては、例えば、前記バインダーの原料として例示した化合物、特開平6−236031号公報に記載されている2塩基のモノ((メタ)アクリロイルオキシアルキルエステル)モノ(ハロヒドロキシアルキルエステル)等の単官能モノマー(例えば、γ−クロロ−β−ヒドロキシプロピル−β’−メタクリロイルオキシエチル−o−フタレート等)、特許2744643号公報、WO00/52529号パンフレット、特許2548016号公報等に記載の化合物が挙げられる。
前記感光性組成物における重合性化合物の含有量としては、5〜90質量%が好ましく、15〜60質量%がより好ましく、20〜50質量%が特に好ましい。
前記含有量が、5質量%未満となると、テント膜の強度が低下することがあり、90質量%を超えると、前記パターン形成材料の保存時のエッジフュージョン(ロール端部からのしみだし故障)が悪化することがある。
また、前記重合性基を2個以上有する多官能モノマーの含有量としては、全重合性化合物に対して、5〜100質量%が好ましく、20〜100質量%がより好ましく、40〜100質量%が特に好ましい。
前記含有量が、5質量%未満となると、テント膜の強度が低下することがあり、90質量%を超えると、前記パターン形成材料の保存時のエッジフュージョン(ロール端部からのしみだし故障)が悪化することがある。
また、前記重合性基を2個以上有する多官能モノマーの含有量としては、全重合性化合物に対して、5〜100質量%が好ましく、20〜100質量%がより好ましく、40〜100質量%が特に好ましい。
<光重合開始剤>
光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、光励起された前記増感剤と何らかの作用を生じ、活性ラジカルを生成するラジカル発生剤、モノマーの種類に応じてカチオン重合を開始させるような開始剤等を含んでいてもよい。
光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、光励起された前記増感剤と何らかの作用を生じ、活性ラジカルを生成するラジカル発生剤、モノマーの種類に応じてカチオン重合を開始させるような開始剤等を含んでいてもよい。
前記光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有するもの、オキサジアゾール骨格を有するもの等)、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、メタロセン類、及びアシルホスフィンオキシド化合物などが挙げられる。これらの中でも、感光層の感度、保存性、及び感光層とプリント配線板形成用基板との密着性等の観点から、トリアジン骨格を有するハロゲン化炭化水素、オキシム誘導体、ケトン化合物、ヘキサアリールビイミダゾール系化合物が好ましい。
前記ヘキサアリールビイミダゾールとしては、例えば、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(o−フロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−ブロモフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジクロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’−テトラ(3−メトキシフェニル)ビイミダゾール、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’−テトラ(4−メトキシフェニル)ビイミダゾール、2,2’−ビス(4−メトキシフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジクロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−ニトロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−メチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−トリフルオロメチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、WO00/52529号パンフレットに記載の化合物などが挙げられる。
前記ビイミダゾール類は、例えば、Bull.Chem.Soc.Japan,33,565(1960)、及びJ.Org.Chem,36(16)2262(1971)に開示されている方法により容易に合成することができる。
トリアジン骨格を有するハロゲン化炭化水素化合物としては、例えば、若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物、英国特許1388492号明細書記載の化合物、特開昭53−133428号公報記載の化合物、独国特許3337024号明細書記載の化合物、F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物、特開昭62−58241号公報記載の化合物、特開平5−281728号公報記載の化合物、特開平5−34920号公報記載化合物、米国特許第4212976号明細書に記載されている化合物が挙げられる。
前記若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物としては、例えば、2−フェニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−クロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−トリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(2,4−ジクロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2,4,6−トリス(トリクロルメチル)−1,3,5−トリアジン、2−メチル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−n−ノニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、及び2−(α,α,β−トリクロルエチル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。
前記英国特許1388492号明細書記載の化合物としては、例えば、2−スチリル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メチルスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4−アミノ−6−トリクロルメチル−1,3,5−トリアジンなどが挙げられる。
前記特開昭53−133428号公報記載の化合物としては、例えば、2−(4−メトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−エトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−〔4−(2−エトキシエチル)−ナフト−1−イル〕−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4,7−ジメトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、及び2−(アセナフト−5−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。
前記独国特許3337024号明細書記載の化合物としては、例えば、2−(4−スチリルフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシスチリル)フェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(1−ナフチルビニレンフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−クロロスチリルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−3−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−フラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、及び2−(4−ベンゾフラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
前記F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物としては、例えば、2−メチル−4,6−ビス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(ジブロモメチル)−1,3,5−トリアジン、2−アミノ−4−メチル−6−トリ(ブロモメチル)−1,3,5−トリアジン、及び2−メトキシ−4−メチル−6−トリクロロメチル−1,3,5−トリアジンなどが挙げられる。
前記特開昭62−58241号公報記載の化合物としては、例えば、2−(4−フェニルエチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−ナフチル−1−エチニルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−トリルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシフェニル)エチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−イソプロピルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−エチルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
前記特開平5−281728号公報記載の化合物としては、例えば、2−(4−トリフルオロメチルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジフルオロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジクロロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジブロモフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
前記特開平5−34920号公報記載化合物としては、例えば、2,4−ビス(トリクロロメチル)−6−[4−(N,N−ジエトキシカルボニルメチルアミノ)−3−ブロモフェニル]−1,3,5−トリアジン、米国特許第4239850号明細書に記載されているトリハロメチル−s−トリアジン化合物、更に2,4,6−トリス(トリクロロメチル)−s−トリアジン、2−(4−クロロフェニル)−4,6−ビス(トリブロモメチル)−s−トリアジンなどが挙げられる。
前記米国特許第4212976号明細書に記載されている化合物としては、例えば、オキサジアゾール骨格を有する化合物(例えば、2−トリクロロメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロロフェニル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール、2−トリブロモメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリブロモメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール;2−トリクロロメチル−5−スチリル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロルスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−メトキシスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−n−ブトキシスチリル)−1,3,4−オキサジアゾール、2−トリブロモメチル−5−スチリル−1,3,4−オキサジアゾール等)などが挙げられる。
本発明で好適に用いられるオキシム誘導体としては、例えば、下記具体例化合物(1)〜(34)で表される化合物が挙げられる。
前記ケトン化合物としては、例えば、ベンゾフェノン、2−メチルベンゾフェノン、3−メチルベンゾフェノン、4−メチルベンゾフェノン、4−メトキシベンゾフェノン、2−クロロベンゾフェノン、4−クロロベンゾフェノン、4−ブロモベンゾフェノン、2−カルボキシベンゾフェノン、2−エトキシカルボニルベンゾルフェノン、ベンゾフェノンテトラカルボン酸又はそのテトラメチルエステル、4,4’−ビス(ジアルキルアミノ)ベンゾフェノン類(例えば、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4,4’−ビスジシクロヘキシルアミノ)ベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、4,4’−ビス(ジヒドロキシエチルアミノ)ベンゾフェノン、4−メトキシ−4’−ジメチルアミノベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4−ジメチルアミノベンゾフェノン、4−ジメチルアミノアセトフェノン、ベンジル、アントラキノン、2−t−ブチルアントラキノン、2−メチルアントラキノン、フェナントラキノン、キサントン、チオキサントン、2−クロル−チオキサントン、2,4−ジエチルチオキサントン、フルオレノン、2−ベンジル−ジメチルアミノ−1−(4−モルホリノフェニル)−1−ブタノン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルホリノ−1−プロパノン、2−ヒドロキシー2−メチル−〔4−(1−メチルビニル)フェニル〕プロパノールオリゴマー、ベンゾイン、ベンゾインエーテル類(例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール)、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドンなどが挙げられる。
前記メタロセン類としては、例えば、ビス(η5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフロロ−3−(1H−ピロール−1−イル)−フェニル)チタニウム、η5−シクロペンタジエニル−η6−クメニル−アイアン(1+)−ヘキサフロロホスフェート(1−)、特開昭53−133428号公報、特公昭57−1819号公報、同57−6096号公報、及び米国特許第3615455号明細書に記載された化合物などが挙げられる。
前記アシルホスフィンオキシド化合物としては、例えば、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキシド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフェニルホスフィンオキシド、LucirinTPOなどが挙げられる。
また、上記以外の光重合開始剤として、アクリジン誘導体(例えば、9−フェニルアクリジン、1,7−ビス(9、9’−アクリジニル)ヘプタン等)、N−フェニルグリシン等、ポリハロゲン化合物(例えば、四臭化炭素、フェニルトリブロモメチルスルホン、フェニルトリクロロメチルケトン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン、7−ベンゾトリアゾール−2−イルクマリン、また、特開平5−19475号、特開平7−271028号、特開2002−363206号、特開2002−363207号、特開2002−363208号、特開2002−363209号公報等に記載のクマリン化合物など)、アミン類(例えば、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸n−ブチル、4−ジメチルアミノ安息香酸フェネチル、4−ジメチルアミノ安息香酸2−フタルイミドエチル、4−ジメチルアミノ安息香酸2−メタクリロイルオキシエチル、ペンタメチレンビス(4−ジメチルアミノベンゾエート)、3−ジメチルアミノ安息香酸のフェネチル、ペンタメチレンエステル、4−ジメチルアミノベンズアルデヒド、2−クロル−4−ジメチルアミノベンズアルデヒド、4−ジメチルアミノベンジルアルコール、エチル(4−ジメチルアミノベンゾイル)アセテート、4−ピペリジノアセトフェノン、4−ジメチルアミノベンゾイン、N,N−ジメチル−4−トルイジン、N,N−ジエチル−3−フェネチジン、トリベンジルアミン、ジベンジルフェニルアミン、N−メチル−N−フェニルベンジルアミン、4−ブロム−N,N−ジメチルアニリン、トリドデシルアミン、アミノフルオラン類(ODB,ODBII等)、クリスタルバイオレットラクトン、ロイコクリスタルバイオレット等)、アシルホスフィンオキシド類(例えば、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキシド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフェニルホスフィンオキシド、LucirinTPOなど)などが挙げられる。
更に、米国特許第2367660号明細書に記載されているビシナルポリケタルドニル化合物、米国特許第2448828号明細書に記載されているアシロインエーテル化合物、米国特許第2722512号明細書に記載されているα−炭化水素で置換された芳香族アシロイン化合物、米国特許第3046127号明細書及び同第2951758号明細書に記載の多核キノン化合物、特開2002−229194号公報に記載の有機ホウ素化合物、ラジカル発生剤、トリアリールスルホニウム塩(例えば、ヘキサフロロアンチモンやヘキサフロロホスフェートとの塩)、ホスホニウム塩化合物(例えば、(フェニルチオフェニル)ジフェニルスルホニウム塩等)(カチオン重合開始剤として有効)、WO01/71428号公報記載のオニウム塩化合物などが挙げられる。
前記光重合開始剤は、1種単独で使用してもよく、2種以上を併用してもよい。2種以上の組合せとしては、例えば、米国特許第3549367号明細書に記載のヘキサアリールビイミダゾールと4−アミノケトン類との組合せ、特公昭51−48516号公報に記載のベンゾチアゾール化合物とトリハロメチル−s−トリアジン化合物の組合せ、また、芳香族ケトン化合物(例えば、チオキサントン等)と水素供与体(例えば、ジアルキルアミノ含有化合物、フェノール化合物等)の組合せ、ヘキサアリールビイミダゾールとチタノセンとの組合せ、クマリン類とチタノセンとフェニルグリシン類との組合せなどが挙げられる。
前記光重合開始剤の含有量としては、前記感光性組成物中0.1〜30質量%が好ましく、0.5〜20質量%がより好ましく、0.5〜15質量%が特に好ましい。
<増感剤>
本発明の感光性組成物においては、パターン形成のための露光に用いる波長に合わせて、適宜増感剤を用いることができる。増感剤は、後述する感光層への露光における露光感度や感光波長を調整する目的で、或いは、前記感光層を露光し現像する場合において、該感光層の露光する部分の厚みを該現像の前後において変化させない前記光の最小エネルギー(感度)を向上させる観点から添加される。増感剤は、活性エネルギー線により励起状態となり、他の物質(例えば、ラジカル発生剤、酸発生剤等)と相互作用(例えば、エネルギー移動、電子移動等)することにより、ラジカルや酸等の有用基を発生することが可能である。
また、感光性組成物を含む感光層を露光し現像した後において、該感光層の被露光部の厚みが変化しない露光の最小エネルギー量が、0.1mJ/cm2〜100mJ/cm2となるようにするには、増感剤の種類及び添加量を調整することが好ましい。
本発明の感光性組成物においては、パターン形成のための露光に用いる波長に合わせて、適宜増感剤を用いることができる。増感剤は、後述する感光層への露光における露光感度や感光波長を調整する目的で、或いは、前記感光層を露光し現像する場合において、該感光層の露光する部分の厚みを該現像の前後において変化させない前記光の最小エネルギー(感度)を向上させる観点から添加される。増感剤は、活性エネルギー線により励起状態となり、他の物質(例えば、ラジカル発生剤、酸発生剤等)と相互作用(例えば、エネルギー移動、電子移動等)することにより、ラジカルや酸等の有用基を発生することが可能である。
また、感光性組成物を含む感光層を露光し現像した後において、該感光層の被露光部の厚みが変化しない露光の最小エネルギー量が、0.1mJ/cm2〜100mJ/cm2となるようにするには、増感剤の種類及び添加量を調整することが好ましい。
前記光重合開始剤と前記増感剤との組合せとしては、例えば、特開2001−305734号公報に記載の電子移動型開始系[(1)電子供与型開始剤及び増感色素、(2)電子受容型開始剤及び増感色素、(3)電子供与型開始剤、増感色素及び電子受容型開始剤(三元開始系)]などの組合せが挙げられる。
例えば、前記光照射手段として350〜415nmのレーザに合わせると、増感剤の極大吸収波長が500nm以下であることが好ましく、480nm以下であることがより好ましく、450nm以下であることが特に好ましい。
前記増感剤の含有量としては、パターン形成材料用感光性樹脂組成物の全成分に対し、0.01〜4質量%が好ましく、0.02〜2質量%がより好ましく、0.05〜1質量%が特に好ましい。
前記含有量が、0.01質量%未満となると、感度が低下することがあり、4質量%を超えると、パターンの形状が悪化することがある。
前記含有量が、0.01質量%未満となると、感度が低下することがあり、4質量%を超えると、パターンの形状が悪化することがある。
増感剤としては、特に制限はなく、用いる露光波長にあわせて、公知の増感剤の中から適宜選択することができるが、例えば、公知の多核芳香族類(例えば、ピレン、ペリレン、トリフェニレン)、キサンテン類(例えば、フルオレセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル)、シアニン類(例えば、インドカルボシアニン、チアカルボシアニン、オキサカルボシアニン)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン)、チアジン類(例えば、チオニン、メチレンブルー、トルイジンブルー)、アクリジン類(例えば、アクリジンオレンジ、クロロフラビン、アクリフラビン、9−フェニルアクリジン、1,7−ビス(9,9’−アクリジニル)ヘプタン)、アントラキノン類(例えば、アントラキノン)、スクアリウム類(例えば、スクアリウム)、アクリドン類(例えば、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドン、2−クロロ−10−ブチルアクリドン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン等)、及びチオキサントン化合物(チオキサントン、イソプロピルチオキサントン、2,4−ジエチルチオキサントン、1−クロロ−4−プロピルオキシチオキサントン、QuantacureQTX等)などがあげられ、他に特開平5−19475号、特開平7−271028号、特開2002−363206号、特開2002−363207号、特開2002−363208号、特開2002−363209号等の各公報に記載のクマリン化合物など)が挙げられ、これらの中でも、縮環系化合物、ジ置換アミノベンゼンを部分構造として有する化合物、塩基性核を有する化合物、酸性核を有する化合物、及び蛍光増白剤からなる群より選択される少なくとも1種を含むことが好ましい。
(1)ジ置換アミノベンゼンを部分構造として有する化合物
増感剤として、前記ジ置換アミノベンゼンを部分構造として有する化合物は、330〜450nmの波長域の光に対して吸収極大を有する増感剤であることが好ましく、例えば、ジ置換アミノベンゾフェノン系化合物、ベンゼン環上のアミノ基に対し、パラ位の炭素原子に複素環基を置換基として有するジ置換アミノベンゼン系化合物<1>、ベンゼン環上のアミノ基に対し、パラ位の炭素原子にスルホニルイミノ基を含む置換基を有するジ置換アミノベンゼン系化合物<2>、及びカルボスチリル骨格を形成したジ置換アミノベンゼン系化合物<3>、並びに、少なくとも2個の芳香族環が窒素原子に結合した構造を有する化合物等が挙げられる。
ジ置換アミノベンゼンを部分構造として有する化合物を用いることにより、例えば、前記感光層の感度を0.1〜100mJ/cm2に極めて容易に調整することもできる。
増感剤として、前記ジ置換アミノベンゼンを部分構造として有する化合物は、330〜450nmの波長域の光に対して吸収極大を有する増感剤であることが好ましく、例えば、ジ置換アミノベンゾフェノン系化合物、ベンゼン環上のアミノ基に対し、パラ位の炭素原子に複素環基を置換基として有するジ置換アミノベンゼン系化合物<1>、ベンゼン環上のアミノ基に対し、パラ位の炭素原子にスルホニルイミノ基を含む置換基を有するジ置換アミノベンゼン系化合物<2>、及びカルボスチリル骨格を形成したジ置換アミノベンゼン系化合物<3>、並びに、少なくとも2個の芳香族環が窒素原子に結合した構造を有する化合物等が挙げられる。
ジ置換アミノベンゼンを部分構造として有する化合物を用いることにより、例えば、前記感光層の感度を0.1〜100mJ/cm2に極めて容易に調整することもできる。
−ジ置換アミノベンゾフェノン系化合物−
前記ジ置換アミノベンゾフェノン系化合物としては、下記一般式(I)で表される化合物が好ましい。
前記ジ置換アミノベンゾフェノン系化合物としては、下記一般式(I)で表される化合物が好ましい。
ただし、前記一般式(I)中、R1、R2、R5、及びR6は、それぞれ独立して、脂肪族基及び芳香族基のいずれかを表し、R3、R4、R7、R8、及びR9〜R12は、それぞれ独立して、水素原子及び一価の置換基のいずれかを表す。R1とR2、R5とR6、R1とR3、R2とR4、R5とR7、及びR6とR8は、それぞれ独立して、互いに結合し、含窒素複素環を形成していてもよい。
なお、前記一般式(I)中、前記脂肪族基は、それぞれ置換基を有していてもよいアルキル基、アルケニル基、アルキニル基を表し、前記芳香族基は、それぞれ置換基を有していてもよいアリール基、複素環(ヘテロ環)基を表し、前記1価の置換基としては、ハロゲン原子、置換基を有しても良いアミノ基、アルコキシカルボニル基、水酸基、エーテル基、チオール基、チオエーテル基、シリル基、ニトロ基、シアノ基、それぞれ置換基を有していてもよいアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ環基を表す。
前記芳香族基としては、1個から3個のベンゼン環が縮合環を形成したもの、ベンゼン環と5員不飽和環が縮合環を形成したものを挙げることができ、具体例としては、フェニル基、ナフチル基、アントリル基、フェナントリル基、インデニル基、アセナフテニル基、フルオレニル基を挙げることができ、中でも、フェニル基、ナフチル基が特に好ましい。
また、これらの芳香族基は置換基を有していてもよく、そのような置換基としては、水素原子を除く一価の非金属原子団からなる基が挙げられる。例えば、後述のアルキル基、置換アルキル基、又は置換アルキル基における置換基として示したものなどを挙げることができる。
また、これらの芳香族基は置換基を有していてもよく、そのような置換基としては、水素原子を除く一価の非金属原子団からなる基が挙げられる。例えば、後述のアルキル基、置換アルキル基、又は置換アルキル基における置換基として示したものなどを挙げることができる。
また、前記複素環(ヘテロ環)基としては、ピロール環基、フラン環基、チオフェン環基、ベンゾピロール環基、ベンゾフラン環基、ベンゾチオフェン環基、ピラゾール環基、イソキサゾール環基、イソチアゾール環基、インダゾール環基、ベンゾイソキサゾール環基、ベンゾイソチアゾール環基、イミダゾール環基、オキサゾール環基、チアゾール環基、ベンズイミダゾール環基、ベンズオキサゾール環基、ベンゾチアゾール環基、ピリジン環基、キノリン環基、イソキノリン環基、ピリダジン環基、ピリミジン環基、ピラジン環基、フタラジン環基、キナゾリン環基、キノキサリン環基、アシリジン環基、フェナントリジン環基、カルバゾール環基、プリン環基、ピラン環基、ピペリジン環基、ピペラジン環基、モルホリン環基、インドール環基、インドリジン環基、クロメン環基、シンノリン環基、アクリジン環基、フェノチアジン環基、テトラゾール環基、トリアジン環基等が挙げられ、中でも、フラン環基、チオフェン環基、イミダゾール環基、チアゾール環基、ベンゾチアゾール環基、ピリジン環基、インドール環基、アクリジン環基が特に好ましい。
また、これらの複素環基は置換基を有していてもよく、そのような置換基としては、水素原子を除く1価の非金属原子団からなる基が挙げられる。例えば、後述のアルキル基、置換アルキル基、又は置換アルキル基における置換基として示したものを挙げることができる。
また、これらの複素環基は置換基を有していてもよく、そのような置換基としては、水素原子を除く1価の非金属原子団からなる基が挙げられる。例えば、後述のアルキル基、置換アルキル基、又は置換アルキル基における置換基として示したものを挙げることができる。
前記1価の置換基としては、ハロゲン原子、置換基を有しても良いアミノ基、アルコキシカルボニル基、水酸基、エーテル基、チオール基、チオエーテル基、シリル基、ニトロ基、シアノ基、それぞれ置換基を有していてもよいアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ環基が好ましい。
また、前記非金属原子からなる1価の置換基としては、それぞれ置換基を有していてもよいアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ環基が好ましい。
前記置換基を有していてもよいアルキル基としては、炭素原子数が1から20までの直鎖状、分岐状、および環状のアルキル基を挙げることができ、その具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、ヘキサデシル基、オクタデシル基、エイコシル基、イソプロピル基、イソブチル基、s−ブチル基、t−ブチル基、イソペンチル基、ネオペンチル基、1−メチルブチル基、イソヘキシル基、2−エチルヘキシル基、2−メチルヘキシル基、シクロヘキシル基、シクロペンチル基、2−ノルボルニル基を挙げることができる。これらの中では、炭素原子数1から12までの直鎖状、炭素原子数3から12までの分岐状、並びに炭素原子数5から10までの環状のアルキル基がより好ましい。
前記置換基を有していてもよいアルキル基の置換基としては、水素原子を除く一価の非金属原子からなる置換基が挙げられ、好ましい例としては、ハロゲン原子(−F、−Br、−Cl、−I)、ヒドロキシル基、アルコキシ基、アリーロキシ基、メルカプト基、アルキルチオ基、アリールチオ基、アルキルジチオ基、アリールジチオ基、アミノ基、N−アルキルアミノ基、N,N−ジアルキルアミノ基、N−アリールアミノ基、N,N−ジアリールアミノ基、N−アルキル−N−アリールアミノ基、アシルオキシ基、カルバモイルオキシ基、N−アルキルカルバモイルオキシ基、N−アリールカルバモイルオキシ基、N,N−ジアルキルカルバモイルオキシ基、N,N−ジアリールカルバモイルオキシ基、N−アルキル−N−アリールカルバモイルオキシ基、アルキルスルホキシ基、アリールスルホキシ基、アシルチオ基、アシルアミノ基、N−アルキルアシルアミノ基、N−アリールアシルアミノ基、ウレイド基、N’−アルキルウレイド基、N’,N’−ジアルキルウレイド基、N’−アリールウレイド基、N’,N’−ジアリールウレイド基、N’−アルキル−N’−アリールウレイド基、N−アルキルウレイド基、N−アリールウレイド基、N’−アルキル−N−アルキルウレイド基、N’−アルキル−N−アリールウレイド基、N’,N’−ジアルキル−N−アルキルウレイド基、N’,N’−ジアルキル−N−アリールウレイド基、N’−アリール−N−アルキルウレイド基、N’−アリール−N−アリールウレイド基、N’,N’−ジアリール−N−アルキルウレイド基、N’,N’−ジアリール−N−アリールウレイド基、N’−アルキル−N’−アリール−N−アルキルウレイド基、N’−アルキル−N’−アリール−N−アリールウレイド基、アルコキシカルボニルアミノ基、アリーロキシカルボニルアミノ基、N−アルキル−N−アルコキシカルボニルアミノ基、N−アルキル−N−アリーロキシカルボニルアミノ基、N−アリール−N−アルコキシカルボニルアミノ基、N−アリール−N−アリーロキシカルボニルアミノ基、ホルミル基、アシル基、カルボキシル基、アルコキシカルボニル基、アリーロキシカルボニル基、カルバモイル基、N−アルキルカルバモイル基、N,N−ジアルキルカルバモイル基、N−アリールカルバモイル基、N,N−ジアリールカルバモイル基、N−アルキル−N−アリールカルバモイル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、スルホ基(−SO3H)及びその共役塩基基(スルホナト基と称す)、アルコキシスルホニル基、アリーロキシスルホニル基、スルフィナモイル基、N−アルキルスルフィナモイル基、N,N−ジアルキルスルフィイナモイル基、N−アリールスルフィナモイル基、N,N−ジアリールスルフィナモイル基、N−アルキル−N−アリールスルフィナモイル基、スルファモイル基、N−アルキルスルファモイル基、N,N−ジアルキルスルファモイル基、N−アリールスルファモイル基、N,N−ジアリールスルファモイル基、N−アルキル−N−アリールスルファモイル基、ホスホノ基(−PO3H2)およびその共役塩基基(ホスホナト基と称す)、ジアルキルホスホノ基(−PO3(alkyl)2)「alkyl=アルキル基、以下同」、ジアリールホスホノ基(−PO3(aryl)2)「aryl=アリール基、以下同」、アルキルアリールホスホノ基(−PO3(alkyl)(aryl))、モノアルキルホスホノ基(−PO3(alkyl))及びその共役塩基基(アルキルホスホナト基と称す)、モノアリールホスホノ基(−PO3H(aryl))及びその共役塩基基(アリールホスホナト基と称す)、ホスホノオキシ基(−OPO3H2)及びその共役塩基基(ホスホナトオキシ基と称す)、ジアルキルホスホノオキシ基(−OPO3H(alkyl)2)、ジアリールホスホノオキシ基(−OPO3(aryl)2)、アルキルアリールホスホノオキシ基(−OPO3(alkyl)(aryl))、モノアルキルホスホノオキシ基(−OPO3H(alkyl))及びその共役塩基基(アルキルホスホナトオキシ基と称す)、モノアリールホスホノオキシ基(−OPO3H(aryl))及びその共役塩基基(アリールホスホナトオキシ基と称す)、シアノ基、ニトロ基、アリール基、アルケニル基、アルキニル基、ヘテロ環基、シリル基等が挙げられる。
これらの置換基におけるアルキル基の具体例としては、前述のアルキル基が挙げられ、前記置換基におけるアリール基の具体例としては、フェニル基、ビフェニル基、ナフチル基、トリル基、キシリル基、メシチル基、クメニル基、クロロフェニル基、ブロモフェニル基、クロロメチルフェニル基、ヒドロキシフェニル基、メトキシフェニル基、エトキシフェニル基、フェノキシフェニル基、アセトキシフェニル基、ベンゾイロキシフェニル基、メチルチオフェニル基、フェニルチオフェニル基、メチルアミノフェニル基、ジメチルアミノフェニル基、アセチルアミノフェニル基、カルボキシフェニル基、メトキシカルボニルフェニル基、エトキシフェニルカルボニル基、フェノキシカルボニルフェニル基、N−フェニルカルバモイルフェニル基、シアノフェニル基、スルホフェニル基、スルホナトフェニル基、ホスホノフェニル基、ホスホナトフェニル基等が挙げられる。
また、前記置換基におけるアルケニル基の例としては、ビニル基、1−プロペニル基、1−ブテニル基、シンナミル基、2−クロロ−1−エテニル基等が挙げられ、前記置換基におけるアルキニル基の例としては、エチニル基、1−プロピニル基、1−ブチニル基、トリメチルシリルエチニル基等が挙げられる。
前記置換基におけるヘテロ環基としては、例えば、ピリジル基、ピペリジニル基、などが挙げられる。
前記置換基におけるシリル基としてはトリメチルシリル基等が挙げられる。
前記置換基にはアシル基(R01CO−)を含んでいてもよく、該アシル基としては、該R01が、例えば、水素原子、上記のアルキル基、アリール基のものなどが挙げられる。
前記置換基におけるヘテロ環基としては、例えば、ピリジル基、ピペリジニル基、などが挙げられる。
前記置換基におけるシリル基としてはトリメチルシリル基等が挙げられる。
前記置換基にはアシル基(R01CO−)を含んでいてもよく、該アシル基としては、該R01が、例えば、水素原子、上記のアルキル基、アリール基のものなどが挙げられる。
アシル基(R01CO−)のR01としては、水素原子、並びに前記アルキル基、アリール基を挙げることができる。これらの置換基の内、さらにより好ましいものとしてはハロゲン原子(−F、−Br、−Cl、−I)、アルコキシ基、アリーロキシ基、アルキルチオ基、アリールチオ基、N−アルキルアミノ基、N,N−ジアルキルアミノ基、アシルオキシ基、N−アルキルカルバモイルオキシ基、N−アリールカルバモイルオキシ基、アシルアミノ基、ホルミル基、アシル基、カルボキシル基、アルコキシカルボニル基、アリーロキシカルボニル基、カルバモイル基、N−アルキルカルバモイル基、N,N−ジアルキルカルバモイル基、N−アリールカルバモイル基、N−アルキル−N−アリールカルバモイル基、スルホ基、スルホナト基、スルファモイル基、N−アルキルスルファモイル基、N,N−ジアルキルスルファモイル基、N−アリールスルファモイル基、N−アルキル−N−アリールスルファモイル基、ホスホノ基、ホスホナト基、ジアルキルホスホノ基、ジアリールホスホノ基、モノアルキルホスホノ基、アルキルホスホナト基、モノアリールホスホノ基、アリールホスホナト基、ホスホノオキシ基、ホスホナトオキシ基、アリール基、アルケニル基が挙げられる。
一方、置換アルキル基におけるアルキレン基としては前述の炭素数1から20までのアルキル基上の水素原子のいずれか1つを除し、2価の有機残基としたものを挙げることができ、好ましくは炭素原子数1から12までの直鎖状、炭素原子数3から12までの分岐状ならびに炭素原子数5から10までの環状のアルキレン基を挙げることができる。このような置換基とアルキレン基を組み合わせることで得られる置換アルキル基の、好ましい具体例としては、クロロメチル基、ブロモメチル基、2−クロロエチル基、トリフルオロメチル基、メトキシメチル基、イソプロポキシメチル基、ブトキシメチル基、s−ブトキシブチル基、メトキシエトキシエチル基、アリルオキシメチル基、フェノキシメチル基、メチルチオメチル基、トリルチオメチル基、ピリジルメチル基、テトラメチルピペリジニルメチル基、N−アセチルテトラメチルピペリジニルメチル基、トリメチルシリルメチル基、メトキシエチル基、エチルアミノエチル基、ジエチルアミノプロピル基、モルホリノプロピル基、アセチルオキシメチル基、ベンゾイルオキシメチル基、N−シクロヘキシルカルバモイルオキシエチル基、N−フェニルカルバモイルオキシエチル基、アセチルアミノエチル基、N−メチルベンゾイルアミノプロピル基、2−オキソエチル基、2−オキソプロピル基、カルボキシプロピル基、メトキシカルボニルエチル基、アリルオキシカルボニルブチル基、クロロフェノキシカルボニルメチル基、カルバモイルメチル基、N−メチルカルバモイルエチル基、N,N−ジプロピルカルバモイルメチル基、N−(メトキシフェニル)カルバモイルエチル基、N−メチル−N−(スルホフェニル)カルバモイルメチル基、スルホブチル基、スルホナトブチル基、スルファモイルブチル基、N−エチルスルファモイルメチル基、N,N−ジプロピルスルファモイルプロピル基、N−トリルスルファモイルプロピル基、N−メチル−N−(ホスホノフェニル)スルファモイルオクチル基、ホスホノブチル基、ホスホナトヘキシル基、ジエチルホスホノブチル基、ジフェニルホスホノプロピル基、メチルホスホノブチル基、メチルホスホナトブチル基、トリルホスホノヘキシル基、トリルホスホナトヘキシル基、ホスホノオキシプロピル基、ホスホナトオキシブチル基、ベンジル基、フェネチル基、α−メチルベンジル基、1−メチル−1−フェニルエチル基、p−メチルベンジル基、シンナミル基、アリル基、1−プロペニルメチル基、2−ブテニル基、2−メチルアリル基、2−メチルプロペニルメチル基、2−プロピニル基、2−ブチニル基、3−ブチニル基等が挙げられる。
前記アリール基としては、1個から3個のベンゼン環が縮合環を形成したもの、ベンゼン環と5員不飽和環が縮合環を形成したものを挙げることができ、具体例としては、フェニル基、ナフチル基、アントリル基、フェナントリル基、インデニル基、アセナフテニル基、フルオレニル基を挙げることができ、これらのなかでは、フェニル基、ナフチル基がより好ましい。
前記置換アリール基としては、前述のアリール基の環形成炭素原子上に置換基として、水素原子を除く一価の非金属原子団からなる基を有するものが用いられる。好ましい置換基の例としては前述のアルキル基、置換アルキル基、ならびに、先に置換アルキル基における置換基として示したものを挙げることができる。
前記置換アリール基としては、前述のアリール基の環形成炭素原子上に置換基として、水素原子を除く一価の非金属原子団からなる基を有するものが用いられる。好ましい置換基の例としては前述のアルキル基、置換アルキル基、ならびに、先に置換アルキル基における置換基として示したものを挙げることができる。
前記置換アリール基の好ましい具体例としては、ビフェニル基、トリル基、キシリル基、メシチル基、クメニル基、クロロフェニル基、ブロモフェニル基、フルオロフェニル基、クロロメチルフェニル基、トリフルオロメチルフェニル基、ヒドロキシフェニル基、メトキシフェニル基、メトキシエトキシフェニル基、アリルオキシフェニル基、フェノキシフェニル基、メチルチオフェニル基、トリルチオフェニル基、エチルアミノフェニル基、ジエチルアミノフェニル基、モルホリノフェニル基、アセチルオキシフェニル基、ベンゾイルオキシフェニル基、N−シクロヘキシルカルバモイルオキシフェニル基、N−フェニルカルバモイルオキシフェニル基、アセチルアミノフェニル基、N−メチルベンゾイルアミノフェニル基、カルボキシフェニル基、メトキシカルボニルフェニル基、アリルオキシカルボニルフェニル基、クロロフェノキシカルボニルフェニル基、カルバモイルフェニル基、N−メチルカルバモイルフェニル基、N,N−ジプロピルカルバモイルフェニル基、N−(メトキシフェニル)カルバモイルフェニル基、N−メチル−N−(スルホフェニル)カルバモイルフェニル基、スルホフェニル基、スルホナトフェニル基、スルファモイルフェニル基、N−エチルスルファモイルフェニル基、N,N−ジプロピルスルファモイルフェニル基、N−トリルスルファモイルフェニル基、N−メチル−N−(ホスホノフェニル)スルファモイルフェニル基、ホスホノフェニル基、ホスホナトフェニル基、ジエチルホスホノフェニル基、ジフェニルホスホノフェニル基、メチルホスホノフェニル基、メチルホスホナトフェニル基、トリルホスホノフェニル基、トリルホスホナトフェニル基、アリルフェニル基、1−プロペニルメチルフェニル基、2−ブテニルフェニル基、2−メチルアリルフェニル基、2−メチルプロペニルフェニル基、2−プロピニルフェニル基、2−ブチニルフェニル基、3−ブチニルフェニル基等を挙げることができる。
前記アルケニル基、前記置換アルケニル基、前記アルキニル基、及び前記置換アルキニル基(−C(R02)=C(R03)(R04)、及び−C≡C(R05))としては、R02、R03、R04、R05が一価の非金属原子からなる基のものが使用できる。
R02、R03、R04、R05としては、水素原子、ハロゲン原子、アルキル基、置換アルキル基、アリール基、及び置換アリール基が好ましく、これらの具体例としては、前述の例として示したものを挙げることができる。これらの中でも、水素原子、ハロゲン原子、炭素原子数1から10までの直鎖状、分岐状、環状のアルキル基がより好ましい。
具体的には、ビニル基、1−プロペニル基、1−ブテニル基、1−ペンテニル基、1−ヘキセニル基、1−オクテニル基、1−メチル−1−プロペニル基、2−メチル−1−プロペニル基、2−メチル−1−ブテニル基、2−フェニル−1−エテニル基、2−クロロ−1−エテニル基、エチニル基、1−プロピニル基、1−ブチニル基、フェニルエチニル基等が挙げられる。
ヘテロ環基としては、置換アルキル基の置換基として例示したピリジル基等が挙げられる。
R02、R03、R04、R05としては、水素原子、ハロゲン原子、アルキル基、置換アルキル基、アリール基、及び置換アリール基が好ましく、これらの具体例としては、前述の例として示したものを挙げることができる。これらの中でも、水素原子、ハロゲン原子、炭素原子数1から10までの直鎖状、分岐状、環状のアルキル基がより好ましい。
具体的には、ビニル基、1−プロペニル基、1−ブテニル基、1−ペンテニル基、1−ヘキセニル基、1−オクテニル基、1−メチル−1−プロペニル基、2−メチル−1−プロペニル基、2−メチル−1−ブテニル基、2−フェニル−1−エテニル基、2−クロロ−1−エテニル基、エチニル基、1−プロピニル基、1−ブチニル基、フェニルエチニル基等が挙げられる。
ヘテロ環基としては、置換アルキル基の置換基として例示したピリジル基等が挙げられる。
上記置換オキシ基(R06O−)としては、R06が水素原子を除く一価の非金属原子からなる基であるものを用いることができる。好ましい置換オキシ基としては、アルコキシ基、アリーロキシ基、アシルオキシ基、カルバモイルオキシ基、N−アルキルカルバモイルオキシ基、N−アリールカルバモイルオキシ基、N,N−ジアルキルカルバモイルオキシ基、N,N−ジアリールカルバモイルオキシ基、N−アルキル−N−アリールカルバモイルオキシ基、アルキルスルホキシ基、アリールスルホキシ基、ホスホノオキシ基、ホスホナトオキシ基を挙げることができる。これらにおけるアルキル基、ならびにアリール基としては前述のアルキル基、置換アルキル基ならびに、アリール基、置換アリール基として示したものを挙げることができる。また、アシルオキシ基におけるアシル基(R07CO−)としては、R07が、先の例として挙げたアルキル基、置換アルキル基、アリール基ならびに置換アリール基のものを挙げることができる。これらの置換基の中では、アルコキシ基、アリーロキシ基、アシルオキシ基、アリールスルホキシ基がより好ましい。好ましい置換オキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ドデシルオキシ基、ベンジルオキシ基、アリルオキシ基、フェネチルオキシ基、カルボキシエチルオキシ基、メトキシカルボニルエチルオキシ基、エトキシカルボニルエチルオキシ基、メトキシエトキシ基、フェノキシエトキシ基、メトキシエトキシエトキシ基、エトキシエトキシエトキシ基、モルホリノエトキシ基、モルホリノプロピルオキシ基、アリロキシエトキシエトキシ基、フェノキシ基、トリルオキシ基、キシリルオキシ基、メシチルオキシ基、メシチルオキシ基、クメニルオキシ基、メトキシフェニルオキシ基、エトキシフェニルオキシ基、クロロフェニルオキシ基、ブロモフェニルオキシ基、アセチルオキシ基、ベンゾイルオキシ基、ナフチルオキシ基、フェニルスルホニルオキシ基、ホスホノオキシ基、ホスホナトオキシ基等が挙げられる。
アミド基も含む置換アミノ基(R08NH−、(R09)(R010)N−)としては、R08、R09、R010が水素原子を除く一価の非金属原子団からなる基のものを使用できる。なおR09とR010とは結合して環を形成してもよい。置換アミノ基の好ましい例としては、N−アルキルアミノ基、N,N−ジアルキルアミノ基、N−アリールアミノ基、N,N−ジアリールアミノ基、N−アルキル−N−アリールアミノ基、アシルアミノ基、N−アルキルアシルアミノ基、N−アリールアシルアミノ基、ウレイド基、N’−アルキルウレイド基、N’,N’−ジアルキルウレイド基、N’−アリールウレイド基、N’,N’−ジアリールウレイド基、N’−アルキル−N’−アリールウレイド基、N−アルキルウレイド基、N−アリールウレイド基、N’−アルキル−N−アルキルウレイド基、N’−アルキル−N−アリールウレイド基、N’,N’−ジアルキル−N−アルキルウレイド基、N’−アルキル−N’−アリールウレイド基、N’,N’−ジアルキル−N−アルキルウレイド基、N’,N’−ジアルキル−N’−アリールウレイド基、N’−アリール−N−アルキルウレイド基、N’−アリール−N−アリールウレイド基、N’,N’−ジアリール−N−アルキルウレイド基、N’,N’−ジアリール−N−アリールウレイド基、N’−アルキル−N’−アリール−N−アルキルウレイド基、N’−アルキル−N’−アリール−N−アリールウレイド基、アルコキシカルボニルアミノ基、アリーロキシカルボニルアミノ基、N−アルキル−N−アルコキシカルボニルアミノ基、N−アルキル−N−アリーロキシカルボニルアミノ基、N−アリール−N−アルコキシカルボニルアミノ基、N−アリール−N−アリーロキシカルボニルアミノ基が挙げられる。これらにおけるアルキル基、アリール基としては前述のアルキル基、置換アルキル基、ならびにアリール基、置換アリール基として示したものを挙げることができ、アシルアミノ基、N−アルキルアシルアミノ基、N−アリールアシルアミノ基おけるアシル基(R07CO−)のR07は前述のとおりである。これらの内、より好ましいものとしては、N−アルキルアミノ基、N,N−ジアルキルアミノ基、N−アリールアミノ基、アシルアミノ基が挙げられる。好ましい置換アミノ基の具体例としては、メチルアミノ基、エチルアミノ基、ジエチルアミノ基、モルホリノ基、ピペリジノ基、ピロリジノ基、フェニルアミノ基、ベンゾイルアミノ基、アセチルアミノ基等が挙げられる。
置換スルホニル基(R011−SO2−)としては、R011が一価の非金属原子団からなる基のものを使用できる。より好ましい例としては、アルキルスルホニル基、アリールスルホニル基を挙げることができる。これらにおけるアルキル基、アリール基としては前述のアルキル基、置換アルキル基、ならびにアリール基、置換アリール基として示したものを挙げることができる。このような、置換スルホニル基の具体例としては、ブチルスルホニル基、フェニルスルホニル基、クロロフェニルスルホニル基等が挙げられる。
スルホナト基(−SO3 −)は前述のとおり、スルホ基(−SO3H)の共役塩基陰イオン基を意味し、通常は対陽イオンとともに使用されるのが好ましい。このような対陽イオンとしては、一般に知られるもの、すなわち、種々のオニウム類(アンモニウム類、スルホニウム類、ホスホニウム類、ヨードニウム類、アジニウム類等)、ならびに金属イオン類(Na+、K+、Ca2+、Zn2+等)が挙げられる。
置換カルボニル基(R013−CO−)としては、R013が一価の非金属原子からなる基のものを使用できる。置換カルボニル基の好ましい例としては、ホルミル基、アシル基、カルボキシル基、アルコキシカルボニル基、アリーロキシカルボニル基、カルバモイル基、N−アルキルカルバモイル基、N,N−ジアルキルカルバモイル基、N−アリールカルバモイル基、N,N−ジアリールカルバモイル基、N−アルキル−N’−アリールカルバモイル基が挙げられる。これらにおけるアルキル基、アリール基としては前述のアルキル基、置換アルキル基、ならびにアリール基、置換アリール基として示したものを挙げることができる。これらの内、より好ましい置換カルボニル基としては、ホルミル基、アシル基、カルボキシル基、アルコキシカルボニル基、アリーロキシカルボニル基、カルバモイル基、N−アルキルカルバモイル基、N,N−ジアルキルカルバモイル基、N−アリールカルバモイル基が挙げられ、さらにより好ましいものとしては、ホルミル基、アシル基、アルコキシカルボニル基ならびにアリーロキシカルボニル基が挙げられる。好ましい置換カルボニル基の具体例としては、ホルミル基、アセチル基、ベンゾイル基、カルボキシル基、メトキシカルボニル基、エトキシカルボニル基、アリルオキシカルボニル基、ジメチルアミノフェニルエテニルカルボニル基、メトキシカルボニルメトキシカルボニル基、N−メチルカルバモイル基、N−フェニルカルバモイル基、N,N−ジエチルカルバモイル基、モルホリノカルボニル基等が挙げられる。
置換スルフィニル基(R014−SO−)としてはR014が一価の非金属原子団からなる基のものを使用できる。好ましい例としては、アルキルスルフィニル基、アリールスルフィニル基、スルフィナモイル基、N−アルキルスルフィナモイル基、N,N−ジアルキルスルフィナモイル基、N−アリールスルフィナモイル基、N,N−ジアリールスルフィナモイル基、N−アルキル−N−アリールスルフィナモイル基が挙げられる。これらにおけるアルキル基、アリール基としては前述のアルキル基、置換アルキル基、ならびにアリール基、置換アリール基として示したものを挙げることができる。これらの内、より好ましい例としてはアルキルスルフィニル基、アリールスルフィニル基が挙げられる。このような置換スルフィニル基の具体例としては、ヘキシルスルフィニル基、ベンジルスルフィニル基、トリルスルフィニル基等が挙げられる。
置換ホスホノ基とはホスホノ基上の水酸基の一つもしくは二つが他の有機オキソ基によって置換されたものを意味し、好ましい例としては、前述のジアルキルホスホノ基、ジアリールホスホノ基、アルキルアリールホスホノ基、モノアルキルホスホノ基、モノアリールホスホノ基が挙げられる。これらの中ではジアルキルホスホノ基、ならびにジアリールホスホノ基がより好ましい。このような具体例としては、ジエチルホスホノ基、ジブチルホスホノ基、ジフェニルホスホノ基等が挙げられる。
ホスホナト基(−PO3H2 −、−PO3H−)とは前述のとおり、ホスホノ基(−PO3H2)の、酸第一解離もしくは、酸第二解離に由来する共役塩基陰イオン基を意味する。通常は対陽イオンと共に使用されるのが好ましい。このような対陽イオンとしては、一般に知られるもの、すなわち、種々のオニウム類(アンモニウム類、スルホニウム類、ホスホニウム類、ヨードニウム類、アジニウム類等)、ならびに金属イオン類(Na+、K+、Ca2+、Zn2+等)が挙げられる。
置換ホスホナト基とは前述の置換ホスホノ基の内、水酸基を一つ有機オキソ基に置換したもの共役塩基陰イオン基であり、具体例としては、前述のモノアルキルホスホノ基(−PO3H(alkyl))、モノアリールホスホノ基(−PO3H(aryl))の共役塩基が挙げられる。
一般式(I)で表される化合物のうち、下記一般式(I’)で表される化合物であることが特に好適である。
一般式(I’)中、R1’、R2’、R3’及びR4’は、各々独立に、一般式(I)で説明したR3、R4、R7、R8、及びR9〜R12と同義であり、好ましい範囲も同様である。より好ましくは、R1’及びR2’は、各々独立に、水酸基、アルキル基であり、更に好ましくは、水酸基、及び炭素数1〜18のアルキル基である。R3’及びR4’は、アルコキシ基が好ましく、炭素数1〜18のアルコキシ基がより好ましい。
一般式(I’)中、k、l、m及びnは、各々独立に、0〜8のいずれかの整数を表し、0〜6のいずれかの整数であることがより好ましい。
一般式(I’)中、k、l、m及びnは、各々独立に、0〜8のいずれかの整数を表し、0〜6のいずれかの整数であることがより好ましい。
前記一般式(I)で表される化合物の具体例としては、例えば、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、及び、下記に示す構造式で表される化合物等が挙げられる。
−ジ置換アミノベンゼン系化合物<1>−
前記ベンゼン環上のアミノ基に対し、パラ位の炭素原子に複素環基を置換基として有するジ置換アミノベンゼン系化合物としては、前記複素環基が、窒素原子、酸素原子、又は硫黄原子を含む5員環又は6員環であるものが好ましく、縮合ベンゼン環を有する5員環がより好ましく、例えば、下記一般式(II)で表される化合物が挙げられる。
前記ベンゼン環上のアミノ基に対し、パラ位の炭素原子に複素環基を置換基として有するジ置換アミノベンゼン系化合物としては、前記複素環基が、窒素原子、酸素原子、又は硫黄原子を含む5員環又は6員環であるものが好ましく、縮合ベンゼン環を有する5員環がより好ましく、例えば、下記一般式(II)で表される化合物が挙げられる。
ただし、前記一般式(II)中、R21及びR22は、それぞれ独立して、脂肪族基及び芳香族基のいずれかを表し、R23〜R30は、それぞれ独立して、水素原子及び1価の置換基のいずれかを表し、Xは、酸素原子、硫黄原子、ジアルキルメチレン基、イミノ基、及び脂肪族基若しくは芳香族基が置換したイミノ基のいずれかを表す。R21とR22、R21とR23、及びR22とR24は、それぞれ独立して、互いに結合し、含窒素複素環を形成していてもよく、複素環に縮合するベンゼン環は置換基を有していてもよい。
なお、前記一般式(II)中、前記脂肪族基、前記芳香族基、及び前記1価の置換基としては、上述の一般式(I)における例として示したものを挙げることができる。
前記一般式(II)で表される化合物の具体例としては、例えば、2−(p−ジメチルアミノフェニル)ベンゾオキサゾール、2−(p−ジエチルアミノフェニル)ベンゾオキサゾール、2−(p−ジメチルアミノフェニル)ベンゾ〔4,5〕ベンゾオキサゾール、2−(p−ジメチルアミノフェニル)ベンゾ〔6,7〕ベンゾオキサゾール、2−(p−ジメチルアミノフェニル)ベンゾチアゾール、2−(p−ジエチルアミノフェニル)ベンゾチアゾール、2−(p−ジメチルアミノフェニル)ベンゾイミダゾール、2−(p−ジエチルアミノフェニル)ベンゾイミダゾール、2−(p−ジメチルアミノフェニル)−3,3−ジメチル−3H−インドール、2−(p−ジエチルアミノフェニル)−3,3−ジメチル−3H−インドール、及び、下記に示す構造式で表される化合物等が挙げられる。
一方、ベンゼン環上のアミノ基に対してパラ位の炭素原子に複素環基を置換基として有するジ置換アミノベンゼン系化合物の中でも、前記一般式(II)で表される化合物以外の化合物としては、例えば、2−(p−ジメチルアミノフェニル)ピリジン、2−(p−ジエチルアミノフェニル)ピリジン、2−(p−ジメチルアミノフェニル)キノリン、2−(p−ジエチルアミノフェニル)キノリン、2−(p−ジメチルアミノフェニル)ピリミジン、2−(p−ジエチルアミノフェニル)ピリミジン、2,5−ビス(p−ジエチルアミノフェニル)−1,3,4−オキサジアゾール、2,5−ビス(p−ジエチルアミノフェニル)−1,3,4−チアジアゾール等が挙げられる。
−ジ置換アミノベンゼン系化合物<2>−
前記ベンゼン環上のアミノ基に対し、パラ位の炭素原子にスルホニルイミノ基を含む置換基を有するジ置換アミノベンゼン系化合物としては、例えば、下記一般式(III)で表される化合物が好ましい。
前記ベンゼン環上のアミノ基に対し、パラ位の炭素原子にスルホニルイミノ基を含む置換基を有するジ置換アミノベンゼン系化合物としては、例えば、下記一般式(III)で表される化合物が好ましい。
ただし、前記一般式(III)中、R31及びR32は、それぞれ独立して、脂肪族基及び芳香族基のいずれかを表し、R33〜R37は、それぞれ独立して、水素原子及び一価の置換基のいずれかを表し、R38は、一価の置換基を表す。R31とR32、R31とR33、及びR32とR34は、それぞれ独立して、互いに結合し、含窒素複素環を形成していてもよい。
なお、前記一般式(III)中、前記脂肪族基、前記芳香族基、及び前記1価の置換基としては、上述の一般式(I)における例として示したものを挙げることができる。
R38としては、置換又は無置換のアリール基が好ましく、置換又は無置換のフェニル基がより好ましい。
R38としては、置換又は無置換のアリール基が好ましく、置換又は無置換のフェニル基がより好ましい。
前記一般式(III)で表される化合物の具体例としては、例えば、下記に示す構造式で表される化合物等が挙げられる。
−ジ置換アミノベンゼン系化合物<3>−
前記カルボスチリル骨格を形成したジ置換アミノベンゼン系化合物としては、例えば、下記一般式(IV)で表される化合物が好ましい。
前記カルボスチリル骨格を形成したジ置換アミノベンゼン系化合物としては、例えば、下記一般式(IV)で表される化合物が好ましい。
ただし、前記一般式(IV)中、R41及びR42は、それぞれ独立して、脂肪族基及び芳香族基のいずれかを表し、R43〜R47は、それぞれ独立して、水素原子及び一価の置換基を表し、Yは、酸素原子及びNR48のいずれかを表し、R48は、水素原子及び一価の置換基のいずれかを表す。R41とR42、R41とR43、及びR42とR44は、それぞれ独立して、含窒素複素環を形成していてもよい。
なお、前記一般式(IV)中、前記脂肪族基、前記芳香族基、及び前記1価の置換基としては、上述の一般式(I)における例として示したものを挙げることができる。
前記一般式(IV)で表される化合物の具体例としては、例えば、特開2004−212958号公報に記載の化合物、クマリン化合物(例えば、クマリン−1、クマリン−152、クマリン−307、クマリン−106、クマリン−340等)などが挙げられる。
前記一般式(I)〜(IV)で表されるジ置換アミノベンゼンを部分構造として有する化合物の中でも、前記一般式(I)、(III)及び(IV)で表される化合物が好ましい。
−少なくとも2個の芳香族環が窒素原子に結合した構造を有する化合物−
ジ置換アミノベンゼンを部分構造として有する化合物が、少なくとも2個の芳香族環が窒素原子に結合した構造を有する化合物であることも好適であり、このような化合物としては、下記一般式(V)〜(VII)で表される少なくとも2個の芳香族環が窒素原子に結合した構造を有する化合物等がより好ましい。
ジ置換アミノベンゼンを部分構造として有する化合物が、少なくとも2個の芳香族環が窒素原子に結合した構造を有する化合物であることも好適であり、このような化合物としては、下記一般式(V)〜(VII)で表される少なくとも2個の芳香族環が窒素原子に結合した構造を有する化合物等がより好ましい。
ただし、前記一般式(V)〜(VII)中、環A〜Gは、それぞれ独立に芳香族炭化水素環及び芳香族複素環のいずれかを基本骨格とするものであり、環Aと環B、環Dと環E、環Fと環Gは互いに結合してNを含む結合環を形成していても良い。
前記一般式(VI)中、連結基Lは、芳香族炭化水素環及び芳香族複素環の少なくともいずれかを含む連結基を表し、連結基LとNとは、該芳香族炭化水素環及び芳香族複素環のいずれかで結合しており、nは2以上のいずれかの整数を表す。
前記一般式(VII)中、Rは、置換基を有していても良いアルキル基を表す。
なお、環A〜G及び連結基Lは、置換基を有していても良く、これらの置換基同士が互いに結合して環を形成していても良い。
前記一般式(VI)中、連結基Lは、芳香族炭化水素環及び芳香族複素環の少なくともいずれかを含む連結基を表し、連結基LとNとは、該芳香族炭化水素環及び芳香族複素環のいずれかで結合しており、nは2以上のいずれかの整数を表す。
前記一般式(VII)中、Rは、置換基を有していても良いアルキル基を表す。
なお、環A〜G及び連結基Lは、置換基を有していても良く、これらの置換基同士が互いに結合して環を形成していても良い。
前記一般式(V)〜(VII)において、環A〜Gで表される芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、アズレン環、フルオレン環、アセナフチレン環、及びインデン環などが挙げられ、これらの中でもベンゼン環、ナフタレン環、アントラセン環が好ましく、ベンゼン環がより好ましい。
また、環A〜Gで表される芳香族複素環としては、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、トリアゾール環、ピラン環、チアジゾール環、オキサジアゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環などが挙げられ、これらの中でもフラン環、チオフェン環、ピロール環、ピリジン環、オキサゾール環、チアゾール環が好ましく、フラン環、チオフェン環、ピロール環がより好ましい。
また、環A〜Gで表される芳香族複素環としては、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、トリアゾール環、ピラン環、チアジゾール環、オキサジアゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環などが挙げられ、これらの中でもフラン環、チオフェン環、ピロール環、ピリジン環、オキサゾール環、チアゾール環が好ましく、フラン環、チオフェン環、ピロール環がより好ましい。
また、環A、環B、環D、環E、環F、環G、及び連結基Lに含まれる環は互いに結合してNを含む縮合環を結合していても良く、この場合、各環が結合するN原子を含むカルバゾール環を形成する例が挙げられる。カルバゾール環を形成する場合は、A〜Gの環のいずれかが例外的に環構造ではなく、任意の置換基であっても良いが、その場合の該置換基としては、置換基を有していても良いアルキル基が好ましい。
環A〜Gはいずれも任意の箇所に任意の置換基を有していても良く、これらの置換基同士が互いに結合して環を形成していても良い。
前記一般式(VI)において、連結基Lは、芳香族炭化水素環及び芳香族複素環の少なくともいずれかを1個乃至2個以上含む連結基であり、Nは、該連結基Lの芳香族炭化水素環又は芳香族複素環と直接結合している。
前記一般式(VI)において、連結基Lは、芳香族炭化水素環及び芳香族複素環の少なくともいずれかを1個乃至2個以上含む連結基であり、Nは、該連結基Lの芳香族炭化水素環又は芳香族複素環と直接結合している。
連結基Lに含まれる芳香族炭化水素環、芳香族複素環としては、環A〜Gの芳香族炭化水素環、芳香族複素環として例示したものと同様のものが挙げられる。
連結基Lに含まれる芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環が好ましく、ベンゼン環がより好ましい。
また、連結基Lに含まれる芳香族複素環としては、フラン環、チオフェン環、ピロール環、ピリジン環、オキサゾール環、チアゾール環、チアジゾール環、オキサジアゾール環が好ましく、フラン環、チオフェン環、ピロール環がより好ましい。
連結基Lに含まれる芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環が好ましく、ベンゼン環がより好ましい。
また、連結基Lに含まれる芳香族複素環としては、フラン環、チオフェン環、ピロール環、ピリジン環、オキサゾール環、チアゾール環、チアジゾール環、オキサジアゾール環が好ましく、フラン環、チオフェン環、ピロール環がより好ましい。
連結基Lが、芳香族炭化水素環及び芳香族複素環の少なくともいずれかを2個以上含む場合、これらの環は直接連結していても良く、また、2価以上の連結基(なお、この連結基は、2価以上の基に限らず、2価以上の原子を含む)を介して結合しても良い。この場合、2価以上の連結基としては公知のものが挙げられ、例えば、下記式(a)で表されるアルキレン基、下記式(b)で表されるアセチレン基、アミン基、O原子、S原子、ケトン基、チオケトン基、−C(=O)O−、アミド基、Se、Te、P、As、Sb、Bi、Si、Bなどの金属原子、芳香族炭化水素環基、芳香族複素環基(不飽和複素環基)、非芳香族複素環基(飽和複素環基)、及びこれらの任意の組み合わせなどが挙げられる。
ただし、前記式(a)及び(b)中、mは、1以上のいずれかの整数を表す。
連結基Lに含まれる芳香族炭化水素環及び芳香族複素環の少なくともいずれかの間に挟まれ得る連結基としては、上記式(a)で表されるアルキレン基、上記式(b)で表されるアセチレン基、アミン基、O原子、S原子、ケトン基、−C(=O)O−、アミド基、芳香族炭化水素環基、芳香族複素環基、−C=N−、−C=N−N=、飽和もしくは不飽和の複素環基が好ましく、炭素数が1〜3のアルキレン基、−OCH2O−、−OCH2CH2O−、−O−、ケトン基、ベンゼン環基、フラン環基、チオフェン環基、ピロール環基がより好ましい。
また、前記一般式(VI)において、nは、2〜5であることが好ましい。
連結基Lにおいては、芳香族炭化水素環あるいは芳香族複素環と不飽和連結基の組み合せの調整により、350〜430nmの波長域に吸収極大および適度な吸収をもたせることが望ましい。
連結基Lに含まれる環、環同士を連結する連結基は任意の箇所に任意の置換基を有していても良く、これらの置換基が互いに連結して環を形成していても良い。
連結基Lに含まれる環、環同士を連結する連結基は任意の箇所に任意の置換基を有していても良く、これらの置換基が互いに連結して環を形成していても良い。
環A〜G及び連結基Lが有し得る任意の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;水酸基;ニトロ基;シアノ基;1価の有機基などが挙げられ、1価の有機基としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、tert−ブチル基、アミル基、tert−アミル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、tert−オクチル基等の炭素数1〜18の直鎖又は分岐のアルキル基; シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等の炭素数3〜18のシクロアルキル基;ビニル基、プロペニル基、ヘキセニル基等の炭素数2〜18の直鎖又は分岐のアルケニル基;シクロペンテニル基、シクロヘキセニル基等の炭素数3〜18のシクロアルケニル基 ;メトキシ基、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、アミルオキシ基、tert−アミルオキシ基、n−ヘキシルオキシ基、n−ヘプチルオキシ基、n−オクチルオキシ基、tert−オクチルオキシ基等の炭素数1〜18の直鎖又は分岐のアルコキシ基 ;メチルチオ基、エチルチオ基、n−プロピルチオ基、iso−プロピルチオ基、n−ブチルチオ基、sec−ブチルチオ基、tert−ブチルチオ基、アミルチオ基、tert−アミルチオ基、n−ヘキシルチオ基、n−ヘプチルチオ基、n−オクチルチオ基、tert−オクチルチオ基等の炭素数1〜18の直鎖又は分岐のアルキルチオ基;フェニル基、トリル基、キシリル基、メシチル基等の炭素数6〜18のアリール基;ベンジル基、フェネチル基等の炭素数7〜18のアラルキル基;ビニルオキシ基、プロペニルオキシ基、ヘキセニルオキシ基等の炭素数2〜18の直鎖又は分岐のアルケニルオキシ基;ビニルチオ基、プロペニルチオ基、ヘキセニルチオ基等の炭素数2〜18の直鎖又は分岐のアルケニルチオ基;−COR51で表されるアシル基;カルボキシル基;−OCOR52で表されるアシルオキシ基;−NR53R54で表されるアミノ基;−NHCOR55で表されるアシルアミノ基;−NHCOOR56で表されるカーバメート基;−CONR57R58で表されるカルバモイル基;−COOR59で表されるカルボン酸エステル基;−SO3NR60R61で表されるスルファモイル基;−SO3R62で表されるスルホン酸エステル基;−C=NR63で表される基;−C=N−NR64R65で表される基;2−チエニル基、2−ピリジル基、フリル基、オキサゾリル基、ベンゾキサゾリル基、チアゾリル基、ベンゾチアゾリル基、モルホリノ基、ピロリジニル基、テトラヒドロチオフェンジオキサイド基等の飽和もしくは不飽和の複素環基などが挙げられる。
なお、R51〜R65は、それぞれ独立に水素原子、置換されていても良いアルキル基、置換されていても良いアルケニル基、置換されていても良いアリール基、又は置換されていても良いアラルキル基を表す。これらの置換基群において、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルコキシ基、アルキルチオ基、アリール基、アラルキル基、アルケニルオキシ基、及びアルケニルチオ基は、更に置換基で置換されていても良い。
これらの置換基の、環A〜G、連結基Lにおける置換位置には特に制限はなく、また、複数の置換基を有する場合、これらは同種のものであっても良く、異なるものであっても良い。
環A〜G、連結基Lは、無置換であるか、或いは、置換基としてハロゲン原子、シアノ基、置換されていても良いアルキル基、置換されていても良いシクロアルキル基、置換されていても良いアルケニル基、置換されていても良いアルコキシ基、置換されていても良いアリール基、置換されていても良いアラルキル基、置換されていても良いアルケニルオキシ基、置換されていても良いアルケニルチオ基、置換されていても良いアミノ基、置換されていても良いアシル基、カルボキシル基、−C=NR63で表される基、−C=N−NR64R65で表される基、飽和もしくは不飽和の複素環基で置換されていることが好ましい。置換基を有する場合の置換基としては、ハロゲン原子、シアノ基、置換されていても良いアルキル基、置換されていても良いシクロアルキル基、置換されていても良いアルケニル基、置換されていても良いアルコキシ基、置換されていても良いアリール基、置換されていても良いアラルキル基、置換されていても良いアミノ基、−C=NR63で表される基、−C=N−NR64R65で表される基、飽和もしくは不飽和の複素環基が好ましい。
環A〜G、連結基Lは、無置換であるか、或いは、置換基としてハロゲン原子、シアノ基、置換されていても良いアルキル基、置換されていても良いシクロアルキル基、置換されていても良いアルケニル基、置換されていても良いアルコキシ基、置換されていても良いアリール基、置換されていても良いアラルキル基、置換されていても良いアルケニルオキシ基、置換されていても良いアルケニルチオ基、置換されていても良いアミノ基、置換されていても良いアシル基、カルボキシル基、−C=NR63で表される基、−C=N−NR64R65で表される基、飽和もしくは不飽和の複素環基で置換されていることが好ましい。置換基を有する場合の置換基としては、ハロゲン原子、シアノ基、置換されていても良いアルキル基、置換されていても良いシクロアルキル基、置換されていても良いアルケニル基、置換されていても良いアルコキシ基、置換されていても良いアリール基、置換されていても良いアラルキル基、置換されていても良いアミノ基、−C=NR63で表される基、−C=N−NR64R65で表される基、飽和もしくは不飽和の複素環基が好ましい。
環A〜G、及び連結基Lが有し得る上記の任意の置換基が、更に任意の置換基で置換されている場合、該置換基としては、メトキシ基、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の炭素数1〜10のアルコキシ基;メトキシメトキシ基、エトキシメトキシ基、プロポキシメトキシ基、エトキシエトキシ基、プロポキシエトキシ基、メトキシブトキシ基等の炭素数2〜12のアルコキシアルコキシ基;メトキシメトキシメトキシ基、メトキシメトキシエトキシ基、メトキシエトキシメトキシ基、エトキシメトキシメトキシ基、エトキシエトキシメトキシ基等の炭素数3〜15のアルコキシアルコキシアルコキシ基;フェニル基、トリル基、キシリル基等の炭素数6〜12のアリール基(これらは置換基で更に置換されていても良い。);フェノキシ基、トリルオキシ基、キシリルオキシ基、ナフチルオキシ基等の炭素数6〜12のアリールオキシ基;ビニルオキシ基、アリルオキシ基等の炭素数2〜12のアルケニルオキシ基;アセチル基、プロピオニル基などのアシル基;シアノ基;ニトロ基;ヒドロキシル基;テトラヒドロフリル基;アミノ基;N,N−ジメチルアミノ基、N,N−ジエチルアミノ基等の炭素数1〜10のアルキルアミノ基;メチルスルホニルアミノ基、エチルスルホニルアミノ基、n−プロピルスルホニルアミノ基等の炭素数1〜6のアルキルスルホニルアミノ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、iso−プロポキシカルボニル基、n−ブトキシカルボニル基等の炭素数2〜7のアルコキシカルボニル基;メチルカルボニルオキシ基、エチルカルボニルオキシ基、n−プロピルカルボニルオキシ基、iso−プロピルカルボニルオキシ基、n−ブチルカルボニルオキシ基等の炭素数2〜7のアルキルカルボニルオキシ基;メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、n−プロポキシカルボニルオキシ基、iso−プロポキシカルボニルオキシ基、n−ブトキシカルボニルオキシ基、tert−ブトキシカルボニルオキシ基などの炭素数2〜7のアルコキシカルボニルオキシ基;ビニル基、プロペニル基、ヘキセニル基等の炭素数2〜18の直鎖又は分岐のアルケニル基;等が好ましい。
前記一般式(V)〜(VII)で表される増感剤は、390〜430nmの波長域に適度な吸収を有し、330〜450nmの波長域に吸収極大をもつことが好ましく、350〜430nmの波長域に吸収極大をもつことがより好ましい。そのために、分子中に4個以上の芳香族炭化水素環及び芳香族複素環の少なくともいずれかを有することが好ましく、5個以上の芳香族炭化水素環及び芳香族複素環の少なくともいずれかを有することがより好ましい。
前記一般式(V)〜(VII)で表される化合物の具体例を以下に示すが、これらに限定されるものではない。
前記式(VI−g)において、結合位置は、末端の2つのフェニル基又は末端の2つのトリル基のうちのいずれか2つのベンゼン環上である。
(2)縮環系化合物
増感剤としては、縮環系化合物の中でも、ヘテロ縮環系ケトン化合物(アクリドン系化合物、チオキサントン系化合物等)、及びアクリジン系化合物がより好ましい。前記ヘテロ縮環系ケトン化合物の中でも、アクリドン化合物及びチオキサントン化合物が特に好ましい。
増感剤としては、縮環系化合物の中でも、ヘテロ縮環系ケトン化合物(アクリドン系化合物、チオキサントン系化合物等)、及びアクリジン系化合物がより好ましい。前記ヘテロ縮環系ケトン化合物の中でも、アクリドン化合物及びチオキサントン化合物が特に好ましい。
−−アクリドン化合物−−
前記アクリドン系化合物は、下記一般式(VIII)で表される化合物であることが好ましい。
前記アクリドン系化合物は、下記一般式(VIII)で表される化合物であることが好ましい。
前記一般式(VIII)中、R1d、R2d、R3d、R4d、R5d、R6d、R7d、及びR8dは、それぞれ独立して、水素原子、及び一価の置換基のいずれかを表し、R9dは、脂肪族基、及び芳香族基のいずれかを表す。
また、互いに隣り合う基は結合して環を形成していてもよい。
また、互いに隣り合う基は結合して環を形成していてもよい。
前記一般式(VIII)中、前記一価の置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、ヒドロキシエチル基、トリフルオロメチル基、ベンジル基、スルホプロピル基、ジエチルアミノエチル基、シアノプロピル基、アダマンチル基、p−クロロフェネチル基、エトキシエチル基、エチルチオエチル基、フェノキシエチル基、カルバモイルエチル基、カルボキシエチル基、エトキシカルボニルメチル基、アセチルアミノエチル基等)、アルケニル基(例えば、アリル基、スチリル基等)、アリール基(例えば、フェニル基、ナフチル基、p−カルボキシフェニル基、3,5−ジカルボキシフェニル基、m−スルホフェニル基、p−アセトアミドフェニル基、3−カプリルアミドフェニル基、p−スルファモイルフェニル基、m−ヒドロキシフェニル基、p−ニトロフェニル基、3,5−ジクロロフェニル基、p−アニシル基、o−アニシル基、p−シアノフェニル基、p−N−メチルウレイドフェニル基、m−フルオロフェニル基、p−トリル基、m−トリル基等)、ヘテロ環基(例えば、ピリジル基、5−メチル−2−ピリジル基、チエニル基等)、ハロゲン原子(例えば、塩素原子、臭素原子、フッ素原子等)、メルカプト基、シアノ基、カルボキシル基、スルホ基、ヒドロキシ基、カルバモイル基、スルファモイル基、ニトロ基、アルコキシ基(例えば、メトキシ基、エトキシ基、2−メトキシエトキシ基、2−フェニルエトキシ基等)、アリーロキシ基(例えば、フェノキシ基、p−メチルフェノキシ基、p−クロロフェノシキ基、α−ナフトキシ基等)、アシル基(例えば、アセチル基、ベンゾイル基等)、アシルアミノ基(例えば、アセチルアミノ基、カプロイルアミノ基等)、スルホニル基(例えば、メタンスルホニル基、ベンゼンスルホニル基等)、スルホニルアミノ基(例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基等)、アミノ基(例えば、ジエチルアミノ基、ヒドロキシアミノ基等)、アルキルチオ基又はアリールチオ基(例えば、メチルチオ基、カルボキシエチル基、スルホブチルチオ基、フェニルチオ基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基)、アリーロキシカルボニル基(例えば、フェノキシカルボニル基等)などが挙げられる。これらは、更に置換基を有していてもよい。
前記一般式(VIII)中、R9dとしては、アルキル基、アリール基、アルケニル基、アルコキシ基、アリーロキシ基、アシル基、アルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリーロキシカルボニル基が好ましく、アルキル基、アリール基、アルケニル基、アシル基が特に好ましい。これらは、さらに置換基を有していてもよい。
前記アクリドン系化合物としては、具体的には、N−メチルアクリドン、1−クロル−N−メチルアクリドン、1−ブロム−N−メチルアクリドン、2−クロル−N−メチルアクリドン、3−クロル−N−メチルアクリドン、4−クロル−N−メチルアクリドン、2−クロル−N−(2−フェノキシエチル)アクリドン、3−クロル−N−(n−ブチル)アクリドン、2,3−ジクロル−N−メチルアクリドン、2,6−ジクロル−N−メチルアクリドン、2−クロル−6−ブロム−N−メチルアクリドン、2−クロル−N−エチルアクリドン、2−クロル−N−(n−ブチル)アクリドン、2,6−ジクロル−N−(n−ブチル)アクリドン、2,7−ジクロル−N−(n−ブチル)アクリドン、2,7−ジブロム−N−(n−ブチル)アクリドン、2−ブロム−N−オクチルアクリドン、2−クロル−N−アリルアクリドン、3−クロル−N−ベンジルアクリドン、2,3−ジエトキシ−N−(n−ブチル)アクリドン、2−フェニル−N−(n−ブチル)アクリドン、2−エトキシカルボニル−N−(n−ブチル)アクリドン、N−フェニルアクリドン、2−フェノキシカルボニル−N−(n−ブチル)アクリドン、2−シアノ−N−(n−ブチル)アクリドン、2−メチルスルホニル−N−(n−ブチル)アクリドン、2,7−ビス(エトキシカルボニル)−N−(n−ブチル)アクリドン、N−(n−ブチル)−1,2−ベンズアクリドン、N−(n−ブチル)−2,3−ベンズアクリドン、アクリドン、2−(N,N−ジエチルアミノ)−N’−エチルアクリドン、3,6−ビス(N,N−ジエチルアミノ)−N’−エチルアクリドン、2−フェノキシカルボニル−N−(2−メトキシエチル)アクリドン、2,4,5,7−テトラクロロ−N−メチルアクリドン、N−エトキシカルボニルメチルアクリドン、3−トリフルオロメチル−N−(n−ヘキシル)アクリドン、4,5−ジクロロアクリドン、N−(n−ブチル)−3,4−ベンズアクリドン、2−ベンゾイル−N−(n−ヘキシル)アクリドン、2−フェノキシ−N−(2−ヒドロキシエチル)アクリドン、2−フェニルチオ−N−エチルアクリドン、2−クロロ−N−プロパルギルアクリドン、3−ヒドロキシカルボニル−N−(n−ブチル)アクリドン、2,3−ビス(フェノキシカルボニル)−N−(n−ブチル)アクリドン、2,4,5,7−テトラブロム−N−メチルアクリドン、N−メチルチオアクリドン、N−n−ブチルチオアクリドン、N−n−ブチル−2−メトキシチオアクリドン、N−n−ブチル−2−クロロチオアクリドン、N−n−ブチル−2,7−ジクロロチオアクリドン、N−エチル−3−ジエチルアミノチオアクリドン、N−n−ブチル−2−ベンゾイルチオアクリドン、N−(n−ブチル)−1,2−ベンゾチオアクリドン、N−(2−ジエチルアミノエチル)−2−ブロモチオアクリドン、N−メチル−2,3−ジエトキシチオアクリドン、10−n−ブチル−9,10−ジヒドロアクリジン−9−イリデン−エチルアミン、10−n−ヘキシル−9,10−ジヒドロアクリジン−9−イリデン−ベンジルアミン、10−(2−メトキシエチル)−9,10−ジヒドロアクリジン−9−イリデン−n−ブチルアミン、10−エチル−2−ベンゾイル−9,10−ジヒドロアクリジン−9−イリデン−エトキシアミン、10−n−ブチル−2−メチル−9,10−ジヒドロアクリジン−9−イリデン−アニリン、10−n−ヘキシル−3−クロロ−9,10−ジヒドロアクリジン−9−イリデン−プロパノイルアミド、10−エチル−9,10−ジヒドロアクリジン−9−イリデン−ベンゾイルオキシアミン、10−メチル−9,10−ジヒドロアクリジン−9−イリデン−p−トルエンスルホニルオキシアミン、10−エチル−2−フェノキシカルボニル−9,10−ジヒドロアクリジン−9−イリデン−フェニルカルバモイルオキシアミン、10−フェニル−9,10−ジヒドロアクリジン−9−イリデン−エトキシカルボニルオキシアミンなどが好適に挙げられ、これらの中でも、2−クロル−N−(n−ブチル)アクリドンやN−メチルアクリドンがより好適に挙げられる
−−チオキサントン系化合物−−
前記チオキサントン系化合物としては、下記一般式(IX)で表される化合物であることが好ましい。
前記一般式(IX)中、R1e、R2e、R3e、R4e、R5e、R6e、R7e、及びR8eは、前記一般式(VIII)におけるR1d〜R8dと同義である。
前記チオキサントン化合物としては、具体的には、イソプロピルチオキサントン、1−クロロ−4−プロピルオキシチオキサントンなどが好適に挙げられる。
前記チオキサントン系化合物としては、下記一般式(IX)で表される化合物であることが好ましい。
前記一般式(IX)中、R1e、R2e、R3e、R4e、R5e、R6e、R7e、及びR8eは、前記一般式(VIII)におけるR1d〜R8dと同義である。
前記チオキサントン化合物としては、具体的には、イソプロピルチオキサントン、1−クロロ−4−プロピルオキシチオキサントンなどが好適に挙げられる。
−−アクリジン化合物−−
前記アクリジン系化合物としては、例えば、例えば、アクリジンオレンジ、クロロフラビン、アクリフラビン、9−フェニルアクリジン、1,7−ビス(9,9’−アクリジニル)ヘプタンなどが挙げられる。
前記アクリジン系化合物としては、例えば、例えば、アクリジンオレンジ、クロロフラビン、アクリフラビン、9−フェニルアクリジン、1,7−ビス(9,9’−アクリジニル)ヘプタンなどが挙げられる。
(3)塩基性核を有する化合物
増感剤として、塩基性核を有する化合物は、塩基性核を有する化合物であれば特に制限はなく、前記光照射手段(例えば、可視光線や紫外光及び可視光レーザ等)に合わせて適宜選択することができる。塩基性核を有する化合物を用いることにより、例えば、前記感光層の感度を0.1〜100mJ/cm2に極めて容易に調整することもできる。
増感剤として、塩基性核を有する化合物は、塩基性核を有する化合物であれば特に制限はなく、前記光照射手段(例えば、可視光線や紫外光及び可視光レーザ等)に合わせて適宜選択することができる。塩基性核を有する化合物を用いることにより、例えば、前記感光層の感度を0.1〜100mJ/cm2に極めて容易に調整することもできる。
前記塩基性核を有する化合物としては、例えば、シアニン系色素、ヘミシアニン系色素、スチリル色素系、ストレプトシアニン系色素、などが挙げられる。前記各色素には、ビス型、トリス型、ポリマー型の色素、なども含まれるものである。また、これらの中でも、シアニン系色素、ヘミシアニン系色素、スチリル系色素が好ましく、シアニン系色素、ヘミシアニン系色素がより好ましい。
前記塩基性核を有する化合物がシアニン系色素の場合は、メチン基の数は1個が好ましく、ヘミシアニン系色素の場合は、メチン基の数は5個以下が好ましい。また、スチリル系色素の場合で、アニリン母核を有している場合には、メチン鎖の数は4個以下が好ましい。
前記塩基性核を有する化合物がシアニン系色素の場合は、メチン基の数は1個が好ましく、ヘミシアニン系色素の場合は、メチン基の数は5個以下が好ましい。また、スチリル系色素の場合で、アニリン母核を有している場合には、メチン鎖の数は4個以下が好ましい。
前記塩基性核とは、例えば、ジェイムス(James)編「ザ・セオリー・オブ・ザ・フォトグラフィック・プロセス(The Theory of the Photographic Process)」第4版、マクミラン出版社、1977年、第8章「増感色素と減感色素」により定義され、米国特許第3,567,719号、第3,575,869号、第3,804,634号、第3,837,862号、第4,002,480号、第4,925,777号、特開平3−167546号などに記載されているものが挙げられる。
前記塩基性核としては、例えば、ベンゾオキサゾール核、ベンゾチアゾール核及びインドレニン核などが好ましい。
また、前記塩基性核は、芳香族基が置換した塩基性核、又は3環以上縮環した塩基性核である場合が好ましい。
ここで、塩基性核の縮環数は、例えば、ベンゾオキサゾール核は2であり、ナフトオキサゾール核は3である。また、ベンゾオキサゾール核がフェニル基で置換されても、縮環数は2である。3環以上縮環した塩基性核としては3環以上縮環した多環式縮環型複素環塩基性核であればいかなるものでも良いが、好ましくは3環式縮環型複素環、及び4環式縮環型複素環が挙げられる。
また、前記塩基性核は、芳香族基が置換した塩基性核、又は3環以上縮環した塩基性核である場合が好ましい。
ここで、塩基性核の縮環数は、例えば、ベンゾオキサゾール核は2であり、ナフトオキサゾール核は3である。また、ベンゾオキサゾール核がフェニル基で置換されても、縮環数は2である。3環以上縮環した塩基性核としては3環以上縮環した多環式縮環型複素環塩基性核であればいかなるものでも良いが、好ましくは3環式縮環型複素環、及び4環式縮環型複素環が挙げられる。
3環式縮環型複素環としては、例えば、ナフト[2,3−d]オキサゾール、ナフト[1,2−d]オキサゾール、ナフト[2,1−d]オキサゾール、ナフト[2,3−d]チアゾール、ナフト[1,2−d]チアゾール、ナフト[2,1−d]チアゾール、ナフト[2,3−d]イミダゾール、ナフト[1,2−d]イミダゾール、ナフト[2,1−d]イミダゾール、ナフト[2,3−d]セレナゾール、ナフト[1,2−d]セレナゾール、ナフト[2,1−d]セレナゾール、インドロ[5,6−d]オキサゾール、インドロ[6,5−d]オキサゾール、インドロ[2,3−d]オキサゾール、インドロ[5,6−d]チアゾール、インドロ[6,5−d]チアゾール、インドロ[2,3−d]チアゾール、ベンゾフロ[5,6−d]オキサゾール、ベンゾフロ[6,5−d]オキサゾール、ベンゾフロ[2,3−d]オキサゾール、ベンゾフロ[5,6−d]チアゾール、ベンゾフロ[6,5−d]チアゾール、ベンゾフロ[2,3−d]チアゾール、ベンゾチエノ[5,6−d]オキサゾール、ベンゾチエノ[6,5−d]オキサゾール、ベンゾチエノ[2,3−d]オキサゾール等が挙げられる。
また、4環式縮環型複素環としては、例えば、アントラ[2,3−d]オキサゾール、アントラ[1,2−d]オキサゾール、アントラ[2,1−d]オキサゾール、アントラ[2,3−d]チアゾール、アントラ[1,2−d]チアゾール、フェナントロ[2,1−d]チアゾール、フェナントロ[2,3−d]イミダゾール、アントラ[1,2−d]イミダゾール、アントラ[2,1−d]イミダゾール、アントラ[2,3−d]セレナゾール、フェナントロ[1,2−d]セレナゾール、フェナントロ[2,1−d]セレナゾール、カルバゾロ[2,3−d]オキサゾール、カルバゾロ[3,2−d]オキサゾール、ジベンゾフロ[2,3−d]オキサゾール、ジベンゾフロ[3,2−d]オキサゾール、カルバゾロ[2,3−d]チアゾール、カルバゾロ[3,2−d]チアゾール、ジベンゾフロ[2,3−d]チアゾール、ジベンゾフロ[3,2−d]チアゾール、ベンゾフロ[5,6−d]オキサゾール、ジベンゾチエノ[2,3−d]オキサゾール、ジベンゾチエノ[3,2−d]オキサゾール、テトラヒドロカルバゾロ[6,7−d]オキサゾール、テトラヒドロカルバゾロ[7,6−d]オキサゾール、ジベンゾチエノ[2,3−d]チアゾール、ジベンゾチエノ[3,2−d]チアゾール、テトラヒドロカルバゾロ[6,7−d]チアゾール等が挙げられる。
3環以上縮環した塩基性核として更に好ましくは、ナフト[2,3−d]オキサゾール、ナフト[1,2−d]オキサゾール、ナフト[2,1−d]オキサゾール、ナフト[2,3−d]チアゾール、ナフト[1,2−d]チアゾール、ナフト[2,1−d]チアゾール、インドロ[5,6−d]オキサゾール、インドロ[6,5−d]オキサゾール、インドロ[2,3−d]オキサゾール、インドロ[5,6−d]チアゾール、インドロ[2,3−d]チアゾール、ベンゾフロ[5,6−d]オキサゾール、ベンゾフロ[6,5−d]オキサゾール、ベンゾフロ[2,3−d]オキサゾール、ベンゾフロ[5,6−d]チアゾール、ベンゾフロ[2,3−d]チアゾール、ベンゾチエノ[5,6−d]オキサゾール、アントラ[2,3−d]オキサゾール、アントラ[1,2−d]オキサゾール、アントラ[2,3−d]チアゾール、アントラ[1,2−d]チアゾール、カルバゾロ[2,3−d]オキサゾール、カルバゾロ[3,2−d]オキサゾール、ジベンゾフロ[2,3−d]オキサゾール、ジベンゾフロ[3,2−d]オキサゾール、カルバゾロ[2,3−d]チアゾール、カルバゾロ[3,2−d]チアゾール、ジベンゾフロ[2,3−d]チアゾール、ジベンゾフロ[3,2−d]チアゾール、ジベンゾチエノ[2,3−d]オキサゾール、ジベンゾチエノ[3,2−d]オキサゾール、が挙げられ、特に好ましくは、ナフト[2,3−d]オキサゾール、ナフト[1,2−d]オキサゾール、ナフト[2,3−d]チアゾール、インドロ[5,6−d]オキサゾール、インドロ[6,5−d]オキサゾール、インドロ[5,6−d]チアゾール、ベンゾフロ[5,6−d]オキサゾール、ベンゾフロ[5,6−d]チアゾール、ベンゾフロ[2,3−d]チアゾール、ベンゾチエノ[5,6−d]オキサゾール、カルバゾロ[2,3−d]オキサゾール、カルバゾロ[3,2−d]オキサゾール、ジベンゾフロ[2,3−d]オキサゾール、ジベンゾフロ[3,2−d]オキサゾール、カルバゾロ[2,3−d]チアゾール、カルバゾロ[3,2−d]チアゾール、ジベンゾフロ[2,3−d]チアゾール、ジベンゾフロ[3,2−d]チアゾール、ジベンゾチエノ[2,3−d]オキサゾール、ジベンゾチエノ[3,2−d]オキサゾールである。
また、前記塩基性核としては、下記に示す塩基性複素環が挙げられる。
ここで、塩基性複素環の具体例中、Rは、各々独立に、水素原子、脂肪族基、又は芳香族基を表す。
前記塩基性核を有する化合物として、具体的には、下記構造式(36)で表される化合物が挙げられる。該塩基性核を有する化合物はヘミシアニン系色素化合物であり、ラジカル発生剤を分光増感する機能を有する。従って、該塩基性核を有する化合物の吸収に対応した紫外〜可視光を照射すると、この領域に吸収を有しないラジカル発生剤を含有する場合であっても、ラジカル発生剤からのラジカル発生を促進することができる。
尚、前記ヘミシニアン系色素化合物としては、下記構造式(36)中のYf部分を介して、ビス型、トリス型、又はポリマー型の色素であってもよい。
尚、前記ヘミシニアン系色素化合物としては、下記構造式(36)中のYf部分を介して、ビス型、トリス型、又はポリマー型の色素であってもよい。
前記構造式(36)中、R1fは、脂肪族基又は芳香族基を表す。前記R1fが脂肪族基を表す場合、該脂肪族基としては、例えば、アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アラルキル基、又は置換アラルキル基等が挙げられ、中でも、アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アラルキル基、又は置換アラルキル基が好ましく、アルキル基、置換アルキル基が特に好ましい。
また、前記脂肪族基は、環状脂肪族基でも鎖状脂肪族基でもよい。鎖状脂肪族基は分岐を有していてもよい。
構造式(36)中、R1fで表される前記アルキル基としては、直鎖状、分岐状、環状のアルキル基が挙げられ、該アルキル基の炭素原子数としては、1〜30が好ましく、1〜20がより好ましい。置換アルキル基のアルキル部分の炭素原子数の好ましい範囲については、アルキル基の場合と同様である。また、前記アルキル基は、置換基を有するアルキル基、無置換のアルキル基のいずれであってもよい。
構造式(36)中、R1fで表される前記アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、2−エチルヘキシル基、デシル基、ドデシル基、オクタデシル基、シクロヘキシル基、シクロペンチル基、ネオペンチル基、イソプロピル基、イソブチル基等が挙げられる。
構造式(36)中、R1fで表される前記置換アルキル基の置換基としては、カルボキシル基、スルホ基、シアノ基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)、ヒドロキシ基、炭素数30以下のアルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、ベンジルオキシカルボニル基)、炭素数30以下のアルキルスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基、アルキルスルホニル基、アリールスルホニル基、炭素数30以下のアシルアミノスルホニル基、炭素数30以下のアルコキシ基(例えば、メトキシ基、エトキシ基、ベンジルオキシ基、フェノキシエトキシ基、フェネチルオキシ基等)、炭素数30以下のアルキルチオ基(例えば、メチルチオ基、エチルチオ基、メチルチオエチルチオエチル基等)、炭素数30以下のアリールオキシ基(例えば、フェノキシ基、p−トリルオキシ基、1−ナフトキシ基、2−ナフトキシ基等)、ニトロ基、炭素数30以下のアルキル基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、炭素数30以下のアシルオキシ基(例えば、アセチルオキシ基、プロピオニルオキシ基等)、炭素数30以下のアシル基(例えば、アセチル基、プロピオニル基、ベンゾイル基等)、カルバモイル基(例えば、カルバモイル基、N,N−ジメチルカルバモイル基、モルホリノカルボニル基、ピペリジノカルボニル基等)、スルファモイル基(例えば、スルファモイル基、N,N−ジメチルスルファモイル基、モルホリノスルホニル基、ピペリジノスルホニル基等)、炭素数30以下のアリール基(例えば、フェニル基、4−クロロフェニル基、4−メチルフェニル基、α−ナフチル基等)、置換アミノ基(例えば、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、ジアリールアミノ基、アシルアミノ基等)、置換ウレイド基、置換ホスホノ基、複素環基等が挙げられる。ここで、カルボキシル基、スルホ基、ヒドロキシ基、ホスホノ基は、塩の状態であってもよい。その際、塩を形成するカチオンとしては、後述のG+等が挙げられる。
構造式(36)中、前記R1fで表される前記アルケニル基としては、直鎖状、分岐状、環状のアルケニル基が挙げられ、該アルケニル基の炭素原子数としては、2〜30が好ましく、2〜20がより好ましい。また、該アルケニル基は、置換基を有する置換アルケニル基、無置換のアルケニル基のいずれであってもよく、置換アルケニル基のアルケニル部分の炭素原子数の好ましい範囲はアルケニル基の場合と同様である。前記置換アルケニル基の置換基としては、前記置換アルキル基の場合と同様の置換基が挙げられる。
構造式(36)中、前記R1fで表される前記アルキニル基としては、直鎖状、分岐状、環状のアルキニル基が挙げられ、該アルキニル基の炭素原子数としては、2〜30が好ましく、2〜20がより好ましい。また、該アルキニル基は、置換基を有する置換アルキニル基、無置換のアルキニル基のいずれであってもよく、置換アルキニル基のアルキニル部分の炭素原子数の好ましい範囲はアルキニル基の場合と同様である。置換アルキニル基の置換基としては、前記置換アルキル基の場合と同様の置換基が挙げられる。
構造式(36)中、前記R1fで表される前記前記アラルキル基としては、直鎖状、分岐状、環状のアラルキル基が挙げられ、該アラルキル基の炭素原子数としては、7〜35が好ましく、7〜25がより好ましい。また、該アラルキル基は、置換基を有する置換アラルキル基、無置換のアラルキル基のいずれであってもよく、置換アラルキル基のアラルキル部分の炭素原子数の好ましい範囲はアラルキル基の場合と同様である。置換アラルキル基の置換基としては、前記置換アルキル基の場合と同様の置換基が挙げられる。
構造式(36)中、R1fが芳香族基を表す場合、該芳香族基としては、例えば、アリール基、置換アリール基が挙げられる。アリール基の炭素原子数としては、6〜30が好ましく、6〜20がより好ましい。置換アリール基のアリール部分の好ましい炭素原子数の範囲としては、アリール基と同様である。前記R1fで表されるアリール基としては、例えば、フェニル基、α−ナフチル基、β−ナフチル基等が挙げられる。置換アリール基の置換基としては、前記置換アルキル基の場合と同様の置換基が挙げられる。
前記構造式(36)中、前記L1fとL2fは、夫々独立に置換基を有していてもよいメチン基を表し、L1fとL2fが置換基を有するメチン基を表す場合、該置換基が結合して不飽和脂肪族環又は不飽和複素環を形成してもよい。
前記メチン基の置換基の例としては、置換アミノ基(例えば、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、ジアリールアミノ基、アシルアミノ基等)、置換オキシ基(例えば、ヒドロキシ基、アルコキシ基、アシルオキシ基、アリールオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基等)、置換メルカプト基(例えば、アルキルメルカプト基、アリールメルカプト基等)、ハロゲン原子、脂肪族基、芳香族基が挙げられる。
前記メチン基の置換基である前記ハロゲン原子としては、例えば、フッ素原子、臭素原子、塩素原子等が挙げられ、前記脂肪族基、芳香族基としては、前記R1fで表される脂肪族基、芳香族基と同義である。また、置換アミノ基、置換オキシ基及び置換メルカプト基の置換基としては、前記R1fで表される置換アルキル基の置換基と同義である。
前記構造式(36)中、L1fとL2fで表わされるメチン基としては、無置換のメチン基、或いは、置換基を有する場合には、ハロゲン原子若しくは脂肪族基により置換されたもの、又は置換基が互いに結合してシクロペンテン環又はシクロヘキセン環が形成されたものが特に好ましい。
また、構造式(36)において、mは0、1、2、又は3を表す。
前記構造式(36)中、Z1fは、5員又は6員の含窒素複素環を形成する原子団を表し、該含窒素複素環には芳香族環又は複素環が縮合していてもよく、含窒素複素環及び該含窒素複素環に縮合している芳香族環若しくは複素環は置換基を有していてもよい。含窒素複素環としては、例えば、オキサゾール環、チアゾール環、セレナゾール環、ピロール環、ピロリン環、イミダゾール環、及びピリジン環が挙げられる。6員環よりも5員環の方が好ましい。また、含窒素複素環には、芳香族環(ベンゼン環、ナフタレン環)が縮合していてもよく、含窒素複素環及びその縮合環はさらに置換基を有していてもよい。置換基の例としては、前記R1fで表される置換アルキルの置換基と同様のものを挙げることができる。
前記構造式(36)中のYfは、N(R31f)R32f、OR33f、又はS(O)nR34fを表し、ここで、R31f、R32f、R33f、R34fは、それぞれ独立に水素原子又は一価の置換基を表し、nは0、1又は2を表す。
前記R31f、R32f、R33fで表される一価の置換基としては、脂肪族基、芳香族環基、複素環基、C(O)pR35f、S(O)qR36fが挙げられる。ここで、R35f、R36fは、それぞれ独立に水素原子、脂肪族基、芳香族環基、複素環基又はN(R37f)R38fを表し、R37f、R38fは、それぞれ独立に水素原子、脂肪族基、芳香族環基、複素環基、COR39f又はSO2R40fを表し、R39f、R40fは、水素原子、脂肪族基、芳香族環基、複素環基を表す。また、p及びqは、それぞれ独立に1又は2を表す。また、前記R34fで表される一価の置換基は、上記R36fと同義である。
前記R31f〜R40fで表される脂肪族基、芳香族環基は、前記構造式(36)中のR1fで表される脂肪族基、芳香族環基と同義である。
前記R31f〜R40fで表される複素環基としては、置換基を有する複素環基、無置換の複素環基が挙げられる。前記複素環基としては、含窒素原子、含酸素原子、含硫黄原子の複素環が挙げられ、例えば、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、キノリン環、イソキノリン環、キノキサリン環、アクリジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、ピロリン環、オキサゾール環、チアゾール環、オキサジアゾール環、チアゾリン環、チオフェン環、インドール環等が挙げられる。置換基を有する複素環基の置換基としては、前記置換アルキル基の場合と同様の置換基が挙げられる。中でも、前記構造式(36)中のYfとしては、より高感度化できる点で、N(R31f)R32fが好ましい。
前記構造式(36)中、X−は陰イオンを形成し得る基を表す。陰イオンとしては、例えば、ハロゲンイオン(Cl−、Br−、I−)、p−トルエンスルホン酸イオン、エチル硫酸イオン、1、5−ジスルホナフタレンジア二オン、PF6 −、BF4 −、及びClO4 −等が挙げられる。また、X−は前記構造式(36)のカチオン部位のいずれか置換可能な位置を置換している置換基であってもよく、その場合は、前記構造式(36)で表される化合物は内部塩を形成する。
前記構造式(36)で表される化合物の中でも、感度により優れる点で、下記構造式(37)又は構造式(38)で表される化合物が好ましい。
前記構造式(37)及び構造式(38)中、R11fとR21fは、各々独立に、脂肪族基又は芳香族基を表す。前記構造式(37)及び構造式(38)中、L11f、L12f、L21f、L22fは、夫々独立に置換基を有していてもよいメチン基を表し、L11f、L12f、L21f、L22fが置換基を有するメチン基を表す場合、該置換基が結合して不飽和脂肪族環又は不飽和複素環を形成してもよい。前記構造式(37)中のベンゼン環Z11fには、他のベンゼン環が縮合していてもよく、ベンゼン環Z11f及びそれらの縮合環は、置換基を有していてもよい。前記構造式(38)中のZ21fは、複素環を形成する原子団を表し、該複素環は置換基を有していてもよい。前記構造式(37)及び構造式(38)中、Y11f及びY21fは、それぞれ独立に−CR28fR29f−、−NR30f−、−O−、−S−、又はSe−を表し、R28f、R29f、R30fは、それぞれ独立に水素原子、脂肪族基又は芳香族基を表し、R28f及びR29fは互いに結合して環を形成する原子団であってもよい。前記構造式(37)及び構造式(38)中、mは0、1、2、又は3を表す。X−は、陰イオンを形成し得る基を表す。
前記構造式(37)及び構造式(38)中、Yfは前記構造式(36)のYfと同義である。
前記構造式(37)及び構造式(38)中、Yfは前記構造式(36)のYfと同義である。
前記構造式(37)及び構造式(38)中のR11fとR21fは、前記構造式(36)のR1fとそれぞれ同義であり、好ましい例も同様である。L11f、L12f及びL21f、L22fは、それぞれ前記構造式(36)におけるL1f、L2fと同義であり、好ましい例も同様である。
前記構造式(37)中のベンゼン環Z11fは、他のベンゼン環が縮合していてもよく、ベンゼン環Z11f及びそれらの縮合環は、置換基を有していてもよい。置換基の例としては、前記構造式(36)中の前記R1fで表される置換アルキルの置換基と同様の置換基を挙げることができる。これらの中でも、感度を向上できる点で、電子吸引性の置換基が好ましい。電子吸引性の置換基とは、Hammetのσ(シグマ)値が正のものを言う。これらの電子吸引性基の中でも、σm(シグマメタ)又はσp(シグマパラ)の値が0.2以上のものが好ましく、さらに0.4以上のものがより好ましい。
前記電子吸引性の置換基としては、例えばハロゲン基、アシルオキシ基、アシル基、カルバモイル基、スルファモイル基、アリール基、アルコキシカルボニル基、アシルアミノ基、アルキルスルホニルアミノ基、アリールスルホニルアミノ基、アルキルスルホニル基、アリールスルホニル基、シアノ基、ニトロ基、ハロメチル基(例えばトリフルオロメチル基)、カルボキシル基、スルホ基、ホスホノ基等が挙げられる。
前記構造式(38)中のZ21fは、複素環を形成する原子団を表し、該複素環は置換基を有していてもよい。置換基の例としては、前記構造式(36)中の前記R1fで表される置換アルキルの置換基と同様の置換基を挙げることができる。この様な複素環を形成する原子団Z21fの例としては、下記の原子団を挙げることができる。
ここで、Rは、脂肪族基、芳香族基を表す。
前記構造式(37)及び構造式(38)中のY11f及びY21fは、それぞれ独立に、硫黄原子、酸素原子、C(R33f)R34f、セレン原子、テルル原子を表し、R33fとR34fは、夫々独立に水素原子、脂肪族基又は芳香族基を表し、R33fとR34fは、互いに結合して環を形成する原子団であってもよい。該脂肪族基及び芳香族基は、前記構造式(36)中のR1fで表される脂肪族基及び芳香族基とそれぞれ同義であり、脂肪族基としては、特にアルキル基又は置換アルキル基が好ましい。上記Y11f及びY21fとしては、酸素原子、硫黄原子、C(R33f)R34fが好ましく、特に硫黄原子、C(R33f)R34fが好ましく、R33fとR34fはアルキル基が好ましい。
前記構造式(37)及び構造式(38)中、前記mは、1又は2が好ましく、特に1が好ましい。X−は陰イオンを形成し得る基を表し、前記構造式(36)におけるX−と同義であり、好ましい例も同様である。
以下に、前記構造式(36)〜(38)で表される化合物の具体例(例示化合物)を示すが、本発明においてはこれらに限定されるものではない。
前記構造式(36)〜(38)で表される化合物は、1種単独で用いてもよく、2種以上を併用してもよい。
前記塩基性核を有する化合物として、更に、下記構造式(39)〜(44)で表される化合物が挙げられる。
前記構造式(39)中、L5A、L6A、L7A、L8A、L9A、L10A、及びL11Aはメチン基を表す。前記構造式(39)中、p3、及びp4は0または1を表す。前記構造式(39)中、n1は0、1、2、3または4を表す。前記構造式(39)中、Z3A及びZ4Aは含窒素複素環を形成するために必要な原子群を表す。ただし、これらに環が縮環していても良い。前記構造式(39)中、R3A、R4Aは脂肪族基、芳香族基、又は複素環基を表す。前記構造式(39)中、M1は電荷均衡のための対イオンを表し、m1は分子の電荷を中和するのに必要な0以上の数を表す。但し、R3A、R4A、Z3A、Z4A、L5A〜L11Aは、前記構造式(39)がカチオン色素の場合アニオン性の置換基を持たず、前記構造式(39)がベタイン色素の場合アニオン性の置換基を1つ持つ。
前記構造式(40)中、L12A、L13A、L14A、及びL15Aはメチン基を表す。前記構造式(40)中、p5は0又は1を表す。前記構造式(40)中、n2は0、1、2、3又は4を表す。前記構造式(40)中、Z5A及びZ6Aは含窒素複素環を形成するために必要な原子群を表す。ただし、これらに環が縮環していても良い。前記構造式(40)中、R5A及びR6Aは脂肪族基、芳香族基、又は複素環基を表す。前記構造式(40)中、M1、m1は前記構造式(39)と同義である。但し、R5A、R6A、Z5A、Z6A、L12A〜L15Aは、前記構造式(40)がカチオン色素の場合カチオン性の置換基を持ち、前記構造式(40)がベタイン色素の場合カチオン性の置換基1つとアニオン性の置換基1つを持ち、前記構造式(40)がノニオン色素の場合カチオン性の置換基とアニオン性の置換基を持たない。
前記構造式(41)中、L16A、L17A、L18A、L19A、L20A、L21A、L22A、L23A、及びL24Aはメチン基を表す。p6及びp7は各々独立に0又は1を表す。前記構造式(41)中、n3及びn4は0、1、2、3又は4を表す。前記構造式(41)中、Z7A、Z8A及びZ9Aは含窒素複素環を形成するために必要な原子群を表す。ただし、Z7A,及びZ9Aには、環が縮環していても良い。前記構造式(41)中、R7A、R8A及びR9Aは、各々独立に、脂肪族基、芳香族基、又は複素環基を表す。前記構造式(41)中、M1、m1は前記構造式(39)と同義である。但し、R7A、R8A、R9A、Z7A、Z8A、Z9A、L16A〜L24Aは、前記構造式(41)がカチオン色素の場合アニオン性の置換基を持たず、前記構造式(41)がベタイン色素の場合アニオン性の置換基を1つ持つ。
前記構造式(42)中、L25A、L26A、L27A、L28A、L29A、L30A、及びL31Aはメチン基を表す。前記構造式(42)中、p8、及びp9は各々独立に0または1を表す。前記構造式(42)中、n5は0、1、2、3または4を表す。前記構造式(42)中、Z10A及びZ11Aは含窒素複素環を形成するために必要な原子群を表す。ただし、これらに環が縮環していても良い。R10A、R11Aは脂肪族基、芳香族基、又は複素環基を表す。前記構造式(42)中、M2は電荷均衡のための対イオンを表し、m2は分子の電荷を中和するのに必要な0以上の数を表す。但し、R10A及びR11Aはアニオン性の置換基を有する。
前記構造式(43)中、L32A、L33A、L34A、及びL35Aはメチン基を表す。前記構造式(43)中、p9は各々独立に0又は1を表す。前記構造式(43)中、n6は0、1、2、3又は4を表す。前記構造式(43)中、Z12A及びZ13Aは含窒素複素環を形成するために必要な原子群を表す。ただし、これらに環が縮環していても良い。前記構造式(43)中、R12A及びR13Aは、各々独立に、脂肪族基、芳香族基、又は複素環基を表す。前記構造式(43)中、M2、m2は前記構造式(42)のM2、m2と同義である。但し、R12A、R13A、のうち少なくとも1つはアニオン性の置換基を有する。
前記構造式(44)中、L36A、L37A、L38A、L39A、L40A、L41A、L42A、L43A、及びL44Aはメチン基を表す。前記構造式(44)中、p10及びp11は、各々独立に0又は1を表す。前記構造式(44)中、n7及びn8は、各々独立に0、1、2、3又は4を表す。前記構造式(44)中、Z14A、Z15A及びZ16Aは含窒素複素環を形成するために必要な原子群を表す。ただし、Z14A、及びZ15Aには、環が縮環していても良い。前記構造式(44)中、R14A、R15A及びR16Aは脂肪族基、芳香族基、又は複素環基を表す。前記構造式(44)中、M2、m2は前記構造式(42)のM2、m2と同義である。但し、R14A、R15A、R16A、のうち少なくとも2つはアニオン性の置換基を有する。
但し、前記構造式(39)、(40)及び(41)の化合物を単独で用いる場合、R3A及びR4Aのうち少なくとも一つ、好ましくは両方とも芳香族環を有する基、R5A及びR6Aのうち少なくとも一つ、好ましくは両方とも芳香族環を有する基、及びR7A、R8A、及びR9Aのうち少なくとも一つ、好ましくは2つ、さらに好ましくは3つとも芳香族環を有する基、である。
前記構造式(39)、(40)及び(41)の化合物と構造式(42)、(43)及び(44)の化合物を併用する場合は、組み合わせた色素のR3A〜R9A、及びR10A〜R16Aのうち、少なくとも1つは芳香族環を有する基であり、好ましくは2つが芳香族環を有する基であり、さらに好ましくは3つが芳香族環を有する基であり、特に好ましくは4つ以上が芳香族環を有する基である。
以下に、前記構造式(39)〜(41)で表される化合物の具体例(例示化合物)を示すが、本発明においてはこれらに限定されるものではない。
以下に、前記構造式(42)〜(44)で表される化合物の具体例(例示化合物)を示すが、本発明においてはこれらに限定されるものではない。
なお、前記塩基性核を有する化合物は、感光層の感度の向上を図るだけでなく、光励起により前記モノマーの重合を開始させるような光重合開始剤としての機能をも有している。
(4)酸性核を有する化合物
増感剤としての酸性核を有する化合物は、酸性核を有する化合物であれば特に制限はなく、前記光照射手段(例えば、可視光線や紫外光及び可視光レーザ等)に合わせて適宜選択することができる。酸性核を有する化合物を用いることにより、例えば、前記感光層の感度を0.1〜100mJ/cm2に極めて容易に調整することもできる。
前記酸性核を有する化合物としては、例えば、メロシアニン色素、3核メロシアニン色素、4核メロシアニン色素、ロダシアニン色素、オキソノール色素などが挙げられ、これらの中でも、メロシアニン色素、ロダシアニン色素が好ましく、メロシアニン色素がより好ましい。
増感剤としての酸性核を有する化合物は、酸性核を有する化合物であれば特に制限はなく、前記光照射手段(例えば、可視光線や紫外光及び可視光レーザ等)に合わせて適宜選択することができる。酸性核を有する化合物を用いることにより、例えば、前記感光層の感度を0.1〜100mJ/cm2に極めて容易に調整することもできる。
前記酸性核を有する化合物としては、例えば、メロシアニン色素、3核メロシアニン色素、4核メロシアニン色素、ロダシアニン色素、オキソノール色素などが挙げられ、これらの中でも、メロシアニン色素、ロダシアニン色素が好ましく、メロシアニン色素がより好ましい。
前記酸性核とは、例えば、ジェイムス(James)編「ザ・セオリー・オブ・ザ・フォトグラフィック・プロセス(The Theory of the Photographic Process)」第4版、マクミラン出版社、1977年、第8章「増感色素と減感色素」により定義され、米国特許第3,567,719号、第3,575,869号、第3,804,634号、第3,837,862号、第4,002,480号、第4,925,777号、特開平3−167546号などに記載されているものが挙げられる。
前記酸性核が、非環式であるとき、メチン結合の末端は、マロノニトリル、アルカンスルフォニルアセトニトリル、シアノメチルベンゾフラニルケトン、シアノメチルフェニルケトン、マロン酸エステル、及びアシルアミノメチル置換したケトン類等の活性メチレン化合物などの基であることが好ましい。
前記酸性核を形成するために必要な原子群が環式であるとき、炭素、窒素、及びカルコゲン(典型的には酸素、硫黄、セレン、及びテルル)原子からなる5員又は6員の含窒素複素環が形成されることが好ましく、前記含窒素複素環としては、例えば、2−ピラゾリン−5−オン、ピラゾリジン−3、5−ジオン、イミダゾリン−5−オン、ヒダントイン、2−チオヒダントイン、4−チオヒダントイン、2−イミノオキサゾリジン−4−オン、2−オキサゾリン−5−オン、2−チオオキサゾリン−2、4−ジオン、イソオキサゾリン−5−オン、2−チアゾリン−4−オン、チアゾリジン−4−オン、チアゾリジン−2,4−ジオン、ローダニン、チアゾリジン−2,4−ジチオン、イソローダニン、インダン−1,3−ジオン、チオフェン−3−オン、チオフェン−3−オン−1,1−ジオキシド、インドリン−2−オン、インドリン−3−オン、2−オキソインダゾリニウム、3−オキソインダゾリニウム、5,7−ジオキソ−6,7−ジヒドロチアゾロ[3,2−a]ピリミジン、シクロヘキサン−1,3−ジオン、3,4−ジヒドロイソキノリン−4−オン、1,3−ジオキサン−4,6−ジオン、バルビツール酸、2−チオバルビツール酸、クロマン−2,4−ジオン、インダゾリン−2−オン、ピリド[1,2−a]ピリミジン−1,3−ジオン、ピラゾロ[1,5−b]キナゾロン、ピラゾロ[1,5−a]ベンゾイミダゾール、ピラゾロピリドン、1,2,3,4−テトラヒドロキノリン−2,4−ジオン、3−オキソ−2,3−ジヒドロベンゾ[d]チオフェン−1,1−ジオキサイド、3−ジシアノメチン−2,3−ジヒドロベンゾ[d]チオフェン−1,1−ジオキサイドの核などが挙げられる。
前記酸性核が、非環式であるとき、メチン結合の末端は、マロノニトリル、アルカンスルフォニルアセトニトリル、シアノメチルベンゾフラニルケトン、シアノメチルフェニルケトン、マロン酸エステル、及びアシルアミノメチル置換したケトン類等の活性メチレン化合物などの基であることが好ましい。
前記酸性核を形成するために必要な原子群が環式であるとき、炭素、窒素、及びカルコゲン(典型的には酸素、硫黄、セレン、及びテルル)原子からなる5員又は6員の含窒素複素環が形成されることが好ましく、前記含窒素複素環としては、例えば、2−ピラゾリン−5−オン、ピラゾリジン−3、5−ジオン、イミダゾリン−5−オン、ヒダントイン、2−チオヒダントイン、4−チオヒダントイン、2−イミノオキサゾリジン−4−オン、2−オキサゾリン−5−オン、2−チオオキサゾリン−2、4−ジオン、イソオキサゾリン−5−オン、2−チアゾリン−4−オン、チアゾリジン−4−オン、チアゾリジン−2,4−ジオン、ローダニン、チアゾリジン−2,4−ジチオン、イソローダニン、インダン−1,3−ジオン、チオフェン−3−オン、チオフェン−3−オン−1,1−ジオキシド、インドリン−2−オン、インドリン−3−オン、2−オキソインダゾリニウム、3−オキソインダゾリニウム、5,7−ジオキソ−6,7−ジヒドロチアゾロ[3,2−a]ピリミジン、シクロヘキサン−1,3−ジオン、3,4−ジヒドロイソキノリン−4−オン、1,3−ジオキサン−4,6−ジオン、バルビツール酸、2−チオバルビツール酸、クロマン−2,4−ジオン、インダゾリン−2−オン、ピリド[1,2−a]ピリミジン−1,3−ジオン、ピラゾロ[1,5−b]キナゾロン、ピラゾロ[1,5−a]ベンゾイミダゾール、ピラゾロピリドン、1,2,3,4−テトラヒドロキノリン−2,4−ジオン、3−オキソ−2,3−ジヒドロベンゾ[d]チオフェン−1,1−ジオキサイド、3−ジシアノメチン−2,3−ジヒドロベンゾ[d]チオフェン−1,1−ジオキサイドの核などが挙げられる。
また、前記酸性核としては、下記に示す酸性複素環が挙げられる。
ここで、Rは、各々独立に、水素原子、脂肪族基、又は芳香族基を表す。
前記酸性核を有する化合物として、具体的には、下記構造式(45)〜(52)で表される化合物が挙げられる。
前記構造式(45)中、L1B〜L4Bはメチン基を表す。前記構造式(45)中、p1は0又は1を表す。前記構造式(45)中、n1は0、1、2、3又は4を表す。前記構造式(45)中、Z1B及びZ2Bは含窒素複素環を形成するために必要な原子群を表す。ただし、これらに環が縮環していてもよい。環としては、芳香族環、又は非芳香族環いずれでもよい。好ましくは芳香族環であり、例えばベンゼン環、ナフタレン環などの炭化水素芳香族環や、ピラジン環、チオフェン環などの複素芳香族環が挙げられる。
前記構造式(45)中、R1B及びR2Bは、各々独立にアルキル基、アリール基、又は複素環基を表す。前記構造式(45)中、M1は電荷均衡のための対イオンを表し、m1は分子の電荷を中和するのに必要な0以上の数を表す。
但し、R1B、R2B、Z1B、Z2B、L1B〜L4Bは、前記構造式(45)がカチオン色素の場合カチオン性の置換基を持ち、前記構造式(45)がベタイン色素の場合カチオン性の置換基1つとアニオン性の置換基1つを持ち、前記構造式(45)がノニオン色素の場合カチオン性の置換基とアニオン性の置換基を持たない。
前記カチオン色素とは、対イオンを除いた色素の電荷がカチオン性である色素ならばいずれでもよいが、好ましくはアニオン性の置換基を持たない色素である。また、前記アニオン色素とは、対イオンを除いた色素の電荷がアニオン性である色素ならばいずれでもよいが、好ましくはアニオン性の置換基を1つ以上持つ色素である。前記ベタイン色素とは、分子内に電荷を持つが分子内塩を形成し、分子が全体として電荷を持たない色素である。前記ノニオン色素とは、分子内に電荷を全く持たない色素である。
前記アニオン性置換基とは、負電荷を有した置換基であり、例えばpH5〜8の間で90%以上解離したプロトン解離性酸性基が挙げられる。具体的には、例えばスルホ基、カルボキシル基、スルファト基、リン酸基、ほう酸基、アルキルスルホニルカルバモイルアルキル基(例えばメタンスルホニルカルバモイルメチル基)、アシルカルバモイルアルキル基(例えばアセチルカルバモイルメチル基)、アシルスルファモイルアルキル基(例えばアセチルスルファモイルメチル基)、アルキルスルフォニルスルファモイルアルキル基(例えばメタンスルフォニルスルファモイルメチル基)が挙げられる。さらに好ましくはスルホ基、カルボキシル基である。特に好ましくはスルホ基である。
前記カチオン性置換基としては、置換又は無置換のアンモニウム基、ピリジニウム基などが挙げられる。
前記構造式(45)の化合物を単独で用いる場合、前記構造式(45)中のR1Bは芳香族環を持つ基であることが好ましい。
前記構造式(45)中、R1B及びR2Bは、各々独立にアルキル基、アリール基、又は複素環基を表す。前記構造式(45)中、M1は電荷均衡のための対イオンを表し、m1は分子の電荷を中和するのに必要な0以上の数を表す。
但し、R1B、R2B、Z1B、Z2B、L1B〜L4Bは、前記構造式(45)がカチオン色素の場合カチオン性の置換基を持ち、前記構造式(45)がベタイン色素の場合カチオン性の置換基1つとアニオン性の置換基1つを持ち、前記構造式(45)がノニオン色素の場合カチオン性の置換基とアニオン性の置換基を持たない。
前記カチオン色素とは、対イオンを除いた色素の電荷がカチオン性である色素ならばいずれでもよいが、好ましくはアニオン性の置換基を持たない色素である。また、前記アニオン色素とは、対イオンを除いた色素の電荷がアニオン性である色素ならばいずれでもよいが、好ましくはアニオン性の置換基を1つ以上持つ色素である。前記ベタイン色素とは、分子内に電荷を持つが分子内塩を形成し、分子が全体として電荷を持たない色素である。前記ノニオン色素とは、分子内に電荷を全く持たない色素である。
前記アニオン性置換基とは、負電荷を有した置換基であり、例えばpH5〜8の間で90%以上解離したプロトン解離性酸性基が挙げられる。具体的には、例えばスルホ基、カルボキシル基、スルファト基、リン酸基、ほう酸基、アルキルスルホニルカルバモイルアルキル基(例えばメタンスルホニルカルバモイルメチル基)、アシルカルバモイルアルキル基(例えばアセチルカルバモイルメチル基)、アシルスルファモイルアルキル基(例えばアセチルスルファモイルメチル基)、アルキルスルフォニルスルファモイルアルキル基(例えばメタンスルフォニルスルファモイルメチル基)が挙げられる。さらに好ましくはスルホ基、カルボキシル基である。特に好ましくはスルホ基である。
前記カチオン性置換基としては、置換又は無置換のアンモニウム基、ピリジニウム基などが挙げられる。
前記構造式(45)の化合物を単独で用いる場合、前記構造式(45)中のR1Bは芳香族環を持つ基であることが好ましい。
前記構造式(46)中、L5B〜L8Bはメチン基を表す。前記構造式(46)中、p2は0又は1を表す。前記構造式(46)中、n2は0、1、2、3又は4を表す。前記構造式(46)中、Z3B及びZ4Bは含窒素複素環を形成するために必要な原子群を表す。ただし、これらに環が縮環していてもよい。環としては、芳香族環、又は非芳香族環いずれでもよい。好ましくは芳香族環であり、例えばベンゼン環、ナフタレン環などの炭化水素芳香族環や、ピラジン環、チオフェン環などの複素芳香族環が挙げられる。
前記構造式(46)中、R3B及びR4Bは、各々独立にアルキル基、アリール基、又は複素環基を表す。前記構造式(46)中、M2は電荷均衡のための対イオンを表し、m2は分子の電荷を中和するのに必要な0以上の数を表す。
但し、前記構造式(46)中のR3B及びR4Bのうち少なくとも1つは、アニオン性の置換基を有する。
前記構造式(46)中、R3B及びR4Bは、各々独立にアルキル基、アリール基、又は複素環基を表す。前記構造式(46)中、M2は電荷均衡のための対イオンを表し、m2は分子の電荷を中和するのに必要な0以上の数を表す。
但し、前記構造式(46)中のR3B及びR4Bのうち少なくとも1つは、アニオン性の置換基を有する。
前記構造式(45)及び(46)をさらに詳細に説明する。
前記含窒素複素環としては、チアゾリン核、チアゾール核、ベンゾチアゾール核、オキサゾリン核、オキサゾール核、ベンゾオキサゾール核、セレナゾリン核、セレナゾール核、ベンゾセレナゾール核、3,3−ジアルキルインドレニン核(例えば、3,3−ジメイルインドレニン)、イミダゾリン核、イミダゾ−ル核、ベンゾイミダゾール核、2−ピリジン核、4−ピリジン核、2−キノリン核、4−キノリン核、1−イソキノリン核、3−イソキノリン核、イミダゾ〔4,5−b〕キノキザリン核、オキサジアゾール核、チアジアゾール核、テトラゾール核、ピリミジン核などを挙げることができるが、好ましくはベンゾチアゾール核、ベンゾオキサゾール核、3,3−ジアルキルインドレニン核(例えば3,3−ジメチルインドレニン)、ベンゾイミダゾール核、2−ピリジン核、4−ピリジン核、2−キノリン核、4−キノリン核、1−イソキノリン核、及び3−イソキノリン核が挙げられ、ベンゾチアゾール核、ベンゾオキサゾール核、3,3−ジアルキルインドレニン核(例えば3,3−ジメチルインドレニン)、及びベンゾイミダゾール核が好ましく、ベンゾオキサゾール核、ベンゾチアゾール核、及びベンゾイミダゾール核がより好ましく、ベンゾオキサゾール核、及びベンゾチアゾール核が特に好ましい。
前記含窒素複素環としては、チアゾリン核、チアゾール核、ベンゾチアゾール核、オキサゾリン核、オキサゾール核、ベンゾオキサゾール核、セレナゾリン核、セレナゾール核、ベンゾセレナゾール核、3,3−ジアルキルインドレニン核(例えば、3,3−ジメイルインドレニン)、イミダゾリン核、イミダゾ−ル核、ベンゾイミダゾール核、2−ピリジン核、4−ピリジン核、2−キノリン核、4−キノリン核、1−イソキノリン核、3−イソキノリン核、イミダゾ〔4,5−b〕キノキザリン核、オキサジアゾール核、チアジアゾール核、テトラゾール核、ピリミジン核などを挙げることができるが、好ましくはベンゾチアゾール核、ベンゾオキサゾール核、3,3−ジアルキルインドレニン核(例えば3,3−ジメチルインドレニン)、ベンゾイミダゾール核、2−ピリジン核、4−ピリジン核、2−キノリン核、4−キノリン核、1−イソキノリン核、及び3−イソキノリン核が挙げられ、ベンゾチアゾール核、ベンゾオキサゾール核、3,3−ジアルキルインドレニン核(例えば3,3−ジメチルインドレニン)、及びベンゾイミダゾール核が好ましく、ベンゾオキサゾール核、ベンゾチアゾール核、及びベンゾイミダゾール核がより好ましく、ベンゾオキサゾール核、及びベンゾチアゾール核が特に好ましい。
前記含窒素複素環上の置換基をVとすると、Vで示される置換基としては特に制限は無いが、例えば、ハロゲン原子(例えば塩素、臭素、沃素、フッ素)、メルカプト基、シアノ基、カルボキシ基、リン酸基、スルホ基、ヒドロキシ基、カルバモイル基(例えばメチルカルバモイル、エチルカルバモイル、モルホリノカルボニル)、スルファモイル基(例えばメチルスルファモイル、エチルスルファモイル、ピペリジノスルフォニル)、ニトロ基、アルコキシ基(例えばメトキシ、エトキシ、2−メトキシエトキシ、2−フェニルエトキシ)、アリールオキシ基(例えばフェノキシ、p−メチルフェノキシ、p−クロロフェノキシ、ナフトキシ)、アシル基(例えばアセチル、ベンゾイル、トリクロロアセチル)、アシルオキシ基(例えばアセチルオキシ、ベンゾイルオキシ)、アシルアミノ基(例えばアセチルアミノ)、スルホニル基(例えばメタンスルホニル、エタンスルホニル、ベンゼンスルホニル)、スルフィニル基(例えばメタンスルフィニル、エタンスルフィニル、ベンゼンスルフィニル)、スルホニルアミノ基(例えばメタンスルホニルアミノ、エタンスルホニルアミノ、ベンゼンスルホニルアミノ)、アミノ基、置換アミノ基(例えばメチルアミノ、ジメチルアミノ、ベンジルアミノ、アニリノ、ジフェニルアミノ)、アンモニウム基(例えばトリメチルアンモニウム、トリエチルアンモニウム)、ヒドラジノ基(例えばトリメチルヒドラジノ基)、ウレイド基(例えばウレイド基、N,N−ジメチルウレイド基)、イミド基(例えばスクシンイミド基)、アルキルチオ基(例えばメチルチオ、エチルチオ、プロピルチオ)、アリールチオ基(例えばフェニルチオ、p−メチルフェニルチオ、p−クロロフェニルチオ、2−ピリジルチオ、ナフチルチオ)、アルコキシカルボニル基(例えばメトキシカルボニル、エトキシカルボニル、2−ベンジルオキシカルボニル)、アリーロキシカルボニル基(例えばフェノキシカルボニル)、無置換アルキル基(例えばメチル、エチル、プロピル、ブチル)、置換アルキル基{例えばヒドロキシメチル、トリフルオロメチル、ベンジル、カルボキシエチル、エトキシカルボニルメチル、アセチルアミノメチル、またここでは炭素数2から18、好ましくは炭素数3から10、更に好ましくは炭素数3から5の不飽和炭化水素基(例えばビニル基、エチニル基1−シクロヘキセニル基、ベンジリジン基、ベンジリデン基)も置換アルキル基に含まれることにする}、置換又は無置換のアリール基(例えばフェニル、ナフチル、p−カルボキシフェニル、p−ニトロフェニル、3,5−ジクロロフェニル、p−シアノフェニル、m−フルオロフェニル、p−トリル)、及び置換又は無置換のヘテロ環基(例えばピリジル、5−メチルピリジル、チエニル、フリル、モルホリノ、テトラヒドロフルフリル)などが挙げられ、これらの中でも、アルキル基、アリール基、アルコキシ基、ハロゲン原子、芳香環縮合、スルホ基、カルボキシ基、ヒドロキシ基が好ましい。
また、環(芳香族、又は非芳香族の炭化水素環、又は複素環、例えばベンゼン環、ナフタレン環、アントラセン環、キノリン環)が縮合した構造をとることもできる。
これらのVで表わされる置換基上に、さらに該Vが置換していてもよい。
また、環(芳香族、又は非芳香族の炭化水素環、又は複素環、例えばベンゼン環、ナフタレン環、アントラセン環、キノリン環)が縮合した構造をとることもできる。
これらのVで表わされる置換基上に、さらに該Vが置換していてもよい。
前記構造式(45)のZ1B、及び前記構造式(46)のZ3B上の前記置換基Vとしては、芳香族基、芳香環縮合が好ましい。
芳香族基としては、炭化水素芳香族基、及び複素芳香族基がある。これらは、さらに炭化水素芳香族環、及び複素芳香族環同士が縮合した多環縮合環、又は芳香族炭化水素環と芳香族複素環が組み合わされた多環縮合環構造を持つ基であっても良く、前記置換基V等で置換されていてもよい。芳香族基に含まれる芳香族環としては、ベンゼン、ナフタレン、アントラセン、フェナントレン、フルオレン、トリフェニレン、ナフタセン、ビフェニル、ピロール、フラン、チオフェン、イミダゾール、オキサゾール、チアゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、インドリジン、インドール、ベンゾフラン、ベンゾチオフェン、イソベンゾフラン、キノリジン、キノリン、フタラジン、ナフチリジン、キノキサリン、キノキサゾリン、キノリン、カルバゾール、フェナントリジン、アクリジン、フェナントロリン、チアントレン、クロメン、キサンテン、フェノキサチイン、フェノチアジン、フェナジンなどが挙げられる。
芳香族基としては、炭化水素芳香族基、及び複素芳香族基がある。これらは、さらに炭化水素芳香族環、及び複素芳香族環同士が縮合した多環縮合環、又は芳香族炭化水素環と芳香族複素環が組み合わされた多環縮合環構造を持つ基であっても良く、前記置換基V等で置換されていてもよい。芳香族基に含まれる芳香族環としては、ベンゼン、ナフタレン、アントラセン、フェナントレン、フルオレン、トリフェニレン、ナフタセン、ビフェニル、ピロール、フラン、チオフェン、イミダゾール、オキサゾール、チアゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、インドリジン、インドール、ベンゾフラン、ベンゾチオフェン、イソベンゾフラン、キノリジン、キノリン、フタラジン、ナフチリジン、キノキサリン、キノキサゾリン、キノリン、カルバゾール、フェナントリジン、アクリジン、フェナントロリン、チアントレン、クロメン、キサンテン、フェノキサチイン、フェノチアジン、フェナジンなどが挙げられる。
前記構造式(45)のZ2B、及び前記構造式(46)のZ4Bは、酸性核を形成するために必要な原子群を表し、例えば、ヒダントイン、2−チオヒダントイン、4−チオヒダントイン、2−オキサゾリン−5−オン、2−チオオキサゾリン−2,4−ジオン、チアゾリジン−2,4−ジオン、ローダニン、チアゾリジン−2,4−ジチオン、バルビツール酸、及び2−チオバルビツール酸などが挙げられ、ヒダントイン、2−チオヒダントイン、4−チオヒダントイン、2−オキサゾリン−5−オン、ローダニン、バルビツール酸、及び2−チオバルビツール酸であるのが好ましく、2−チオヒダントイン、4−チオヒダントイン、2−オキサゾリン−5−オン、ローダニン、及びバルビツール酸であるのがより好ましい。
前記構造式(45)のR1B及びR2B、並びに前記構造式(46)のR3B及びR4Bは、各々独立に、アルキル基、アリール基、及び複素環基であるが、具体的には、例えば、炭素原子1〜18(好ましくは1〜7、特に好ましくは1〜4)の無置換アルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、ヘキシル、オクチル、ドデシル、オクタデシル)、炭素原子1〜18(好ましくは1〜7、特に好ましくは1〜4)の置換アルキル基{例えば置換基として前記Vが置換したアルキル基が挙げられる。好ましくはアラルキル基(例えばベンジル、2−フェニルエチル)、不飽和炭化水素基(例えばアリル基)、ヒドロキシアルキル基(例えば、2−ヒドロキシエチル、3−ヒドロキシプロピル)、カルボキシアルキル基(例えば、カルボキシメチル、2−カルボキシエチル、3−カルボキシプロピル、4−カルボキシブチル)、アルコキシアルキル基(例えば、2−メトキシエチル、2−(2−メトキシエトキシ)エチル)、アリーロキシアルキル基(例えば2−フェノキシエチル、2−(1−ナフトキシ)エチル)、アルコキシカルボニルアルキル基(例えばエトキシカルボニルメチル、2−ベンジルオキシカルボニルエチル)、アリーロキシカルボニルアルキル基(例えば3−フェノキシカルボニルプロピル)、アシルオキシアルキル基(例えば2−アセチルオキシエチル)、アシルアルキル基(例えば2−アセチルエチル)、カルバモイルアルキル基(例えば2−モルホリノカルボニルエチル)、スルファモイルアルキル基(例えばN,N−ジメチルスルファモイルメチル)、スルホアルキル基(例えば、2−スルホエチル、3−スルホプロピル、3−スルホブチル、4−スルホブチル、2−[3−スルホプロポキシ]エチル、2−ヒドロキシ−3−スルホプロピル、3−スルホプロポキシエトキシエチル)、スルホアルケニル基、スルファトアルキル基(例えば、2ースルファトエチル基、3−スルファトプロピル、4−スルファトブチル)、複素環置換アルキル基(例えば2−(ピロリジン−2−オン−1−イル)エチル、テトラヒドロフルフリル)、アルキルスルホニルカルバモイルアルキル基(例えばメタンスルホニルカルバモイルメチル基)、アシルカルバモイルアルキル基(例えばアセチルカルバモイルメチル基)、アシルスルファモイルアルキル基(例えばアセチルスルファモイルメチル基)、アルキルスルフォニルスルファモイルアルキル基(例えばメタンスルフォニルスルファモイルメチル基)}、炭素数6〜20(好ましくは6〜10、さらに好ましくは6〜8)の無置換アリール基(例えばフェニル基、1−ナフチル基)、炭素数6〜20(好ましくは6〜10、さらに好ましくは6〜8)の置換アリール基(例えば置換基の例として挙げた前記Vが置換したアリール基が挙げられる。具体的にはp−メトキシフェニル基、p−メチルフェニル基、p−クロロフェニル基などが挙げられる。)、炭素数1〜20(好ましくは3〜10、さらに好ましくは4〜8)の無置換複素環基(例えば2−フリル基、2−チエニル基、2−ピリジル基、3−ピラゾリル基、3−イソオキサゾリル基、3−イソチアゾリル基、2−イミダゾリル基、2−オキサゾリル基、2−チアゾリル基、2−ピリダジル基、2−ピリミジル基、3−ピラジル基、2−(1,3,5−トリアゾリル基)、3−(1,2,4−トリアゾリル)基、5−テトラゾリル基)、炭素数1〜20(好ましくは3〜10、さらに好ましくは4〜8)の置換複素環基(例えば前記置換基Vが置換した複素環基が挙げられ、具体的には5−メチル−2−チエニル基、4−メトキシ−2−ピリジル基など)などが挙げられる。
前記構造式(45)のR1B及びR2Bとしては、芳香族環を有する基が好ましい。前記芳香族環としては、炭化水素芳香族環、複素芳香族環が挙げられ、これらは、さらに炭化水素芳香族環、複素芳香族環同士が縮合した多環縮合環、芳香族炭化水素環と芳香族複素環とが組み合わされた多環縮合環であっても良く、前記置換基V等で置換されていてもよい。
前記構造式(45)のR1B及びR2Bとしての前記芳香族環を有する基は、−Lb−A1で表すことができる。ここで、Lbは単結合を表すか、または連結基である。A1は、芳香族基を表す。前記Lbの連結基としては、炭素原子、窒素原子、硫黄原子、酸素原子のうち、少なくとも1種を含む原子又は原子団からなることが好ましい。
前記Lbで表される連結基は、具体的には、アルキレン基(例えばメチレン、エチレン、プロピレン、ブチレン、ペンチレン)、アリーレン基(例えばフェニレン、ナフチレン)、アルケニレン基(例えば、エテニレン、プロペニレン)、アルキニレン基(例えば、エチニレン、プロピニレン)、アミド基、エステル基、スルホアミド基、スルホン酸エステル基、ウレイド基、スルホニル基、スルフィニル基、チオエーテル基、エーテル基、カルボニル基、−N(Va)−(Vaは水素原子、又は一価の置換基を表わす。一価の置換基としては前述のVが挙げられる。)、複素環2価基(例えば、6−クロロ−1,3,5−トリアジン−2,4−ジイル基、ピリミジン−2,4−ジイル基、キノキサリン−2,3−ジイル基)を1つまたはそれ以上組み合わせて構成される炭素数0以上100以下の連結基が挙げられ、該炭素数は1以上20以下であることが好ましい。
前記連結基は、さらに前記Vで表される置換基を有しても良く、環(芳香族、又は非芳香族の炭化水素環、又は複素環)を含有してもよい。
前記Lbで表される連結基は、具体的には、アルキレン基(例えばメチレン、エチレン、プロピレン、ブチレン、ペンチレン)、アリーレン基(例えばフェニレン、ナフチレン)、アルケニレン基(例えば、エテニレン、プロペニレン)、アルキニレン基(例えば、エチニレン、プロピニレン)、アミド基、エステル基、スルホアミド基、スルホン酸エステル基、ウレイド基、スルホニル基、スルフィニル基、チオエーテル基、エーテル基、カルボニル基、−N(Va)−(Vaは水素原子、又は一価の置換基を表わす。一価の置換基としては前述のVが挙げられる。)、複素環2価基(例えば、6−クロロ−1,3,5−トリアジン−2,4−ジイル基、ピリミジン−2,4−ジイル基、キノキサリン−2,3−ジイル基)を1つまたはそれ以上組み合わせて構成される炭素数0以上100以下の連結基が挙げられ、該炭素数は1以上20以下であることが好ましい。
前記連結基は、さらに前記Vで表される置換基を有しても良く、環(芳香族、又は非芳香族の炭化水素環、又は複素環)を含有してもよい。
前記連結基としては、炭素数1以上10以下のアルキレン基(例えばメチレン、エチレン、プロピレン、ブチレン)、炭素数6以上10以下のアリーレン基(例えばフェニレン、ナフチレン)、炭素数2以上10以下のアルケニレン基(例えば)例えば、エテニレン、プロペニレン)、炭素数2以上10以下のアルキニレン基(例えば、エチニレン、プロピニレン)、エーテル基、アミド基、エステル基、スルホアミド基、スルホン酸エステル基を1つ又はそれ以上組み合わせて構成される炭素数1以上10以下の2価の連結基であることが好ましい。これらは、前記Vで置換されていてもよい。
また、前記Lbはスルーボンド(through−bond)相互作用によりエネルギー移動または電子移動を行ってもよい連結基である。スルーボンド相互作用にはトンネル相互作用、超交換(super−exchange)相互作用などがあるが、中でも超交換相互作用に基づくスルーボンド相互作用が好ましい。スルーボンド相互作用及び超交換相互作用は、シャマイ・スペイサー(Shammai Speiser)著、ケミカル・レビュー(Chem. Rev.)第96巻、第1960−1963頁、1996年で定義されている相互作用である。このような相互作用によりエネルギー
移動または電子移動する連結基としては、シャマイ・スペイサー(Shammai Speiser)著、ケミカル・レビュー(Chem. Rev.)第96巻、第1967−1969頁、1996年に記載のものが
好ましい。
移動または電子移動する連結基としては、シャマイ・スペイサー(Shammai Speiser)著、ケミカル・レビュー(Chem. Rev.)第96巻、第1967−1969頁、1996年に記載のものが
好ましい。
前記構造式(45)のR1B及びR2Bとしては、具体的には、炭化水素芳香族環を有するアルキル基として、例えば、アラルキル基(例えば、ベンジル、2−フェニルエチル、ナフチルメチル、2−(4−ビフェニル)エチル)、アリーロキシアルキル基(例えば、2−フェノキシエチル、2−(1−ナフトキシ)エチル、2−(4−ビフェニロキシ)エチル、2−(o,mあるいはp−ハロフェノキシ)エチル、2−(o,mあるいはp−メトキシフェノキシ)エチル)、アリーロキシカルボニルアルキル基(3−フェノキシカルボニルプロピル、2−(1−ナフトキシカルボニル)エチル)などが好ましい。また、複素芳香族環を有するアルキル基として、例えば、2−(2−ピリジル)エチル、2−(4−ピリジル)エチル、2−(2−フリル)エチル、2−(2−チエニル)エチル、2−(2−ピリジルメトキシ)エチルが好ましい。炭化水素芳香族基としては4−メトキシフェニル、フェニル、ナフチル、ビフェニルなどが好ましい。複素芳香族基としては、2ーチエニル基、4−クロロー2−チエニル、2ーピリジル、3ーピラゾリルなどが好ましい。
また、上述の置換もしくは無置換の炭化水素芳香族環、又は複素芳香族環を有するアルキル基がより好ましく、上述の置換もしくは無置換の炭化水素芳香族環を有するアルキル基が特に好ましい。
また、上述の置換もしくは無置換の炭化水素芳香族環、又は複素芳香族環を有するアルキル基がより好ましく、上述の置換もしくは無置換の炭化水素芳香族環を有するアルキル基が特に好ましい。
前記構造式(46)のR3B及びR4Bとしては、芳香族環を有する基が好ましく、少なくとも1つはアニオン性の置換基を持つことが好ましい。
芳香族環としては、炭化水素芳香族環、複素芳香族環が挙げられ、これらは、さらに炭化水素芳香族環、及び複素芳香族環同士が縮合した多環縮合環、又は芳香族炭化水素環と芳香族複素環が組み合わされた多環縮合環であっても良く、前記置換基V等で置換されていてもよい。前記芳香族環としては、上記の芳香族基の説明において芳香族環の例として示したものが好ましい。
芳香族環としては、炭化水素芳香族環、複素芳香族環が挙げられ、これらは、さらに炭化水素芳香族環、及び複素芳香族環同士が縮合した多環縮合環、又は芳香族炭化水素環と芳香族複素環が組み合わされた多環縮合環であっても良く、前記置換基V等で置換されていてもよい。前記芳香族環としては、上記の芳香族基の説明において芳香族環の例として示したものが好ましい。
構造式(46)のR3B及びR4Bとしての前記芳香族環を有する基は、−Lc−A2で表わすことができる。ここで、Lcは単結合を表わすか、または連結基である。A2は、芳香族基を表わす。Lcの連結基として好ましくは、前記Lbなどで説明した連結基が挙げられる。A2の芳香族基として好ましくは、前述の芳香族基の例として挙げたものである。Lc、又はA2には、少なくとも1つのアニオン性置換基が置換している場合が好ましい。
前記炭化水素芳香族環を有するアルキル基として、スルホ基、リン酸基、及びカルボキシル基のいずれかが置換したアラルキル基(例えば、2−スルホベンジル、4−スルホベンジル、4−スルホフェネチル、3−フェニル−3−スルホプロピル、3−フェニル−2−スルホプロピル、4,4−ジフェニル−3−スルホブチル、2−(4’−スルホ−4−ビフェニル)エチル、4−ホスホベンジル)、スルホ基、リン酸基、及びカルボキシル基のいずれかが置換したアリーロキシカルボニルアルキル基(3−スルホフェノキシカルボニルプロピル)、スルホ基、リン酸基、及びカルボキシル基のいずれかが置換したアリーロキシアルキル基(例えば、2−(4−スルホフェノキシ)エチル、2−(2−ホスホフェノキシ)エチル、4,4−ジフェノキシ−3−スルホブチル)、などが好ましい。
前記炭化水素芳香族環を有するアルキル基として、スルホ基、リン酸基、及びカルボキシル基のいずれかが置換したアラルキル基(例えば、2−スルホベンジル、4−スルホベンジル、4−スルホフェネチル、3−フェニル−3−スルホプロピル、3−フェニル−2−スルホプロピル、4,4−ジフェニル−3−スルホブチル、2−(4’−スルホ−4−ビフェニル)エチル、4−ホスホベンジル)、スルホ基、リン酸基、及びカルボキシル基のいずれかが置換したアリーロキシカルボニルアルキル基(3−スルホフェノキシカルボニルプロピル)、スルホ基、リン酸基、及びカルボキシル基のいずれかが置換したアリーロキシアルキル基(例えば、2−(4−スルホフェノキシ)エチル、2−(2−ホスホフェノキシ)エチル、4,4−ジフェノキシ−3−スルホブチル)、などが好ましい。
また、複素芳香族環を有するアルキル基としては、3−(2−ピリジル)−3−スルホプロピル、3−(2−フリル)−3−スルホプロピル、2−(2−チエニル)−2−スルホプロピルなどが好ましい。炭化水素芳香族基としてはスルホ基、リン酸基、及びカルボキシル基のいずれかが置換したアリール基(例えば、4−スルホフェニル、4−スルホナフチル)、複素芳香族基としては、スルホ基、リン酸基、及びカルボキシル基のいずれかが置換した複素環基(例えば、4−スルホ−2−チエニル基、4−スルオ−2−ピリジル基)などが好ましい。
また、上記スルホ基、リン酸基、及びカルボキシル基のいずれかが置換した炭化水素芳香族環、又は複素芳香族環を有するアルキル基がより好ましく、スルホ基、リン酸基、及びカルボキシル基のいずれかが置換した炭化水素芳香族環を有するアルキル基が特に好ましく、2−スルホベンジル、4−スルホベンジル、4−スルホフェネチル、3−フェニル−3−スルホプロピル、及び4−フェニル−4−スルホブチルが最も好ましい。
また、上記スルホ基、リン酸基、及びカルボキシル基のいずれかが置換した炭化水素芳香族環、又は複素芳香族環を有するアルキル基がより好ましく、スルホ基、リン酸基、及びカルボキシル基のいずれかが置換した炭化水素芳香族環を有するアルキル基が特に好ましく、2−スルホベンジル、4−スルホベンジル、4−スルホフェネチル、3−フェニル−3−スルホプロピル、及び4−フェニル−4−スルホブチルが最も好ましい。
前記構造式(45)のL1B〜L4B、及び前記構造式(46)のL5B〜L8Bは、それぞれ独立にメチン基を表し、無置換メチン基であるのが好ましい。
前記メチン基は置換基を有していても良く、置換基としては前記Vが挙げられる。置換又は無置換の炭素数1から15、好ましくは炭素数1から10、特に好ましくは炭素数1から5のアルキル基(例えば、メチル、エチル、2−カルボキシエチル)、置換または無置換の炭素数6から20、好ましくは炭素数6から15、更に好ましくは炭素数6から10のアリール基(例えばフェニル、o−カルボキシフェニル)、置換または無置換の炭素数3から20、好ましくは炭素数4から15、更に好ましくは炭素数6から10の複素環基(例えばN,N−ジメチルバルビツール酸基)、ハロゲン原子、(例えば塩素、臭素、沃素、フッ素)、炭素数1から15、好ましくは炭素数1から10、更に好ましくは炭素数1から5のアルコキシ基(例えばメトキシ、エトキシ)、炭素数0から15、好ましくは炭素数2から10、更に好ましくは炭素数4から10のアミノ基(例えばメチルアミノ、N,N−ジメチルアミノ、N−メチル−N−フェニルアミノ、N−メチルピペラジノ)、炭素数1から15、好ましくは炭素数1から10、更に好ましくは炭素数1から5のアルキルチオ基(例えばメチルチオ、エチルチオ)、炭素数6から20、好ましくは炭素数6から12、更に好ましくは炭素数6から10のアリールチオ基(例えばフェニルチオ、p−メチルフェニルチオ)などが挙げられる。また他のメチン基と環を形成してもよく、もしくは、それぞれZ1B〜Z4B、R1B〜R4Bと共に環を形成することもできる。
前記メチン基は置換基を有していても良く、置換基としては前記Vが挙げられる。置換又は無置換の炭素数1から15、好ましくは炭素数1から10、特に好ましくは炭素数1から5のアルキル基(例えば、メチル、エチル、2−カルボキシエチル)、置換または無置換の炭素数6から20、好ましくは炭素数6から15、更に好ましくは炭素数6から10のアリール基(例えばフェニル、o−カルボキシフェニル)、置換または無置換の炭素数3から20、好ましくは炭素数4から15、更に好ましくは炭素数6から10の複素環基(例えばN,N−ジメチルバルビツール酸基)、ハロゲン原子、(例えば塩素、臭素、沃素、フッ素)、炭素数1から15、好ましくは炭素数1から10、更に好ましくは炭素数1から5のアルコキシ基(例えばメトキシ、エトキシ)、炭素数0から15、好ましくは炭素数2から10、更に好ましくは炭素数4から10のアミノ基(例えばメチルアミノ、N,N−ジメチルアミノ、N−メチル−N−フェニルアミノ、N−メチルピペラジノ)、炭素数1から15、好ましくは炭素数1から10、更に好ましくは炭素数1から5のアルキルチオ基(例えばメチルチオ、エチルチオ)、炭素数6から20、好ましくは炭素数6から12、更に好ましくは炭素数6から10のアリールチオ基(例えばフェニルチオ、p−メチルフェニルチオ)などが挙げられる。また他のメチン基と環を形成してもよく、もしくは、それぞれZ1B〜Z4B、R1B〜R4Bと共に環を形成することもできる。
前記構造式(45)のM1、及び前記構造式(46)のM2は、色素のイオン電荷を中性にするために必要であるとき、陽イオン又は陰イオンの存在を示すために式の中に含められている。典型的な陽イオンとしては水素イオン(H+)、アルカリ金属イオン(例え
ばナトリウムイオン、カリウムイオン、リチウムイオン)、アルカリ土類金属イオン(例えばカルシウムイオン)などの無機陽イオン、アンモニウムイオン(例えば、アンモニウムイオン、テトラアルキルアンモニウムイオン、ピリジニウムイオン、エチルピリジニウムイオン)などの有機イオンが挙げられる。陰イオンは無機陰イオンあるいは有機陰イオンのいずれであってもよく、ハロゲン陰イオン(例えばフッ素イオン、塩素イオン、ヨウ素イオン)、置換アリ−ルスルホン酸イオン(例えばp−トルエンスルホン酸イオン、p−クロルベンゼンスルホン酸イオン)、アリ−ルジスルホン酸イオン(例えば1、3−ベンゼンスルホン酸イオン、1、5−ナフタレンジスルホン酸イオン、2、6−ナフタレンジスルホン酸イオン)、アルキル硫酸イオン(例えばメチル硫酸イオン)、硫酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ピクリン酸イオン、酢酸イオン、トリフルオロメタンスルホン酸イオンが挙げられる。さらに、イオン性ポリマー又は色素と逆電荷を有する他の色素を用いてもよい。また、CO2 − 、SO3 − は、対イオンとして水素イオンを持つときはCO2 H、SO3Hと表記することも可能であ
る。
ばナトリウムイオン、カリウムイオン、リチウムイオン)、アルカリ土類金属イオン(例えばカルシウムイオン)などの無機陽イオン、アンモニウムイオン(例えば、アンモニウムイオン、テトラアルキルアンモニウムイオン、ピリジニウムイオン、エチルピリジニウムイオン)などの有機イオンが挙げられる。陰イオンは無機陰イオンあるいは有機陰イオンのいずれであってもよく、ハロゲン陰イオン(例えばフッ素イオン、塩素イオン、ヨウ素イオン)、置換アリ−ルスルホン酸イオン(例えばp−トルエンスルホン酸イオン、p−クロルベンゼンスルホン酸イオン)、アリ−ルジスルホン酸イオン(例えば1、3−ベンゼンスルホン酸イオン、1、5−ナフタレンジスルホン酸イオン、2、6−ナフタレンジスルホン酸イオン)、アルキル硫酸イオン(例えばメチル硫酸イオン)、硫酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ピクリン酸イオン、酢酸イオン、トリフルオロメタンスルホン酸イオンが挙げられる。さらに、イオン性ポリマー又は色素と逆電荷を有する他の色素を用いてもよい。また、CO2 − 、SO3 − は、対イオンとして水素イオンを持つときはCO2 H、SO3Hと表記することも可能であ
る。
構造式(47)〜(49)中、Z5B〜Z10Bは5員または6員の含窒素複素環を形成するのに必要な原子群を表わす。構造式(48)中、DおよびD’は非環式または環式の酸性核を形成するのに必要な原子群を表わす。構造式(47)〜(49)中、R5B〜R8BおよびR10Bは、各々独立に、アルキル基を表わす。構造式(49)中、R9Bはアルキル基、アリール基または複素環基を表わす。構造式(47)〜(49)中、L9B〜L28Bはメチン基を表わす。構造式(47)〜(49)中、M3〜M5は電荷中和対イオンを表わし、m3〜m5は分子内の電荷を中和させるために必要な0以上の数である。構造式(47)〜(49)中、n3、n5、n6、n8およびn11は0または1であり、n4、n7、n9、及びn10はそれぞれ0以上のいずれかの整数である。
前記構造式(47)〜(49)をさらに詳細に説明する。
構造式(47)〜(49)中、R5B〜R8BおよびR10Bは、好ましくは、炭素数18以下の無置換アルキル基(例えばメチル、エチル、プロピル、ブチル、ペンチル、オクチル、デシル、ドデシル、オクタデシル)、または置換アルキル基{置換基として例えば、カルボキシ基、スルホ基、シアノ基、ハロゲン原子(例えばフッ素、塩素、臭素である。)、ヒドロキシ基、炭素数8以下のアルコキシカルボニル基(例えばメトキシカルボニル、エトキシカルボニル、フェノキシカルボニル、ベンジルオキシカルボニル)、炭素数8以下のアルコキシ基(例えばメトキシ、エトキシ、ベンジルオキシ、フェネチルオキシ)、炭素数10以下の単環式のアリールオキシ基(例えばフェノキシ、p−トリルオキシ)、炭素数3以下のアシルオキシ基(例えばアセチルオキシ、プロピオニルオキシ)、炭素数8以下のアシル基(例えばアセチル、プロピオニル、ベンゾイル、メシル)、カルバモイル基(例えばカルバモイル、N,N−ジメチルカルバモイル、モルホリノカルボニル、ピペリジノカルボニル)、スルファモイル基(例えばスルファモイル、N,N−ジメチルスルファモイル、モルホリノスルホニル、ピベリジノスルホニル)、炭素数10以下のアリール基(例えばフェニル、4−クロルフェニル、4−メチルフェニル、α−ナフチル)で置換された炭素数18以下のアルキル基}が挙げられる。好ましくは無置換アルキル基(例えば、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基)、カルボキシアルキル基(例えば2−カルボキシエチル基、カルボキシメチル基)、スルホアルキル基(例えば、2−スルホエチル基、3−スルホプロピル基、4−スルホブチル基、3−スルホブチル基)、メタンスルホニルカルバモイルメチル基である。
構造式(47)〜(49)中、R5B〜R8BおよびR10Bは、好ましくは、炭素数18以下の無置換アルキル基(例えばメチル、エチル、プロピル、ブチル、ペンチル、オクチル、デシル、ドデシル、オクタデシル)、または置換アルキル基{置換基として例えば、カルボキシ基、スルホ基、シアノ基、ハロゲン原子(例えばフッ素、塩素、臭素である。)、ヒドロキシ基、炭素数8以下のアルコキシカルボニル基(例えばメトキシカルボニル、エトキシカルボニル、フェノキシカルボニル、ベンジルオキシカルボニル)、炭素数8以下のアルコキシ基(例えばメトキシ、エトキシ、ベンジルオキシ、フェネチルオキシ)、炭素数10以下の単環式のアリールオキシ基(例えばフェノキシ、p−トリルオキシ)、炭素数3以下のアシルオキシ基(例えばアセチルオキシ、プロピオニルオキシ)、炭素数8以下のアシル基(例えばアセチル、プロピオニル、ベンゾイル、メシル)、カルバモイル基(例えばカルバモイル、N,N−ジメチルカルバモイル、モルホリノカルボニル、ピペリジノカルボニル)、スルファモイル基(例えばスルファモイル、N,N−ジメチルスルファモイル、モルホリノスルホニル、ピベリジノスルホニル)、炭素数10以下のアリール基(例えばフェニル、4−クロルフェニル、4−メチルフェニル、α−ナフチル)で置換された炭素数18以下のアルキル基}が挙げられる。好ましくは無置換アルキル基(例えば、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基)、カルボキシアルキル基(例えば2−カルボキシエチル基、カルボキシメチル基)、スルホアルキル基(例えば、2−スルホエチル基、3−スルホプロピル基、4−スルホブチル基、3−スルホブチル基)、メタンスルホニルカルバモイルメチル基である。
構造式(47)〜(49)中、M3m3、M4m4およびM5m5は、色素のイオン電荷を中性にするために必要であるとき、陽イオンまたは陰イオンの存在または不存在を示すために式の中に含められている。ある色素が陽イオン、陰イオンであるか、あるいは正味のイオン電荷をもつかどうかは、その助色団および置換基に依存する。典型的な陽イオンは無機または有機のアンモニウムイオンおよびアルカリ金属イオンであり、一方陰イオンは具体的に無機陰イオンあるいは有機陰イオンのいずれであってもよく、例えばハロゲン陰イオン(例えば弗素イオン、塩素イオン、臭素イオン、ヨウ素イオン)、置換アリールスルホン酸イオン(例えばp−トルエンスルホン酸イオン、p−クロルベンゼンスルホン酸イオン)、アリールジスルホン酸イオン(例えば1,3−ベンゼンジスルホン酸イオン、1,5−ナフタレンジスルホン酸イオン、2,6−ナフタレンジスルホン酸イオン)、アルキル硫酸イオン(例えばメチル硫酸イオン)、硫酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ピクリン酸イオン、酢酸イオン、トリフルオロメタンスルホン酸イオンが挙げられる好ましくは、アンモニウムイオン、ヨウ素イオン、p−トルエンスルホン酸イオンである。
Z5B〜Z8BおよびZ10Bによって形成される核としては、チアゾール核{チアゾール核(例えばチアゾール、4−メチルチアゾール、4−フェニルチアゾール、4,5−ジメチルチアゾール、4,5−ジフェニルチアゾール)、ベンゾチアゾール核(例えば、ベンゾチアゾール、4−クロロベンゾチアゾール、5−クロロベンゾチアゾール、6−クロロベンゾチアゾール、5−ニトロベンゾチアゾール、4−メチルベンゾチアゾール、5−メチルチオベンゾチアゾール、5−メチルベンゾチアゾール、6−メチルベンゾチアゾール、5−ブロモベンゾチアゾール、6−ブロモベンゾチアゾール、5−ヨードベンゾチアゾール、5−フェニルベンゾチアゾール、5−メトキシベンゾチアゾール、6−メトキシベンゾチアゾール、6−メチルチオベンゾチアゾール、5−エトキシベンゾチアゾール、5−エトキシカルボニルベンゾチアゾール、5−カルボキシベンゾチアゾール、5−フェネチルベンゾチアゾール、5−フルオロベンゾチアゾール、5−クロロ−6−メチルベンゾチアゾール、5,6−ジメチルベンゾチアゾール、5,6−ジメチルチオベンゾチアゾール、5,6−ジメトキシベンゾチアゾール、5−ヒドロキシ−6−メチルベンゾチアゾール、テトラヒドロベンゾチアゾール、4−フェニルベンゾチアゾール)、ナフトチアゾール核(例えば、ナフト〔2,1−d〕チアゾール、ナフト〔1,2−d〕チアゾール、ナフト〔2,3−d〕チアゾール、5−メトキシナフト〔1,2−d〕チアゾール、7−エトキシナフト〔2,1−d〕チアゾール、8−メトキシナフト〔2,1−d〕チアゾール、5−メトキシナフト〔2,3−d〕チアゾール)}、チアゾリン核(例えば、チアゾリン、4−メチルチアゾリン、4−ニトロチアゾリン)、オキサゾール核{オキサゾール核(例えば、オキサゾール、4−メチルオキサゾール、4−ニトロオキサゾール、5−メチルオキサゾール、4−フェニルオキサゾール、4,5−ジフェニルオキサゾール、4−エチルオキサゾール)、ベンゾオキサゾール核(例えば、ベンゾオキサゾール、5−クロロベンゾオキサゾール、5−メチルベンゾオキサゾール、5−ブロモベンゾオキサゾール、5−フルオロベンゾオキサゾール、5−フェニルベンゾオキサゾール、5−メトキシベンゾオキサゾール、5−ニトロベンゾオキサゾール、5−トリフルオロメチルベンゾオキサゾール、5−ヒドロキシベンゾオキサゾール、5−カルボキシベンゾオキサゾール、6−メチルベンゾオキサゾール、6−クロロベンゾオキサゾール、6−ニトロベンゾオキサゾール、6−メトキシベンゾオキサゾール、6−ヒドロキシベンゾオキサゾール、5,6−ジメチルベンゾオキサゾール、4,6−ジメチルベンゾオキサゾール、5−エトキシベンゾオキサゾール)、ナフトオキサゾール核(例えば、ナフト〔2,1−d〕オキサゾール、ナフト〔1,2−d〕オキサゾール、ナフト〔2,3−d〕オキサゾール、5−ニトロナフト〔2,1−d〕オキサゾール)}、オキサゾリン核(例えば、4,4−ジメチルオキサゾリン)、セレナゾール核{セレナゾール核(例えば、4−メチルセレナゾール、4−ニトロセレナゾール、4−フェニルセレナゾール)、ベンゾセレナゾール核(例えば、ベンゾセレナゾール、5−クロロベンゾセレナゾール、5−ニトロベンゾセレナゾール、5−メトキシベンゾセレナゾール、5−ヒドロキシベンゾセレナゾール、6−ニトロベンゾセレナゾール、5−クロロ−6−ニトロベンゾセレナゾール、5,6−ジメチルベンゾセレナゾール)、ナフトセレナゾール核(例えば、ナフト〔2,1−d〕セレナゾール、ナフト〔1,2−d〕セレナゾール)}、セレナゾリン核(例えば、セレナゾリン、4−メチルセレナゾリン)、テルラゾール核{テルラゾール核(例えば、テルラゾール、4−メチルテルラゾール、4−フェニルテルラゾール)、ベンゾテルラゾール核(例えば、ベンゾテルラゾール、5−クロロベンゾテルラゾール、5−メチルベンゾテルラゾール、5,6−ジメチルベンゾテルラゾール、6−メトキシベンゾテルラゾール)、ナフトテルラゾール核(例えば、ナフト〔2,1−d〕テルラゾール、ナフト〔1,2−d〕テルラゾール)}、テルラゾリン核(例えば、テルラゾリン、4−メチルテルラゾリン)、3,3−ジアルキルインドレニン核(例えば、3,3−ジメチルインドレニン、3,3−ジエチルインドレニン、3,3−ジメチル−5−シアノインドレニン、3,3−ジメチル−6−ニトロインドレニン、3,3−ジメチル−5−ニトロインドレニン、3,3−ジメチル−5−メトキシインドレニン、3,3,5−トリメチルインドレニン、3,3−ジメチル−5−クロロインドレニン)、イミダゾール核{イミダゾール核(例えば、1−アルキルイミダゾール、1−アルキル−4−フェニルイミダゾール、1−アリールイミダゾール)、ベンゾイミダゾール核(例えば、1−アルキルベンゾイミダゾール、1−アルキル−5−クロロベンゾイミダゾール、1−アルキル−5,6−ジクロロベンゾイミダゾール、1−アルキル−5−メトキシベンゾイミダゾール、1−アルキル−5−シアノベンゾイミダゾール、1−アルキル−5−フルオロベンゾイミダゾール、1−アルキル−5−トリフルオロメチルベンゾイミダゾール、1−アルキル−6−クロロ−5−シアノべンゾイミダゾール、1−アルキル−6−クロロ−5−トリフルオロメチルベンゾイミダゾール、1−アリル−5,6−ジクロロベンゾイミダゾール、1−アリル−5−クロロベンゾイミダゾール、1−アリールベンゾイミダゾール、1−アリール−5−クロロベンゾイミダゾール、1−アリール−5,6−ジクロロベンゾイミダゾール、1−アリール−5−メトキシベンゾイミダゾール、1−アリール−5−シアノベンゾイミダゾール)、ナフトイミダゾール核(例えば、アルキルナフト〔1,2−d〕イミダゾール、1−アリールナフト〔1,2−d〕イミダゾール)、前述のアルキル基は炭素原子数1〜8個のもの、たとえば、メチル、エチル、プロピル、イソピル、ブチル等の無置換のアルキル基やヒドロキシアルキル基(例えば、2−ヒドロキシエチル、3−ヒドロキシプロピル)が好ましい。特に好ましくはメチル基、エチル基である。前述のアリール基は、フェニル、ハロゲン(例えばクロロ)置換フェニル、アルキル(例えばメチル)置換フェニル、アルコキシ(例えばメトキシ)置換フェニルを表わす。}、ピリジン核(例えば、2−ピリジン、4−ピリジン、5−メチル−2−ピリジン、3−メチル−4−ピリジン)、キノリン核{キノリン核(例えば、2−キノリン、3−メチル−2−キノリン、5−エチル−2−キノリン、6−メチル−2−キノリン、6−ニトロ−2−キノリン、8−フルオロ−2−キノリン、6−メトキシ−2−キノリン、6−ヒドロキシ−2−キノリン、8−クロロ−2−キノリン、4−キノリン、6−エトキシ−4−キノリン、6−ニトロ−4−キノリン、8−クロロ−4−キノリン、8−フルオロ−4−キノリン、8−メチル−4−キノリン、8−メトキシ−4−キノリン、6−メチル−4−キノリン、6−メトキシ−4−キノリン、6−クロロ−4−キノリン)、イソキノリン核(例えば、6−ニトロ−1−イソキノリン、3,4−ジヒドロ−1−イソキノリン、6−ニトロ−3−イソキノリン)}、イミダゾ〔4,5−b〕キノキザリン核(例えば、1,3−ジエチルイミダゾ〔4,5−b〕キノキザリン、6−クロロ−1,3−ジアリルイミダゾ〔4,5−b〕キノキザリン)、オキサジアゾール核、チアジアゾール核、テトラゾール核、ピリミジン核を挙げることができる。ただし、一般式において、前記n4が1のときZ5BおよびZ6Bがともにオキサゾール核、イミダゾール核であることはない。前記Z5B〜Z8B及びZ10Bによって形成される核として好ましくは、ベンゾチアゾール核、ナフトチアゾール核、ベンゾオキサゾール核、ナフトオキサゾール核、ベンゾイミダゾール核、2−キノリン核、4−キノリン核である。
構造式(48)中、前記D及び前記D’は酸性核を形成するために必要な原子群を表すが、いかなる一般のメロシアニン色素の酸性核の形をとることもできる。前記Dの共鳴に関与する好ましい置換基としては、例えばカルボニル基、シアノ基、スルホニル基、スルフェニル基である。前記D’は酸性核を形成するために必要な残りの原子群を表わす。前記D及び前記D’が環式であるとき、炭素、窒素、及びカルコゲン(典型的には酸素、イオウ、セレン、及びテルル)原子から成る5員または6員の複素環を形成する。具体的には2−ピラゾリン−5−オン、ピラゾリジン−3,5−ジオン、イミダゾリン−5−オン、ヒダントイン、2または4−チオヒダントイン、2−イミノオキサゾリジン−4−オン、2−オキサゾリン−5−オン、2−チオオキサゾリジン−2,4−ジオン、イソオキサゾリン−5−オン、2−チアゾリン−4−オン、チアゾリジン−4−オン、チアゾリジン−2,4−ジオン、ローダニン、チアゾリジン−2,4−ジチオン、イソローダニン、インダン−1,3−ジオン、チオフェン−3−オン、チオフェン−3−オン−1,1−ジオキシド、インドリン−2−オン、インドリン−3−オン、インダゾリン−3−オン、2−オキソインダゾリニウム、3−オキソインダゾリニウム、5,7−ジオキソ−6,7−ジヒドロチアゾロ〔3,2−a〕ピリミジン、シクロヘキサン−1,3−ジオン、3,4−ジヒドロイソキノリン−4−オン、1,3−ジオキサン−4,4−ジオン、バルビツール酸、2−チオバルビツール酸、クロマン−2,4−ジオン、インダゾリン−2−オン、またはピリド〔1,2−a〕ピリミジン−1,3−ジオンの核が挙げられる。これらの中で、3−アルキルロ−ダニン、3−アルキル−2−チオオキサゾリジン−2,4−ジオン、3−アルキル−2−チオヒダントインが好ましい。
以上の核に含まれる窒素原子に結合している置換基及び構造式(49)中のR9Bは水素原子、炭素数1〜18(好ましくは1〜7、特に好ましくは1〜4)のアルキル基{例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、ヘキシル、オクチル、ドデシル、オクタデシル}、置換アルキル基(例えばアラルキル基(例えばベンジル、2−フェニルエチル)、ヒドロキシアルキル基(例えば、2−ヒドロキシエチル、3−ヒドロキシピル)、カルボキシアルキル基(例えば、2−カルボキシエチル、3−カルボキシプロピル、4−カルボキシブチル、カルボキシメチル)、アルコキシアルキル基(例えば、2−メトキシエチル、2−(2−メトキシエトキシ)エチル)、スルホアルキル基(例えば、2−スルホエチル、3−スルホプロピル、3−スルホブチル、4−スルホブチル、2−〔3−スルホプロポキシ〕エチル、2−ヒドロキシ−3−スルホプロピル、3−スルホプロポキシエトキシエチル)、スルファトアルキル基(例えば、3−スルファトプロピル、4−スルファトブチル)、複素環置換アルキル基(例えば2−(ピロリジン−2−オン−1−イル)エチル、テトラヒドロフルフリル、2−モルホリノエチル)、2−アセトキシエチル、カルボメトキシメチル、2−メタンスルホニルアミノエチル)、アリル基、アリール基(例えばフェニル、2−ナフチル)、置換アリール基(例えば、4−カルボキシフェニル、4−スルホフェニル、3−クロロフェニル、3−メチルフェニル)、複素環基(例えば2−ピリジル、2−チアゾリル)、好ましい。さらに好ましくは、無置換アルキル基(例えば、メチル、エチル、n−プロピル、n−ブチル、n−ペンチル、n−ヘキシル)、カルボキシアルキル基(例えば、カルボキシメチル、2−カルボキシエチル、スルホアルキル基(例えば2−スルホエチル)である。
構造式(49)中、Z9Bによって形成される5員または6員の含窒素複素環は、構造式(48)中のD及びD’によって表わされる環式の複素環から適切な位置にある、オキソ基、またはチオオキソ基を除いたものである。さらに好ましくはローダニン核のチオオキソ基を除いたものである。
前記構造式(47)〜(49)中のL9B〜L28Bは、メチン基または置換メチン基{例えば置換もしくは無置換のアルキル基(例えばメチル、エチル、2−カルボキシエチル)、置換もしくは無置換のアリール基(例えば、フェニル、o−カルボキシフェニル)、複素環基(例えばバルビツール酸)、ハロゲン原子(例えば塩素原子、臭素原子)、アルコキシ基(例えば、メトキシ、エトキシ)、アミノ基(例えばN,N−ジフェニルアミノ、N−メチル−N−フェニルアミノ、N−メチルピペラジノ)、アルキルチオ基(例えばメチルチオ、エチルチオ)、などで置換されたものなど}を表し、また他のメチン基と環を形成してもよい。
前記構造式(47)中のL9B、L13B、L14B、L15B、前記構造式(48)中のL18B、L19B、前記構造式(49)中のL25B及びL26Bは、無置換メチン基であるのが好ましい。前記構造式(47)中のL9B、L10B及びL11Bによりトリメチン、ペンタメチンおよびヘプタメチン色素を形成する。前記構造式(47)中のL9B及びL10Bの単位n3が2又は3の場合繰り返されるが、それぞれ同一である必要はない。
前記構造式(47)中のL9B、L13B、L14B、L15B、前記構造式(48)中のL18B、L19B、前記構造式(49)中のL25B及びL26Bは、無置換メチン基であるのが好ましい。前記構造式(47)中のL9B、L10B及びL11Bによりトリメチン、ペンタメチンおよびヘプタメチン色素を形成する。前記構造式(47)中のL9B及びL10Bの単位n3が2又は3の場合繰り返されるが、それぞれ同一である必要はない。
構造式(50)中、L29B〜L31Bは、それぞれ独立に置換基を有していてもよいメチン基を表し、これらが置換基を有するメチン基を表す場合、該置換基が結合して不飽和脂肪族環又は不飽和複素環を形成してもよい。前記構造式(50)中、Z11Bは、5員又は6員の複素環を形成する原子団を表し、該複素環には芳香族環又は複素環が縮合していてもよく、前記5員又は6員の複素環、及び該複素環に縮合している芳香族環若しくは複素環は置換基を有していてもよい。前記構造式(50)中、YBは、N(R11B)R12B、OR13B、又はS(O)nR14Bを表し、R11B〜R14Bは、それぞれ独立に水素原子、一価の置換基を表し、nは0、1又は2を表す。前記構造式(50)中、qは0、1、2又は3を表す。
前記構造式(50)で表される化合物の具体例(例示化合物No.1〜62)を示す。
前記構造式(50)で表される化合物の具体例(例示化合物No.1〜62)を示す。
前記構造式(51)中、R18B、R19Bは、それぞれ独立に水素原子、脂肪族基、芳香族基、複素環基を表す。
前記構造式(51)中、Q1〜Q3は、それぞれ独立に酸素原子、硫黄原子を表す。ここで、Q1及びQ2は酸素原子であるのが好ましく、Q3は硫黄原子であるのが好ましい。
L32B〜L34Bは、それぞれ独立に置換基を有していてもよいメチン基を表し、これらが置換基を有するメチン基を表す場合、該置換基が結合して不飽和脂肪族環又は不飽和複素環を形成してもよい。
Y2Bは、芳香族基又は複素環基を表し、n12は0、1、2、又は3を表す。
前記構造式(51)中、Q1〜Q3は、それぞれ独立に酸素原子、硫黄原子を表す。ここで、Q1及びQ2は酸素原子であるのが好ましく、Q3は硫黄原子であるのが好ましい。
L32B〜L34Bは、それぞれ独立に置換基を有していてもよいメチン基を表し、これらが置換基を有するメチン基を表す場合、該置換基が結合して不飽和脂肪族環又は不飽和複素環を形成してもよい。
Y2Bは、芳香族基又は複素環基を表し、n12は0、1、2、又は3を表す。
前記構造式(51)中、R18B及びR19Bは、それぞれ独立に水素原子、脂肪族基、芳香族基、複素環基を表す。前記R18B及びR19Bが脂肪族基を表す場合、該脂肪族基としては、例えば、アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アラルキル基、又は置換アラルキル基等が挙げられ、中でも、アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アラルキル基、又は置換アラルキル基が好ましく、アルキル基、置換アルキル基が特に好ましい。また、前記脂肪族基は、環状脂肪族基でも鎖状脂肪族基でもよい。鎖状脂肪族基は分岐を有していてもよい。
前記アルキル基としては、直鎖状、分岐状、環状のアルキル基が挙げられ、該アルキル基の炭素原子数としては、1〜30が好ましく、1〜20がより好ましい。置換アルキル基のアルキル部分の炭素原子数の好ましい範囲については、アルキル基の場合と同様である。また、前記アルキル基は、置換基を有するアルキル基、無置換のアルキル基のいずれであってもよい。前記アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、2−エチルヘキシル基、デシル基、ドデシル基、オクタデシル基、シクロヘキシル基、シクロペンチル基、ネオペンチル基、イソプロピル基、イソブチル基等が挙げられる。
前記置換アルキル基の置換基としては、カルボキシル基、スルホ基、シアノ基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)、ヒドロキシ基、炭素数30以下のアルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、ベンジルオキシカルボニル基)、炭素数30以下のアルキルスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基、アルキルスルホニル基、アリールスルホニル基、炭素数30以下のアシルアミノスルホニル基、炭素数30以下のアルコキシ基(例えば、メトキシ基、エトキシ基、ベンジルオキシ基、フェノキシエトキシ基、フェネチルオキシ基等)、炭素数30以下のアルキルチオ基(例えば、メチルチオ基、エチルチオ基、メチルチオエチルチオエチル基等)、炭素数30以下のアリールオキシ基(例えば、フェノキシ基、p−トリルオキシ基、1−ナフトキシ基、2−ナフトキシ基等)、ニトロ基、炭素数30以下のアルキル基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、炭素数30以下のアシルオキシ基(例えば、アセチルオキシ基、プロピオニルオキシ基等)、炭素数30以下のアシル基(例えば、アセチル基、プロピオニル基、ベンゾイル基等)、カルバモイル基(例えば、カルバモイル基、N,N−ジメチルカルバモイル基、モルホリノカルボニル基、ピペリジノカルボニル基等)、スルファモイル基(例えば、スルファモイル基、N,N−ジメチルスルファモイル基、モルホリノスルホニル基、ピペリジノスルホニル基等)、炭素数30以下のアリール基(例えば、フェニル基、4−クロロフェニル基、4−メチルフェニル基、α−ナフチル基等)、置換アミノ基(例えば、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、ジアリールアミノ基、アシルアミノ基等)、置換ウレイド基、置換ホスホノ基、複素環基等が挙げられる。ここで、カルボキシル基、スルホ基、ヒドロキシ基、ホスホノ基は、塩の状態であってもよい。
前記アルケニル基としては、直鎖状、分岐状、環状のアルケニル基が挙げられ、該アルケニル基の炭素原子数としては、2〜30が好ましく、2〜20がより好ましい。置換アルケニル基のアルケニル部分の炭素原子数の好ましい範囲については、アルケニル基の場合と同様である。また、前記アルケニル基は、置換基を有するアルケニル基、無置換のアルケニル基のいずれであってもよい。前記置換アルケニル基の置換基としては、前記置換アルキル基の場合と同様の置換基が挙げられる。
前記アラルキル基としては、直鎖状、分岐状、環状のアラルキル基が挙げられ、該アラルキル基の炭素原子数としては、7〜35が好ましく、7〜25がより好ましい。置換アラルキル基のアラルキル部分の炭素原子数の好ましい範囲については、アラルキル基の場合と同様である。また、前記アラルキル基は、置換基を有するアラルキル基、無置換のアラルキル基のいずれであってもよい。置換アラルキル基の置換基としては、前記置換アルキル基の場合と同様の置換基が挙げられる。
前記構造式(51)中のR18B及びR19Bが芳香族基を表す場合、該芳香族基としては、例えば、アリール基、置換アリール基が挙げられる。アリール基の炭素原子数としては、6〜30が好ましく、6〜20がより好ましい。置換アリール基のアリール部分の好ましい炭素原子数の範囲としては、アリール基と同様である。前記アリール基としては、例えば、フェニル基、α−ナフチル基、β−ナフチル基等が挙げられる。置換アリール基の置換基としては、前記置換アルキル基の場合と同様の置換基が挙げられる。
前記構造式(51)中のR18B及びR19Bが複素環基を表す場合、該複素環基としては、置換基を有する複素環基、無置換の複素環基が挙げられ、該複素環基の炭素原子数としては、4〜13が好ましい。前記複素環基としては、含窒素原子、含酸素原子、含硫黄原子の複素環が挙げられ、より具体的には、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、キノリン環、イソキノリン環、キノキサリン環、アクリジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、ピロリン環、オキサゾール環、チアゾール環、オキサジアゾール環、チアゾリン環、チオフェン環、インドール環等が挙げられる。置換基を有する複素環基の置換基としては、前記置換アルキル基の場合と同様の置換基が挙げられる。
上記のうち、前記構造式(51)中のR18B及びR19Bとしては、無置換のアルキル基(例えば、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、オクチル基、オクタデシル基等)、又は置換アルキル基が好ましい。また、前記置換アルキル基の中でも、置換オキシアルキル基(例えば、メトキシエチル基、フェノキシエチル基等)、置換オキシカルボニルアルキル基(例えば、ブトキシカルボニルメチル基、フェノキシエトキシカルボニルメチル基等)が特に好ましい。また、前記R18B及びR19Bは、各々、隣接する他の置換基と互いに結合して環を形成していてもよく、該環としては、例えば、5員又は6員のヘテロ環が挙げられる。
前記構造式(51)中のL32B〜L34Bは、それぞれ独立に置換基を有していてもよいメチン基を表し、構造内に奇数個のメチン基を有する。前記構造式(51)中のL32B〜L34Bが置換基を有するメチン基を表す場合、該置換基としては、例えば、置換アミノ基(例えば、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、ジアリールアミノ基、アシルアミノ基等)、置換オキシ基(例えば、ヒドロキシ基、アルコキシ基、アシルオキシ基、アリールオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基等)、置換メルカプト基(例えば、アルキルメルカプト基、アリールメルカプト基等)、ハロゲン原子、脂肪族基、芳香族基が挙げられ、該置換基が結合して不飽和脂肪族環又は不飽和複素環を形成してもよく、不飽和複素環よりも不飽和脂肪族環の方が好ましい。形成する環は、5員環又は6員環であることが好ましく、中でも、シクロペンテン環又はシクロヘキセン環がより好ましい。前記ハロゲン原子としては、例えば、フッ素原子、臭素原子、塩素原子等が挙げられ、前記脂肪族基、芳香族基としては、前記構造式(51)のR18B及びR19Bにおける脂肪族基、芳香族基の場合と同義である。また、置換アミノ基、置換オキシ基及び置換メルカプト基の置換基としては、前記構造式(51)中の前記R18B及びR19Bで表される置換アルキル基の置換基と同義である。
前記構造式(51)中、L32B〜L34Bで表わされるメチン基としては、無置換のメチン基、或いは、置換基を有する場合には、ハロゲン原子若しくは脂肪族基により置換されたもの、又は置換基が互いに結合してシクロペンテン環又はシクロヘキセン環が形成されたものが特に好ましい。前記構造式(51)中、n12は、0、1、2、又は3を表す。
前記構造式(51)中、Y2Bは、芳香族基又は複素環基を表す。ここで、芳香族基、複素環基は、前記構造式(51)中のR18B及びR19Bにおける芳香族基、複素環基の場合と同義であり、その好ましいものも同様である。前記構造式(51)中のY2Bとしては、光感度の点で、芳香族基が特に好ましい。
前記構造式(52)中、R20B、R21Bは、それぞれ独立に水素原子、脂肪族基、芳香族基、複素環基を表し、Q4〜Q6は、それぞれ独立に酸素原子、硫黄原子を表す。L35B〜L37Bは、それぞれ独立に置換基を有していてもよいメチン基を表し、これらが置換基を有するメチン基を表す場合、該置換基が結合して不飽和脂肪族環又は不飽和複素環を形成してもよい。Y3Bは、下記基(1)を表し、n13は0、1、2、又は3を表す。
前記構造式(52)中のR20B、R21Bは前記構造式(51)中のR18B、R19Bと、前記構造式(52)中のQ4〜Q6は前記構造式(51)中のQ1〜Q3と、前記構造式(52)中のL35B〜L37Bは前記構造式(51)中のL32B〜L34Bと、それぞれ同義である。
前記構造式(52)中のR20B、R21Bは前記構造式(51)中のR18B、R19Bと、前記構造式(52)中のQ4〜Q6は前記構造式(51)中のQ1〜Q3と、前記構造式(52)中のL35B〜L37Bは前記構造式(51)中のL32B〜L34Bと、それぞれ同義である。
前記基(1)中、R22Cは、水素原子、脂肪族基、芳香族基を表す。Z12Cは、5員又は6員の含窒素複素環を形成する原子団を表し、該含窒素複素環には芳香族環、複素環が縮合していてもよく、含窒素複素環、及び該含窒素複素環に縮合している芳香族環、複素環は置換基を有していてもよい。
前記基(1)中、X−は、陰イオンを形成し得る基を表す。該X−が形成しうる陰イオンとしては、例えば、ハロゲンイオン(Cl−、Br−、I−)、p−トルエンスルホン酸イオン、エチル硫酸イオン、1,5−ジスルホナフタレンジア二オン、PF6 −、BF4 −、及びClO4 −等が挙げられる。また、前記X−は、カチオン部位のいずれか置換可能な位置を置換している置換基であってもよい。
前記基(1)中、X−は、陰イオンを形成し得る基を表す。該X−が形成しうる陰イオンとしては、例えば、ハロゲンイオン(Cl−、Br−、I−)、p−トルエンスルホン酸イオン、エチル硫酸イオン、1,5−ジスルホナフタレンジア二オン、PF6 −、BF4 −、及びClO4 −等が挙げられる。また、前記X−は、カチオン部位のいずれか置換可能な位置を置換している置換基であってもよい。
前記含窒素複素環としては、例えば、オキサゾール環、チアゾール環、セレナゾール環、ピロール環、ピロリン環、イミダゾール環、及びピリジン環が挙げられる。6員環よりも5員環の方が好ましい。
また、前記含窒素複素環には、芳香族環(ベンゼン環、ナフタレン環)、又は複素環(ピリジン、ピラジン等)が縮合していてもよく、含窒素複素環及びその縮合環はさらに置換基を有していてもよい。
また、前記含窒素複素環には、芳香族環(ベンゼン環、ナフタレン環)、又は複素環(ピリジン、ピラジン等)が縮合していてもよく、含窒素複素環及びその縮合環はさらに置換基を有していてもよい。
前記酸性核を有する化合物としては、その他の化合物として、例えば、アミノ基やアルコキシ基が置換した芳香環(例えば、フェニル基、ナフチル基等)と酸性核とをメチン鎖で連結した化合物などが挙げられる。メチン鎖の数は1〜5個が好ましく、1〜3個がより好ましく、1個が特に好ましい。酸性核は、5員環から6員環のものが好ましい。
その他前記酸性核を有する化合物の例としては、下記(A)及び(B)で表される化合物などが挙げられる。
その他前記酸性核を有する化合物の例としては、下記(A)及び(B)で表される化合物などが挙げられる。
なお、前記酸性核を有する化合物は、感光層の感度の向上を図るだけでなく、光励起により前記モノマーの重合を開始させるような光重合開始剤としての機能をも有している。
(5)蛍光増白剤
増感剤としての蛍光増白剤は、後述する感光層への露光における露光感度や感光波長を調整する目的で、或いは、前記感光層を露光し現像する場合において、該感光層の露光する部分の厚みを該現像の前後において変化させない前記光の最小エネルギー(感度)を向上させる観点から添加される。前記蛍光増白剤を併用することにより、例えば、前記感光層の感度を0.1〜100mJ/cm2に極めて容易に調整することもできる。
増感剤としての蛍光増白剤は、後述する感光層への露光における露光感度や感光波長を調整する目的で、或いは、前記感光層を露光し現像する場合において、該感光層の露光する部分の厚みを該現像の前後において変化させない前記光の最小エネルギー(感度)を向上させる観点から添加される。前記蛍光増白剤を併用することにより、例えば、前記感光層の感度を0.1〜100mJ/cm2に極めて容易に調整することもできる。
「蛍光性白化剤」(Fluorescent Whitening Agent)としても知られる前記蛍光増白剤は、紫外〜短波可視である300〜450nm付近の波長を有する光を吸収可能であり、かつ400〜500nm付近の波長を有する蛍光を発光可能な無色ないし弱く着色した化合物である。蛍光増白剤の物理的原理およびおよび化学性の記述は、Ullmann’s Encyclopedia of Industrial Chemistry,Sixth Edition,Electronic Release,Wiley − VCH 1998に示されている。基本的には、適する蛍光増白剤は炭素環式または複素環式核を含んでなるπ−電子系を含有する。
前記増感剤としての蛍光増白剤は、特に制限はなく、前記光照射手段(例えば、可視光線や紫外光及び可視光レーザ等)に合わせて適宜選択することができる。
前記蛍光増白剤としては、非イオン性核を有する化合物が好ましい。前記非イオン性核としては、例えば、スチルベン核、ジスチリルベンゼン核、ジスチリルビフェニル核、及びジビニルスチルベン核から選択される少なくとも1種であることが好ましい。
前記蛍光増白剤としては、非イオン性核を有する化合物が好ましい。前記非イオン性核としては、例えば、スチルベン核、ジスチリルベンゼン核、ジスチリルビフェニル核、及びジビニルスチルベン核から選択される少なくとも1種であることが好ましい。
前記非イオン性核を有する化合物としては、特に制限はなく、目的に応じて適宜選定することができるが、例えば、ピラゾリン類、トリアジン類、スチルベン類、ジスチリルベンゼン類、ジスチリルビフェニル類、ジビニルスチルベン類、トリアジニルアミノスチルベン類、スチルベニルトリアゾール類、スチルベニルナフトトリアゾール類、ビス−トリアゾールスチルベン類、ベンゾキサゾール類、ビスフェニルベンゾキサゾール類、スチルベニルベンゾキサゾール類、ビス−ベンゾキサゾール類、フラン類、ベンゾフラン類、ビス−ベンズイミダゾール類、ジフェニルピラゾリン類、ジフェニルオキサジアゾール類、ナフタルイミド類、キサンテン類、カルボスチリル類、ピレン類および1,3,5−トリアジニル−誘導体などが挙げられる。これらの中でも、スチリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基から選択される少なくとも1種を有するものが好ましく、更にジスチリルベンゼン類、ジスチリルビフェニル類、又はエテニル基、芳香環基、複素環基からなる2価の連結基で連結されたビスベンゾオキサゾール類、ビスベンゾチアゾール類、などが特に好ましい。
また、前記蛍光増白剤は、置換基を有していてもよい。この置換基としては、脂肪族基、芳香族基、複素環基、カルボキシル基、スルホ基、シアノ基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)、ヒドロキシ基、炭素数30以下のアルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、ベンジルオキシカルボニル基)、炭素数30以下のアルキルスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基、アルキルスルホニル基、アリールスルホニル基、炭素数30以下のアシルアミノスルホニル基、炭素数30以下のアルコキシ基(例えば、メトキシ基、エトキシ基、ベンジルオキシ基、フェノキシエトキシ基、フェネチルオキシ基等)、炭素数30以下のアルキルチオ基(例えば、メチルチオ基、エチルチオ基、メチルチオエチルチオエチル基等)、炭素数30以下のアリールオキシ基(例えば、フェノキシ基、p−トリルオキシ基、1−ナフトキシ基、2−ナフトキシ基等)、ニトロ基、炭素数30以下のアルキル基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、炭素数30以下のアシルオキシ基(例えば、アセチルオキシ基、プロピオニルオキシ基等)、炭素数30以下のアシル基(例えば、アセチル基、プロピオニル基、ベンゾイル基等)、カルバモイル基(例えば、カルバモイル基、N,N−ジメチルカルバモイル基、モルホリノカルボニル基、ピペリジノカルボニル基等)、スルファモイル基(例えば、スルファモイル基、N,N−ジメチルスルファモイル基、モルホリノスルホニル基、ピペリジノスルホニル基等)、炭素数30以下のアリール基(例えば、フェニル基、4−クロロフェニル基、4−メチルフェニル基、α−ナフチル基等)、置換アミノ基(例えば、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、ジアリールアミノ基、アシルアミノ基等)、置換ウレイド基、置換ホスホノ基、などが挙げられる。
前記のそれぞれの代表的な蛍光増白剤の例は、例えば大河原編「色素ハンドブック」、講談社、84〜145頁、432〜439頁に記載されているものを挙げることができる。
前記トリアジン類としては、特に制限はなく、目的に応じて適宜選定することができるが、例えば、エチレンビスメラミン、プロピレン−1,3−ビスメラミン、N,N’−ジシクロヘキシルエチレンビスメラミン、N,N’−ジメチルエチレンビスメラミン、N,N’−ビス[4,6−ジ−(ジメチルアミノ)−1,3,5−トリアジニル]エチレンジアミン、N,N’−ビス(4,6−ジピペリジノ−1,3,5−トリアジニル)エチレンジアミン、N,N’−ビス[4,6−ジ−(ジメチルアミノ)−1,3,5−トリアジニル]−N,N’−ジメチルエチレンジアミン、などが挙げられる。代表的な蛍光増白剤の例を下記構造式(53)〜(59)に挙げる。
前記トリアジン類としては、特に制限はなく、目的に応じて適宜選定することができるが、例えば、エチレンビスメラミン、プロピレン−1,3−ビスメラミン、N,N’−ジシクロヘキシルエチレンビスメラミン、N,N’−ジメチルエチレンビスメラミン、N,N’−ビス[4,6−ジ−(ジメチルアミノ)−1,3,5−トリアジニル]エチレンジアミン、N,N’−ビス(4,6−ジピペリジノ−1,3,5−トリアジニル)エチレンジアミン、N,N’−ビス[4,6−ジ−(ジメチルアミノ)−1,3,5−トリアジニル]−N,N’−ジメチルエチレンジアミン、などが挙げられる。代表的な蛍光増白剤の例を下記構造式(53)〜(59)に挙げる。
より具体的には、本発明では、下記のいずれかの部分構造を有する蛍光増白剤が使用に適する。
上記の部分構造の式中、Xは下記の基の1つであり、下記式中の*は上記の式中の結合の位置を示す。
ここで、上記式の各々における1個もしくはそれ以上の核は下記基により置換されていてもよい。この置換基としては、脂肪族基、芳香族基、複素環基、カルボキシル基、スルホ基、シアノ基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)、ヒドロキシ基、炭素数30以下のアルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、ベンジルオキシカルボニル基)、炭素数30以下のアルキルスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基、アルキルスルホニル基、アリールスルホニル基、炭素数30以下のアシルアミノスルホニル基、炭素数30以下のアルコキシ基(例えば、メトキシ基、エトキシ基、ベンジルオキシ基、フェノキシエトキシ基、フェネチルオキシ基等)、炭素数30以下のアルキルチオ基(例えば、メチルチオ基、エチルチオ基、メチルチオエチルチオエチル基等)、炭素数30以下のアリールオキシ基(例えば、フェノキシ基、p−トリルオキシ基、1−ナフトキシ基、2−ナフトキシ基等)、ニトロ基、炭素数30以下のアルキル基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、炭素数30以下のアシルオキシ基(例えば、アセチルオキシ基、プロピオニルオキシ基等)、炭素数30以下のアシル基(例えば、アセチル基、プロピオニル基、ベンゾイル基等)、カルバモイル基(例えば、カルバモイル基、N,N−ジメチルカルバモイル基、モルホリノカルボニル基、ピペリジノカルボニル基等)、スルファモイル基(例えば、スルファモイル基、N,N−ジメチルスルファモイル基、モルホリノスルホニル基、ピペリジノスルホニル基等)、炭素数30以下のアリール基(例えば、フェニル基、4−クロロフェニル基、4−メチルフェニル基、α−ナフチル基等)、置換アミノ基(例えば、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、ジアリールアミノ基、アシルアミノ基等)、置換ウレイド基、置換ホスホノ基、などが挙げられる。
前記蛍光増白剤は、有機溶媒、水、アルカリ水溶液に溶解しうる化合物が好ましい。また、有機溶媒、水、アルカリ水溶液に分散、乳化しうる化合物であってもよい。前記蛍光増白剤は、単一化合物として、又は数種の物質の混合物として使用することができる。
前記蛍光増白剤の中でも、以下の部分構造を有するものが特に好ましいが、本発明においてはこれらに限定されるものではない。
上記式中、
a)R1Dはメチル基、R2D,R3D,R4D及びR5Dは水素原子、
b)R2D,R3D及びR4Dはメトキシ基、R1D及びR5Dは水素原子、
c)R1Dはシアノ基、R2D,R3D,R4D及びR5Dは水素原子、又は
d)R3Dはシアノ基,R1D,R2D,R4D及びR5Dは水素原子
を表す。
a)R1Dはメチル基、R2D,R3D,R4D及びR5Dは水素原子、
b)R2D,R3D及びR4Dはメトキシ基、R1D及びR5Dは水素原子、
c)R1Dはシアノ基、R2D,R3D,R4D及びR5Dは水素原子、又は
d)R3Dはシアノ基,R1D,R2D,R4D及びR5Dは水素原子
を表す。
上記式中、R1E,R2E,R3E及びR4Eは水素原子、R5Eはメトキシ基を表す。
上記式中、
a)R1F,R2F,R3F,R4F,R5F,R6F,R7F,R8F,R9F及びR10Fは水素原子、
b)R1F,R2F,R4F,R5F,R6F,R7F,R8F,R9F及びR10Fは水素原子、R3Fはメトキシ基、又は
c)R1F,R2F,R4F,R5F,R6F,R7F,R9F,R10Fは水素原子,R3F及びR8Fはメトキシ基、
を表す。
a)R1F,R2F,R3F,R4F,R5F,R6F,R7F,R8F,R9F及びR10Fは水素原子、
b)R1F,R2F,R4F,R5F,R6F,R7F,R8F,R9F及びR10Fは水素原子、R3Fはメトキシ基、又は
c)R1F,R2F,R4F,R5F,R6F,R7F,R9F,R10Fは水素原子,R3F及びR8Fはメトキシ基、
を表す。
上記式中、
a)R1G及びR3Gは水素原子、R2GはSO3Ph、又は
b)R1Gは水素原子、R2Gはシアノ基、R3Gは塩素原子
を表す。
a)R1G及びR3Gは水素原子、R2GはSO3Ph、又は
b)R1Gは水素原子、R2Gはシアノ基、R3Gは塩素原子
を表す。
上記式中、
a)R1Hはt−ブチル基、R2Hは水素原子,R3Hはフェニル基、
b)R1Hはメチル基、R2Hは水素原子、R3Hはメトキシカルボニル基(COOMe)、又は
c)R1Hは水素原子、R2Hは水素原子、R3Hは2−(4−メチル−オキサ−3,3−ジアゾール)
を表す。
a)R1Hはt−ブチル基、R2Hは水素原子,R3Hはフェニル基、
b)R1Hはメチル基、R2Hは水素原子、R3Hはメトキシカルボニル基(COOMe)、又は
c)R1Hは水素原子、R2Hは水素原子、R3Hは2−(4−メチル−オキサ−3,3−ジアゾール)
を表す。
上記式中、
a)XIは4,4’−スチルベンジイル,R1I及びR2Iは水素原子、
b)XIは2,5−チオフェンジイル,R1I及びR2Iはt−ブチル基、
c)XIは1,4−ナフタレンジイル,R1I及びR2Iは水素原子、又は
d)XIは1,1−エテンジイル,R1I及びR2Iはメチル基
を表す。
a)XIは4,4’−スチルベンジイル,R1I及びR2Iは水素原子、
b)XIは2,5−チオフェンジイル,R1I及びR2Iはt−ブチル基、
c)XIは1,4−ナフタレンジイル,R1I及びR2Iは水素原子、又は
d)XIは1,1−エテンジイル,R1I及びR2Iはメチル基
を表す。
上記式中、R1J及びR2Jはジエチルアミノ基を表す。
上記式中、
a)R1K及びR2Kは水素原子、R3KはSO2NH2、
b)R1K及びR2Kは水素原子、R3KはSO2CH2CH2OCH2CH2NMe2、
c)R1K及びR2Kは水素原子、R3KはSO2CH2CH2OCH(CH3)CH2NMe2、
d)R1K及びR2Kは水素原子、R3KはSO2CH3、又は
e)R1K及びR2Kは水素原子、R3KはSO2CH2CH2OH
を表す。
a)R1K及びR2Kは水素原子、R3KはSO2NH2、
b)R1K及びR2Kは水素原子、R3KはSO2CH2CH2OCH2CH2NMe2、
c)R1K及びR2Kは水素原子、R3KはSO2CH2CH2OCH(CH3)CH2NMe2、
d)R1K及びR2Kは水素原子、R3KはSO2CH3、又は
e)R1K及びR2Kは水素原子、R3KはSO2CH2CH2OH
を表す。
上記式中、
a)R1L,R2L,R3L,R4L,R5L,R6L,R7L,R8L,R9L,R10Lは水素原子、R11Lは、
b)R1L,R2L,R3L,R4L,R5L,R6L,R7L,R8L,R9L,R10Lは水素原子、R11Lは、
c)R1L,R2L,R4L,R5L,R6L,R7L,R8L,R9L,R10Lは水素原子、R3Lはt−ブチル基、R11Lは、
d)R1L,R2L,R4L,R5L,R6L,R7L,R8L,R9L,R10Lは水素原子、R3Lはt−ブチル基、R11Lは、
e)R1L,R2L,R4L,R5L,R6L,R7L,R8L,R9L,R10Lは水素原子、R3Lはメトキシ基、R11Lは、
f)R1L,R5L,R6L,R7L,R8L,R9L,R10Lは水素原子、R2L及びR4Lはメトキシ基、R3Lはt−ブチル基、R11Lは、
g)R1L,R2L,R4L,R5L,R6L,R7L,R9L,R10Lは水素原子、R3Lはt−ブチル基、R8Lはメトキシ基、R11Lは、
a)R1L,R2L,R3L,R4L,R5L,R6L,R7L,R8L,R9L,R10Lは水素原子、R11Lは、
b)R1L,R2L,R3L,R4L,R5L,R6L,R7L,R8L,R9L,R10Lは水素原子、R11Lは、
c)R1L,R2L,R4L,R5L,R6L,R7L,R8L,R9L,R10Lは水素原子、R3Lはt−ブチル基、R11Lは、
d)R1L,R2L,R4L,R5L,R6L,R7L,R8L,R9L,R10Lは水素原子、R3Lはt−ブチル基、R11Lは、
e)R1L,R2L,R4L,R5L,R6L,R7L,R8L,R9L,R10Lは水素原子、R3Lはメトキシ基、R11Lは、
f)R1L,R5L,R6L,R7L,R8L,R9L,R10Lは水素原子、R2L及びR4Lはメトキシ基、R3Lはt−ブチル基、R11Lは、
g)R1L,R2L,R4L,R5L,R6L,R7L,R9L,R10Lは水素原子、R3Lはt−ブチル基、R8Lはメトキシ基、R11Lは、
上記式中、
a)R1M,R2M,R3M,R4M,R5M,R6M,R7M,R8M,R9M,R10Mは水素原子、R11Mは、
b)R1M,R2M,R3M,R4M,R5M,R6M,R7M,R8M,R9M,R10Mは水素原子、R11Mは、
c)R1M,R2M,R4M,R5M,R6M,R7M,R8M,R9M,R10Mは水素原子、R3Mはt−ブチル基、R11Mは、
d)R1M,R2M,R4M,R5M,R6M,R7M,R8M,R9M,R10Mは水素原子、R3Mはt−ブチル基、R11Mは、
e)R1M,R2M,R4M,R5M,R6M,R7M,R8M,R9M,R10Mは水素原子、R3Mはメトキシ基、R11Mは、
f)R1M,R5M,R6M,R7M,R8M,R9M,R10Mは水素原子、R2M及びR4Mはメトキシ基、R3Mはt−ブチル基、R11Mは、
g)R1M,R2M,R4M,R5M,R6M,R7M,R9M,R10Mは水素原子、R3Mはt−ブチル基、R8Mはメトキシ基、R11Mは、
a)R1M,R2M,R3M,R4M,R5M,R6M,R7M,R8M,R9M,R10Mは水素原子、R11Mは、
b)R1M,R2M,R3M,R4M,R5M,R6M,R7M,R8M,R9M,R10Mは水素原子、R11Mは、
c)R1M,R2M,R4M,R5M,R6M,R7M,R8M,R9M,R10Mは水素原子、R3Mはt−ブチル基、R11Mは、
d)R1M,R2M,R4M,R5M,R6M,R7M,R8M,R9M,R10Mは水素原子、R3Mはt−ブチル基、R11Mは、
e)R1M,R2M,R4M,R5M,R6M,R7M,R8M,R9M,R10Mは水素原子、R3Mはメトキシ基、R11Mは、
f)R1M,R5M,R6M,R7M,R8M,R9M,R10Mは水素原子、R2M及びR4Mはメトキシ基、R3Mはt−ブチル基、R11Mは、
g)R1M,R2M,R4M,R5M,R6M,R7M,R9M,R10Mは水素原子、R3Mはt−ブチル基、R8Mはメトキシ基、R11Mは、
上記式中、
a)R1Nは水素原子,R2Nはメトキシ基、R3Nはメチル基、又は
b)R1N及びR2Nはエトキシ基,R3Nはメチル基
を表す。
a)R1Nは水素原子,R2Nはメトキシ基、R3Nはメチル基、又は
b)R1N及びR2Nはエトキシ基,R3Nはメチル基
を表す。
上記式中、
a)R1P及びR2Pはメチル基、R3Pは水素原子、又は
b)R1P及びR2Pはメチル基、R3PはOCOMe
を表す。
a)R1P及びR2Pはメチル基、R3Pは水素原子、又は
b)R1P及びR2Pはメチル基、R3PはOCOMe
を表す。
上記式中、
a)XQは1,2−エテンジイル,R1Qはメチル基、又は
b)XQは4,4’−スチルベンジイル,R1Qはメチル基
を表す。
a)XQは1,2−エテンジイル,R1Qはメチル基、又は
b)XQは4,4’−スチルベンジイル,R1Qはメチル基
を表す。
上記式中、R1Rはフェニル基、R2Rはジエチルアミノ基(NEt2)、R3Rはエチル基を表す。
上記式中、R1S及びR2Sはメトキシ基を表す。
本発明に用いる前記蛍光増白剤としては、下記構造式(60)又は構造式(61)で表される化合物の少なくとも1種を含有したものを用いてもよい。該蛍光増白剤は、分光増感色素であり、ラジカル又はカチオンを発生し得る化合物(ラジカル又はカチオン発生剤)を分光増感する機能を有している。従って、該分光増感色素の吸収に対応した可視〜赤外光を照射すると、この領域に吸収を有しないラジカル又はカチオン発生剤を含有する場合であっても、該発生剤からのラジカルやカチオンの発生を促進することができる。
上記構造式(60)及び構造式(61)中、R1h〜R12hは夫々独立に水素原子、置換基を有してもよい飽和又は不飽和のアルキル基、アラルキル基、アリール基、飽和又は不飽和のアルキルオキシ基、アラルキルオキシ基、アリールオキシ基、飽和又は不飽和のアルキルチオ基、アラルキルチオ基、アリールチオ基、アミノ基、ジアルキルアミノ基、ジアリールアミノ基、ハロゲン原子を表す。R1h〜R12hは更に不飽和の含窒素複素環基を表し、環内窒素原子がベンゼン環と結合してもよい。またR1h〜R12hの基は、各々隣接する基と共に飽和乃至不飽和の環を形成してもよい。
上記構造式(60)及び構造式(61)中、Xh、Yh、Zhは夫々独立に酸素原子、硫黄原子又は一置換窒素原子を表す。
上記構造式(60)中のP及び構造式(61)中のL1h〜L3hは、各々独立に置換基を有してもよい芳香環又は複素芳香環からなる2価の連結基を表す。
Qは1,3,5−ベンゼントリイル基又は窒素原子を表す。nは1以上のいずれかの整数を表す。
上記構造式(61)中、a、b、cは、各々独立に0及び1以上のいずれかの整数を表すが、Qが窒素原子のときは、1以上のいずれかの整数を表す。
上記構造式(60)及び構造式(61)中、Xh、Yh、Zhは夫々独立に酸素原子、硫黄原子又は一置換窒素原子を表す。
上記構造式(60)中のP及び構造式(61)中のL1h〜L3hは、各々独立に置換基を有してもよい芳香環又は複素芳香環からなる2価の連結基を表す。
Qは1,3,5−ベンゼントリイル基又は窒素原子を表す。nは1以上のいずれかの整数を表す。
上記構造式(61)中、a、b、cは、各々独立に0及び1以上のいずれかの整数を表すが、Qが窒素原子のときは、1以上のいずれかの整数を表す。
上記構造式(60)及び構造式(61)中、R1h〜R12hが表す前記飽和アルキル基としては、直鎖状、分岐状、環状のアルキル基が挙げられ、炭素数としては1〜30が好ましく、1〜20がより好ましい。このようなアルキル基の例として、メチル基、エチル基、n−プロピル基、n−ブチル基、2−エチルへキシル基、シクロヘキシル基、オクタデシル基等が挙げられる。
上記構造式(60)及び構造式(61)中のR1h〜R12hが表す前記アルキル基が置換基を有する場合、該置換基としては、カルボキシル基、スルホ基、シアノ基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)、ヒドロキシ基、炭素数30以下のアルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、ベンジルオキシカルボニル基)、炭素数30以下のアルキルスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基、アルキルスルホニル基、アリールスルホニル基、炭素数30以下のアシルアミノスルホニル基、炭素数30以下のアルコキシ基(例えば、メトキシ基、エトキシ基、ベンジルオキシ基、フェノキシエトキシ基、フェネチルオキシ基等)、炭素数30以下のアルキルチオ基(例えば、メチルチオ基、エチルチオ基、メチルチオエチルチオエチル基等)、炭素数30以下のアリールオキシ基(例えば、フェノキシ基、p−トリルオキシ基、1−ナフトキシ基、2−ナフトキシ基等)、ニトロ基、炭素数30以下のアルキル基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基などが挙げられる。
炭素数30以下のアシルオキシ基(例えば、アセチルオキシ基、プロピオニルオキシ基等)、炭素数30以下のアシル基(例えば、アセチル基、プロピオニル基、ベンゾイル基等)、カルバモイル基(例えば、カルバモイル基、N,N−ジメチルカルバモイル基、モルホリノカルボニル基、ピペリジノカルボニル基等)、スルファモイル基(例えば、スルファモイル基、N,N−ジメチルスルファモイル基、モルホリノスルホニル基、ピペリジノスルホニル基等)、炭素数30以下のアリール基(例えば、フェニル基、4−クロロフェニル基、4−メチルフェニル基、α−ナフチル基等)、置換アミノ基(例えば、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、ジアリールアミノ基、アシルアミノ基等)、置換ウレイド基、置換ホスホノ基、複素環基等が挙げられる。ここで、カルボキシル基、スルホ基、ヒドロキシ基、ホスホノ基は、塩の状態であってもよい。
上記構造式(60)及び構造式(61)中、前記R1h〜R12hが表す不飽和のアルキル基としては、直鎖状、分岐状、環状のアルケニル基が挙げられ、該アルケニル基の炭素原子数は、2〜30が好ましく、2〜20がより好ましい。また、該アルケニル基は、置換基を有する置換アルケニル基、無置換のアルケニル基のいずれであってもよく、置換アルケニル基のアルケニル部分の炭素原子数の好ましい範囲は上記アルケニル基の場合と同様である。置換アルケニル基の置換基としては、前記置換アルキル基の場合と同様の置換基が挙げられる。
更に、上記構造式(60)及び構造式(61)のR1h〜R12hが表す不飽和のアルキル基としては、直鎖状、分岐状、環状のアルキニル基が挙げられ、該アルキニル基の炭素原子数は、2〜30が好ましく、2〜20がより好ましい。また、該アルキニル基は、置換基を有する置換アルキニル基、無置換のアルキニル基のいずれであってもよく、置換アルキニル基のアルキニル部分の炭素原子数の好ましい範囲は上記アルキニル基の場合と同様である。置換アルキニル基の置換基としては、前記置換アルキル基の場合と同様の置換基が挙げられる。
上記構造式(60)及び構造式(61)中のR1h〜R12hが表す前記アラルキル基としては、直鎖状、分岐状、環状のアラルキル基が挙げられ、炭素数としては7〜30が好ましく、7〜20がより好ましい。具体例としては、ベンジル基、フェネチル基等が挙げられる。また、該アラルキル基は、置換基を有する置換アラルキル基、無置換のアラルキル基のいずれであってもよい。
上記構造式(60)及び構造式(61)中のR1h〜R12hが表す前記アリール基としては、炭素数6〜30が好ましく、6〜20がより好ましい。このようなアリール基の例として、フェニル基、α−ナフチル基、β−ナフチル基等が挙げられる。
上記構造式(60)及び構造式(61)中のR1h〜R12hが表す前記飽和アルキルオキシ基としては、炭素数1〜30が好ましく、1〜20がより好ましい。このようなアルキルオキシ基としては、メトキシ基、エトキシ基、2−エチルへキシルオキシ基、フェノキシエトキシ基等が挙げられる。また、不飽和アルキルオキシ基としては、アルケニルオキシ基及びアルキニルオキシ基が挙げられ、該アルケニル基及びアルキニル基は前述の不飽和アルキル基のものと同義である。
上記構造式(60)及び構造式(61)中のR1h〜R12hが表す前記アラルキルオキシ基としては、炭素数7〜12が好ましく、7〜10がより好ましい。このようなアラルキルオキシ基としては、ベンジルオキシ基、フェネチルオキシ基等が挙げられる。
上記構造式(60)及び構造式(61)中のR1h〜R12hが表す前記アリールオキシ基としては、炭素数6〜30が好ましく、6〜20がより好ましい。このようなアリールオキシ基の例として、フェノキシ基、4−メチルフェノキシ基、α−ナフチルオキシ基等が挙げられる。
上記構造式(60)及び構造式(61)中のR1h〜R12hが表す前記飽和アルキルチオ基としては、炭素数1〜30が好ましく、1〜20がより好ましい。このようなアルキルチオ基の例として、メチルチオ基、エチルチオ基、n−ブチルチオ基、2−エチルヘキシルチオ基等が挙げられる。また、不飽和アルキルチオ基としては、アルケニルチオ基及びアルキニルチオ基が挙げられ、該アルケニル基及びアルキニル基は前述の不飽和アルキル基のものと同義である。
上記構造式(60)及び構造式(61)中のR1h〜R12hが表す前記アラルキルチオ基としては、炭素数7〜30が好ましく、7〜20がより好ましい。このようなアラルキルチオ基の例として、ベンジルチオ基、フェネチルチオ基等が挙げられる。
上記構造式(60)及び構造式(61)中のR1h〜R12hが表す前記アリールチオ基としては、炭素数6〜30が好ましく、6〜20がより好ましい。このようなアリールチオ基の例として、フェニルチオ基、4−メチルフェニルチオ基、α−ナフチルチオ基等が挙げられる。
上記構造式(60)及び構造式(61)中のR1h〜R12hが表す前記ジアルキルアミノ基は、前述したアルキル基の任意の2つが置換したアミノ基であり、炭素数は1〜30が好ましい。このようなジアルキルアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基、ジオクチルアミノ基、ジデシルアミノ基等が挙げられる。
上記構造式(60)及び構造式(61)中のR1h〜R12hが表す前記ジアリールアミノ基は、前述したアリール基の任意の2つが置換したアミノ基であり、炭素数は6〜30が好ましい。このようなジアリールアミノ基としては、ジフェニルアミノ基、ジトリルアミノ基、ジキシリルアミノ基、ジ−α−ナフチルアミノ基、ジ−β−ナフチルアミノ基等が挙げられる。
上記構造式(60)及び構造式(61)中のR1h〜R12hが表す前記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
上記構造式(60)及び構造式(61)中のR1h〜R12hは更に不飽和の含窒素複素環基を表し、環内窒素原子がベンゼン環と結合してもよい。該含窒素複素環は、置換基を有していてもよい5〜7員の不飽和の含窒素複素環基であり、具体例を下記に示す。尚、含窒素複素環の置換位置は、前記構造式(60)及び構造式(61)中のR2h、R3h、R6h、R7h、R10h、R11hのいずれかの位置が好ましい。また、好ましい置換基としては、アルキル基、アリール基、アルコキシ基、ジアルキルアミノ基、ジアリールアミノ基が挙げられる。
また、上記構造式(60)及び構造式(61)中のR1h〜R12hの基は、各々隣接する基と共に飽和乃至不飽和の環を形成してもよい。このような飽和乃至不飽和の環としては、例えばテトラヒドロキノリン環、ジュロリジン環等が挙げられる。
上記構造式(60)及び構造式(61)中、Xh、Yh、Zhが表す前記一置換窒素原子は、アルキル基又はアリール基が置換した窒素原子であり、該窒素原子上のアルキル基及びアリール基は、R1h〜R12hで表される前記アルキル基及びアリール基と同義である。
上記構造式(60)及び構造式(61)中、前記P及びL1h〜L3hが表す置換基を有してもよい2価の芳香環基としては、下記に示す2価芳香環基が挙げられる。
上記構造式の中でも、特に下記に示す2価芳香環基が好ましい。
また、上記構造式(60)及び構造式(61)中、P及びL1h〜L3hが表す置換基を有してもよい2価の複素芳香環基としては、下記に示す2価複素芳香環基が挙げられる。
上記構造式の中でも、特に下記に示す2価複素芳香環基が好ましい。
ここで、上記R13h、R15h及びR16hは低級アルキル基を表し、R14hは上記構造式(60)及び構造式(61)中のR1h〜R12hで表される基と同義である。
上記構造式(60)及び構造式(61)中、nは1以上のいずれかの整数を表し、特に1、2、3が好ましい。また、nが2以上の整数を表すときは、前記Pは芳香環と複素芳香環の組み合わせでもよい。上記構造式(60)及び構造式(61)中、a、b、cが1以上の整数を表すときは、L1h〜L3hが表す置換基は各々異なっていてもよい。
以下に、前記構造式(60)又は構造式(61)で表される化合物の具体例(例示化合物No.1〜57)を示すが、本発明においてはこれらに限定されるものではない。
なお、蛍光増白剤は、感光層の感度の向上を図るだけでなく、光励起により前記モノマーの重合を開始させるような光重合開始剤としての機能をも有している。
<その他の成分>
回路形成用レジストとしての感光性組成物におけるその他の成分としては、例えば、公知の界面活性剤、可塑剤、発色剤、着色剤などが挙げられ、更に基体表面への密着促進剤及びその他の助剤類(例えば、顔料、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、熱架橋剤、表面張力調整剤、連鎖移動剤等)を併用してもよい。これらの成分を適宜含有させることにより、目的とする前記感光層(前記パターン形成材料)の安定性、写真性、焼きだし性、膜物性等の性質を調整することもできる。
回路形成用レジストとしての感光性組成物におけるその他の成分としては、例えば、公知の界面活性剤、可塑剤、発色剤、着色剤などが挙げられ、更に基体表面への密着促進剤及びその他の助剤類(例えば、顔料、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、熱架橋剤、表面張力調整剤、連鎖移動剤等)を併用してもよい。これらの成分を適宜含有させることにより、目的とする前記感光層(前記パターン形成材料)の安定性、写真性、焼きだし性、膜物性等の性質を調整することもできる。
(1)可塑剤
前記可塑剤は、前記感光性組成物からなる感光層の膜物性(可撓性)をコントロールするために添加してもよい。
前記可塑剤としては、例えば、ジメチルフタレート、ジブチルフタレート、ジイソブチルフタレート、ジヘプチルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジトリデシルフタレート、ブチルベンジルフタレート、ジイソデシルフタレート、ジフェニルフタレート、ジアリルフタレート、オクチルカプリールフタレート等のフタル酸エステル類;トリエチレングリコールジアセテート、テトラエチレングリコールジアセテート、ジメチルグリコースフタレート、エチルフタリールエチルグリコレート、メチルフタリールエチルグリコレート、ブチルフタリールブチルグリコレート、トリエチレングリコールジカブリル酸エステル等のグリコールエステル類;トリクレジルホスフェート、トリフェニルホスフェート等のリン酸エステル類;4−トルエンスルホンアミド、ベンゼンスルホンアミド、N−n−ブチルベンゼンスルホンアミド、N−n−ブチルアセトアミド等のアミド類;ジイソブチルアジペート、ジオクチルアジペート、ジメチルセバケート、ジブチルセパケート、ジオクチルセパケート、ジオクチルアゼレート、ジブチルマレート等の脂肪族二塩基酸エステル類;クエン酸トリエチル、クエン酸トリブチル、グリセリントリアセチルエステル、ラウリン酸ブチル、4,5−ジエポキシシクロヘキサン−1,2−ジカルボン酸ジオクチル等、ポリエチレングリコール、ポリプロピレングリコール等のグリコール類が挙げられる。
前記可塑剤は、前記感光性組成物からなる感光層の膜物性(可撓性)をコントロールするために添加してもよい。
前記可塑剤としては、例えば、ジメチルフタレート、ジブチルフタレート、ジイソブチルフタレート、ジヘプチルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジトリデシルフタレート、ブチルベンジルフタレート、ジイソデシルフタレート、ジフェニルフタレート、ジアリルフタレート、オクチルカプリールフタレート等のフタル酸エステル類;トリエチレングリコールジアセテート、テトラエチレングリコールジアセテート、ジメチルグリコースフタレート、エチルフタリールエチルグリコレート、メチルフタリールエチルグリコレート、ブチルフタリールブチルグリコレート、トリエチレングリコールジカブリル酸エステル等のグリコールエステル類;トリクレジルホスフェート、トリフェニルホスフェート等のリン酸エステル類;4−トルエンスルホンアミド、ベンゼンスルホンアミド、N−n−ブチルベンゼンスルホンアミド、N−n−ブチルアセトアミド等のアミド類;ジイソブチルアジペート、ジオクチルアジペート、ジメチルセバケート、ジブチルセパケート、ジオクチルセパケート、ジオクチルアゼレート、ジブチルマレート等の脂肪族二塩基酸エステル類;クエン酸トリエチル、クエン酸トリブチル、グリセリントリアセチルエステル、ラウリン酸ブチル、4,5−ジエポキシシクロヘキサン−1,2−ジカルボン酸ジオクチル等、ポリエチレングリコール、ポリプロピレングリコール等のグリコール類が挙げられる。
前記可塑剤の含有量としては、前記感光性組成物の全成分に対して0.1〜50質量%が好ましく、0.5〜40質量%がより好ましく、1〜30質量%が特に好ましい。
(2)発色剤
前記発色剤は、露光後の前記感光層に可視像を与える(焼きだし機能)ために添加してもよい。
前記発色剤としては、例えば、トリス(4−ジメチルアミノフェニル)メタン(ロイコクリスタルバイオレット)、トリス(4−ジエチルアミノフェニル)メタン、トリス(4−ジメチルアミノ−2−メチルフェニル)メタン、トリス(4−ジエチルアミノ−2−メチルフェニル)メタン、ビス(4−ジブチルアミノフェニル)−〔4−(2−シアノエチル)メチルアミノフェニル〕メタン、ビス(4−ジメチルアミノフェニル)−2−キノリルメタン、トリス(4−ジプロピルアミノフェニル)メタン等のアミノトリアリールメタン類;3,6−ビス(ジメチルアミノ)−9−フェニルキサンチン、3−アミノ−6−ジメチルアミノ−2−メチル−9−(2−クロロフェニル)キサンチン等のアミノキサンチン類;3,6−ビス(ジエチルアミノ)−9−(2−エトキシカルボニルフェニル)チオキサンテン、3,6−ビス(ジメチルアミノ)チオキサンテン等のアミノチオキサンテン類;3,6−ビス(ジエチルアミノ)−9,10−ジヒドロ−9−フェニルアクリジン、3,6−ビス(ベンジルアミノ)−9,10−ジビドロ−9−メチルアクリジン等のアミノ−9,10−ジヒドロアクリジン類;3,7−ビス(ジエチルアミノ)フェノキサジン等のアミノフェノキサジン類;3,7−ビス(エチルアミノ)フェノチアゾン等のアミノフェノチアジン類;3,7−ビス(ジエチルアミノ)−5−ヘキシル−5,10−ジヒドロフェナジン等のアミノジヒドロフェナジン類;ビス(4−ジメチルアミノフェニル)アニリノメタン等のアミノフェニルメタン類;4−アミノ−4’−ジメチルアミノジフェニルアミン、4−アミノ−α、β−ジシアノヒドロケイ皮酸メチルエステル等のアミノヒドロケイ皮酸類;1−(2−ナフチル)−2−フェニルヒドラジン等のヒドラジン類;1,4−ビス(エチルアミノ)−2,3−ジヒドロアントラキノン類のアミノ−2,3−ジヒドロアントラキノン類;N,N−ジエチル−4−フェネチルアニリン等のフェネチルアニリン類;10−アセチル−3,7−ビス(ジメチルアミノ)フェノチアジン等の塩基性NHを含むロイコ色素のアシル誘導体;トリス(4−ジエチルアミノ−2−トリル)エトキシカルボニルメンタン等の酸化しうる水素をもっていないが、発色化合物に酸化しうるロイコ様化合物;ロイコインジゴイド色素;米国特許3,042,515号及び同第3,042,517号に記載されているような発色形に酸化しうるような有機アミン類(例、4,4’−エチレンジアミン、ジフェニルアミン、N,N−ジメチルアニリン、4,4’−メチレンジアミントリフェニルアミン、N−ビニルカルバゾール)が挙げられ、これらの中でも、ロイコクリスタルバイオレット等のトリアリールメタン系化合物が好ましい。
前記発色剤は、露光後の前記感光層に可視像を与える(焼きだし機能)ために添加してもよい。
前記発色剤としては、例えば、トリス(4−ジメチルアミノフェニル)メタン(ロイコクリスタルバイオレット)、トリス(4−ジエチルアミノフェニル)メタン、トリス(4−ジメチルアミノ−2−メチルフェニル)メタン、トリス(4−ジエチルアミノ−2−メチルフェニル)メタン、ビス(4−ジブチルアミノフェニル)−〔4−(2−シアノエチル)メチルアミノフェニル〕メタン、ビス(4−ジメチルアミノフェニル)−2−キノリルメタン、トリス(4−ジプロピルアミノフェニル)メタン等のアミノトリアリールメタン類;3,6−ビス(ジメチルアミノ)−9−フェニルキサンチン、3−アミノ−6−ジメチルアミノ−2−メチル−9−(2−クロロフェニル)キサンチン等のアミノキサンチン類;3,6−ビス(ジエチルアミノ)−9−(2−エトキシカルボニルフェニル)チオキサンテン、3,6−ビス(ジメチルアミノ)チオキサンテン等のアミノチオキサンテン類;3,6−ビス(ジエチルアミノ)−9,10−ジヒドロ−9−フェニルアクリジン、3,6−ビス(ベンジルアミノ)−9,10−ジビドロ−9−メチルアクリジン等のアミノ−9,10−ジヒドロアクリジン類;3,7−ビス(ジエチルアミノ)フェノキサジン等のアミノフェノキサジン類;3,7−ビス(エチルアミノ)フェノチアゾン等のアミノフェノチアジン類;3,7−ビス(ジエチルアミノ)−5−ヘキシル−5,10−ジヒドロフェナジン等のアミノジヒドロフェナジン類;ビス(4−ジメチルアミノフェニル)アニリノメタン等のアミノフェニルメタン類;4−アミノ−4’−ジメチルアミノジフェニルアミン、4−アミノ−α、β−ジシアノヒドロケイ皮酸メチルエステル等のアミノヒドロケイ皮酸類;1−(2−ナフチル)−2−フェニルヒドラジン等のヒドラジン類;1,4−ビス(エチルアミノ)−2,3−ジヒドロアントラキノン類のアミノ−2,3−ジヒドロアントラキノン類;N,N−ジエチル−4−フェネチルアニリン等のフェネチルアニリン類;10−アセチル−3,7−ビス(ジメチルアミノ)フェノチアジン等の塩基性NHを含むロイコ色素のアシル誘導体;トリス(4−ジエチルアミノ−2−トリル)エトキシカルボニルメンタン等の酸化しうる水素をもっていないが、発色化合物に酸化しうるロイコ様化合物;ロイコインジゴイド色素;米国特許3,042,515号及び同第3,042,517号に記載されているような発色形に酸化しうるような有機アミン類(例、4,4’−エチレンジアミン、ジフェニルアミン、N,N−ジメチルアニリン、4,4’−メチレンジアミントリフェニルアミン、N−ビニルカルバゾール)が挙げられ、これらの中でも、ロイコクリスタルバイオレット等のトリアリールメタン系化合物が好ましい。
更に、前記発色剤は、前記ロイコ体を発色させるためなどの目的で、ハロゲン化合物と組み合わせることが一般に知られている。
前記ハロゲン化合物としては、例えば、ハロゲン化炭化水素(例えば、四臭化炭素、ヨードホルム、臭化エチレン、臭化メチレン、臭化アミル、臭化イソアミル、ヨウ化アミル、臭化イソブチレン、ヨウ化ブチル、臭化ジフェニルメチル、ヘキサクロロエタン、1,2−ジブロモエタン、1,1,2,2−テトラブロモエタン、1,2−ジブロモ−1,1,2−トリクロロエタン、1,2,3トリブロモプロパン、1−ブロモ−4−クロロブタン、1,2,3,4−テトラブロモブタン、テトラクロロシクロプロペン、ヘキサクロロシクロペンタジエン、ジブロモシキロヘキサン、1,1,1−トリクロロ−2,2−ビス(4−クロロフェニル)エタンなど);ハロゲン化アルコール化合物(例えば、2,2,2−トリクロロエタノール、トリブロモエタノール、1,3−ジクロロ−2−プロパノール、1,1,1−トリクロロ−2−プロパノール、ジ(ヨードヘキサメチレン)アミノイソプロパノール、トリブロモ−t−ブチルアルコール、2,2,3−トリクロロブタン−1,4−ジオールなど);ハロゲン化カルボニル化合物(例えば1,1−ジクロロアセトン、1,3−ジクロロアセトン、ヘキサクロロアセトン、ヘキサブロモアセトン、1,1,3,3−テトラクロロアセトン、1,1,1−トリクロロアセトン、3,4−ジブロモ−2−ブタノン、1,4−ジクロロ−2−ブタノン−ジブロモシクロヘキサノン等);ハロゲン化エーテル化合物(例えば2−ブロモエチルメチルエーテル、2−ブロモエチルエチルエーテル、ジ(2−ブロモエチル)エーテル、1,2−ジクロロエチルエチルエーテル等);ハロゲン化エステル化合物(例えば、酢酸ブロモエチル、トリクロロ酢酸エチル、トリクロロ酢酸トリクロロエチル、2,3−ジブロモプロピルアクリレートのホモポリマー及び共重合体、ジブロモプロピオン酸トリクロロエチル、α,β−ジグロロアクリル酸エチル等);ハロゲン化アミド化合物(例えば、クロロアセトアミド、ブロモアセトアミド、ジクロロアセトアミド、トリクロロアセトアミド、トリブロモアセトアミド、トリクロロエチルトリクロロアセトアミド、2−ブロモイソプロピオンアミド、2,2,2−トリクロロプロピオンアミド、N−クロロスクシンイミド、N−ブロモスクシンイミドなど);硫黄やリンを有する化合物(例えば、トリブロモメチルフェニルスルホン、4−ニトロフェニルトリブロモメチルスルホン、4−クロルフェニルトリブロモメチルスルホン、トリス(2,3−ジブロモプロピル)ホスフェート等)、2,4−ビス(トリクロロメチル)6−フェニルトリアゾールなどが挙げられる。有機ハロゲン化合物では、同一炭素原子に結合した2個以上のハロゲン原子を持つハロゲン化合物が好ましく、1個の炭素原子に3個のハロゲン原子を持つハロゲン化合物がより好ましい。前記有機ハロゲン化合物は、1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、トリブロモメチルフェニルスルホン、2,4−ビス(トリクロロメチル)−6−フェニルトリアゾールが好ましい。
前記ハロゲン化合物としては、例えば、ハロゲン化炭化水素(例えば、四臭化炭素、ヨードホルム、臭化エチレン、臭化メチレン、臭化アミル、臭化イソアミル、ヨウ化アミル、臭化イソブチレン、ヨウ化ブチル、臭化ジフェニルメチル、ヘキサクロロエタン、1,2−ジブロモエタン、1,1,2,2−テトラブロモエタン、1,2−ジブロモ−1,1,2−トリクロロエタン、1,2,3トリブロモプロパン、1−ブロモ−4−クロロブタン、1,2,3,4−テトラブロモブタン、テトラクロロシクロプロペン、ヘキサクロロシクロペンタジエン、ジブロモシキロヘキサン、1,1,1−トリクロロ−2,2−ビス(4−クロロフェニル)エタンなど);ハロゲン化アルコール化合物(例えば、2,2,2−トリクロロエタノール、トリブロモエタノール、1,3−ジクロロ−2−プロパノール、1,1,1−トリクロロ−2−プロパノール、ジ(ヨードヘキサメチレン)アミノイソプロパノール、トリブロモ−t−ブチルアルコール、2,2,3−トリクロロブタン−1,4−ジオールなど);ハロゲン化カルボニル化合物(例えば1,1−ジクロロアセトン、1,3−ジクロロアセトン、ヘキサクロロアセトン、ヘキサブロモアセトン、1,1,3,3−テトラクロロアセトン、1,1,1−トリクロロアセトン、3,4−ジブロモ−2−ブタノン、1,4−ジクロロ−2−ブタノン−ジブロモシクロヘキサノン等);ハロゲン化エーテル化合物(例えば2−ブロモエチルメチルエーテル、2−ブロモエチルエチルエーテル、ジ(2−ブロモエチル)エーテル、1,2−ジクロロエチルエチルエーテル等);ハロゲン化エステル化合物(例えば、酢酸ブロモエチル、トリクロロ酢酸エチル、トリクロロ酢酸トリクロロエチル、2,3−ジブロモプロピルアクリレートのホモポリマー及び共重合体、ジブロモプロピオン酸トリクロロエチル、α,β−ジグロロアクリル酸エチル等);ハロゲン化アミド化合物(例えば、クロロアセトアミド、ブロモアセトアミド、ジクロロアセトアミド、トリクロロアセトアミド、トリブロモアセトアミド、トリクロロエチルトリクロロアセトアミド、2−ブロモイソプロピオンアミド、2,2,2−トリクロロプロピオンアミド、N−クロロスクシンイミド、N−ブロモスクシンイミドなど);硫黄やリンを有する化合物(例えば、トリブロモメチルフェニルスルホン、4−ニトロフェニルトリブロモメチルスルホン、4−クロルフェニルトリブロモメチルスルホン、トリス(2,3−ジブロモプロピル)ホスフェート等)、2,4−ビス(トリクロロメチル)6−フェニルトリアゾールなどが挙げられる。有機ハロゲン化合物では、同一炭素原子に結合した2個以上のハロゲン原子を持つハロゲン化合物が好ましく、1個の炭素原子に3個のハロゲン原子を持つハロゲン化合物がより好ましい。前記有機ハロゲン化合物は、1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、トリブロモメチルフェニルスルホン、2,4−ビス(トリクロロメチル)−6−フェニルトリアゾールが好ましい。
前記発色剤の含有量としては、前記感光性組成物の全成分に対して0.01〜20質量%が好ましく、0.05〜10質量%がより好ましく、0.1〜5質量%が特に好ましい。また、前記ハロゲン化合物の含有量としては、前記感光性組成物の全成分に対し0.001〜5質量%が好ましく、0.005〜1質量%がより好ましい。
(3)着色剤
前記着色剤としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、例えば、赤色、緑色、青色、黄色、紫色、マゼンタ色、シアン色、黒色等の公知の顔料又は染料が挙げられ、具体的には、ビクトリア・ピュアーブルーBO(C.I.42595)、オーラミン(C.I.41000)、ファット・ブラックHB(C.I.26150)、モノライト・エローGT(C.I.ピグメントエロー12)、パーマネント・エローGR(C.I.ピグメント・エロー17)、パーマネント・エローHR(C.I.ピグメント・エロー83)、パーマネント・カーミンFBB(C.I.ピグメント・レッド146)、ホスターバームレッドESB(C.I.ピグメント・バイオレット19)、パーマネント・ルビーFBH(C.I.ピグメント・レッド11)、ファステル・ピンクBスプラ(C.I.ピグメント・レッド81)、モナストラル・ファースト・ブルー(C.I.ピグメント・ブルー15)、モノライト・ファースト・ブラックB(C.I.ピグメント・ブラック1)、カーボンブラックが挙げられる。
前記着色剤としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、例えば、赤色、緑色、青色、黄色、紫色、マゼンタ色、シアン色、黒色等の公知の顔料又は染料が挙げられ、具体的には、ビクトリア・ピュアーブルーBO(C.I.42595)、オーラミン(C.I.41000)、ファット・ブラックHB(C.I.26150)、モノライト・エローGT(C.I.ピグメントエロー12)、パーマネント・エローGR(C.I.ピグメント・エロー17)、パーマネント・エローHR(C.I.ピグメント・エロー83)、パーマネント・カーミンFBB(C.I.ピグメント・レッド146)、ホスターバームレッドESB(C.I.ピグメント・バイオレット19)、パーマネント・ルビーFBH(C.I.ピグメント・レッド11)、ファステル・ピンクBスプラ(C.I.ピグメント・レッド81)、モナストラル・ファースト・ブルー(C.I.ピグメント・ブルー15)、モノライト・ファースト・ブラックB(C.I.ピグメント・ブラック1)、カーボンブラックが挙げられる。
また、カラーフィルタの作製に好適な前記着色剤として、例えば、C.I.ピグメント・レッド97、C.I.ピグメント・レッド122、C.I.ピグメント・レッド149、C.I.ピグメント・レッド168、C.I.ピグメント・レッド177、C.I.ピグメント・レッド180、C.I.ピグメント・レッド192、C.I.ピグメント・レッド215、C.I.ピグメント・グリーン7、C.I.ピグメント・グリーン36、C.I.ピグメント・ブルー15:1、C.I.ピグメント・ブルー15:4、C.I.ピグメント・ブルー15:6、C.I.ピグメント・ブルー22、C.I.ピグメント・ブルー60、C.I.ピグメント・ブルー64、C.I.ピグメントイエロー139、C.I.ピグメントイエロー83、C.I.ピグメントバイオレット23、特開2002−162752号公報の(0138)〜(0141)に記載のもの等が挙げられる。
前記着色剤の平均粒径としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5μm以下が好ましく、1μm以下がより好ましい。また、カラーフィルタを作製する場合は、前記平均粒子径として、0.5μm以下が好ましい。
前記着色剤の平均粒径としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5μm以下が好ましく、1μm以下がより好ましい。また、カラーフィルタを作製する場合は、前記平均粒子径として、0.5μm以下が好ましい。
前記着色剤の含有量としては、前記感光性組成物の全成分に対して0.01〜5質量%が好ましく、0.05〜3質量%がより好ましく、0.1〜2質量%が特に好ましい。
(4)染料
前記感光性組成物には、取り扱い性の向上のため、又は保存安定性を付与する目的として、染料を用いることができる。
前記染料としては、ブリリアントグリーン(例えば、その硫酸塩)、エオシン、エチルバイオレット、エリスロシンB、メチルグリーン、クリスタルバイオレット、ベイシックフクシン、フェノールフタレイン、1,3−ジフェニルトリアジン、アリザリンレッドS、チモールフタレイン、メチルバイオレット2B、キナルジンレッド、ローズベンガル、メタニル−イエロー、チモールスルホフタレイン、キシレノールブルー、メチルオレンジ、オレンジIV、ジフェニルチロカルバゾン、2,7−ジクロロフルオレセイン、パラメチルレッド、コンゴーレッド、ベンゾプルプリン4B、α−ナフチル−レッド、ナイルブルーA、フェナセタリン、メチルバイオレット、マラカイトグリーン、パラフクシン、オイルブルー#603(オリエント化学工業社製)、ローダミンB、ローダミン6G、ビクトリアピュアブルーBOHなどを挙げることができ、これらの中でもカチオン染料(例えば、マラカイトグリーンシュウ酸塩、マラカイトグリーン硫酸塩等)が好ましい。該カチオン染料の対アニオンとしては、有機酸又は無機酸の残基であればよく、例えば、臭素酸、ヨウ素酸、硫酸、リン酸、シュウ酸、メタンスルホン酸、トルエンスルホン酸等の残基(アニオン)などが挙げられる。
前記感光性組成物には、取り扱い性の向上のため、又は保存安定性を付与する目的として、染料を用いることができる。
前記染料としては、ブリリアントグリーン(例えば、その硫酸塩)、エオシン、エチルバイオレット、エリスロシンB、メチルグリーン、クリスタルバイオレット、ベイシックフクシン、フェノールフタレイン、1,3−ジフェニルトリアジン、アリザリンレッドS、チモールフタレイン、メチルバイオレット2B、キナルジンレッド、ローズベンガル、メタニル−イエロー、チモールスルホフタレイン、キシレノールブルー、メチルオレンジ、オレンジIV、ジフェニルチロカルバゾン、2,7−ジクロロフルオレセイン、パラメチルレッド、コンゴーレッド、ベンゾプルプリン4B、α−ナフチル−レッド、ナイルブルーA、フェナセタリン、メチルバイオレット、マラカイトグリーン、パラフクシン、オイルブルー#603(オリエント化学工業社製)、ローダミンB、ローダミン6G、ビクトリアピュアブルーBOHなどを挙げることができ、これらの中でもカチオン染料(例えば、マラカイトグリーンシュウ酸塩、マラカイトグリーン硫酸塩等)が好ましい。該カチオン染料の対アニオンとしては、有機酸又は無機酸の残基であればよく、例えば、臭素酸、ヨウ素酸、硫酸、リン酸、シュウ酸、メタンスルホン酸、トルエンスルホン酸等の残基(アニオン)などが挙げられる。
前記染料の含有量としては、前記感光性組成物の全成分に対して0.001〜10質量%が好ましく、0.01〜5質量%がより好ましく、0.1〜2質量%が特に好ましい。
(5)密着促進剤
前記感光性組成物には、該感光性組成物を用いて形成する感光層の密着性(前記パターン形成材料としたときの他の層との密着性、又は基体との密着性)を向上させるために、各層に公知のいわゆる密着促進剤を用いることができる。
前記感光性組成物には、該感光性組成物を用いて形成する感光層の密着性(前記パターン形成材料としたときの他の層との密着性、又は基体との密着性)を向上させるために、各層に公知のいわゆる密着促進剤を用いることができる。
前記密着促進剤としては、例えば、特開平5−11439号公報、特開平5−341532号公報、及び特開平6−43638号公報等に記載の密着促進剤が好適挙げられる。具体的には、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、2−メルカプトベンズイミダゾール、2−メルカプトベンズオキサゾール、2−メルカプトベンズチアゾール、3−モルホリノメチル−1−フェニル−トリアゾール−2−チオン、3−モルホリノメチル−5−フェニル−オキサジアゾール−2−チオン、5−アミノ−3−モルホリノメチル−チアジアゾール−2−チオン、及び2−メルカプト−5−メチルチオ−チアジアゾール、トリアゾール、テトラゾール、ベンゾトリアゾール、カルボキシベンゾトリアゾール、アミノ基含有ベンゾトリアゾール、シランカップリング剤などが挙げられる。
前記密着促進剤の含有量としては、前記感光性組成物の全成分に対して0.001質量%〜20質量%が好ましく、0.01〜10質量%がより好ましく、0.1質量%〜5質量%が特に好ましい。
また、前記感光性組成物は、例えば、J.コーサー著「ライトセンシテイブシステムズ」第5章に記載されているような有機硫黄化合物、過酸化物、レドックス系化合物、アゾ又はジアゾ化合物、光還元性色素、有機ハロゲン化合物などを含んでいてもよい。
前記有機硫黄化合物としては、例えば、ジ−n−ブチルジサルファイド、ジベンジルジサルファイド、2−メルカプトベンズチアゾール、2−メルカプトベンズオキサゾール、チオフェノール、エチルトリクロロメタンスルフェネート、2−メルカプトベンズイミダゾールなどが挙げられる。
前記過酸化物としては、例えば、ジ−t−ブチルパーオキサイド、過酸化ベンゾイル、メチルエチルケトンパーオキサイドを挙げることができる。
前記レドックス化合物は、過酸化物と還元剤の組合せからなるものであり、第一鉄イオンと過硫酸イオン、第二鉄イオンと過酸化物などを挙げることができる。
前記アゾ及びジアゾ化合物としては、例えば、α,α’−アゾビスイリブチロニトリル、2−アゾビス−2−メチルブチロニトリル、4−アミノジフェニルアミンのジアゾニウム類が挙げられる。
前記光還元性色素としては、例えば、ローズベンガル、エリスロシン、エオシン、アクリフラビン、リポフラビン、チオニンが挙げられる。
(6)界面活性剤
前記感光性組成物は、前記感光層を形成する際に発生する面状ムラを改善させるために、公知の界面活性剤を添加することができる。
前記界面活性剤としては、例えば、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤、フッ素含有界面活性剤などから適宜選択できる。
前記感光性組成物は、前記感光層を形成する際に発生する面状ムラを改善させるために、公知の界面活性剤を添加することができる。
前記界面活性剤としては、例えば、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤、フッ素含有界面活性剤などから適宜選択できる。
前記界面活性剤の含有量としては、前記感光性組成物の固形分に対し、0.001〜10質量%が好ましい。
前記含有量が、0.001質量%未満になると、面状改良の効果が得られなくことがあり、10質量%を超えると、密着性が低下することがある。
前記含有量が、0.001質量%未満になると、面状改良の効果が得られなくことがあり、10質量%を超えると、密着性が低下することがある。
前記界面活性剤としては、上述の界面活性剤の他、フッ素系の界面活性剤として、炭素鎖3〜20でフッ素原子を40質量%以上含み、かつ、非結合末端から数えて少なくとも3個の炭素原子に結合した水素原子がフッ素置換されているフルオロ脂肪族基を有するアクリレート又はメタクリレートを共重合成分として有する高分子界面活性剤も好適に挙げられる。
(7)熱重合禁止剤
熱重合禁止剤は、前記感光性組成物からなる前記感光層における前記重合性化合物の熱的な重合又は経時的な重合を防止するために添加してもよい。
前記熱重合禁止剤としては、例えば、4−メトキシフェノール、ハイドロキノン、アルキルまたはアリール置換ハイドロキノン、t−ブチルカテコール、ピロガロール、2−ヒドロキシベンゾフェノン、4−メトキシ−2−ヒドロキシベンゾフェノン、塩化第一銅、フェノチアジン、クロラニル、ナフチルアミン、β−ナフトール、2,6−ジ−t−ブチル−4−クレゾール、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、ピリジン、ニトロベンゼン、ジニトロベンゼン、ピクリン酸、4−トルイジン、メチレンブルー、銅と有機キレート剤反応物、サリチル酸メチル、フェノチアジン、フェノキサジン、ニトロソ化合物、及びニトロソ化合物とAlとのキレートなどが挙げられる。
熱重合禁止剤は、前記感光性組成物からなる前記感光層における前記重合性化合物の熱的な重合又は経時的な重合を防止するために添加してもよい。
前記熱重合禁止剤としては、例えば、4−メトキシフェノール、ハイドロキノン、アルキルまたはアリール置換ハイドロキノン、t−ブチルカテコール、ピロガロール、2−ヒドロキシベンゾフェノン、4−メトキシ−2−ヒドロキシベンゾフェノン、塩化第一銅、フェノチアジン、クロラニル、ナフチルアミン、β−ナフトール、2,6−ジ−t−ブチル−4−クレゾール、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、ピリジン、ニトロベンゼン、ジニトロベンゼン、ピクリン酸、4−トルイジン、メチレンブルー、銅と有機キレート剤反応物、サリチル酸メチル、フェノチアジン、フェノキサジン、ニトロソ化合物、及びニトロソ化合物とAlとのキレートなどが挙げられる。
前記熱重合禁止剤の含有量としては、前記重合性化合物に対して0.001〜5質量%が好ましく、0.005〜2質量%がより好ましく、0.01〜1質量%が特に好ましい。
前記含有量が、0.001質量%未満であると、保存時の安定性が低下することがあり、5質量%を超えると、活性エネルギー線に対する感度が低下することがある。
前記含有量が、0.001質量%未満であると、保存時の安定性が低下することがあり、5質量%を超えると、活性エネルギー線に対する感度が低下することがある。
〔ソルダーレジスト〕
ソルダーレジストとしての感光性組成物としては、少なくとも、バインダー、重合性化合物、光重合開始剤、炭素系ナノ材料、及び熱架橋剤をを含み、必要に応じて増感剤等、適宜選択したその他の成分を含む。
ソルダーレジストとしての感光性組成物としては、少なくとも、バインダー、重合性化合物、光重合開始剤、炭素系ナノ材料、及び熱架橋剤をを含み、必要に応じて増感剤等、適宜選択したその他の成分を含む。
<炭素系ナノ材料>
ソルダーレジストとしての感光性組成物に用いる炭素系ナノ材料は、前記回路形成用レジストとしての前記感光性組成物に含まれる炭素系ナノ材料として例示されたものと同様のものを用いることができる。
ソルダーレジストとしての感光性組成物に含有される炭素系ナノ材料の含有率は、感光性組成物全体に対して、0.0001質量%〜10質量%であることが好ましく、0.0005質量%〜5質量%であることがより好ましく、0.001質量%〜1質量%であることが更に好ましい。
前記含有量が0.0001質量%未満であると、環境温度の変動という外的環境要因の影響を受けやすくなり線幅のバラツキが大きくなることがあり、10質量%を超えると、感光層の光の散乱が大きくなり逆に線幅のバラツキが大きくなることがある。
ソルダーレジストとしての感光性組成物に用いる炭素系ナノ材料は、前記回路形成用レジストとしての前記感光性組成物に含まれる炭素系ナノ材料として例示されたものと同様のものを用いることができる。
ソルダーレジストとしての感光性組成物に含有される炭素系ナノ材料の含有率は、感光性組成物全体に対して、0.0001質量%〜10質量%であることが好ましく、0.0005質量%〜5質量%であることがより好ましく、0.001質量%〜1質量%であることが更に好ましい。
前記含有量が0.0001質量%未満であると、環境温度の変動という外的環境要因の影響を受けやすくなり線幅のバラツキが大きくなることがあり、10質量%を超えると、感光層の光の散乱が大きくなり逆に線幅のバラツキが大きくなることがある。
<バインダー>
ソルダーレジストとしての感光性組成物に用いるバインダーとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、特開昭51−131706号、特開昭52−94388号、特開昭64−62375号、特開平2−97513号、特開平3−289656号、特開平61−243869号、特開2002−296776号などの各公報に記載の酸性基を有するエポキシアクリレート化合物、並びに、側鎖に(メタ)アクリロイル基及び酸性基を有するビニル共重合体、エポキシアクリレート化合物と側鎖に(メタ)アクリロイル基及び酸性基を有するビニル共重合体、無水マレイン酸共重合体などが挙げられる。
また、前記回路形成用レジストとしての前記感光性組成物に含まれるバインダーとして例示されたものと同様のものを用いることができる。
ソルダーレジストとしての感光性組成物に用いるバインダーとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、特開昭51−131706号、特開昭52−94388号、特開昭64−62375号、特開平2−97513号、特開平3−289656号、特開平61−243869号、特開2002−296776号などの各公報に記載の酸性基を有するエポキシアクリレート化合物、並びに、側鎖に(メタ)アクリロイル基及び酸性基を有するビニル共重合体、エポキシアクリレート化合物と側鎖に(メタ)アクリロイル基及び酸性基を有するビニル共重合体、無水マレイン酸共重合体などが挙げられる。
また、前記回路形成用レジストとしての前記感光性組成物に含まれるバインダーとして例示されたものと同様のものを用いることができる。
前記エポキシアクリレート化合物とは、エポキシ化合物由来の骨格を有し、かつ分子中にエチレン性不飽和二重結合とカルボキシル基を含有する化合物である。このような化合物は、例えば、多官能エポキシ化合物とカルボキシル基含有モノマーとを反応させ、更に多塩基酸無水物を付加させる方法などで得られる。
前記多官能エポキシ化合物としては、例えば、ビキシレノール型もしくはビスフェノール型エポキシ樹脂(「YX4000;ジャパンエポキシレジン社製」等)又はこれらの混合物、イソシアヌレート骨格等を有する複素環式エポキシ樹脂(「TEPIC;日産化学工業社製」、「アラルダイトPT810;チバ・スペシャルティ・ケミカルズ社製」等)、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾ−ルノボラック型エポキシ樹脂、ハロゲン化フェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂(例えばテトラグリシジルジアミノジフェニルメタン等)、ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、グリシジルフタレート樹脂、テトラグリシジルキシレノイルエタン樹脂、ナフタレン基含有エポキシ樹脂(「ESN−190,ESN−360;新日鉄化学社製」、「HP−4032,EXA−4750,EXA−4700;大日本インキ化学工業社製」等)、ジシクロペンタジエン骨格を有するエポキシ樹脂(「HP−7200,HP−7200H;大日本インキ化学工業社製」等);フェノール、o−クレゾール、ナフトール等のフェノール化合物と、フェノール性水酸基を有する芳香族アルデヒドとの縮合反応により得られるポリフェノール化合物とエピクロルヒドリンとの反応物;フェノール化合物とジビニルベンゼンやジシクロペンタジエン等のジオレフィン化合物との付加反応によって得られるポリフェノール化合物と、エピクロルヒドリンとの反応物;4−ビニルシクロヘキセン−1−オキサイドの開環重合物を過酢酸等でエポキシ化したもの;トリグリシジルイソシアヌレート等の複素環を有するエポキシ樹脂;グリシジルメタアクリレート共重合系エポキシ樹脂(「CP−50S,CP−50M;日本油脂社製」等)、シクロヘキシルマレイミドとグリシジルメタアクリレートとの共重合エポキシ樹脂;フェノール及びクレゾールから選択される1種とp−ヒドロキシベンズアルデヒド縮合体をグリシジルエーテル化したエポキシ樹脂;ビス(グリシジルオキシフェニル)フルオレン型エポキシ樹脂;、ビス(グリシジルオキシフェニル)アダマンタン型エポキシ樹脂、などが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
またカルボキシル基含有モノマーの例としては、例えば(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、ソルビン酸、α−シアノ桂皮酸、アクリル酸ダイマー;この他、2−ヒドロキシエチル(メタ)アクリレート等の水酸基を有する単量体と無水マレイン酸、無水フタル酸、シクロヘキサンジカルボン酸無水物等の環状酸無水物との付加反応物;ハロゲン含有カルボン酸化合物との反応生成物、ω−カルボキシ−ポリカプロラクトンモノ(メタ)アクリレート、などが挙げられる。さらに、市販品としては、東亜合成化学工業(株)製のアロニックスM−5300、M−5400、M−5500およびM−5600、新中村化学工業(株)製のNKエステルCB−1およびCBX−1、共栄社油脂化学工業(株)製のHOA−MPおよびHOA−MS、大阪有機化学工業(株)製のビスコート#2100などを用いることができる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
また、多塩基酸無水物としては、例えば、無水コハク酸、無水メチルコハク酸、無水2,3−ジメチルコハク酸、無水2,2−ジメチルコハク酸、無水エチルコハク酸、無水ドデセニルコハク酸、無水ノネニルコハク酸、無水マレイン酸、無水メチルマレイン酸、無水2,3−ジメチルマレイン酸、無水2−クロロマレイン酸、無水2,3−ジクロロマレイン酸、無水ブロモマレイン酸、無水イタコン酸、無水シトラコン酸、無水シスアコット酸、無水フタル酸、テトラヒドロ無水フタル酸、テトラクロロ無水フタル酸、テトラブロモ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、無水クロレンド酸および5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物などの二塩基酸無水物、無水トリメリット酸、無水ピロメリット酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸等の多塩基酸無水物なども使用できる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
それぞれを順次反応させて、エポキシアクリレートを得るが、それらを反応させる比率は、多官能エポキシ化合物のエポキシ基1当量に対して、カルボキシル基含有モノマーのカルボキシル基0.8〜1.2当量、好ましくは、0.9〜1.1当量であり、多塩基酸無水物0.1〜1.0当量、好ましくは、0.3〜1.0当量である。
それぞれを順次反応させて、エポキシアクリレートを得るが、それらを反応させる比率は、多官能エポキシ化合物のエポキシ基1当量に対して、カルボキシル基含有モノマーのカルボキシル基0.8〜1.2当量、好ましくは、0.9〜1.1当量であり、多塩基酸無水物0.1〜1.0当量、好ましくは、0.3〜1.0当量である。
また、特開平5−70528号公報記載のフルオレン骨格を有するエポキシアクリレート(カルボキシル基を有してはいない化合物)に酸無水物を付加させて得られる化合物なども本発明のエポキシアクリレートとして利用できる。
前記エポキシアクリレート化合物の分子量は、1,000〜100,000が好ましく、2,000〜50,000がより好ましい。該分子量が1,000未満であると、感光層表面のタック性が強くなることがあり、後述する感光層の硬化後において、膜質が脆くなる、あるいは、表面硬度が劣化することがあり、100,000を超えると、現像性が劣化することがある。また樹脂の合成も困難となる。
また、特開平6−295060号公報記載の酸性基、二重結合等の重合可能な基を少なくとも1つ有するアクリル樹脂も用いることができる。具体的には、分子内に少なくとも1つの重合可能な二重結合、例えば、(メタ)アクリレート基又は(メタ)アクリルアミド基等のアクリル基、カルボン酸のビニルエステル、ビニルエーテル、アリルエーテル等の各種重合性二重結合を用いることができる。より具体的には、酸性基としてカルボキシル基を含有するアクリル樹脂に、グリシジルアクリレート、グリシジルメタクリレート、桂皮酸等の不飽和脂肪酸のグリシジルエステルや、同一分子中にシクロヘキセンオキシド等のエポキシ基と(メタ)アクリロイル基を有する化合物等のエポキシ基含有の重合性化合物を付加させて得られる化合物などが挙げられる。また、酸性基及び水酸基を含有するアクリル樹脂に、イソシアナートエチル(メタ)アクリレート等のイソシアネート基含有の重合性化合物を付加させて得られる化合物、無水物基を含有するアクリル樹脂に、ヒドロキシアルキル(メタ)アクリレート等の水酸基を含有する重合性化合物を付加させて得られる化合物なども挙げられる。
さらに、前記バインダーとしては、側鎖に(メタ)アクリロイル基、及び酸性基を有するビニル共重合体を用いることができ、具体的には、例えば(1)酸性基を有するビニルモノマー、(2)必要に応じて後述する高分子反応に利用可能な官能基を有するビニルモノマー、及び(3)必要に応じてその他の共重合可能なビニルモノマーのビニル(共)重合で得られた(共)重合体を合成し、更に(4)該(共)重合体中の酸性基、又は高分子反応に利用可能な官能基の少なくとも1種に対して反応性を有する官能基と(メタ)アクリロイル基を有する化合物とを高分子反応させることによって得られる。
前記(1)酸性基を有するビニルモノマーの酸性基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カルボキシル基、スルホン酸基、リン酸基などが挙げられ、これらの中でもカルボキシル基が好ましい。カルボキシル基を有するビニルモノマーとしては、例えば、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、アクリル酸ダイマー、水酸基を有する単量体(例えば、2−ヒドロキシエチル(メタ)アクリレート等)と環状無水物(例えば、無水マレイン酸や無水フタル酸、シクロヘキサンジカルボン酸無水物)との付加反応物、ω−カルボキシ−ポリカプロラクトンモノ(メタ)アクリレートなどが挙げられる。これらの中でも、共重合性やコスト、溶解性などの観点から(メタ)アクリル酸が特に好ましい。またこれらのモノマーは、1種単独で使用してもよく、2種以上を併用してもよい。
また、カルボキシル基の前駆体として無水マレイン酸、無水イタコン酸、無水シトラコン酸等の無水物を有するモノマーを用いてもよい。
また、カルボキシル基の前駆体として無水マレイン酸、無水イタコン酸、無水シトラコン酸等の無水物を有するモノマーを用いてもよい。
前記(2)の高分子反応に利用可能な官能基を有するビニルモノマーにおける、高分子反応に利用可能な官能基としては水酸基、アミノ基、イソシアネート基、エポキシ基、酸ハライド基、活性ハライド基、などが挙げられる。また前述(1)のカルボシキル基や酸無水物基も利用可能な官能基として挙げられる。
前記水酸基を有するビニルモノマーとしては、例えば、前記構造式(4)〜(12)で表される化合物が挙げられる。
前記アミノ基を有するビニルモノマーとしては、例えば、ビニルベンジルアミン、アミノエチルメタクリレート、などが挙げられる。
前記イソシアネート基を有するモノマーとしては、例えば、前記構造式(1)〜(3)で表される化合物が挙げられる。
前記エポキシ基を有するビニルモノマーとしては、例えば、グリシジル(メタ)アクリレート、下記構造式(62)で表される化合物などが挙げられる。
但し、前記構造式(62)中、Rjは水素原子又はメチル基を表す。
前記酸ハライド基を有するビニルモノマーとしては、例えば、(メタ)アクリル酸クロリド、などが挙げられる。
前記活性ハライド基を有するビニルモノマーとしては、例えば、クロロメチルスチレン、などが挙げられる。
また、前記各モノマーは、1種単独で使用してもよく、2種以上を併用してもよい。
前記活性ハライド基を有するビニルモノマーとしては、例えば、クロロメチルスチレン、などが挙げられる。
また、前記各モノマーは、1種単独で使用してもよく、2種以上を併用してもよい。
前記(3)の必要に応じて用いられるその他の共重合可能なモノマーとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、(メタ)アクリルアミド類、ビニルエーテル類、ビニルアルコールのエステル類、スチレン類(例えば、スチレン、スチレン誘導体等)、(メタ)アクリロニトリル、ビニル基が置換した複素環式基(例えば、ビニルピリジン、ビニルピロリドン、ビニルカルバゾール等)、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニルイミダゾール、ビニルカプロラクトン、2−アクリルアミド−2−メチルプロパンスルホン酸、リン酸モノ(2―アクリロイルオキシエチルエステル)、リン酸モノ(1−メチル−2―アクリロイルオキシエチルエステル)、官能基(例えば、ウレタン基、ウレア基、スルホンアミド基、イミド基)を有するビニルモノマーなどが挙げられる。
前記(メタ)アクリル酸エステル類としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、t−ブチルシクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、t−オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、アセトキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−メトキシエトキシ)エチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノフェニルエーテル(メタ)アクリレート、トリエチレングリコールモノメチルエーテル(メタ)アクリレート、トリエチレングリコールモノエチルエーテル(メタ)アクリレート、ポリエチレングリコールモノメチルエーテル(メタ)アクリレート、ポリエチレングリコールモノエチルエーテル(メタ)アクリレート、β−フェノキシエトキシエチルアクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、オクタフロロペンチル(メタ)アクリレート、パーフロロオクチルエチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、トリブロモフェニルオキシエチル(メタ)アクリレートなどが挙げられる。
前記クロトン酸エステル類としては、例えば、クロトン酸ブチル、クロトン酸ヘキシルなどが挙げられる。
前記ビニルエステル類としては、例えば、ビニルアセテート、ビニルプロピオネート、ビニルブチレート、ビニルメトキシアセテート、安息香酸ビニルなどが挙げられる。
前記マレイン酸ジエステル類としては、例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチルなどが挙げられる。
前記フマル酸ジエステル類としては、例えば、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジブチルなどが挙げられる。
前記イタコン酸ジエステル類としては、例えば、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジブチルなどが挙げられる。
前記(メタ)アクリルアミド類としては、例えば、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−n−ブチルアクリル(メタ)アミド、N−t−ブチル(メタ)アクリルアミド、N−シクロヘキシル(メタ)アクリルアミド、N−(2−メトキシエチル)(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−フェニル(メタ)アクリルアミド、N−ベンジル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ジアセトンアクリルアミドなどが挙げられる。
前記スチレン類としては、例えば、前記スチレン、前記スチレン誘導体(例えば、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、メトキシスチレン、ブトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、酸性物質により脱保護可能な基(例えば、t−Boc等)で保護されたヒドロキシスチレン、ビニル安息香酸メチル、α−メチルスチレン等)、などが挙げられる。
前記ビニルエーテル類としては、例えば、メチルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、メトキシエチルビニルエーテルなどが挙げられる。
前記官能基としてウレタン基又はウレア基を有するビニルモノマーの合成方法としては、例えば、イソシアナート基と水酸基又はアミノ基の付加反応が挙げられ、具体的には、イソシアナート基を有するモノマーと、水酸基を1個含有する化合物又は1級若しくは2級アミノ基を1個有する化合物との付加反応、水酸基を有するモノマー又は1級若しくは2級アミノ基を有するモノマーと、モノイソシアネートとの付加反応が挙げられる。
前記イソシアナート基を有するモノマーとしては、例えば、前述の(2)に示したものと同様に、前記構造式(1)〜(3)で表される化合物が挙げられる。
前記モノイソシアネートとしては、例えば、シクロヘキシルイソシアネート、n−ブチルイソシアネート、トルイルイソシアネート、ベンジルイソシアネート、フェニルイソシアネート等が挙げられる。
前記水酸基を有するモノマーとしては、例えば、前述の(2)に示したものと同様に、前記構造式(4)〜(12)で表される化合物が挙げられる。
前記モノイソシアネートとしては、例えば、シクロヘキシルイソシアネート、n−ブチルイソシアネート、トルイルイソシアネート、ベンジルイソシアネート、フェニルイソシアネート等が挙げられる。
前記水酸基を有するモノマーとしては、例えば、前述の(2)に示したものと同様に、前記構造式(4)〜(12)で表される化合物が挙げられる。
前記水酸基を1個含有する化合物としては、例えば、アルコール類(例えば、メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、sec−ブタノール、t−ブタノール、n−ヘキサノール、2−エチルヘキサノール、n−デカノール、n−ドデカノール、n−オクタデカノール、シクロペンタノール、シクロへキサノール、ベンジルアルコール、フェニルエチルアルコール等)、フェノール類(例えば、フェノール、クレゾール、ナフトール等)、更に置換基を含むものとして、フロロエタノール、トリフロロエタノール、メトキシエタノール、フェノキシエタノール、クロロフェノール、ジクロロフェノール、メトキシフェノール、アセトキシフェノール等が挙げられる。
前記1級又は2級アミノ基を有するモノマーとしては、例えば、ビニルベンジルアミンなどが挙げられる。
前記1級又は2級アミノ基を1個含有する化合物としては、例えば、アルキルアミン(メチルアミン、エチルアミン、n−プロピルアミン、i−プロピルアミン、n−ブチルアミン、sec−ブチルアミン、t−ブチルアミン、ヘキシルアミン、2−エチルヘキシルアミン、デシルアミン、ドデシルアミン、オクタデシルアミン、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジオクチルアミン)、環状アルキルアミン(シクロペンチルアミン、シクロへキシルアミン等)、アラルキルアミン(ベンジルアミン、フェネチルアミン等)、アリールアミン(アニリン、トルイルアミン、キシリルアミン、ナフチルアミン等)、更にこれらの組合せ(N−メチル−N−ベンジルアミン等)、更に置換基を含むアミン(トリフロロエチルアミン、ヘキサフロロイソプロピルアミン、メトキシアニリン、メトキシプロピルアミン等)などが挙げられる。
また、これらのモノマーは、1種単独で使用してもよく、2種以上を併用してもよい。
これらをビニル(共)重合させることにより酸性基、酸無水物基および必要に応じて水酸基、アミノ基、イソシアネート基、エポキシ基、酸ハライド基、活性ハライド基などを含有する(共)重合体が得られる。前記ビニル(共)重合体は、それぞれ相当するモノマーを公知の方法により常法に従って共重合させることで調製することができる。例えば、前記モノマーを適当な溶媒中に溶解し、ここにラジカル重合開始剤を添加して溶液中で重合させる方法(溶液重合法)を利用することにより調製することができる。また、水性媒体中に前記モノマーを分散させた状態でいわゆる乳化重合等で重合を利用することにより調製することができる。
このようにして得られた(共)重合体に対して、前記(4)として、これらの共重合体中の酸性基、及び必要に応じて水酸基、アミノ基、イソシアネート基、グリシジル基、酸ハライド基の少なくとも1種に対して反応性を有する官能基と(メタ)アクリロイル基を有する化合物とを高分子反応させることによって得られる。
これらをビニル(共)重合させることにより酸性基、酸無水物基および必要に応じて水酸基、アミノ基、イソシアネート基、エポキシ基、酸ハライド基、活性ハライド基などを含有する(共)重合体が得られる。前記ビニル(共)重合体は、それぞれ相当するモノマーを公知の方法により常法に従って共重合させることで調製することができる。例えば、前記モノマーを適当な溶媒中に溶解し、ここにラジカル重合開始剤を添加して溶液中で重合させる方法(溶液重合法)を利用することにより調製することができる。また、水性媒体中に前記モノマーを分散させた状態でいわゆる乳化重合等で重合を利用することにより調製することができる。
このようにして得られた(共)重合体に対して、前記(4)として、これらの共重合体中の酸性基、及び必要に応じて水酸基、アミノ基、イソシアネート基、グリシジル基、酸ハライド基の少なくとも1種に対して反応性を有する官能基と(メタ)アクリロイル基を有する化合物とを高分子反応させることによって得られる。
前記該(4)の(共)重合体中の酸性基、又は高分子反応に利用可能な官能基の少なくとも1種に対して反応性を有する官能基と(メタ)アクリロイル基を有する化合物としては、前述の(2)に示した化合物などが利用できる。
これらの高分子反応を行なう場合の官能基の組合せの例としては、例えば、酸性基(カルボキシル基など)を有する共重合体とエポキシ基を有するビニルモノマーの組合せ、アミノ基を有する共重合体とエポキシ基を有するビニルモノマーの組合せ、アミノ基を有する共重合体とイソシアネート基を有するビニルモノマーの組合せ、水酸基を有する共重合体とイソシアネート基を有するビニルモノマーの組合せ、水酸基を有する共重合体と酸ハライド基を有するビニルモノマーの組合せ、アミノ基を有する共重合体と活性ハライド基を有するビニルモノマーの組合わせ、酸無水物基を有する共重合体と水酸基を有するビニルモノマーの組合せ、イソシアネート基を有する共重合体とアミノ基を有するビニルモノマーの組合せ、イソシアネート基を有する共重合体と水酸基を有するビニルモノマーの組合せ、活性ハライド基を有する共重合体とアミノ基を有するビニルモノマーの組合わせ、などが挙げられる。またこれらの組合せは2種以上を併用しても構わない。
これらの高分子反応を行なう場合の官能基の組合せの例としては、例えば、酸性基(カルボキシル基など)を有する共重合体とエポキシ基を有するビニルモノマーの組合せ、アミノ基を有する共重合体とエポキシ基を有するビニルモノマーの組合せ、アミノ基を有する共重合体とイソシアネート基を有するビニルモノマーの組合せ、水酸基を有する共重合体とイソシアネート基を有するビニルモノマーの組合せ、水酸基を有する共重合体と酸ハライド基を有するビニルモノマーの組合せ、アミノ基を有する共重合体と活性ハライド基を有するビニルモノマーの組合わせ、酸無水物基を有する共重合体と水酸基を有するビニルモノマーの組合せ、イソシアネート基を有する共重合体とアミノ基を有するビニルモノマーの組合せ、イソシアネート基を有する共重合体と水酸基を有するビニルモノマーの組合せ、活性ハライド基を有する共重合体とアミノ基を有するビニルモノマーの組合わせ、などが挙げられる。またこれらの組合せは2種以上を併用しても構わない。
前記バインダーの市販品としては、例えば、「カネカレジンAXE;鐘淵化学工業(株)製」、「サイクロマー(CYCLOMER) A−200;ダイセル化学工業(株)製」、「サイクロマー(CYCLOMER) M−200;ダイセル化学工業(株)製」、「SPCP1X、SPCP2X、SPCP3X;昭和高分子(株)製」などを用いることができる。
更に、特開昭50−59315号公報記載のヒドロキシアルキルアクリレート又はヒドロキシアルキルメタクリレートとポリカルボン酸無水物及びエピハロヒドリンのいずれかとの反応物などを用いることができる。
更に、特開昭50−59315号公報記載のヒドロキシアルキルアクリレート又はヒドロキシアルキルメタクリレートとポリカルボン酸無水物及びエピハロヒドリンのいずれかとの反応物などを用いることができる。
また、特開平5−70528号公報記載のフルオレン骨格を有するエポキシアクリレートに酸無水物を付加させて得られる化合物、特開平11−288087号公報記載のポリアミド(イミド)樹脂、特開平2−097502号公報や特開平11−282155号公報記載のポリイミド前駆体などを用いることができる。これらは1種単独で使用してもよいし、2種以上を混合して使用してもよい。
前記アクリル樹脂、フルオレン骨格を有するエポキシアクリレート、ポリアミド(イミド)、アミド基含有スチレン/酸無水物共重合体、あるいは、ポリイミド前駆体などのバインダーの分子量は、3,000〜500,000が好ましく、5,000〜100,000がより好ましい。該分子量が3,000未満であると、感光層表面のタック性が強くなることがあり、後述する感光層の硬化後において、膜質が脆くなる、あるいは、表面硬度が劣化することがあり、500,000を超えると、現像性が劣化することがある。
前記バインダーとしては、無水マレイン酸共重合体の無水物基に対して1級アミン化合物を1種以上反応させて得られる共重合体も利用できる。該共重合体は下記構造式(63)で表される、マレイン酸ハーフアミド構造を有するマレアミド酸ユニットBと、前記マレイン酸ハーフアミド構造を有しないユニットAと、を少なくとも含むマレアミド酸系共重合体であるのが好ましい。
前記ユニットAは1種であってもよいし、2種以上であってもよい。例えば、前記ユニットBが1種であるとすると、前記ユニットAが1種である場合には、前記マレアミド酸系共重合体が2元共重合体を意味することになり、前記ユニットAが2種である場合には、前記マレアミド酸系共重合体が3元共重合体を意味することになる。
前記ユニットAとしては、置換基を有していてもよいアリール基と、後述するビニル単量体であって、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体(c)との組合せが好適に挙げられる。
前記ユニットAは1種であってもよいし、2種以上であってもよい。例えば、前記ユニットBが1種であるとすると、前記ユニットAが1種である場合には、前記マレアミド酸系共重合体が2元共重合体を意味することになり、前記ユニットAが2種である場合には、前記マレアミド酸系共重合体が3元共重合体を意味することになる。
前記ユニットAとしては、置換基を有していてもよいアリール基と、後述するビニル単量体であって、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体(c)との組合せが好適に挙げられる。
ただし、前記構造式(63)中、R3i及びR4iは水素原子及び低級アルキル基のいずれかを表す。x及びyは繰り返し単位のモル分率を表し、例えば、前記ユニットAが1種の場合、xは85〜50モル%であり、yは15〜50モル%である。
前記構造式(63)中、R1iとしては、例えば、(−COOR10i)、(−CONR11iR12i)、置換基を有していてもよいアリール基、(−OCOR13i)、(−OR14i)、(−COR15i)などの置換基が挙げられる。ここで、上記R10i〜R15iは、各々独立に、水素原子(−H)、置換基を有していてもよいアルキル基、アリール基及びアラルキル基のいずれかを表す。該アルキル基、アリール基及びアラルキル基は、環状構造又は分岐構造を有していてもよい。
前記R10i〜R15iとしては、例えば、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、sec−ブチル、t−ブチル、ペンチル、アリル、n−ヘキシル、シクロへキシル、2−エチルヘキシル、ドデシル、メトキシエチル、フェニル、メチルフェニル、メトキシフェニル、ベンジル、フェネチル、ナフチル、クロロフェニルなどが挙げられる。
前記構造式(63)中の前記R1iの具体例としては、例えば、フェニル、α−メチルフェニル、2−メチルフェニル、3−メチルフェニル、4−メチルフェニル、2,4−ジメチルフェニル等のベンゼン誘導体;n−プロピルオキシカルボニル、n−ブチルオキシカルボニル、ペンチルオキシカルボニル、ヘキシルオキシカルボニル、n−ブチルオキシカルボニル、n−ヘキシルオキシカルボニル、2−エチルヘキシルオキシカルボニル、メチルオキシカルボニルなどが挙げられる。
前記R10i〜R15iとしては、例えば、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、sec−ブチル、t−ブチル、ペンチル、アリル、n−ヘキシル、シクロへキシル、2−エチルヘキシル、ドデシル、メトキシエチル、フェニル、メチルフェニル、メトキシフェニル、ベンジル、フェネチル、ナフチル、クロロフェニルなどが挙げられる。
前記構造式(63)中の前記R1iの具体例としては、例えば、フェニル、α−メチルフェニル、2−メチルフェニル、3−メチルフェニル、4−メチルフェニル、2,4−ジメチルフェニル等のベンゼン誘導体;n−プロピルオキシカルボニル、n−ブチルオキシカルボニル、ペンチルオキシカルボニル、ヘキシルオキシカルボニル、n−ブチルオキシカルボニル、n−ヘキシルオキシカルボニル、2−エチルヘキシルオキシカルボニル、メチルオキシカルボニルなどが挙げられる。
前記構造式(63)中の前記R2iとしては、置換基を有していてもよいアルキル基、アリール基、アラルキル基などが挙げられる。これらは、環状構造又は分岐構造を有していてもよい。前記R2の具体例としては、例えば、ベンジル、フェネチル、3−フェニル−1−プロピル、4−フェニル−1−ブチル、5−フェニル−1−ペンチル、6−フェニル−1−ヘキシル、α−メチルベンジル、2−メチルベンジル、3−メチルベンジル、4−メチルベンジル、2−(p−トリル)エチル、β―メチルフェネチル、1−メチル−3−フェニルプロピル、2−クロロベンジル、3−クロロベンジル、4−クロロベンジル、2−フロロベンジル、3−フロロベンジル、4−フロロベンジル、4−ブロモフェネチル、2−(2−クロロフェニル)エチル、2−(3−クロロフェニル)エチル、2−(4−クロロフェニル)エチル、2−(2−フロロフェニル)エチル、2−(3−フロロフェニル)エチル、2−(4−フロロフェニル)エチル、4−フロロ−α,α−ジメチルフェネチル、2−メトキシベンジル、3−メトキシベンジル、4−メトキシベンジル、2−エトキシベンジル、2−メトキシフェネチル、3−メトキシフェネチル、4−メトキシフェネチル、メチル、エチル、プロピル、i−プロピル、ブチル、t−ブチル、sec−ブチル、ペンチル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、ラウリル、フェニル、1−ナフチル、メトキシメチル、2−メトキシエチル、2−エトキシエチル、3−メトキシプロピル、2−ブトキシエチル、2−シクロへキシルオキシエチル、3−エトキシプロピル、3−プロポキシプロピル、3−イソプロポキシプロピルアミンなどが挙げられる。
前記バインダーは、特に、(a)無水マレイン酸と、(b)芳香族ビニル単量体と、(c)ビニル単量体であって、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体と、からなる共重合体の無水物基に対して1級アミン化合物を反応させて得られる共重合体であるのが好ましい。該(a)成分と、該(b)成分と、からなる共重合体では、後述する感光層の高い表面硬度を得ることはできるものの、ラミネート性の確保が困難になることがある。また、該(a)成分と、該(c)成分と、からなる共重合体では、ラミネート性は確保することができるものの、前記表面硬度の確保が困難になることがある。
−−(b)芳香族ビニル単量体−−
前記芳香族ビニル単量体としては、特に制限はなく、目的に応じて適宜選択することができるが、本発明のパターン形成材料を用いて形成される感光層の表面硬度を高くすることができる点で、ホモポリマーのガラス転移温度(Tg)が80℃以上である化合物が好ましく、100℃以上である化合物がより好ましい。
前記芳香族ビニル単量体の具体例としては、例えば、スチレン(ホモポリマーのTg=100℃)、α−メチルスチレン(ホモポリマーのTg=168℃)、2−メチルスチレン(ホモポリマーのTg=136℃)、3−メチルスチレン(ホモポリマーのTg=97℃)、4−メチルスチレン(ホモポリマーのTg=93℃)、2,4−ジメチルスチレン(ホモポリマーのTg=112℃)などのスチレン誘導体が好適に挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
前記芳香族ビニル単量体としては、特に制限はなく、目的に応じて適宜選択することができるが、本発明のパターン形成材料を用いて形成される感光層の表面硬度を高くすることができる点で、ホモポリマーのガラス転移温度(Tg)が80℃以上である化合物が好ましく、100℃以上である化合物がより好ましい。
前記芳香族ビニル単量体の具体例としては、例えば、スチレン(ホモポリマーのTg=100℃)、α−メチルスチレン(ホモポリマーのTg=168℃)、2−メチルスチレン(ホモポリマーのTg=136℃)、3−メチルスチレン(ホモポリマーのTg=97℃)、4−メチルスチレン(ホモポリマーのTg=93℃)、2,4−ジメチルスチレン(ホモポリマーのTg=112℃)などのスチレン誘導体が好適に挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
−−(c)ビニル単量体−−
前記ビニル単量体は、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であることが必要であり、40℃以下が好ましく、0℃以下がより好ましい。
前記ビニル単量体としては、例えば、n−プロピルアクリレート(ホモポリマーのTg=−37℃)、n−ブチルアクリレート(ホモポリマーのTg=−54℃)、ペンチルアクリレート、あるいはヘキシルアクリレート(ホモポリマーのTg=−57℃)、n−ブチルメタクリレート(ホモポリマーのTg=−24℃)、n−ヘキシルメタクリレート(ホモポリマーのTg=−5℃)などが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
前記ビニル単量体は、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であることが必要であり、40℃以下が好ましく、0℃以下がより好ましい。
前記ビニル単量体としては、例えば、n−プロピルアクリレート(ホモポリマーのTg=−37℃)、n−ブチルアクリレート(ホモポリマーのTg=−54℃)、ペンチルアクリレート、あるいはヘキシルアクリレート(ホモポリマーのTg=−57℃)、n−ブチルメタクリレート(ホモポリマーのTg=−24℃)、n−ヘキシルメタクリレート(ホモポリマーのTg=−5℃)などが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
−−1級アミン化合物−−
前記1級アミン化合物としては、例えば、ベンジルアミン、フェネチルアミン、3−フェニル−1−プロピルアミン、4−フェニル−1−ブチルアミン、5−フェニル−1−ペンチルアミン、6−フェニル−1−ヘキシルアミン、α−メチルベンジルアミン、2−メチルベンジルアミン、3−メチルベンジルアミン、4−メチルベンジルアミン、2−(p−トリル)エチルアミン、β−メチルフェネチルアミン、1−メチル−3−フェニルプロピルアミン、2−クロロベンジルアミン、3−クロロベンジルアミン、4−クロロベンジルアミン、2−フロロベンジルアミン、3−フロロベンジルアミン、4−フロロベンジルアミン、4−ブロモフェネチルアミン、2−(2−クロロフェニル)エチルアミン、2−(3−クロロフェニル)エチルアミン、2−(4−クロロフェニル)エチルアミン、2−(2−フロロフェニル)エチルアミン、2−(3−フロロフェニル)エチルアミン、2−(4−フロロフェニル)エチルアミン、4−フロロ−α,α−ジメチルフェネチルアミン、2−メトキシベンジルアミン、3−メトキシベンジルアミン、4−メトキシベンジルアミン、2−エトキシベンジルアミン、2−メトキシフェネチルアミン、3−メトキシフェネチルアミン、4−メトキシフェネチルアミン、メチルアミン、エチルアミン、プロピルアミン、1−プロピルアミン、ブチルアミン、t−ブチルアミン、sec−ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ラウリルアミン、アニリン、オクチルアニリン、アニシジン、4−クロルアニリン、1−ナフチルアミン、メトキシメチルアミン、2−メトキシエチルアミン、2−エトキシエチルアミン、3−メトキシプロピルアミン、2−ブトキシエチルアミン、2−シクロヘキシルオキシエチルアミン、3−エトキシプロピルアミン、3−プロポキシプロピルアミン、3−イソプロポキシプロピルアミンなどが挙げられる。これらの中でも、ベンジルアミン、フェネチルアミンが特に好ましい。
前記1級アミン化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
前記1級アミン化合物としては、例えば、ベンジルアミン、フェネチルアミン、3−フェニル−1−プロピルアミン、4−フェニル−1−ブチルアミン、5−フェニル−1−ペンチルアミン、6−フェニル−1−ヘキシルアミン、α−メチルベンジルアミン、2−メチルベンジルアミン、3−メチルベンジルアミン、4−メチルベンジルアミン、2−(p−トリル)エチルアミン、β−メチルフェネチルアミン、1−メチル−3−フェニルプロピルアミン、2−クロロベンジルアミン、3−クロロベンジルアミン、4−クロロベンジルアミン、2−フロロベンジルアミン、3−フロロベンジルアミン、4−フロロベンジルアミン、4−ブロモフェネチルアミン、2−(2−クロロフェニル)エチルアミン、2−(3−クロロフェニル)エチルアミン、2−(4−クロロフェニル)エチルアミン、2−(2−フロロフェニル)エチルアミン、2−(3−フロロフェニル)エチルアミン、2−(4−フロロフェニル)エチルアミン、4−フロロ−α,α−ジメチルフェネチルアミン、2−メトキシベンジルアミン、3−メトキシベンジルアミン、4−メトキシベンジルアミン、2−エトキシベンジルアミン、2−メトキシフェネチルアミン、3−メトキシフェネチルアミン、4−メトキシフェネチルアミン、メチルアミン、エチルアミン、プロピルアミン、1−プロピルアミン、ブチルアミン、t−ブチルアミン、sec−ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ラウリルアミン、アニリン、オクチルアニリン、アニシジン、4−クロルアニリン、1−ナフチルアミン、メトキシメチルアミン、2−メトキシエチルアミン、2−エトキシエチルアミン、3−メトキシプロピルアミン、2−ブトキシエチルアミン、2−シクロヘキシルオキシエチルアミン、3−エトキシプロピルアミン、3−プロポキシプロピルアミン、3−イソプロポキシプロピルアミンなどが挙げられる。これらの中でも、ベンジルアミン、フェネチルアミンが特に好ましい。
前記1級アミン化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
前記1級アミン化合物の反応量としては、前記無水物基に対して0.1〜1.2当量であることが必要であり、0.1〜1.0当量が好ましい。該反応量が1.2当量を超えると、前記1級アミン化合物を1種以上反応させた場合に、溶解性が著しく悪化することがある。
前記(a)無水マレイン酸の前記バインダーにおける含有量は、15〜50mol%が好ましく、20〜45mol%がより好ましく、20〜40mol%が特に好ましい。該含有量が15mol%未満であると、アルカリ現像性の付与ができず、50mol%を超えると、耐アルカリ性が劣化し、また、前記共重合体の合成が困難になり、正常な永久パターンの形成を行うことができないことがある。また、この場合における、前記(b)芳香族ビニル単量体、及び(c)ホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体の前記バインダーにおける含有量は、それぞれ20〜60mol%、15〜40mol%が好ましい。該含有量が該数値範囲を満たす場合には、表面硬度及びラミネート性の両立を図ることができる。
前記アクリル樹脂、フルオレン骨格を有するエポキシアクリレート、ポリアミド(イミド)、前記無水マレイン酸共重合体の無水物基に1級アミン化合物を反応させた化合物、あるいは、ポリイミド前駆体などのバインダーの分子量は、3,000〜500,000が好ましく、5,000〜100,000がより好ましい。該分子量が3,000未満であると、感光層表面のタック性が強くなることがあり、後述する感光層の硬化後において、膜質が脆くなる、あるいは、表面硬度が劣化することがあり、500,000を超えると、現像性が劣化することがある。
前記バインダーの前記感光性組成物中の固形分含有量は、5〜80質量%が好ましく、10〜70質量%がより好ましい。該固形分含有量が、5質量%未満であると、感光層の膜強度が弱くなりやすく、該感光層の表面のタック性が悪化することがあり、50質量%を超えると、露光感度が低下することがある。
<重合性化合物>
前記重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、分子中に少なくとも1個の付加重合可能な基を有し、沸点が常圧で100℃以上である化合物が好ましく、前記回路形成用レジストとしての前記感光性組成物に含まれる重合性化合物として例示されたものと同様のものを用いることができ、例えば、(メタ)アクリル基を有するモノマーから選択される少なくとも1種が好適に挙げられる。
前記重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、分子中に少なくとも1個の付加重合可能な基を有し、沸点が常圧で100℃以上である化合物が好ましく、前記回路形成用レジストとしての前記感光性組成物に含まれる重合性化合物として例示されたものと同様のものを用いることができ、例えば、(メタ)アクリル基を有するモノマーから選択される少なくとも1種が好適に挙げられる。
前記(メタ)アクリル基を有するモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の単官能アクリレートや単官能メタクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(アクリロイルオキシエチル)シアヌレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパンやグリセリン、ビスフェノール等の多官能アルコールに、エチレンオキサイドやプロピレンオキサイドを付加反応した後で(メタ)アクリレート化したもの、特公昭48−41708号、特公昭50−6034号、特開昭51−37193号等の各公報に記載されているウレタンアクリレート類;特開昭48−64183号、特公昭49−43191号、特公昭52−30490号等の各公報に記載されているポリエステルアクリレート類;エポキシ樹脂と(メタ)アクリル酸の反応生成物であるエポキシアクリレート類等の多官能アクリレートやメタクリレートなどが挙げられる。これらの中でも、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートが特に好ましい。
前記重合性化合物の前記感光性組成物固形分中の固形分含有量は、5〜50質量%が好ましく、10〜40質量%がより好ましい。該固形分含有量が5質量%未満であると、現像性の悪化、露光感度の低下などの問題を生ずることがあり、50質量%を超えると、感光層の粘着性が強くなりすぎることがあり、好ましくない。
<光重合開始剤>
光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記回路形成用レジストとしての前記感光性組成物に含まれる光重合開始剤として例示されたものと同様のものを用いることができる。
光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記回路形成用レジストとしての前記感光性組成物に含まれる光重合開始剤として例示されたものと同様のものを用いることができる。
前記光重合開始剤は、1種単独で使用してもよく、2種以上を併用してもよい。
前記光重合開始剤の特に好ましい例としては、後述する露光において、波長が405nmのレーザ光に対応可能である、前記ホスフィンオキサイド類、前記α−アミノアルキルケトン類、前記トリアジン骨格を有するハロゲン化炭化水素化合物と後述する増感剤としてのアミン化合物とを組合せた複合光開始剤、ヘキサアリールビイミダゾール化合物、あるいは、チタノセンなどが挙げられる。
前記光重合開始剤の特に好ましい例としては、後述する露光において、波長が405nmのレーザ光に対応可能である、前記ホスフィンオキサイド類、前記α−アミノアルキルケトン類、前記トリアジン骨格を有するハロゲン化炭化水素化合物と後述する増感剤としてのアミン化合物とを組合せた複合光開始剤、ヘキサアリールビイミダゾール化合物、あるいは、チタノセンなどが挙げられる。
前記光重合開始剤の前記パターン形成材料における固形分含有量としては、0.1〜30質量%が好ましく、0.5〜20質量%がより好ましく、0.5〜15質量%が特に好ましい。
<熱架橋剤>
前記熱架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、前記感光層の硬化後の膜強度を改良するために、現像性等に悪影響を与えない範囲で、例えば、1分子内に少なくとも2つのオキシラン基を有するエポキシ化合物、1分子内に少なくとも2つのオキセタニル基を有するオキセタン化合物を用いることができる。
前記1分子中に少なくとも2つのオキシラン環を有するエポキシ化合物としては、例えば、ビキシレノール型もしくはビフェノール型エポキシ樹脂(「YX4000ジャパンエポキシレジン社製」等)又はこれらの混合物、イソシアヌレート骨格等を有する複素環式エポキシ樹脂(「TEPIC;日産化学工業社製」、「アラルダイトPT810;チバ・スペシャルティ・ケミカルズ社製」等)、ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾ−ルノボラック型エポキシ樹脂、ハロゲン化エポキシ樹脂(例えば低臭素化エポキシ樹脂、高ハロゲン化エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂など)、アリル基含有ビスフェノールA型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、ジフェニルジメタノール型エポキシ樹脂、フェノールビフェニレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂(「HP−7200,HP−7200H;大日本インキ化学工業社製」等)、グリシジルアミン型エポキシ樹脂(ジアミノジフェニルメタン型エポキシ樹脂、ジグリシジルアニリン、トリグリシジルアミノフェノール等)、グリジジルエステル型エポキシ樹脂(フタル酸ジグリシジルエステル、アジピン酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、ダイマー酸ジグリシジルエステル等)ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂(3,4−エポキシシクロヘキシルメチル−3’、4’−エポキシシクロヘキサンカルボキシレート、ビス(3,4−エポキシシクロヘキシルメチル)アジペート、ジシクロペンタジエンジエポキシド、「GT−300、GT−400、ZEHPE3150;ダイセル化学工業製」等、)、イミド型脂環式エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、グリシジルフタレート樹脂、テトラグリシジルキシレノイルエタン樹脂、ナフタレン基含有エポキシ樹脂(ナフトールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、4官能ナフタレン型エポキシ樹脂、市販品としては「ESN−190,ESN−360;新日鉄化学社製」、「HP−4032,EXA−4750,EXA−4700;大日本インキ化学工業社製」等)、フェノール化合物とジビニルベンゼンやジシクロペンタジエン等のジオレフィン化合物との付加反応によって得られるポリフェノール化合物と、エピクロルヒドリンとの反応物、4−ビニルシクロヘキセン−1−オキサイドの開環重合物を過酢酸等でエポキシ化したもの、線状含リン構造を有するエポキシ樹脂、環状含リン構造を有するエポキシ樹脂、α―メチルスチルベン型液晶エポキシ樹脂、ジベンゾイルオキシベンゼン型液晶エポキシ樹脂、アゾフェニル型液晶エポキシ樹脂、アゾメチンフェニル型液晶エポキシ樹脂、ビナフチル型液晶エポキシ樹脂、アジン型エポキシ樹脂、グリシジルメタアクリレート共重合系エポキシ樹脂(「CP−50S,CP−50M;日本油脂社製」等)、シクロヘキシルマレイミドとグリシジルメタアクリレートとの共重合エポキシ樹脂、ビス(グリシジルオキシフェニル)フルオレン型エポキシ樹脂、ビス(グリシジルオキシフェニル)アダマンタン型エポキシ樹脂などが挙げられるが、これらに限られるものではない。これらのエポキシ樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。
前記熱架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、前記感光層の硬化後の膜強度を改良するために、現像性等に悪影響を与えない範囲で、例えば、1分子内に少なくとも2つのオキシラン基を有するエポキシ化合物、1分子内に少なくとも2つのオキセタニル基を有するオキセタン化合物を用いることができる。
前記1分子中に少なくとも2つのオキシラン環を有するエポキシ化合物としては、例えば、ビキシレノール型もしくはビフェノール型エポキシ樹脂(「YX4000ジャパンエポキシレジン社製」等)又はこれらの混合物、イソシアヌレート骨格等を有する複素環式エポキシ樹脂(「TEPIC;日産化学工業社製」、「アラルダイトPT810;チバ・スペシャルティ・ケミカルズ社製」等)、ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾ−ルノボラック型エポキシ樹脂、ハロゲン化エポキシ樹脂(例えば低臭素化エポキシ樹脂、高ハロゲン化エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂など)、アリル基含有ビスフェノールA型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、ジフェニルジメタノール型エポキシ樹脂、フェノールビフェニレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂(「HP−7200,HP−7200H;大日本インキ化学工業社製」等)、グリシジルアミン型エポキシ樹脂(ジアミノジフェニルメタン型エポキシ樹脂、ジグリシジルアニリン、トリグリシジルアミノフェノール等)、グリジジルエステル型エポキシ樹脂(フタル酸ジグリシジルエステル、アジピン酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、ダイマー酸ジグリシジルエステル等)ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂(3,4−エポキシシクロヘキシルメチル−3’、4’−エポキシシクロヘキサンカルボキシレート、ビス(3,4−エポキシシクロヘキシルメチル)アジペート、ジシクロペンタジエンジエポキシド、「GT−300、GT−400、ZEHPE3150;ダイセル化学工業製」等、)、イミド型脂環式エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、グリシジルフタレート樹脂、テトラグリシジルキシレノイルエタン樹脂、ナフタレン基含有エポキシ樹脂(ナフトールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、4官能ナフタレン型エポキシ樹脂、市販品としては「ESN−190,ESN−360;新日鉄化学社製」、「HP−4032,EXA−4750,EXA−4700;大日本インキ化学工業社製」等)、フェノール化合物とジビニルベンゼンやジシクロペンタジエン等のジオレフィン化合物との付加反応によって得られるポリフェノール化合物と、エピクロルヒドリンとの反応物、4−ビニルシクロヘキセン−1−オキサイドの開環重合物を過酢酸等でエポキシ化したもの、線状含リン構造を有するエポキシ樹脂、環状含リン構造を有するエポキシ樹脂、α―メチルスチルベン型液晶エポキシ樹脂、ジベンゾイルオキシベンゼン型液晶エポキシ樹脂、アゾフェニル型液晶エポキシ樹脂、アゾメチンフェニル型液晶エポキシ樹脂、ビナフチル型液晶エポキシ樹脂、アジン型エポキシ樹脂、グリシジルメタアクリレート共重合系エポキシ樹脂(「CP−50S,CP−50M;日本油脂社製」等)、シクロヘキシルマレイミドとグリシジルメタアクリレートとの共重合エポキシ樹脂、ビス(グリシジルオキシフェニル)フルオレン型エポキシ樹脂、ビス(グリシジルオキシフェニル)アダマンタン型エポキシ樹脂などが挙げられるが、これらに限られるものではない。これらのエポキシ樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。
また、1分子中に少なくとも2つのオキシラン環を有する前記エポキシ化合物以外に、β位にアルキル基を有するエポキシ基を少なくとも1分子中に2つ含むエポキシ化合物を用いることが出来、β位がアルキル基で置換されたエポキシ基(より具体的には、β−アルキル置換グリシジル基など)を含む化合物が特に好ましい。
前記β位にアルキル基を有するエポキシ基を少なくとも含むエポキシ化合物は、1分子中に含まれる2個以上のエポキシ基のすべてがβ−アルキル置換グリシジル基であってもよく、少なくとも1個のエポキシ基がβ−アルキル置換グリシジル基であってもよい。
前記β位にアルキル基を有するエポキシ基を少なくとも含むエポキシ化合物は、1分子中に含まれる2個以上のエポキシ基のすべてがβ−アルキル置換グリシジル基であってもよく、少なくとも1個のエポキシ基がβ−アルキル置換グリシジル基であってもよい。
前記β位にアルキル基を有するエポキシ基を含むエポキシ化合物は、室温における保存安定性の観点から、前記感光性組成物中に含まれる前記エポキシ化合物全量中における、全エポキシ基中のβ−アルキル置換グリシジル基の割合が、30%以上であるのが好ましく、40%以上であるのがより好ましく、50%以上であるのが特に好ましい。
前記β−アルキル置換グリシジル基としては、特に制限は無く、目的に応じて適宜選択することができ、例えば、β−メチルグリシジル基、β−エチルグリシジル基、β−プロピルグリシジル基、β−ブチルグリシジル基、などが挙げられ、これらの中でも、前記感光性樹脂組成物の保存安定性を向上させる観点、及び合成の容易性の観点から、β−メチルグリシジル基が好ましい。
前記β−アルキル置換グリシジル基としては、特に制限は無く、目的に応じて適宜選択することができ、例えば、β−メチルグリシジル基、β−エチルグリシジル基、β−プロピルグリシジル基、β−ブチルグリシジル基、などが挙げられ、これらの中でも、前記感光性樹脂組成物の保存安定性を向上させる観点、及び合成の容易性の観点から、β−メチルグリシジル基が好ましい。
前記β位にアルキル基を有するエポキシ基を含むエポキシ化合物としては、例えば、多価フェノール化合物とβ−アルキルエピハロヒドリンとから誘導されたエポキシ化合物が好ましい。
前記β−アルキルエピハロヒドリンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、β−メチルエピクロロヒドリン、β−メチルエピブロモヒドリン、β−メチルエピフロロヒドリン等のβ−メチルエピハロヒドリン;β−エチルエピクロロヒドリン、β−エチルエピブロモヒドリン、β−エチルエピフロロヒドリン等のβ−エチルエピハロヒドリン;β−プロピルエピクロロヒドリン、β−プロピルエピブロモヒドリン、β−プロピルエピフロロヒドリン等のβ−プロピルエピハロヒドリン;β−ブチルエピクロロヒドリン、β−ブチルエピブロモヒドリン、β−ブチルエピフロロヒドリン等のβ−ブチルエピハロヒドリン;などが挙げられる。これらの中でも、前記多価フェノールとの反応性及び流動性の観点から、β−メチルエピハロヒドリンが好ましい。
前記多価フェノール化合物としては、1分子中に2以上の芳香族性水酸基を含有する化合物であれば、特に制限は無く、目的に応じて適宜選択することができ、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS等のビスフェノール化合物、ビフェノール、テトラメチルビフェノール等のビフェノール化合物、ジヒドロキシナフタレン、ビナフトール等のナフトール化合物、フェノール−ホルムアルデヒド重縮合物等のフェノールノボラック樹脂、クレゾール−ホルムアルデヒド重縮合物等の炭素数1〜10のモノアルキル置換フェノール−ホルムアルデヒド重縮合物、キシレノール−ホルムアルデヒド重縮合物等の炭素数1〜10のジアルキル置換フェノール−ホルムアルデヒド重縮合物、ビスフェノールA−ホルムアルデヒド重縮合物等のビスフェノール化合物−ホルムアルデヒド重縮合物、フェノールと炭素数1〜10のモノアルキル置換フェノールとホルムアルデヒドとの共重縮合物、フェノール化合物とジビニルベンゼンの重付加物などが挙げられる。これらの中でも、例えば、流動性及び保存安定性を向上させる目的で選択する場合には、前記ビスフェノール化合物が好ましい。
前記β位にアルキル基を有するエポキシ基を含むエポキシ化合物としては、例えば、ビスフェノールAのジ−β−アルキルグリシジルエーテル、ビスフェノールFのジ−β−アルキルグリシジルエーテル、ビスフェノールSのジ−β−アルキルグリシジルエーテル等のビスフェノール化合物のジ−β−アルキルグリシジルエーテル;ビフェノールのジ−β−アルキルグリシジルエーテル、テトラメチルビフェノールのジ−β−アルキルグリシジルエーテル等のビフェノール化合物のジ−β−アルキルグリシジルエーテル;ジヒドロキシナフタレンのジ−β−アルキルグリシジルエーテル、ビナフトールのジ−β−アルキルグリシジルエーテル等のナフトール化合物のβ−アルキルグリシジルエーテル;フェノール−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル;クレゾール−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル等の炭素数1〜10のモノアルキル置換フェノール−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル;キシレノール−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル等の炭素数1〜10のジアルキル置換フェノール−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル;ビスフェノールA−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル等のビスフェノール化合物−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル;フェノール化合物とジビニルベンゼンの重付加物のポリ−β−アルキルグリシジルエーテル;などが挙げられる。
これらの中でも、下記構造式(i)で表されるビスフェノール化合物、及びこれとエピクロロフドリンなどから得られる重合体から誘導されるβ−アルキルグリシジルエーテル、及び下記構造式(ii)で表されるフェノール化合物−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテルが好ましい。
これらの中でも、下記構造式(i)で表されるビスフェノール化合物、及びこれとエピクロロフドリンなどから得られる重合体から誘導されるβ−アルキルグリシジルエーテル、及び下記構造式(ii)で表されるフェノール化合物−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテルが好ましい。
上記構造式(i)中、Rkは水素原子及び炭素数1〜6のアルキル基のいずれかを表し、nは0〜20のいずれかの整数を表す。
上記構造式(ii)中、Rkは水素原子及び炭素数1〜6のアルキル基のいずれかを表し、Rmは水素原子、及びCH3のいずれかを表し、nは0〜20のいずれかの整数を表す。
これらβ位にアルキル基を有するエポキシ基を含むエポキシ化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。また1分子中に少なくとも2つのオキシラン環を有するエポキシ化合物、及びβ位にアルキル基を有するエポキシ基を含むエポキシ化合物を併用することも可能である。
上記構造式(ii)中、Rkは水素原子及び炭素数1〜6のアルキル基のいずれかを表し、Rmは水素原子、及びCH3のいずれかを表し、nは0〜20のいずれかの整数を表す。
これらβ位にアルキル基を有するエポキシ基を含むエポキシ化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。また1分子中に少なくとも2つのオキシラン環を有するエポキシ化合物、及びβ位にアルキル基を有するエポキシ基を含むエポキシ化合物を併用することも可能である。
前記オキセタン化合物としては、例えば、ビス[(3−メチル−3−オキセタニルメトキシ)メチル]エーテル、ビス[(3−エチル−3−オキセタニルメトキシ)メチル]エーテル、1,4−ビス[(3−メチル−3−オキセタニルメトキシ)メチル]ベンゼン、1,4−ビス[(3−エチル−3−オキセタニルメトキシ)メチル]ベンゼン、(3−メチル−3−オキセタニル)メチルアクリレート、(3−エチル−3−オキセタニル)メチルアクリレート、(3−メチル−3−オキセタニル)メチルメタクリレート、(3−エチル−3−オキセタニル)メチルメタクリレート又はこれらのオリゴマーあるいは共重合体等の多官能オキセタン類の他、オキセタン基を有する化合物と、ノボラック樹脂、ポリ(p−ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、シルセスキオキサン等の水酸基を有する樹脂など、とのエーテル化合物が挙げられ、この他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体なども挙げられる。
また、前記エポキシ化合物や前記オキセタン化合物の熱硬化を促進するため、例えば、アミン化合物(例えば、ジシアンジアミド、ベンジルジメチルアミン、4−(ジメチルアミノ)−N,N−ジメチルベンジルアミン、4−メトキシ−N,N−ジメチルベンジルアミン、4−メチル−N,N−ジメチルベンジルアミン等)、4級アンモニウム塩化合物(例えば、トリエチルベンジルアンモニウムクロリド等)、ブロックイソシアネート化合物(例えば、ジメチルアミン等)、イミダゾール誘導体二環式アミジン化合物及びその塩(例えば、イミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、4−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール等)、リン化合物(例えば、トリフェニルホスフィン等)、グアナミン化合物(例えば、メラミン、グアナミン、アセトグアナミン、ベンゾグアナミン等)、S−トリアジン誘導体(例えば、2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン、2−ビニル−2,4−ジアミノ−S−トリアジン、2−ビニル−4,6−ジアミノ−S−トリアジン・イソシアヌル酸付加物、2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン・イソシアヌル酸付加物等)などを用いることができる。これらは1種単独で使用してもよく、2種以上を併用してもよい。なお、前記エポキシ樹脂化合物や前記オキセタン化合物の硬化触媒、あるいは、これらとカルボキシル基の反応を促進することができるものであれば、特に制限はなく、上記以外の熱硬化を促進可能な化合物を用いてもよい。
前記エポキシ化合物、前記オキセタン化合物、及びこれらとカルボン酸との熱硬化を促進可能な化合物の前記感光性組成物中の固形分含有量は、通常0.01〜15質量%である。
また、前記熱架橋剤としては、特開平5−9407号公報記載のポリイソシアネート化合物を用いることができ、該ポリイソシアネート化合物は、少なくとも2つのイソシアネート基を含む脂肪族、環式脂肪族又は芳香族基置換脂肪族化合物から誘導されていてもよい。具体的には、2官能イソシアネート(例えば、1,3−フェニレンジイソシアネートと1,4−フェニレンジイソシアネートとの混合物、2,4−及び2,6−トルエンジイソシアネート、1,3−及び1,4−キシリレンジイソシアネート、ビス(4−イソシアネート−フェニル)メタン、ビス(4−イソシアネートシクロヘキシル)メタン、イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等)、該2官能イソシアネートと、トリメチロールプロパン、ペンタリスルトール、グリセリン等との多官能アルコール;該多官能アルコールのアルキレンオキサイド付加体と、前記2官能イソシアネートとの付加体;ヘキサメチレンジイソシアネート、ヘキサメチレン−1,6−ジイソシアネート及びその誘導体等の環式三量体;などが挙げられる。
更に、本発明の感光性組成物を用いて形成してなる感光層を有する前記パターン形成材料の保存性を向上させることを目的として、前記ポリイソシアネート及びその誘導体のイソシアネート基にブロック剤を反応させて得られる化合物を用いてもよい。
前記イソシアネート基ブロック剤としては、アルコール類(例えば、イソプロパノール、tert.−ブタノール等)、ラクタム類(例えば、ε−カプロラクタム等)、フェノール類(例えば、フェノール、クレゾール、p−tert.−ブチルフェノール、p−sec.−ブチルフェノール、p−sec.−アミルフェノール、p−オクチルフェノール、p−ノニルフェノール等)、複素環式ヒドロキシル化合物(例えば、3−ヒドロキシピリジン、8−ヒドロキシキノリン等)、活性メチレン化合物(例えば、ジアルキルマロネート、メチルエチルケトキシム、アセチルアセトン、アルキルアセトアセテートオキシム、アセトオキシム、シクロヘキサノンオキシム等)などが挙げられる。これらの他、特開平6−295060号公報記載の分子内に少なくとも1つの重合可能な二重結合及び少なくとも1つのブロックイソシアネート基のいずれかを有する化合物などを用いることができる。
前記イソシアネート基ブロック剤としては、アルコール類(例えば、イソプロパノール、tert.−ブタノール等)、ラクタム類(例えば、ε−カプロラクタム等)、フェノール類(例えば、フェノール、クレゾール、p−tert.−ブチルフェノール、p−sec.−ブチルフェノール、p−sec.−アミルフェノール、p−オクチルフェノール、p−ノニルフェノール等)、複素環式ヒドロキシル化合物(例えば、3−ヒドロキシピリジン、8−ヒドロキシキノリン等)、活性メチレン化合物(例えば、ジアルキルマロネート、メチルエチルケトキシム、アセチルアセトン、アルキルアセトアセテートオキシム、アセトオキシム、シクロヘキサノンオキシム等)などが挙げられる。これらの他、特開平6−295060号公報記載の分子内に少なくとも1つの重合可能な二重結合及び少なくとも1つのブロックイソシアネート基のいずれかを有する化合物などを用いることができる。
また、前記熱架橋剤として、メラミン誘導体を用いることができる。該メラミン誘導体としては、例えば、メチロールメラミン、アルキル化メチロールメラミン(メチロール基を、メチル、エチル、ブチルなどでエーテル化した化合物)などが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、保存安定性が良好で、感光層の表面硬度あるいは硬化膜の膜強度自体の向上に有効である点で、アルキル化メチロールメラミンが好ましく、ヘキサメチル化メチロールメラミンが特に好ましい。
前記感光性組成物中の前記熱架橋剤の固形分含有量は、1〜50質量%が好ましく、3〜30質量%がより好ましい。該固形分含有量が1質量%未満であると、硬化膜の膜強度の向上が認められず、50質量%を超えると、現像性の低下や露光感度の低下を生ずることがある。
<その他の成分>
前記ソルダーレジストとしての感光性組成物におけるその他の成分としては、例えば、体質顔料、着色剤(着色顔料あるいは染料)などが挙げられ、更に基材表面への密着促進剤及びその他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)を併用してもよい。
これらの成分は、前記回路形成用レジストとしての前記感光性組成物に含まれるものと同じものとしてもよく、これらを適宜含有させることにより、目的とする感光層の安定性、写真性、膜物性などの性質を調整することができる。
前記ソルダーレジストとしての感光性組成物におけるその他の成分としては、例えば、体質顔料、着色剤(着色顔料あるいは染料)などが挙げられ、更に基材表面への密着促進剤及びその他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)を併用してもよい。
これらの成分は、前記回路形成用レジストとしての前記感光性組成物に含まれるものと同じものとしてもよく、これらを適宜含有させることにより、目的とする感光層の安定性、写真性、膜物性などの性質を調整することができる。
−体質顔料−
前記体質顔料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無機顔料や有機微粒子などが挙げられる。
前記ソルダーレジストとしての感光性組成物には、必要に応じて、永久パターンの表面硬度の向上、あるいは線膨張係数を低く抑えること、あるいは、硬化膜自体の誘電率や誘電正接を低く抑えることを目的として、前記無機顔料や有機微粒子を添加することができる。
前記無機顔料としては、特に制限はなく、公知のものの中から適宜選択することができ、例えば、カオリン、硫酸バリウム、チタン酸バリウム、酸化ケイ素粉、微粉状酸化ケイ素、気相法シリカ、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、マイカなどが挙げられる。
前記体質顔料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無機顔料や有機微粒子などが挙げられる。
前記ソルダーレジストとしての感光性組成物には、必要に応じて、永久パターンの表面硬度の向上、あるいは線膨張係数を低く抑えること、あるいは、硬化膜自体の誘電率や誘電正接を低く抑えることを目的として、前記無機顔料や有機微粒子を添加することができる。
前記無機顔料としては、特に制限はなく、公知のものの中から適宜選択することができ、例えば、カオリン、硫酸バリウム、チタン酸バリウム、酸化ケイ素粉、微粉状酸化ケイ素、気相法シリカ、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、マイカなどが挙げられる。
前記無機顔料の平均粒径は、10μm未満が好ましく、3μm以下がより好ましい。該平均粒径が10μm以上であると、光錯乱により解像度が劣化することがある。
前記有機微粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メラミン樹脂、ベンゾグアナミン樹脂、架橋ポリスチレン樹脂などが挙げられる。また、平均粒径1〜5μm、吸油量100〜200m2/g程度のシリカ、架橋樹脂からなる球状多孔質微粒子などを用いることができる。
前記有機微粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メラミン樹脂、ベンゾグアナミン樹脂、架橋ポリスチレン樹脂などが挙げられる。また、平均粒径1〜5μm、吸油量100〜200m2/g程度のシリカ、架橋樹脂からなる球状多孔質微粒子などを用いることができる。
前記体質顔料の添加量は、固形分含有量として、5〜60質量%が好ましい。該添加量が5質量%未満であると、十分に線膨張係数を低下させることができないことがあり、60質量%を超えると、感光層表面に硬化膜を形成した場合に、該硬化膜の膜質が脆くなり、保護膜としての機能が損なわれることがある。
(パターン形成材料)
前記パターン形成材料は、支持体と、該支持体上に本発明の前記感光性組成物からなる感光層を少なくとも有し、目的に応じて、クッション層等の適宜選択されるその他の層を積層してなる。
前記感光性組成物としては、前記回路形成用レジスト、及びソルダーレジストのいずれかの感光性組成物が含まれる。
前記パターン形成材料は、支持体と、該支持体上に本発明の前記感光性組成物からなる感光層を少なくとも有し、目的に応じて、クッション層等の適宜選択されるその他の層を積層してなる。
前記感光性組成物としては、前記回路形成用レジスト、及びソルダーレジストのいずれかの感光性組成物が含まれる。
<支持体>
前記支持体としては、特に制限はなく、目的に応じて適宜選択することができ、前記感光層を剥離可能であり、かつ光の透過性が良好であるのが好ましく、更に表面の平滑性が良好であるのがより好ましい。
前記支持体としては、特に制限はなく、目的に応じて適宜選択することができ、前記感光層を剥離可能であり、かつ光の透過性が良好であるのが好ましく、更に表面の平滑性が良好であるのがより好ましい。
前記支持体の材料としては、合成樹脂製で、かつ透明であるものが好ましく、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリエチレン、三酢酸セルロース、二酢酸セルロース、ポリ(メタ)アクリル酸アルキルエステル、ポリ(メタ)アクリル酸エステル共重合体、ポリ塩化ビニル、ポリビニルアルコール、ポリカーボネート、ポリスチレン、セロファン、ポリ塩化ビニリデン共重合体、ポリアミド、ポリイミド、塩化ビニル・酢酸ビニル共重合体、ポリテトラフロロエチレン、ポリトリフロロエチレン、セルロース系フィルム、ナイロンフィルム等の各種のプラスチックフィルムが挙げられ、これらの中でも、ポリエチレンテレフタレートが特に好ましい。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
なお、前記支持体としては、例えば、特開平4−208940号公報、特開平5−80503号公報、特開平5−173320号公報、特開平5−72724号公報などに記載の支持体を用いることもできる。
なお、前記支持体としては、例えば、特開平4−208940号公報、特開平5−80503号公報、特開平5−173320号公報、特開平5−72724号公報などに記載の支持体を用いることもできる。
前記支持体の厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、4〜300μmが好ましく、5〜175μmがより好ましい。
前記支持体の形状としては、特に制限はなく、目的に応じて適宜選択することができる、例えば、円筒状の巻芯に巻き取って、長尺状でロール状に巻かれて保管されるのが好ましい。前記長尺状のパターン形成材料の長さとしては、特に制限はなく、例えば、10m〜20,000mの範囲から適宜選択することができる。また、ユーザーが使いやすいようにスリット加工し、100m〜1,000mの範囲の長尺体をロール状にしてもよい。なお、この場合には、前記支持体が一番外側になるように巻き取られるのが好ましい。また、前記ロール状のパターン形成材料をシート状にスリットしてもよい。保管の際、端面の保護、エッジフュージョンを防止する観点から、端面にはセパレーター(特に防湿性のもの、乾燥剤入りのもの)を設置するのが好ましく、また梱包も透湿性の低い素材を用いるのが好ましい。
<感光層>
前記感光層は、前記感光性組成物により形成される。前記感光層の前記パターン形成材料において設けられる箇所としては、特に制限はなく、目的に応じて適宜選択することができ、通常、前記支持体上に積層される。
前記感光層としては、単層であってもよく、複数層であってもよい。
前記感光層は、前記感光性組成物により形成される。前記感光層の前記パターン形成材料において設けられる箇所としては、特に制限はなく、目的に応じて適宜選択することができ、通常、前記支持体上に積層される。
前記感光層としては、単層であってもよく、複数層であってもよい。
<その他の層>
前記パターン形成材料におけるその他の層としては、例えば、特に制限はなく、目的に応じて適宜選択することができ、例えば、クッション層、酸素遮断層(PC層)、剥離層、接着層、光吸収層、表面保護層などの層を有してもよい。これらの層を1種単独で有していてもよく、2種以上を有していてもよい。また、前記感光層上に保護フィルムを有していてもよい。
前記パターン形成材料におけるその他の層としては、例えば、特に制限はなく、目的に応じて適宜選択することができ、例えば、クッション層、酸素遮断層(PC層)、剥離層、接着層、光吸収層、表面保護層などの層を有してもよい。これらの層を1種単独で有していてもよく、2種以上を有していてもよい。また、前記感光層上に保護フィルムを有していてもよい。
−クッション層−
前記クッション層としては、特に制限はなく、目的に応じて適宜選択することができ、アルカリ性液に対して膨潤性乃至可溶性であってもよく、不溶性であってもよい。一般的に、クッション層は、支持体と感光層との間に設ける。
前記クッション層としては、特に制限はなく、目的に応じて適宜選択することができ、アルカリ性液に対して膨潤性乃至可溶性であってもよく、不溶性であってもよい。一般的に、クッション層は、支持体と感光層との間に設ける。
前記クッション層がアルカリ性液に対して膨潤性乃至可溶性である場合には、前記熱可塑性樹脂としては、例えば、エチレンとアクリル酸エステル共重合体のケン化物、スチレンと(メタ)アクリル酸エステル共重合体のケン化物、ビニルトルエンと(メタ)アクリル酸エステル共重合体のケン化物、ポリ(メタ)アクリル酸エステル、(メタ)アクリル酸ブチルと酢酸ビニル等の(メタ)アクリル酸エステル共重合体等のケン化物、(メタ)アクリル酸エステルと(メタ)アクリル酸との共重合体、スチレンと(メタ)アクリル酸エステルと(メタ)アクリル酸との共重合体などが挙げられる。
この場合の熱可塑性樹脂の軟化点(Vicat)としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、80℃以下が好ましい。
前記軟化点が80℃以下の熱可塑性樹脂としては、上述した熱可塑性樹脂の他、「プラスチック性能便覧」(日本プラスチック工業連盟、全日本プラスチック成形工業連合会編著、工業調査会発行、1968年10月25日発行)による軟化点が約80℃以下の有機高分子の内、アルカリ性液に可溶なものが挙げられる。また、軟化点が80℃以上の有機高分子物質においても、該有機高分子物質中に該有機高分子物質と相溶性のある各種の可塑剤を添加して実質的な軟化点を80℃以下に下げることも可能である。
前記軟化点が80℃以下の熱可塑性樹脂としては、上述した熱可塑性樹脂の他、「プラスチック性能便覧」(日本プラスチック工業連盟、全日本プラスチック成形工業連合会編著、工業調査会発行、1968年10月25日発行)による軟化点が約80℃以下の有機高分子の内、アルカリ性液に可溶なものが挙げられる。また、軟化点が80℃以上の有機高分子物質においても、該有機高分子物質中に該有機高分子物質と相溶性のある各種の可塑剤を添加して実質的な軟化点を80℃以下に下げることも可能である。
また、前記クッション層がアルカリ性液に対して膨潤性乃至可溶性である場合には、前記パターン形成材料の層間接着力としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、各層の層間接着力の中で、前記支持体と前記クッション層との間の層間接着力が、最も小さいことが好ましい。このような層間接着力とすることにより、前記積層体から前記支持体のみを剥離し、前記クッション層を介して前記感光層を露光した後、アルカリ性の現像液を用いて該感光層を現像することができる。また、前記支持体を残したまま、前記感光層を露光した後、前記積層体から前記支持体のみを剥離し、アルカリ性の現像液を用いて該感光層を現像することもできる。
前記層間接着力の調整方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記熱可塑性樹脂中に公知のポリマー、過冷却物質、密着改良剤、界面活性剤、離型剤などを添加する方法が挙げられる。
前記可塑剤としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、ポリプロピレングリコール、ポリエチレングリコール、ジオクチルフタレート、ジヘプチルフタレート、ジブチルフタレート、トリクレジルフォスフェート、クレジルジフェニルフォスフェート、ビフェニルジフェニルフォスフェート等のアルコール類やエステル類;トルエンスルホンアミド等のアミド類、などが挙げられる。
前記クッション層がアルカリ性液に対して不溶性である場合には、前記熱可塑性樹脂としては、例えば、主成分がエチレンを必須の共重合成分とする共重合体が挙げられる。
前記エチレンを必須の共重合成分とする共重合体としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、エチレン−酢酸ビニル共重合体(EVA)、エチレン−エチルアクリレート共重合体(EEA)などが挙げられる。
前記エチレンを必須の共重合成分とする共重合体としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、エチレン−酢酸ビニル共重合体(EVA)、エチレン−エチルアクリレート共重合体(EEA)などが挙げられる。
前記クッション層がアルカリ性液に対して不溶性である場合には、前記パターン形成材料の層間接着力としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、各層の層間接着力の中で、前記感光層と前記クッション層との接着力が、最も小さいことが好ましい。このような層間接着力とすることにより、前記積層体から前記支持体及びクッション層を剥離し、前記感光層を露光した後、アルカリ性の現像液を用いて該感光層を現像することができる。また、前記支持体を残したまま、前記感光層を露光した後、前記積層体から前記支持体と前記クッション層を剥離し、アルカリ性の現像液を用いて該感光層を現像することもできる。
前記層間接着力の調整方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記熱可塑性樹脂中に各種のポリマー、過冷却物質、密着改良剤、界面活性剤、離型剤などを添加する方法、以下に説明するエチレン共重合比を調整する方法などが挙げられる。
前記エチレンを必須の共重合成分とする共重合体におけるエチレン共重合比としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、60〜90質量%が好ましく、60〜80質量%がより好ましく、65〜80質量%が特に好ましい。
前記エチレンの共重合比が、60質量%未満になると、前記クッション層と前記感光層との層間接着力が高くなり、該クッション層と該感光層との界面で剥離することが困難となることがあり、90質量%を超えると、前記クッション層と前記感光層との層間接着力が小さくなりすぎるため、該クッション層と該感光層との間で非常に剥離しやすく、前記クッション層を含むパターン形成材料の製造が困難となることがある。
前記エチレンの共重合比が、60質量%未満になると、前記クッション層と前記感光層との層間接着力が高くなり、該クッション層と該感光層との界面で剥離することが困難となることがあり、90質量%を超えると、前記クッション層と前記感光層との層間接着力が小さくなりすぎるため、該クッション層と該感光層との間で非常に剥離しやすく、前記クッション層を含むパターン形成材料の製造が困難となることがある。
前記クッション層の厚みは、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5〜50μmが好ましく、10〜50μmがより好ましく、15〜40μmが特に好ましい。
前記厚みが、5μm未満になると、基体の表面における凹凸や、気泡等への凹凸追従性が低下し、高精細な永久パターンを形成できないことがあり、50μmを超えると、製造上の乾燥負荷増大等の不具合が生じることがある。
前記厚みが、5μm未満になると、基体の表面における凹凸や、気泡等への凹凸追従性が低下し、高精細な永久パターンを形成できないことがあり、50μmを超えると、製造上の乾燥負荷増大等の不具合が生じることがある。
−酸素遮断層(PC層)−
前記酸素遮断層は、通常ポリビニルアルコールを主成分として形成されることが好ましく、厚みが0.5〜5μm程度の被膜であることが好ましい。
前記酸素遮断層は、通常ポリビニルアルコールを主成分として形成されることが好ましく、厚みが0.5〜5μm程度の被膜であることが好ましい。
−保護フィルム−
前記保護フィルムは、前記感光層の汚れや損傷を防止し、保護する機能を有する。
前記保護フィルムの前記パターン形成材料において設けられる箇所としては、特に制限はなく、目的に応じて適宜選択することができ、通常、前記感光層上に設けられる。
前記保護フィルムとしては、例えば、前記支持体に使用されるもの、シリコーン紙、ポリエチレン、ポリプロピレンがラミネートされた紙、ポリオレフィン又はポリテトラフルオルエチレンシート、などが挙げられ、これらの中でも、ポリエチレンフィルム、ポリプロピレンフィルムが好ましい。
前記保護フィルムの厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、5〜100μmが好ましく、8〜30μmがより好ましい。
前記保護フィルムを用いる場合、前記感光層及び前記支持体の接着力Aと、前記感光層及び保護フィルムの接着力Bとが、接着力A>接着力Bの関係であることが好ましい。
前記支持体と保護フィルムとの組合せ(支持体/保護フィルム)としては、例えば、ポリエチレンテレフタレート/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレン、ポリ塩化ビニル/セロフアン、ポリイミド/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレンテレフタレートなどが挙げられる。また、支持体及び保護フィルムの少なくともいずれかを表面処理することにより、上述のような接着力の関係を満たすことができる。前記支持体の表面処理は、前記感光層との接着力を高めるために施されてもよく、例えば、下塗層の塗設、コロナ放電処理、火炎処理、紫外線照射処理、高周波照射処理、グロー放電照射処理、活性プラズマ照射処理、レーザ光線照射処理などを挙げることができる。
前記保護フィルムは、前記感光層の汚れや損傷を防止し、保護する機能を有する。
前記保護フィルムの前記パターン形成材料において設けられる箇所としては、特に制限はなく、目的に応じて適宜選択することができ、通常、前記感光層上に設けられる。
前記保護フィルムとしては、例えば、前記支持体に使用されるもの、シリコーン紙、ポリエチレン、ポリプロピレンがラミネートされた紙、ポリオレフィン又はポリテトラフルオルエチレンシート、などが挙げられ、これらの中でも、ポリエチレンフィルム、ポリプロピレンフィルムが好ましい。
前記保護フィルムの厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、5〜100μmが好ましく、8〜30μmがより好ましい。
前記保護フィルムを用いる場合、前記感光層及び前記支持体の接着力Aと、前記感光層及び保護フィルムの接着力Bとが、接着力A>接着力Bの関係であることが好ましい。
前記支持体と保護フィルムとの組合せ(支持体/保護フィルム)としては、例えば、ポリエチレンテレフタレート/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレン、ポリ塩化ビニル/セロフアン、ポリイミド/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレンテレフタレートなどが挙げられる。また、支持体及び保護フィルムの少なくともいずれかを表面処理することにより、上述のような接着力の関係を満たすことができる。前記支持体の表面処理は、前記感光層との接着力を高めるために施されてもよく、例えば、下塗層の塗設、コロナ放電処理、火炎処理、紫外線照射処理、高周波照射処理、グロー放電照射処理、活性プラズマ照射処理、レーザ光線照射処理などを挙げることができる。
また、前記支持体と前記保護フィルムとの静摩擦係数としては、0.3〜1.4が好ましく、0.5〜1.2がより好ましい。
前記静摩擦係数が、0.3未満であると、滑り過ぎるため、ロール状にした場合に巻ズレが発生することがあり、1.4を超えると、良好なロール状に巻くことが困難となることがある。
前記静摩擦係数が、0.3未満であると、滑り過ぎるため、ロール状にした場合に巻ズレが発生することがあり、1.4を超えると、良好なロール状に巻くことが困難となることがある。
前記保護フィルムは、前記保護フィルムと前記感光層との接着性を調整するために表面処理してもよい。前記表面処理は、例えば、前記保護フィルムの表面に、ポリオルガノシロキサン、弗素化ポリオレフィン、ポリフルオロエチレン、ポリビニルアルコール等のポリマーからなる下塗層を形成させる。該下塗層の形成は、前記ポリマーの塗布液を前記保護フィルムの表面に塗布した後、30〜150℃(特に50〜120℃)で1〜30分間乾燥させることにより形成させることができる。
〔パターン形成材料の製造方法〕
前記パターン形成材料は、例えば、次のようにして製造することができる。
まず、前記感光性組成物に含まれる材料を、水又は溶剤に溶解、乳化又は分散させて、パターン形成材料用の感光性樹脂組成物溶液を調製する。
前記パターン形成材料は、例えば、次のようにして製造することができる。
まず、前記感光性組成物に含まれる材料を、水又は溶剤に溶解、乳化又は分散させて、パターン形成材料用の感光性樹脂組成物溶液を調製する。
前記溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、n−ヘキサノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトンなどのケトン類;酢酸エチル、酢酸ブチル、酢酸−n−アミル、硫酸メチル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、及びメトキシプロピルアセテートなどのエステル類;トルエン、キシレン、ベンゼン、エチルベンゼンなどの芳香族炭化水素類;四塩化炭素、トリクロロエチレン、クロロホルム、1,1,1−トリクロロエタン、塩化メチレン、モノクロロベンゼンなどのハロゲン化炭化水素類;テトラヒドロフラン、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、1−メトキシ−2−プロパノールなどのエーテル類;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキサイド、スルホランなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。また、公知の界面活性剤を添加してもよい。
次に、前記基体上又は前記支持体上に前記感光性樹脂組成物溶液を塗布し、乾燥させて感光層を形成し、パターン形成材料を製造することができる。
前記感光性樹脂組成物溶液の塗布方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、スプレー法、ロールコート法、回転塗布法、スリットコート法、エクストルージョンコート法、カーテンコート法、ダイコート法、グラビアコート法、ワイヤーバーコート法、ナイフコート法等の各種の塗布方法が挙げられる。
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、通常60〜110℃の温度で30秒間〜15分間程度である。
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、通常60〜110℃の温度で30秒間〜15分間程度である。
(感光性積層体)
前記感光性積層体は、前記基体上に、本発明の感光性組成物からなる感光層を少なくとも有し、目的に応じて適宜選択されるその他の層を積層してなる。
前記感光性積層体における前記感光層としては、前記回路形成用レジストとしての前記感光性組成物からなる回路形成用レジスト層、及び前記ソルダーレジストとしての前記感光性組成物からなるソルダーレジスト層のいずれかであり、これらは、前記パターン形成材料により形成された感光層であることが好ましい。
前記感光性積層体は、前記基体上に、本発明の感光性組成物からなる感光層を少なくとも有し、目的に応じて適宜選択されるその他の層を積層してなる。
前記感光性積層体における前記感光層としては、前記回路形成用レジストとしての前記感光性組成物からなる回路形成用レジスト層、及び前記ソルダーレジストとしての前記感光性組成物からなるソルダーレジスト層のいずれかであり、これらは、前記パターン形成材料により形成された感光層であることが好ましい。
<基体>
前記基体は、感光層が形成される被処理基体、又は本発明のパターン形成材料の少なくとも感光層が転写される被転写体となるもので、特に制限はなく、目的に応じて適宜選択することができ、例えば、表面平滑性の高いものから凸凹のある表面を持つものまで任意に選択できる。板状の基体が好ましく、いわゆる基板が使用される。具体的には、公知のプリント配線板製造用の基板、ガラス板(ソーダガラス板など)、合成樹脂性のフィルム、紙、金属板などが挙げられる。
前記基体は、感光層が形成される被処理基体、又は本発明のパターン形成材料の少なくとも感光層が転写される被転写体となるもので、特に制限はなく、目的に応じて適宜選択することができ、例えば、表面平滑性の高いものから凸凹のある表面を持つものまで任意に選択できる。板状の基体が好ましく、いわゆる基板が使用される。具体的には、公知のプリント配線板製造用の基板、ガラス板(ソーダガラス板など)、合成樹脂性のフィルム、紙、金属板などが挙げられる。
〔感光性積層体の製造方法〕
前記感光性積層体の製造方法として、第1の態様として、前記感光性組成物を前記基体の表面に塗布し乾燥する方法が挙げられ、第2の態様として、本発明のパターン形成材料における少なくとも感光層を加熱及び加圧の少なくともいずれかを行いながら転写して積層する方法が挙げられる。
前記感光性積層体の製造方法として、第1の態様として、前記感光性組成物を前記基体の表面に塗布し乾燥する方法が挙げられ、第2の態様として、本発明のパターン形成材料における少なくとも感光層を加熱及び加圧の少なくともいずれかを行いながら転写して積層する方法が挙げられる。
前記第1の態様の感光性積層体の製造方法は、前記基体上に、前記感光性組成物を塗布及び乾燥して感光層を形成する。
前記塗布及び乾燥の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記基体の表面に、前記感光性組成物を、水又は溶剤に溶解、乳化又は分散させて感光性組成物溶液を調製し、該溶液を直接塗布し、乾燥させることにより積層する方法が挙げられる。
前記塗布及び乾燥の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記基体の表面に、前記感光性組成物を、水又は溶剤に溶解、乳化又は分散させて感光性組成物溶液を調製し、該溶液を直接塗布し、乾燥させることにより積層する方法が挙げられる。
前記感光性組成物溶液の溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、前記パターン形成材料に用いたものと同じ溶剤が挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。また、公知の界面活性剤を添加してもよい。
前記塗布方法及び乾燥条件としては、特に制限はなく、目的に応じて適宜選択することができ、前記パターン形成材料に用いたものと同じ方法及び条件で行う。
前記第2の態様の感光性積層体の製造方法は、前記基体の表面に本発明のパターン形成材料を加熱及び加圧の少なくともいずれかを行いながら積層する。なお、前記パターン形成材料が前記保護フィルムを有する場合には、該保護フィルムを剥離し、前記基体に前記感光層が重なるようにして積層するのが好ましい。
前記加熱温度及び加圧としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、15〜180℃が好ましく、60〜140℃がより好ましい。
前記加圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、0.1〜1.0MPaが好ましく、0.2〜0.8MPaがより好ましい。
前記加熱温度及び加圧としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、15〜180℃が好ましく、60〜140℃がより好ましい。
前記加圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、0.1〜1.0MPaが好ましく、0.2〜0.8MPaがより好ましい。
前記加熱の少なくともいずれかを行う装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ラミネーター(例えば、大成ラミネータ社製、VP−II)などが好適に挙げられる。
(パターン形成装置及びパターン形成方法)
本発明のパターン形成装置は、本発明の前記感光性積層体を備えており、光照射手段と光変調手段とを少なくとも有する。
本発明のパターン形成装置は、本発明の前記感光性積層体を備えており、光照射手段と光変調手段とを少なくとも有する。
本発明のパターン形成方法は、露光工程を少なくとも含み、適宜選択した現像工程等のその他の工程を含む。
なお、本発明の前記パターン形成装置は、本発明の前記パターン形成方法の説明を通じて明らかにする。
なお、本発明の前記パターン形成装置は、本発明の前記パターン形成方法の説明を通じて明らかにする。
[露光工程]
前記露光工程は、本発明の感光性積層体における前記感光層に対し、露光を行う工程である。本発明の感光性積層体における前記感光層としては、本発明の前記感光性組成物により形成されてなる感光層、及び前記パターン形成材料から転写されてなる感光層が挙げられる。
前記露光工程としては、パターン情報に応じて光を変調しながら露光ヘッドと感光層の被露光面とを相対走査して露光することにより、前記被露光面上の二次元パターンを形成する工程であり、該露光はマスクレス露光である。前記露光ヘッドは、光照射手段及び光変調手段を少なくとも備える。また、前記相対走査は、露光ヘッド及び前記感光層の少なくともいずれかを移動させることにより行う。
なお、光照射は、基材転写前後のどちらでもよいが、転写した後の露光の方が、位置ずれ防止の観点から好ましい。
前記露光工程は、本発明の感光性積層体における前記感光層に対し、露光を行う工程である。本発明の感光性積層体における前記感光層としては、本発明の前記感光性組成物により形成されてなる感光層、及び前記パターン形成材料から転写されてなる感光層が挙げられる。
前記露光工程としては、パターン情報に応じて光を変調しながら露光ヘッドと感光層の被露光面とを相対走査して露光することにより、前記被露光面上の二次元パターンを形成する工程であり、該露光はマスクレス露光である。前記露光ヘッドは、光照射手段及び光変調手段を少なくとも備える。また、前記相対走査は、露光ヘッド及び前記感光層の少なくともいずれかを移動させることにより行う。
なお、光照射は、基材転写前後のどちらでもよいが、転写した後の露光の方が、位置ずれ防止の観点から好ましい。
前記マスクレス露光(「マスクレスパターン露光」ともいう)とは、パターン情報(「画像データ」ともいう)に基づいて、光照射手段からの光を変調しながら、露光ヘッドと前記感光層の被露光面とを相対走査することにより、前記感光層の被露光面上に二次元パターン(「画像」ともいう)を形成する露光方法である。これに対し、マスクを用いた従来の露光方法は、露光光を透過させない材質、又は露光光を弱めて透過させる材質でパターンを形成してなるマスクを、前記感光層の被露光面上の光路に配置して露光を行う方法である。
前記光照射手段から照射される光の光源としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、超高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機用などの蛍光管、LED、及びレーザ光(半導体レーザ、固体レーザ、液体レーザ、気体レーザ)等が挙げられ、これらの中でも、超高圧水銀灯及びレーザ光が好ましく、光のオンオフ制御が短時間で行え、光の干渉制御が容易ある観点から、レーザ光がより好ましい。
前記光源の波長としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記超高圧水銀灯としては、i線(365nm)が好ましく、固体レーザとしては、YAG−SHG固体レーザ(532nm)、半導体励起固体レーザ(532nm、355nm、266nm)が好ましく、気体レーザとしては、KrFレーザ(249nm)、ArFレーザ(193nm)が好ましい。半導体レーザとしては、感光性組成物の露光時間の短縮を図る目的、及び入手のしやすさの観点から、300〜500nmが好ましく、340〜450nmがより好ましく、405nm又は410nmであることが特に好ましい。
前記レーザ光のビーム径としては、特に制限はなく、目的に応じて適宜選択することができるが、前記感光層における解像度の観点から、ガウシアンビームの1/e2値で5〜30μnが好ましく、7〜20μmがより好ましい。
また、前記レーザ光の光エネルギー量としては、特に制限はなく、目的に応じて適宜選択することができるが、露光時間の短縮と解像度の観点から、1〜100mJ/cm2が好ましく、5〜20mJ/cm2がより好ましい。
また、前記レーザ光の光エネルギー量としては、特に制限はなく、目的に応じて適宜選択することができるが、露光時間の短縮と解像度の観点から、1〜100mJ/cm2が好ましく、5〜20mJ/cm2がより好ましい。
前記光源としては、光を一端から入射し、入射した前記光を他端から出射する光ファイバを複数本束ねてなるバンドル状のファイバ光源が好ましく、前記光ファイバが、光源からの光を2以上合成した合波レーザ光を出射可能であることがより好ましい。
前記合波レーザ光の照射方法としては、特に制限はなく、目的に応じて適宜選択することができるが、複数のレーザ光源と、マルチモード光ファイバと、該複数のレーザ光源から照射されるレーザ光を集光して前記マルチモード光ファイバに結合させるレンズ系とにより合波レーザ光を合成し、照射する方法が挙げられる。
前記合波レーザ光の照射方法としては、特に制限はなく、目的に応じて適宜選択することができるが、複数のレーザ光源と、マルチモード光ファイバと、該複数のレーザ光源から照射されるレーザ光を集光して前記マルチモード光ファイバに結合させるレンズ系とにより合波レーザ光を合成し、照射する方法が挙げられる。
前記露光工程において、前記光照射手段からの光を変調する光変調手段としては、前記光照射手段からの光を受光し出射するn個(ただし、nは2以上の自然数)の2次元状に配列された描素部を有し、前記描素部をパターン情報に基づいて制御可能であるものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、空間変調素子、及び光多面鏡(ポリゴンミラー)等が挙げられる。
前記空間光変調素子としては、特に制限はなく、目的に応じて適宜選択することができるが、デジタル・マイクロミラー・デバイス(DMD)、MEMS(Micro Electro Mechanical Systems)タイプの空間光変調素子(SLM;Special Light Modulator)、ミラー階調型空間変調素子、電気光学効果により透過光を変調する光学素子(PLZT素子)、液晶光シャッタ(FLC)などが好適に挙げられる。
なお、MEMSとは、IC製造プロセスを基板としたマイクロマシニング技術によるマイクロサイズのセンサ、アクチュエータ、及び制御回路を集積化した微細システムの総称であり、MEMSタイプの空間光変調素子とは、静電気力を利用した電気機械動作により駆動される空間光変調素子を意味している。更に、Grating Light Valve(GLV)を複数並べて二次元状に構成したものを用いることもできる。これらの反射型空間光変調素子(GLV)や、透過型空間光変調素子(LCD)を使用する構成においては、前記光源として、レーザのほかにランプ等を使用することができる。
これらの空間光変調素子の中でもDMD、及びミラー階調型空間変調素子がより好適に挙げられ、DMDが特に好適に挙げられる。
なお、MEMSとは、IC製造プロセスを基板としたマイクロマシニング技術によるマイクロサイズのセンサ、アクチュエータ、及び制御回路を集積化した微細システムの総称であり、MEMSタイプの空間光変調素子とは、静電気力を利用した電気機械動作により駆動される空間光変調素子を意味している。更に、Grating Light Valve(GLV)を複数並べて二次元状に構成したものを用いることもできる。これらの反射型空間光変調素子(GLV)や、透過型空間光変調素子(LCD)を使用する構成においては、前記光源として、レーザのほかにランプ等を使用することができる。
これらの空間光変調素子の中でもDMD、及びミラー階調型空間変調素子がより好適に挙げられ、DMDが特に好適に挙げられる。
前記光多面鏡(ポリゴンミラー)としては、複数面(例えば6面)の平面反射面を有する回転部材であって、回転によって光を走査させることが可能な限り、特に制限はなく、目的に応じて適宜選択することができる。なお、前記光多面体(ポリゴンミラー)を用いる露光においては、前記感光層の被露光面を、前記光多面体(ポリゴンミラー)の走査方向に対して直角に移動させることにより、前記被露光面前面を露光することができる。
前記露光工程において、感光層を、露光する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、デジタル露光、アナログ露光などが挙げられるが、デジタル露光が好適である。
前記デジタル露光の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、所定のパターン情報に基づいて生成される制御信号に応じて変調されたレーザ光を用いて行われることが好適である。
更に、前記露光工程において、感光層を、露光する方法としては、特に制限はなく、目的に応じて適宜選択することができるが、短時間、かつ高速露光を可能とする観点から、露光光と感光層とを相対的に移動させながら行うことが好ましく、前記デジタル・マイクロミラー・デバイス(DMD)と併用されることが特に好ましい。
前記デジタル露光の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、所定のパターン情報に基づいて生成される制御信号に応じて変調されたレーザ光を用いて行われることが好適である。
更に、前記露光工程において、感光層を、露光する方法としては、特に制限はなく、目的に応じて適宜選択することができるが、短時間、かつ高速露光を可能とする観点から、露光光と感光層とを相対的に移動させながら行うことが好ましく、前記デジタル・マイクロミラー・デバイス(DMD)と併用されることが特に好ましい。
前記露光工程において、不活性ガス雰囲気下行うことが好ましい。前記感光層形成工程により形成された感光層を、露光する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、不活性ガスを前記感光層表面に直接吹きかける方法、枠状フレームの一辺が開放され、不活性ガスの導入孔が少なくとも残りの1辺に形成された試料台中の露光空間に、露光対象である感光層が形成された試料を載置し、前記不活性ガスの導入孔から不活性ガスを導入して、感光層表面を不活性ガスで覆いつつ、露光を行う方法などが挙げられる。
また、前記露光空間を密封空間として、減圧下で該密封空間内に不活性ガスを導入することも可能である。
前記不活性ガスとしては、酸素の影響により前記感光層の重合反応が阻害されることを防止できれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、窒素、ヘリウム、アルゴンなどが挙げられる。
また、前記露光空間を密封空間として、減圧下で該密封空間内に不活性ガスを導入することも可能である。
前記不活性ガスとしては、酸素の影響により前記感光層の重合反応が阻害されることを防止できれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、窒素、ヘリウム、アルゴンなどが挙げられる。
以下、本発明のカラーフィルタの製造方法の態様、及び該カラーフィルタの製造方法に好適に用いられる露光装置を、図面を参照しながら説明する。
前記露光装置としては、いわゆるフラットベッドタイプの露光装置の他、感光材料がドラムの外周面に巻きつけられるアウタードラムタイプの露光装置、及び感光材料がシリンダの内周面に装着されるインナードラムタイプの露光装置であってもよい。以下、一例として、フラットベットタイプの露光装置について説明する。
前記露光装置としては、いわゆるフラットベッドタイプの露光装置の他、感光材料がドラムの外周面に巻きつけられるアウタードラムタイプの露光装置、及び感光材料がシリンダの内周面に装着されるインナードラムタイプの露光装置であってもよい。以下、一例として、フラットベットタイプの露光装置について説明する。
<露光装置>
前記露光装置は、図1に示すように、前記感光層を前記基体上に積層してなる積層体12(以下、「感光層12」、又は「感光材料12」と表す)を表面に吸着して保持する平板状の移動ステージ14を備えている。4本の脚部16に支持された厚い板状の設置台18の上面には、ステージ移動方向に沿って延びた2本のガイド20が設置されている。ステージ14は、その長手方向がステージ移動方向を向くように配置されると共に、ガイド20によって往復移動可能に支持されている。なお、この露光装置10には、ステージ14をガイド20に沿って駆動するステージ駆動装置(図示せず)が設けられている。
前記露光装置は、図1に示すように、前記感光層を前記基体上に積層してなる積層体12(以下、「感光層12」、又は「感光材料12」と表す)を表面に吸着して保持する平板状の移動ステージ14を備えている。4本の脚部16に支持された厚い板状の設置台18の上面には、ステージ移動方向に沿って延びた2本のガイド20が設置されている。ステージ14は、その長手方向がステージ移動方向を向くように配置されると共に、ガイド20によって往復移動可能に支持されている。なお、この露光装置10には、ステージ14をガイド20に沿って駆動するステージ駆動装置(図示せず)が設けられている。
設置台18の中央部には、ステージ14の移動経路を跨ぐようにコの字状のゲート22が設けられている。コの字状のゲート22の端部の各々は、設置台18の両側面に固定されている。このゲート22を挟んで一方の側にはスキャナ24が設けられ、他方の側には感光層12の先端及び後端を検知する複数(例えば2個)のセンサ26(又はカメラ26)が設けられている。スキャナ24及びセンサ26(又はカメラ26)は、ゲート22に各々取り付けられて、ステージ14の移動経路の上方に固定配置されている。なお、スキャナ24及びセンサ26(又はカメラ26)は、これらを制御する図示しないコントローラに接続されている。
スキャナ24には、図2及び図3Bに示すように、m行n列(例えば、2行5列)の略マトリックス状に配列された10個の露光ヘッドが備えられている。
図2に示すように、各露光ヘッド30が、後述する内部のデジタル・マイクロミラー・デバイス(DMD)36の各描素部(マイクロミラー)列方向が、走査方向と所定の設定傾斜角度θをなすように、スキャナ24に取り付けられている場合には、各露光ヘッド30による露光エリア32は、走査方向に対して傾斜した矩形状のエリアとなる。
ステージ14の移動に伴い、感光層12には露光ヘッド30ごとに帯状の露光済み領域34が形成される。
なお、以下において、m行目のn列目に配列された個々の露光ヘッドを示す場合は、露光ヘッド30mnと表記し、m行目のn列目に配列された個々の露光ヘッドによる露光エリアを示す場合は、露光エリア32mnと表記する。
図2に示すように、各露光ヘッド30が、後述する内部のデジタル・マイクロミラー・デバイス(DMD)36の各描素部(マイクロミラー)列方向が、走査方向と所定の設定傾斜角度θをなすように、スキャナ24に取り付けられている場合には、各露光ヘッド30による露光エリア32は、走査方向に対して傾斜した矩形状のエリアとなる。
ステージ14の移動に伴い、感光層12には露光ヘッド30ごとに帯状の露光済み領域34が形成される。
なお、以下において、m行目のn列目に配列された個々の露光ヘッドを示す場合は、露光ヘッド30mnと表記し、m行目のn列目に配列された個々の露光ヘッドによる露光エリアを示す場合は、露光エリア32mnと表記する。
また、図3A及び図3Bに示すように、帯状の露光済み領域34のそれぞれが、隣接する露光済み領域34と部分的に重なるように、ライン状に配列された各行の露光ヘッド30の各々は、その配列方向に所定間隔(露光エリアの長辺の自然数倍、本実施形態では2倍)ずらして配置されている。このため、1行目の露光エリア3211と露光エリア3212との間の露光できない部分は、2行目の露光エリア3221により露光することができる。
スキャナ24による感光層12の副走査が終了し、センサ26(又はカメラ26)で感光層12の後端が検出されると、ステージ14は、ステージ駆動装置304により、ガイド20に沿ってゲート22の最上流側にある原点に復帰し、再度、ガイド20に沿ってゲート22の上流側から下流側に一定速度で移動される。
ここで、説明のため、ステージ14の表面と平行平面内に、図1に示すように、互いに直交するX軸及びY軸を規定する。
ステージ14の走査方向に沿って上流側(以下、単に「上流側」ということがある。)の端縁部には、X軸の方向に向かって開く「く」の字型に形成されたスリット28が、等間隔で10本形成されていてもよい。
各スリット28は、上流側に位置するスリット28aと下流側に位置するスリット28bとからなっている。スリット28aとスリット28bとは互いに直交するとともに、X軸に対してスリット28aは−45度、スリット28bは+45度の角度を有している。
各スリット28は、上流側に位置するスリット28aと下流側に位置するスリット28bとからなっている。スリット28aとスリット28bとは互いに直交するとともに、X軸に対してスリット28aは−45度、スリット28bは+45度の角度を有している。
スリット28の位置は、前記露光ヘッド30の中心と略一致させられている。また、各スリット28の大きさは、対応する露光ヘッド30による露光エリア32の幅を十分覆う大きさとされている。また、スリット28の位置としては、隣接する露光済み領域34間の重複部分の中心位置と略一致させてもよい。この場合、各スリット28の大きさは、露光済み領域34間の重複部分の幅を十分覆う大きさとする。
ステージ14内部の各スリット28の下方の位置には、N重露光を行う場合、理想のN重露光を実現するために描素部を選択する後述の使用描素部指定処理において、描素単位としての光点を検出する光点位置検出手段としての単一セル型の光検出器(図示せず)が組み込まれていてもよい。また、前記光検出器は、後述する使用描素部指定処理において、前記描素部の選択を行う描素部選択手段としての演算装置(図示せず)に接続されている。
露光時における前記露光装置の動作形態はとしては、露光ヘッドを常に移動させながら連続的に露光を行う形態であってもよいし、露光ヘッドを段階的に移動させながら、各移動先の位置で露光ヘッドを静止させて露光動作を行う形態であってもよい。
また、前記露光の方法として、露光光と前記感光層とを相対的に移動しながら行うことが好ましく、この場合、前記高速変調と併用することが好ましい。これにより、短時間で高速の露光を行うことができる。
<<露光ヘッド>>
露光ヘッド30の概略構成の一例を、図4、図5A、及び図5Bに示す。図4、図5A、及び図5Bでは、前記露光ヘッド30中を伝播する光の光路に沿って、各構成要素を示している。
本例では、入射された光を画像データに応じて描素部ごとに変調する光変調手段(描素部ごとに変調する空間光変調素子)として、DMD36(米国テキサス・インスツルメンツ社製)を備え、光照射手段として、ファイバアレイ光源38を備えている。
露光ヘッド30の概略構成の一例を、図4、図5A、及び図5Bに示す。図4、図5A、及び図5Bでは、前記露光ヘッド30中を伝播する光の光路に沿って、各構成要素を示している。
本例では、入射された光を画像データに応じて描素部ごとに変調する光変調手段(描素部ごとに変調する空間光変調素子)として、DMD36(米国テキサス・インスツルメンツ社製)を備え、光照射手段として、ファイバアレイ光源38を備えている。
図4に示すように、DMD36の光入射側には、光ファイバの出射端部(発光点)が露光エリア32の長辺方向と一致する方向に沿って一列に配列されたレーザ出射部を備えたファイバアレイ光源38、ファイバアレイ光源38から出射されたレーザ光を補正してDMD上に集光させる集光レンズ系40、この集光レンズ系40を透過したレーザ光をDMD36に向けて反射するミラー42がこの順に配置されている。なお図4では、集光レンズ系40を概略的に示してある。
また、DMD36の光反射側には、DMD36で反射されたレーザ光を感光層12の露光面上に結像する結像レンズ系50が配置されている。なお図4では、結像レンズ系50を概略的に示してある。
また、DMD36の光反射側には、DMD36で反射されたレーザ光を感光層12の露光面上に結像する結像レンズ系50が配置されている。なお図4では、結像レンズ系50を概略的に示してある。
前記集光レンズ系40は、例えば、図5A及び図5Bに示すように、ファイバアレイ光源38から出射されたレーザ光を平行光化する1対の組合せレンズ44、平行光化されたレーザ光の光量分布が均一になるように補正する1対の組合せレンズ46、及び光量分布が補正されたレーザ光をDMD36上に集光する集光レンズ48で構成され、更に後述する他の部材等からなる。
前記結像レンズ系50は、例えば、DMD36と感光層12の露光面とが共役な関係となるように配置された2枚のレンズ52及び54で構成され、更に、マイクロレンズアレイ、及びアパーチャアレイ等の後述する他のレンズ群からなる。
前記結像レンズ系50は、例えば、DMD36と感光層12の露光面とが共役な関係となるように配置された2枚のレンズ52及び54で構成され、更に、マイクロレンズアレイ、及びアパーチャアレイ等の後述する他のレンズ群からなる。
−光変調手段−
前記光変調手段としてのDMD36は、図6に示すように、SRAMセル(メモリセル)56上に、各々描素(ピクセル)を構成する描素部として、多数のマイクロミラー58が格子状に配列されてなるミラーデバイスである。各マイクロミラー58は支柱に支えられており、その表面にはアルミニウム等の反射率の高い材料が蒸着されている。なお、本実施形態では、各マイクロミラー58の反射率は90%以上であり、その配列ピッチは縦方向、横方向ともに13.7μmである。SRAMセル56は、ヒンジ及びヨークを含む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートのCMOSのものであり、全体はモノリシック(一体型)に構成されている。
前記光変調手段としてのDMD36は、図6に示すように、SRAMセル(メモリセル)56上に、各々描素(ピクセル)を構成する描素部として、多数のマイクロミラー58が格子状に配列されてなるミラーデバイスである。各マイクロミラー58は支柱に支えられており、その表面にはアルミニウム等の反射率の高い材料が蒸着されている。なお、本実施形態では、各マイクロミラー58の反射率は90%以上であり、その配列ピッチは縦方向、横方向ともに13.7μmである。SRAMセル56は、ヒンジ及びヨークを含む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートのCMOSのものであり、全体はモノリシック(一体型)に構成されている。
DMD36のSRAMセル(メモリセル)56に、所望の2次元パターンを構成する各点の濃度を2値で表した画像信号が書き込まれると、支柱に支えられた各マイクロミラー58が、対角線を中心としてDMD36が配置された基板側に対して±α度(例えば±10度)のいずれかに傾く。図7Aは、マイクロミラー58がオン状態である+α度に傾いた状態を示し、図7Bは、マイクロミラー58がオフ状態である−α度に傾いた状態を示す。このように、画像信号に応じて、DMD36の各ピクセルにおけるマイクロミラー58の傾きを制御することによって、DMD36に入射したレーザ光Bはそれぞれのマイクロミラー58の傾き方向へ反射される。
それぞれのマイクロミラー58のオンオフ制御は、DMD36に接続された図8のコントローラ302によって行われる。また、オフ状態のマイクロミラー58で反射したレーザ光Bが進行する方向には、光吸収体(図示せず)が配置されている。
それぞれのマイクロミラー58のオンオフ制御は、DMD36に接続された図8のコントローラ302によって行われる。また、オフ状態のマイクロミラー58で反射したレーザ光Bが進行する方向には、光吸収体(図示せず)が配置されている。
また、DMD36は、その短辺が副走査方向と所定角度θ(例えば、0.1°〜5°)を成すように僅かに傾斜させて配置するのが好ましい。図9AはDMD36を傾斜させない場合の各マイクロミラーによる反射光像(露光ビーム)53の走査軌跡を示し、図9BはDMD36を傾斜させた場合の露光ビーム53の走査軌跡を示している。
DMD36には、長手方向にマイクロミラーが多数個(例えば、1024個)配列されたマイクロミラー列が、短手方向に多数組(例えば、756組)配列されているが、図9Bに示すように、DMD36を傾斜させることにより、各マイクロミラーによる露光ビーム53の走査軌跡(走査線)のピッチP2が、DMD36を傾斜させない場合の走査線のピッチP1より狭くなり、解像度を大幅に向上させることができる。一方、DMD36の傾斜角は微小であるので、DMD36を傾斜させた場合の走査幅W2と、DMD36を傾斜させない場合の走査幅W1とは略同一である。
異なるマイクロミラー列により同じ走査線上が重ねて露光されることにより、アライメントマークに対する露光位置の微少量を制御することができ、高精細な露光を実現することができる、また、主走査方向に配列された複数の露光ヘッドの間のつなぎ目(ヘッド間つなぎ領域)を微少量の制御により段差なくつなぐことができる。
DMDを傾斜させるかわりに、各マイクロミラー列を副走査方向と直交する方向に所定間隔ずらし、図10に示すように千鳥情に配置しても、同様の効果を得ることができる。
DMDを傾斜させるかわりに、各マイクロミラー列を副走査方向と直交する方向に所定間隔ずらし、図10に示すように千鳥情に配置しても、同様の効果を得ることができる。
なお、図10に示すように、スキャナ24によるX方向への1回の走査で感光層12の全面を露光してもよく、図11A及び図11Bに示すように、スキャナ24により感光層12をX方向へ走査した後、スキャナ24をY方向に1ステップ移動し、X方向へ走査を行うというように、走査と移動を繰り返して、複数回の走査で感光層12の全面を露光するようにしてもよい。
−光照射手段−
前記光照射手段の好適な例として、合波レーザを照射可能な手段、例えば、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射したレーザビームを集光して前記マルチモード光ファイバに結合させるレンズ系とを有する手段(ファイバアレイ光源)について説明する。
前記光照射手段の好適な例として、合波レーザを照射可能な手段、例えば、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射したレーザビームを集光して前記マルチモード光ファイバに結合させるレンズ系とを有する手段(ファイバアレイ光源)について説明する。
ファイバアレイ光源38は、図12に示すように、複数(例えば14個)のレーザモジュール60を備えており、各レーザモジュール60には、マルチモード光ファイバ62の一端が結合されている。マルチモード光ファイバ62の他端には、マルチモード光ファイバ62より小さいクラッド径を有する光ファイバ64が結合されている。図13に詳しく示すように、光ファイバ64のマルチモード光ファイバ62と反対側の端部は走査方向と直交する方向に沿って7個並べられ、それが2列に配列されてレーザ出射部66が構成されている。
光ファイバ64の端部で構成されるレーザ出射部66は、図13に示すように、表面が平坦な2枚の支持板68に挟み込まれて固定されている。また、光ファイバ64の光出射端面には、その保護のために、ガラス等の透明な保護板が配置されるのが望ましい。光ファイバ64の光出射端面は、光密度が高いため集塵しやすく劣化しやすいが、上述のような保護板を配置することにより、端面への塵埃の付着を防止し、また劣化を遅らせることができる。
このような光ファイバは、例えば、図14に示すように、クラッド径が大きいマルチモード光ファイバ62のレーザ光出射側の先端部分に、長さ1〜30cmのクラッド径が小さい光ファイバ64を同軸的に結合することにより得ることができる。2本の光ファイバは、光ファイバ64の入射端面が、マルチモード光ファイバ62の出射端面に、両光ファイバの中心軸が一致するように融着されて結合されている。上述した通り、光ファイバ64のコア64aの径は、マルチモード光ファイバ62のコア62aの径と同じ大きさである。
また、長さが短くクラッド径が大きい光ファイバにクラッド径が小さい光ファイバを融着させた短尺光ファイバを、フェルールや光コネクタ等を介してマルチモード光ファイバ62の出射端に結合してもよい。コネクタ等を用いて着脱可能に結合することで、クラッド径が小さい光ファイバが破損した場合等に先端部分の交換が容易になり、露光ヘッドのメンテナンスに要するコストを低減できる。なお、以下では、光ファイバ64を、マルチモード光ファイバ62の出射端部と称する場合がある。
マルチモード光ファイバ62及び光ファイバ64としては、ステップインデックス型光ファイバ、グレーテッドインデックス型光ファイバ、及び複合型光ファイバの何れでもよい。例えば、三菱電線工業株式会社製のステップインデックス型光ファイバを用いることができる。本実施の形態では、マルチモード光ファイバ62及び光ファイバ64は、ステップインデックス型光ファイバであり、マルチモード光ファイバ62は、クラッド径=125μm、コア径=50μm、NA=0.2、入射端面コートの透過率=99.5%以上であり、光ファイバ64は、クラッド径=60μm、コア径=50μm、NA=0.2である。
一般に、赤外領域のレーザ光では、光ファイバのクラッド径を小さくすると伝搬損失が増加する。このため、レーザ光の波長帯域に応じて好適なクラッド径が決定されている。しかしながら、波長が短いほど伝搬損失は少なくなり、GaN系半導体レーザから出射された波長405nmのレーザ光では、クラッドの厚み{(クラッド径−コア径)/2}を800nmの波長帯域の赤外光を伝搬させる場合の1/2程度、通信用の1.5μmの波長帯域の赤外光を伝搬させる場合の約1/4にしても、伝搬損失は殆ど増加しない。従って、クラッド径を60μmと小さくすることができる。
但し、光ファイバのクラッド径は60μmには限定されない。従来のファイバアレイ光源に使用されている光ファイバのクラッド径は125μmであるが、クラッド径が小さくなるほど焦点深度がより深くなるので、光ファイバのクラッド径は80μm以下が好ましく、60μm以下がより好ましく、40μm以下が更に好ましい。一方、コア径は少なくとも3〜4μm必要であることから、光ファイバ64のクラッド径は10μm以上が好ましい。
レーザモジュール60は、図15に示す合波レーザ光源(ファイバアレイ光源)によって構成されている。この合波レーザ光源は、ヒートブロック110上に配列固定された複数(例えば、7個)のチップ状の横マルチモード又はシングルモードのGaN系半導体レーザLD1、LD2、LD3、LD4、LD5、LD6、及びLD7と、GaN系半導体レーザLD1〜LD7の各々に対応して設けられたコリメータレンズL1、L2、L3、L4、L5、L6及びL7と、1つの集光レンズ200と、1本のマルチモード光ファイバ62と、から構成されている。なお、半導体レーザの個数は7個には限定されない。例えば、クラッド径=60μm、コア径=50μm、NA=0.2のマルチモード光ファイバには、20個もの半導体レーザ光を入射することが可能であり、露光ヘッドの必要光量を実現して、且つ光ファイバ本数をより減らすことができる。
GaN系半導体レーザLD1〜LD7は、発振波長が総て共通(例えば、405nm)であり、最大出力も総て共通(例えば、マルチモードレーザでは100mW、シングルモードレーザでは30mW)である。なお、GaN系半導体レーザLD1〜LD7としては、350nm〜450nmの波長範囲で、上記の405nm以外の発振波長を備えるレーザを用いてもよい。
前記合波レーザ光源は、図16及び図17に示すように、他の光学要素と共に、上方が開口した箱状のパッケージ400内に収納されている。パッケージ400は、その開口を閉じるように作製されたパッケージ蓋410を備えており、脱気処理後に封止ガスを導入し、パッケージ400の開口をパッケージ蓋410で閉じることにより、パッケージ400とパッケージ蓋410とにより形成される閉空間(封止空間)内に上記合波レーザ光源が気密封止されている。
パッケージ400の底面にはベース板420が固定されており、このベース板420の上面には、前記ヒートブロック110と、集光レンズ200を保持する集光レンズホルダー450と、マルチモード光ファイバ62の入射端部を保持するファイバホルダー460とが取り付けられている。マルチモード光ファイバ62の出射端部は、パッケージ400の壁面に形成された開口からパッケージ外に引き出されている。
また、ヒートブロック110の側面にはコリメータレンズホルダー440が取り付けられており、コリメータレンズL1〜L7が保持されている。パッケージ400の横壁面には開口が形成され、この開口を通してGaN系半導体レーザLD1〜LD7に駆動電流を供給する配線470がパッケージ外に引き出されている。
なお、図16及び図17においては、図の煩雑化を避けるために、複数のGaN系半導体レーザのうちGaN系半導体レーザLD7にのみ番号を付し、複数のコリメータレンズのうちコリメータレンズL7にのみ番号を付している。
図18は、前記コリメータレンズL1〜L7の取り付け部分の正面形状を示すものである。コリメータレンズL1〜L7の各々は、非球面を備えた円形レンズの光軸を含む領域を平行平面で細長く切り取った形状に形成されている。この細長形状のコリメータレンズは、例えば、樹脂又は光学ガラスをモールド成形することによって形成することができる。コリメータレンズL1〜L7は、長さ方向がGaN系半導体レーザLD1〜LD7の発光点の配列方向(図18の左右方向)と直交するように、上記発光点の配列方向に密接配置されている。
一方、GaN系半導体レーザLD1〜LD7としては、発光幅が2μmの活性層を備え、活性層と平行方向、直角な方向の拡がり角が各々例えば10°、30°の状態で各々レーザビームB1〜B7を発するレーザが用いられている。これらGaN系半導体レーザLD1〜LD7は、活性層と平行方向に発光点が1列に並ぶように配設されている。
したがって、各発光点から発せられたレーザビームB1〜B7は、上述のように細長形状の各コリメータレンズL1〜L7に対して、拡がり角度が大きい方向が長さ方向と一致し、拡がり角度が小さい方向が幅方向(長さ方向と直交する方向)と一致する状態で入射することになる。つまり、各コリメータレンズL1〜L7の幅が1.1mm、長さが4.6mmであり、それらに入射するレーザビームB1〜B7の水平方向、垂直方向のビーム径は各々0.9mm、2.6mmである。また、コリメータレンズL1〜L7の各々は、焦点距離f1=3mm、NA=0.6、レンズ配置ピッチ=1.25mmである。
集光レンズ200は、非球面を備えた円形レンズの光軸を含む領域を平行平面で細長く切り取って、コリメータレンズL1〜L7の配列方向、つまり水平方向に長く、それと直角な方向に短い形状に形成されている。この集光レンズ200は、焦点距離f2=23mm、NA=0.2である。この集光レンズ200も、例えば、樹脂又は光学ガラスをモールド成形することにより形成される。
また、DMDを照明する光照射手段に、合波レーザ光源の光ファイバの出射端部をアレイ状に配列した高輝度のファイバアレイ光源を用いているので、高出力で且つ深い焦点深度を備えた露光装置を実現することができる。更に、各ファイバアレイ光源の出力が大きくなることで、所望の出力を得るために必要なファイバアレイ光源数が少なくなり、露光装置の低コスト化が図られる。
また、光ファイバの出射端のクラッド径を入射端のクラッド径よりも小さくしているので、発光部径がより小さくなり、ファイバアレイ光源の高輝度化が図られる。これにより、より深い焦点深度を備えた露光装置を実現することができる。例えば、ビーム径1μm以下、解像度0.1μm以下の超高解像度露光の場合にも、深い焦点深度を得ることができ、高速且つ高精細な露光が可能となる。したがって、高解像度が必要とされる薄膜トランジスタ(TFT)の露光工程に好適である。
また、前記光照射手段としては、前記合波レーザ光源を複数備えたファイバアレイ光源に限定されず、例えば、1個の発光点を有する単一の半導体レーザから入射されたレーザ光を出射する1本の光ファイバを備えたファイバ光源をアレイ化したファイバアレイ光源を用いることができる。
また、複数の発光点を備えた光照射手段としては、例えば、図19に示すように、ヒートブロック110上に、複数(例えば、7個)のチップ状の半導体レーザLD1〜LD7を配列したレーザアレイを用いることができる。また、図20Aに示す、複数(例えば、5個)の発光点111aが所定方向に配列されたチップ状のマルチキャビティレーザ111が知られている。マルチキャビティレーザ111は、チップ状の半導体レーザを配列する場合と比べ、発光点を位置精度よく配列できるので、各発光点から出射されるレーザビームを合波し易い。但し、発光点が多くなるとレーザ製造時にマルチキャビティレーザ111に撓みが発生し易くなるため、発光点111aの個数は5個以下とするのが好ましい。
前記光照射手段としては、このマルチキャビティレーザ111や、図20Bに示すように、ヒートブロック110上に、複数のマルチキャビティレーザ111が各チップの発光点111aの配列方向と同じ方向に配列されたマルチキャビティレーザアレイを、レーザ光源として用いることができる。
また、合波レーザ光源は、複数のチップ状の半導体レーザから出射されたレーザ光を合波するものには限定されない。例えば、図21に示すように、複数(例えば、3個)の発光点111aを有するチップ状のマルチキャビティレーザ111を備えた合波レーザ光源を用いることができる。この合波レーザ光源は、マルチキャビティレーザ111と、1本のマルチモード光ファイバ62と、集光レンズ200と、を備えて構成されている。マルチキャビティレーザ111は、例えば、発振波長が405nmのGaN系レーザダイオードで構成することができる。
前記構成では、マルチキャビティレーザ111の複数の発光点111aの各々から出射したレーザビームBの各々は、集光レンズ200によって集光され、マルチモード光ファイバ62のコア62aに入射する。コア62aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。
マルチキャビティレーザ111の複数の発光点111aを、上記マルチモード光ファイバ62のコア径と略等しい幅内に並設すると共に、集光レンズ200として、マルチモード光ファイバ62のコア径と略等しい焦点距離の凸レンズや、マルチキャビティレーザ111からの出射ビームをその活性層に垂直な面内のみでコリメートするロッドレンズを用いることにより、レーザビームBのマルチモード光ファイバ62への結合効率を上げることができる。
また、図22に示すように、複数(例えば、3個)の発光点を備えたマルチキャビティレーザ111を用い、ヒートブロック110上に複数(例えば、9個)のマルチキャビティレーザ111が互いに等間隔で配列されたレーザアレイ140を備えた合波レーザ光源を用いることができる。複数のマルチキャビティレーザ111は、各チップの発光点111aの配列方向と同じ方向に配列されて固定されている。
この合波レーザ光源は、レーザアレイ140と、各マルチキャビティレーザ111に対応させて配置した複数のレンズアレイ114と、レーザアレイ140と複数のレンズアレイ114との間に配置された1本のロッドレンズ113と、1本のマルチモード光ファイバ62と、集光レンズ200と、を備えて構成されている。レンズアレイ114は、マルチキャビティレーザ110の発光点に対応した複数のマイクロレンズを備えている。
上記の構成では、複数のマルチキャビティレーザ111の複数の発光点111aの各々から出射したレーザビームBの各々は、ロッドレンズ113により所定方向に集光された後、レンズアレイ114の各マイクロレンズにより平行光化される。平行光化されたレーザビームLは、集光レンズ200によって集光され、マルチモード光フアイバ62のコア62aに入射する。コア62aに入射したレーザ光は、光フアイバ内を伝搬し、1本に合波されて出射する。
更に他の合波レーザ光源の例を示す。この合波レーザ光源は、図23A及び図23Bに示すように、略矩形状のヒートブロック180上に光軸方向の断面がL字状のヒートブロック182が搭載され、2つのヒートブロック間に収納空間が形成されている。L字状のヒートブロック182の上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ111が、各チップの発光点111aの配列方向と同じ方向に等間隔で配列されて固定されている。
略矩形状のヒートブロック180には凹部が形成されており、ヒートブロック180の空間側上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ110が、その発光点がヒートブロック182の上面に配置されたレーザチップの発光点と同じ鉛直面上に位置するように配置されている。
マルチキャビティレーザ111のレーザ光出射側には、各チップの発光点111aに対応してコリメートレンズが配列されたコリメートレンズアレイ184が配置されている。コリメートレンズアレイ184は、各コリメートレンズの長さ方向とレーザビームの拡がり角が大きい方向(速軸方向)とが一致し、各コリメートレンズの幅方向が拡がり角が小さい方向(遅軸方向)と一致するように配置されている。このように、コリメートレンズをアレイ化して一体化することで、レーザ光の空間利用効率が向上し合波レーザ光源の高出力化が図られると共に、部品点数が減少し低コスト化することができる。
また、コリメートレンズアレイ184のレーザ光出射側には、1本のマルチモード光ファイバ62と、このマルチモード光ファイバ62の入射端にレーザビームを集光して結合する集光レンズ200と、が配置されている。
前記構成では、レーザブロック180、182上に配置された複数のマルチキヤビティレーザ111の複数の発光点111aの各々から出射したレーザビームBの各々は、コリメートレンズアレイ184により平行光化され、集光レンズ200によって集光されて、マルチモード光フアイバ62のコア62aに入射する。コア62aに入射したレーザ光は、光フアイバ内を伝搬し、1本に合波されて出射する。
前記合波レーザ光源は、上記の通り、マルチキャビティレーザの多段配置とコリメートレンズのアレイ化とにより、特に高出力化を図ることができる。この合波レーザ光源を用いることにより、より高輝度なファイバアレイ光源やバンドルファイバ光源を構成することができるので、本発明の露光装置のレーザ光源を構成するファイバ光源として特に好適である。
なお、前記各合波レーザ光源をケーシング内に収納し、マルチモード光ファイバ62の出射端部をそのケーシングから引き出したレーザモジュールを構成することができる。
また、合波レーザ光源のマルチモード光ファイバの出射端に、コア径がマルチモード光ファイバと同一で且つクラッド径がマルチモード光ファイバより小さい他の光ファイバを結合してファイバアレイ光源の高輝度化を図る例について説明したが、例えば、クラッド径が125μm、80μm、60μm等のマルチモード光ファイバを、出射端に他の光ファイバを結合せずに使用してもよい。
−−輝度−−
各レーザモジュールにおいて、レーザビームB1〜B7のマルチモード光ファイバ30への結合効率が0.85で、GaN系半導体レーザLD1〜LD7の各出力が30mWの場合には、アレイ状に配列された光ファイバ64の各々について、出力180mW(=30mW×0.85×7)の合波レーザビームBを得ることができる。従って、6本の光ファイバ64がアレイ状に配列されたレーザ出射部での出力は約1W(=180mW×6)である。
各レーザモジュールにおいて、レーザビームB1〜B7のマルチモード光ファイバ30への結合効率が0.85で、GaN系半導体レーザLD1〜LD7の各出力が30mWの場合には、アレイ状に配列された光ファイバ64の各々について、出力180mW(=30mW×0.85×7)の合波レーザビームBを得ることができる。従って、6本の光ファイバ64がアレイ状に配列されたレーザ出射部での出力は約1W(=180mW×6)である。
ファイバアレイ光源のレーザ出射部には、この通り高輝度の発光点が主走査方向に沿って一列に配列されている。単一の半導体レーザからのレーザ光を1本の光ファイバに結合させる従来のファイバ光源は低出力であるため、多数列配列しなければ所望の出力を得ることができなかったが、前記合波レーザ光源は高出力であるため、少数列、例えば1列でも所望の出力を得ることができる。
例えば、半導体レーザと光ファイバを1対1で結合させた従来のファイバ光源では、通常、半導体レーザとしては出力30mW(ミリワット)程度のレーザが使用され、光ファイバとしてはコア径50μm、クラッド径125μm、NA(開口数)0.2のマルチモード光ファイバが使用されているので、約1W(ワット)の出力を得ようとすれば、マルチモード光ファイバを48本(8×6)束ねなければならず、発光領域の面積は0.62mm2(0.675mm×0.925mm)であるから、レーザ出射部での輝度は1.6×106(W/m2)、光ファイバ1本当りの輝度は3.2×106(W/m2)である。
これに対し、前記光照射手段が合波レーザを照射可能な手段である場合には、マルチモード光ファイバ6本で約1Wの出力を得ることができ、レーザ出射部での発光領域の面積は0.0081mm2(0.325mm×0.025mm)であるから、レーザ出射部68での輝度は123×106(W/m2)となり、従来に比べ約80倍の高輝度化を図ることができる。また、光ファイバ1本当りの輝度は90×106(W/m2)であり、従来に比べ約28倍の高輝度化を図ることができる。
−−焦点深度−−
ここで、図24A及び図24Bを参照して、従来の露光ヘッドと本実施の形態の露光ヘッドとの焦点深度の違いについて説明する。従来の露光ヘッドのバンドル状ファイバ光源の発光領域の副走査方向の径は0.675mmであり、露光ヘッドのファイバアレイ光源の発光領域の副走査方向の径は0.025mmである。図24Aに示すように、従来の露光ヘッドでは、光照射手段(バンドル状ファイバ光源)38aの発光領域が大きいので、DMD36へ入射する光束の角度が大きくなり、結果として走査面(感光層12)へ入射する光束の角度が大きくなる。このため、集光方向(ピント方向のずれ)に対してビーム径が太りやすい。
ここで、図24A及び図24Bを参照して、従来の露光ヘッドと本実施の形態の露光ヘッドとの焦点深度の違いについて説明する。従来の露光ヘッドのバンドル状ファイバ光源の発光領域の副走査方向の径は0.675mmであり、露光ヘッドのファイバアレイ光源の発光領域の副走査方向の径は0.025mmである。図24Aに示すように、従来の露光ヘッドでは、光照射手段(バンドル状ファイバ光源)38aの発光領域が大きいので、DMD36へ入射する光束の角度が大きくなり、結果として走査面(感光層12)へ入射する光束の角度が大きくなる。このため、集光方向(ピント方向のずれ)に対してビーム径が太りやすい。
一方、図24Bに示すように、本発明の露光装置における露光ヘッドでは、ファイバアレイ光源38bの発光領域の副走査方向の径が小さいので、集光レンズ系40を通過してDMD36へ入射する光束の角度が小さくなり、結果として走査面(感光層12)へ入射する光束の角度が小さくなる。即ち、焦点深度が深くなる。この例では、発光領域の副走査方向の径は従来の約30倍になっており、略回折限界に相当する焦点深度を得ることができる。従って、微小スポットの露光に好適である。この焦点深度への効果は、露光ヘッドの必要光量が大きいほど顕著であり、有効である。この例では、露光面に投影された1描素サイズは10μm×10μmである。なお、DMDは反射型の空間光変調素子であるが、図24A及び図24Bは、光学的な関係を説明するために展開図とした。
〔光量分布の補正方法〕
前記光変調手段を備えるデジタル露光装置では、各描画単位で微細なパターンを高精度に形成するために、露光ヘッド内の各描画単位の光量が均一であることが重要である。ただし実際には、露光ヘッドから照射される光ビームは、レンズ系の要因で光軸の中心部に比べて周辺部の光強度が低下してしまうという問題がある。
そこで、前記光照射手段から前記光変調手段に照射される光の光量分布を補正し、被露光面上での露光光の光量分布を均一に補正する方法を以下に説明する。
前記光変調手段を備えるデジタル露光装置では、各描画単位で微細なパターンを高精度に形成するために、露光ヘッド内の各描画単位の光量が均一であることが重要である。ただし実際には、露光ヘッドから照射される光ビームは、レンズ系の要因で光軸の中心部に比べて周辺部の光強度が低下してしまうという問題がある。
そこで、前記光照射手段から前記光変調手段に照射される光の光量分布を補正し、被露光面上での露光光の光量分布を均一に補正する方法を以下に説明する。
前記光量分布補正方法は、集光レンズ系により光照射手段から光変調手段に照射される光の照射領域内における光量に分布を持たせ、前記光変調手段により変調された光の感光層の被露光面における光量分布が均一になるように補正する方法であり、以下に説明する第1の形態、及び第2の形態が好適に挙げられる。
−第1の実施形態−
DMDの光反射側には投影光学系が設けられ、この投影光学系は、DMDの光反射側の露光面にある感光層上に光源像を投影するため、DMD側から感光層へ向って順に、レンズ系、マイクロレンズアレイ、対物レンズ系の各露光用の光学部材が配置されて構成されている。
前記レンズ系及び前記対物レンズ系は、複数枚のレンズ(凸レンズや凹レンズ等)を組み合せた拡大光学系として構成されており、DMDにより反射されるレーザビーム(光線束)の断面積を拡大することで、DMDにより反射されたレーザビームによる感光層上の露光エリアの面積を所定の大きさに拡大している。なお、感光層は、対物レンズ系の後方焦点位置に配置される。
DMDの光反射側には投影光学系が設けられ、この投影光学系は、DMDの光反射側の露光面にある感光層上に光源像を投影するため、DMD側から感光層へ向って順に、レンズ系、マイクロレンズアレイ、対物レンズ系の各露光用の光学部材が配置されて構成されている。
前記レンズ系及び前記対物レンズ系は、複数枚のレンズ(凸レンズや凹レンズ等)を組み合せた拡大光学系として構成されており、DMDにより反射されるレーザビーム(光線束)の断面積を拡大することで、DMDにより反射されたレーザビームによる感光層上の露光エリアの面積を所定の大きさに拡大している。なお、感光層は、対物レンズ系の後方焦点位置に配置される。
通常は、この光ビームの光量(光強度)分布は、レンズ系の要因により光軸の中心部に比べて周辺部が低下してしまうが、本実施形態の露光ヘッドには、ファイバアレイ光源から出射されたレーザ光の光量分布を均一化してDMDに照射するために、DMDの光入射側の光路上に配置した集光レンズ系にロッドインテグレータを設けている。ただし、このロッドインテグレータによっても、本実施形態のように各描画単位をマイクロレンズアレイによって集光する系では、光軸中心部に対する周辺部の光強度低下が顕著となり、より高い精度で画像露光を行う場合に光量分布を要求精度まで補正することが難しい。また、この光量分布の補正精度を高めるために、ロッドインテグレータを長尺化することも考えられるが、その場合、ロッドインテグレータは非常に高価な光学部品であるため、装置コストが上昇し、また、露光ヘッドが大型化してしまう弊害がある。
これに対し、本実施形態の露光ヘッドでは、前述したように、ファイバアレイ光源38から集光レンズ系へ入射されたレーザ光が、主光線の角度に分布を持ち光軸中心に比べて周辺部の光輝度が高められたレーザ光とされて集光レンズ系から出射され、DMDに照射されるため、DMDのレーザ光照射領域における光量分布は、光軸中心に比べて周辺部の光量が高められる。そのため、DMDにより画素毎に変調された光ビームが、光軸中心から周辺部に行くに従って光の透過量を低下させる特性を持つマイクロレンズアレイを透過して感光層の露光面に照射されると、露光面での光ビームの光量分布は均一になるよう補正される。
−第2の実施形態−
第2の実施形態は、上述した第1の実施形態に係る露光装置の露光ヘッドにおいて、集光レンズ系に、非球面レンズを有するテレセントリック光学系を設けることで、第1の実施形態と同様に露光面での光ビームの光量分布を均一化する技術である。
第2の実施形態は、上述した第1の実施形態に係る露光装置の露光ヘッドにおいて、集光レンズ系に、非球面レンズを有するテレセントリック光学系を設けることで、第1の実施形態と同様に露光面での光ビームの光量分布を均一化する技術である。
第2の実施形態に係る露光ヘッドでは、例えば集光レンズ系に、2枚で一組の平凸レンズにより構成されたテレセントリック光学系が設けられており、このテレセントリック光学系は、例えばロッドインテグレータと集光レンズの間に配置されている。
平凸レンズは、凸面側が非球面状に形成された非球面レンズとされている。レーザ光の入射側(ファイバアレイ光源側)に配置された平凸レンズは、入射面の面形状が、曲率半径が光軸(光軸中心)から離れるに従い大きくなる非球面、換言すれば、曲率が光軸Xから離れるに従い小さくなる非球面とされ、出射面が平面状とされている。また、レーザ光の出射側(DMD側)に配置された平凸レンズは、入射面が平面状とされ、出射面の面形状が、曲率半径が光軸Xから離れるに従い小さくなる非球面、換言すれば、曲率が光軸Xから離れるに従い大きくなる非球面とされている。
〔焦点位置精度の補正方法〕
前記結像レンズ系を構成する投影レンズの像面湾曲、非点隔差、歪曲等は、テレセントリック性を低下させ、露光光の焦点位置精度を悪化させるという問題がある。この影響を排除するために多重露光を行うと、露光スピードの低下、画質の低下等が生じるという問題がある。
そこで、結像レンズ系において、被露光面上での露光光の焦点位置精度を補正する方法を以下に説明する。
前記結像レンズ系を構成する投影レンズの像面湾曲、非点隔差、歪曲等は、テレセントリック性を低下させ、露光光の焦点位置精度を悪化させるという問題がある。この影響を排除するために多重露光を行うと、露光スピードの低下、画質の低下等が生じるという問題がある。
そこで、結像レンズ系において、被露光面上での露光光の焦点位置精度を補正する方法を以下に説明する。
前記焦点位置精度の補正方法としては、例えば、光変調手段により変調された光の光路長を変更し、感光層の被露光面に結像する露光光の焦点を調節する焦点調節手段を用いる方法、及び、前記結像レンズ系の中央部を含む略矩形状の領域のみにおいて、光変調手段により変調された光を結像する方法が好適に挙げられる。また、前記感光層(感光材料)の相対移動の方向を、該感光材料のうねり方向に向けて移動させる方法も好適に挙げられる。
〔露光パターン像歪みの補正方法〕
前記空間光変調素子の各描素部の面の歪みは、集光位置における光ビームに歪みをもたらすという問題があり、特に、前記DMDを空間光変調素子として用いた場合には顕著であり、高精細な露光パターンが形成されないという問題がある。
そこで、前記DMDからの光を収束するマイクロレンズアレイにおいて該DMDの出射面の歪みを補正することにより、前記感光層の被露光面上に結像される像の歪みを補正する方法を以下に説明する。
前記空間光変調素子の各描素部の面の歪みは、集光位置における光ビームに歪みをもたらすという問題があり、特に、前記DMDを空間光変調素子として用いた場合には顕著であり、高精細な露光パターンが形成されないという問題がある。
そこで、前記DMDからの光を収束するマイクロレンズアレイにおいて該DMDの出射面の歪みを補正することにより、前記感光層の被露光面上に結像される像の歪みを補正する方法を以下に説明する。
前記露光パターン像歪みの補正方法としては、例えば、前記マイクロレンズアレイの各マイクロレンズを、前記描素部の面の歪みによる収差を補正する特性を有するものとすることが挙げられ、そのようなマイクロレンズとしては、具体的には、非球面を有するマイクロレンズ、屈折率分布を有するマイクロレンズ、及び周辺部からの光を入射させないレンズ開口形状を有するマイクロレンズ等が挙げられる。
また、以上説明した実施形態では、マイクロレンズの光出射側の端面が非球面(トーリック面)とされているが、2つの光通過端面の一方を球面とし、他方をシリンドリカル面としたマイクロレンズからマイクロレンズアレイを構成して、上記実施形態と同様の効果を得ることもできる。
更に、以上説明した実施形態においては、マイクロレンズアレイのマイクロレンズが、マイクロミラーの反射面の歪みによる収差を補正する非球面形状とされているが、このような非球面形状を採用する代わりに、マイクロレンズアレイを構成する各マイクロレンズに、マイクロミラーの反射面の歪みによる収差を補正する屈折率分布を持たせても、同様の効果を得ることができる。
なお、先に述べたマイクロレンズのように、面形状を非球面としたマイクロレンズにおいて、併せて上述のような屈折率分布を与え、面形状と屈折率分布の双方によって、マイクロミラーの反射面の歪みによる収差を補正するようにしてもよい。
次に、前記描素部の周辺部からの光を入射させないレンズ開口形状を有するマイクロレンズからなるマイクロレンズアレイについて説明する。
先に説明した通り、DMDのマイクロミラーの反射面には歪みが存在するが、その歪み変化量はマイクロミラーの中心から周辺部に行くにつれて次第に大きくなる傾向を有している。そしてマイクロミラーの1つの対角線方向(y方向)の周辺部歪み変化量は、別の対角線方向(x方向)の周辺部歪み変化量と比べて大きく、上記の傾向もより顕著となっている。この問題に対処するために、アレイ状に配設されたマイクロレンズが、円形のレンズ開口を有することが好ましい。
そこで、上述のように歪みが大きいマイクロミラーの反射面の周辺部、特に、四隅部で反射したレーザ光はマイクロレンズによって集光されなくなり、集光されたレーザ光の集光位置における形状が歪んでしまうことを防止できる。したがって、歪みの無い、より高精細な画像を感光層に露光可能となる。
先に説明した通り、DMDのマイクロミラーの反射面には歪みが存在するが、その歪み変化量はマイクロミラーの中心から周辺部に行くにつれて次第に大きくなる傾向を有している。そしてマイクロミラーの1つの対角線方向(y方向)の周辺部歪み変化量は、別の対角線方向(x方向)の周辺部歪み変化量と比べて大きく、上記の傾向もより顕著となっている。この問題に対処するために、アレイ状に配設されたマイクロレンズが、円形のレンズ開口を有することが好ましい。
そこで、上述のように歪みが大きいマイクロミラーの反射面の周辺部、特に、四隅部で反射したレーザ光はマイクロレンズによって集光されなくなり、集光されたレーザ光の集光位置における形状が歪んでしまうことを防止できる。したがって、歪みの無い、より高精細な画像を感光層に露光可能となる。
〔多重露光による補正〕
上述のとおり、前記露光ヘッドを構成する各種レンズ系に起因する露光光の歪みの影響は、使用するマイクロミラーを選択し、N重露光による埋め合わせの効果で均すこともできる。更に、前記露光ヘッドの取付け位置や取付け角度のズレに起因する解像度のばらつきや濃度ムラも、使用するマイクロミラーを選択し、N重露光による埋め合わせの効果で均すこともできる。
上述のとおり、前記露光ヘッドを構成する各種レンズ系に起因する露光光の歪みの影響は、使用するマイクロミラーを選択し、N重露光による埋め合わせの効果で均すこともできる。更に、前記露光ヘッドの取付け位置や取付け角度のズレに起因する解像度のばらつきや濃度ムラも、使用するマイクロミラーを選択し、N重露光による埋め合わせの効果で均すこともできる。
具体的には、走査方向に対し描素部の列方向が所定の設定傾斜角度θをなすように配置されてなる露光ヘッドを用い、前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部を指定し、前記露光ヘッドについて、使用描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部の制御し、前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて露光を行う方法が好適に挙げられる。
前記N重露光とは、前記感光層上の被露光面の略すべての領域において、前記露光ヘッドの走査方向に平行直線が、該被露光面上に照射されたN本の光線列と交わる露光をいう。
前記N重露光のNとしては、2以上の自然数であれば、特に制限はなく、目的に応じて適宜選択することができるが、3以上の自然数が好ましく、3以上7以下の自然数がより好ましい。
前記N重露光のNとしては、2以上の自然数であれば、特に制限はなく、目的に応じて適宜選択することができるが、3以上の自然数が好ましく、3以上7以下の自然数がより好ましい。
<<使用描素部指定手段>>
前記使用描素部指定手段としては、描素単位としての光点の位置を被露光面上において検出する光点位置検出手段と、前記光点位置検出手段による検出結果に基づき、N重露光を実現するために使用する描素部を選択する描素部選択手段とを少なくとも備えることが好ましい。
以下、前記使用描素部指定手段による、N重露光に使用する描素部の指定方法の例について説明する。
前記使用描素部指定手段としては、描素単位としての光点の位置を被露光面上において検出する光点位置検出手段と、前記光点位置検出手段による検出結果に基づき、N重露光を実現するために使用する描素部を選択する描素部選択手段とを少なくとも備えることが好ましい。
以下、前記使用描素部指定手段による、N重露光に使用する描素部の指定方法の例について説明する。
(1)単一露光ヘッド内における使用描素部の指定方法
本実施形態(1)では、露光装置10により、感光層12に対して2重露光を行う場合であって、各露光ヘッド30の取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
本実施形態(1)では、露光装置10により、感光層12に対して2重露光を行う場合であって、各露光ヘッド30の取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
露光ヘッド30の走査方向に対する描素部(マイクロミラー58)の列方向の設定傾斜角度θとしては、露光ヘッド30の取付角度誤差等がない理想的な状態であれば、使用可能な1024列×256行の描素部を使用してちょうど2重露光となる角度θidealよりも、若干大きい角度を採用するものとする。
この角度θidealは、N重露光の数N、使用可能なマイクロミラー58の列方向の個数s、使用可能なマイクロミラー58の列方向の間隔p、及び露光ヘッド30を傾斜させた状態においてマイクロミラーによって形成される走査線のピッチδに対し、下記式1、
spsinθideal≧Nδ(式1)
により与えられる。本実施形態におけるDMD36は、上記のとおり、縦横の配置間隔が等しい多数のマイクロミラー58が矩形格子状に配されたものであるので、
pcosθideal=δ(式2)
であり、上記式1は、
stanθideal=N(式3)
となる。本実施形態(1)では、上記のとおりs=256、N=2であるので、前記式3より、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、例えば0.50度程度の角度を採用するとよい。露光装置10は、調整可能な範囲内で、各露光ヘッド30即ち各DMD36の取付角度がこの設定傾斜角度θに近い角度となるように、初期調整されているものとする。
この角度θidealは、N重露光の数N、使用可能なマイクロミラー58の列方向の個数s、使用可能なマイクロミラー58の列方向の間隔p、及び露光ヘッド30を傾斜させた状態においてマイクロミラーによって形成される走査線のピッチδに対し、下記式1、
spsinθideal≧Nδ(式1)
により与えられる。本実施形態におけるDMD36は、上記のとおり、縦横の配置間隔が等しい多数のマイクロミラー58が矩形格子状に配されたものであるので、
pcosθideal=δ(式2)
であり、上記式1は、
stanθideal=N(式3)
となる。本実施形態(1)では、上記のとおりs=256、N=2であるので、前記式3より、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、例えば0.50度程度の角度を採用するとよい。露光装置10は、調整可能な範囲内で、各露光ヘッド30即ち各DMD36の取付角度がこの設定傾斜角度θに近い角度となるように、初期調整されているものとする。
図25は、上記のように初期調整された露光装置10において、1つの露光ヘッド30の取付角度誤差、及びパターン歪みの影響により、露光面上のパターンに生じるむらの例を示した説明図である。以下の図面及び説明においては、各描素部(マイクロミラー)により生成され、被露光面上の露光領域を構成する描素単位としての光点について、第m行目の光点をr(m)、第n列目の光点をc(n)、第m行第n列の光点をP(m、n)とそれぞれ表記するものとする。
図25の上段部分は、ステージ14を静止させた状態で感光層12の被露光面上に投影される、使用可能なマイクロミラー58からの光点群のパターンを示し、下段部分は、上段部分に示したような光点群のパターンが現れている状態でステージ14を移動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を示したものである。
なお、図25では、説明の便宜のため、使用可能なマイクロミラー58の奇数列による露光パターンと偶数列による露光パターンを分けて示してあるが、実際の被露光面上における露光パターンは、これら2つの露光パターンを重ね合わせたものである。
なお、図25では、説明の便宜のため、使用可能なマイクロミラー58の奇数列による露光パターンと偶数列による露光パターンを分けて示してあるが、実際の被露光面上における露光パターンは、これら2つの露光パターンを重ね合わせたものである。
図25の例では、設定傾斜角度θを上記の角度シータidealよりも若干大きい角度を採用した結果として、また露光ヘッド30の取付角度の微調整が困難であるために、実際の取付角度と上記の設定傾斜角度θとが誤差を有する結果として、被露光面上のいずれの領域においても濃度むらが生じている。具体的には、奇数列のマイクロミラーによる露光パターン及び偶数列のマイクロミラーによる露光パターンの双方で、複数の描素部列により形成された、被露光面上の重複露光領域において、理想的な2重露光に対して露光過多となり、描画が冗長となる領域が生じ、濃度むらが生じている。
更に、図25の例では、露光面上に現れるパターン歪みの一例であって、露光面上に投影された各画素列の傾斜角度が均一ではなくなる「角度歪み」が生じている。このような角度歪みが生じる原因としては、DMD36と露光面間の光学系の各種収差やアラインメントずれ、及びDMD36自体の歪みやマイクロミラーの配置誤差等が挙げられる。
図25の例に現れている角度歪みは、走査方向に対する傾斜角度が、図の左方の列ほど小さく、図の右方の列ほど大きくなっている形態の歪みである。この角度歪みの結果として、露光過多となっている領域は、図の左方に示した被露光面上ほど小さく、図の右方に示した被露光面上ほど大きくなっている。
図25の例に現れている角度歪みは、走査方向に対する傾斜角度が、図の左方の列ほど小さく、図の右方の列ほど大きくなっている形態の歪みである。この角度歪みの結果として、露光過多となっている領域は、図の左方に示した被露光面上ほど小さく、図の右方に示した被露光面上ほど大きくなっている。
上記したような、複数の描素部列により形成された、被露光面上の重複露光領域における濃度むらを軽減するために、前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド30ごとに実傾斜角度θ’を特定し、該実傾斜角度θ’に基づき、前記描素部選択手段として前記光検出器に接続された前記演算装置を用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。
実傾斜角度θ’は、光点位置検出手段が検出した少なくとも2つの光点位置に基づき、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向とがなす角度により特定される。
以下、図26及び図27を用いて、前記実傾斜角度θ’の特定、及び使用画素選択処理について説明する。
実傾斜角度θ’は、光点位置検出手段が検出した少なくとも2つの光点位置に基づき、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向とがなす角度により特定される。
以下、図26及び図27を用いて、前記実傾斜角度θ’の特定、及び使用画素選択処理について説明する。
−実傾斜角度θ’の特定−
図26は、1つのDMD36による露光エリア32と、対応するスリット28との位置関係を示した上面図である。スリット28の大きさは、露光エリア32の幅を十分覆う大きさとされている。
本実施形態(1)の例では、露光エリア32の略中心に位置する第512列目の光点列と露光ヘッド30の走査方向とがなす角度を、上記の実傾斜角度θ’として測定する。具体的には、DMD36上の第1行目第512列目のマイクロミラー58、及び第256行目第512列目のマイクロミラー58をオン状態とし、それぞれに対応する被露光面上の光点P(1、512)及びP(256、512)の位置を検出し、それらを結ぶ直線と露光ヘッドの走査方向とがなす角度を実傾斜角度θ’として特定する。
図26は、1つのDMD36による露光エリア32と、対応するスリット28との位置関係を示した上面図である。スリット28の大きさは、露光エリア32の幅を十分覆う大きさとされている。
本実施形態(1)の例では、露光エリア32の略中心に位置する第512列目の光点列と露光ヘッド30の走査方向とがなす角度を、上記の実傾斜角度θ’として測定する。具体的には、DMD36上の第1行目第512列目のマイクロミラー58、及び第256行目第512列目のマイクロミラー58をオン状態とし、それぞれに対応する被露光面上の光点P(1、512)及びP(256、512)の位置を検出し、それらを結ぶ直線と露光ヘッドの走査方向とがなす角度を実傾斜角度θ’として特定する。
図27は、光点P(256、512)の位置の検出手法を説明した上面図である。
まず、第256行目第512列目のマイクロミラー58を点灯させた状態で、ステージ14をゆっくり移動させてスリット28をY軸方向に沿って相対移動させ、光点P(256、512)が上流側のスリット28aと下流側のスリット28bの間に来るような任意の位置に、スリット28を位置させる。このときのスリット28aとスリット28bとの交点の座標を(X0、Y0)とする。この座標(X0、Y0)の値は、ステージ14に与えられた駆動信号が示す上記の位置までのステージ14の移動距離、及び、既知であるスリット28のX方向位置から決定され、記録される。
まず、第256行目第512列目のマイクロミラー58を点灯させた状態で、ステージ14をゆっくり移動させてスリット28をY軸方向に沿って相対移動させ、光点P(256、512)が上流側のスリット28aと下流側のスリット28bの間に来るような任意の位置に、スリット28を位置させる。このときのスリット28aとスリット28bとの交点の座標を(X0、Y0)とする。この座標(X0、Y0)の値は、ステージ14に与えられた駆動信号が示す上記の位置までのステージ14の移動距離、及び、既知であるスリット28のX方向位置から決定され、記録される。
次に、ステージ14を移動させ、スリット28をY軸に沿って図27における右方に相対移動させる。そして、図27において二点鎖線で示すように、光点P(256、512)の光が左側のスリット28bを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0、Y1)を、光点P(256、512)の位置として記録する。
次いで、ステージ14を反対方向に移動させ、スリット28をY軸に沿って図27における左方に相対移動させる。そして、図27において二点鎖線で示すように、光点P(256、512)の光が右側のスリット28aを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0、Y2)を光点P(256、512)の位置として記録する。
以上の測定結果から、光点P(256、512)の被露光面上における位置を示す座標(X、Y)を、X=X0+(Y1−Y2)/2、Y=(Y1+Y2)/2の計算により決定する。同様の測定により、P(1、512)の位置を示す座標も決定し、それぞれの座標を結ぶ直線と、露光ヘッド30の走査方向とがなす傾斜角度を導出し、これを実傾斜角度θ’として特定する。
−使用描素部の選択−
このようにして特定された実傾斜角度θ’を用い、前記光検出器に接続された前記演算装置は、下記式4
ttanθ’=N・・・(式4)
の関係を満たす値tに最も近い自然数Tを導出し、DMD36上の1行目からT行目のマイクロミラーを、本露光時に実際に使用するマイクロミラーとして選択する処理を行う。これにより、第512列目付近の露光領域において、理想的な2重露光に対して、露光過多となる領域と、露光不足となる領域との面積合計が最小となるようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
このようにして特定された実傾斜角度θ’を用い、前記光検出器に接続された前記演算装置は、下記式4
ttanθ’=N・・・(式4)
の関係を満たす値tに最も近い自然数Tを導出し、DMD36上の1行目からT行目のマイクロミラーを、本露光時に実際に使用するマイクロミラーとして選択する処理を行う。これにより、第512列目付近の露光領域において、理想的な2重露光に対して、露光過多となる領域と、露光不足となる領域との面積合計が最小となるようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
ここで、上記の値tに最も近い自然数を導出することに代えて、値t以上の最小の自然数を導出することとしてもよい。その場合、第512列目付近の露光領域において、理想的な2重露光に対して、露光過多となる領域の面積が最小になり、かつ露光不足となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
また、値t以下の最大の自然数を導出することとしてもよい。その場合、第512列目付近の露光領域において、理想的な2重露光に対して、露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
また、値t以下の最大の自然数を導出することとしてもよい。その場合、第512列目付近の露光領域において、理想的な2重露光に対して、露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
図28は、上記のようにして実際に使用するマイクロミラーとして選択されたマイクロミラーが生成した光点のみを用いて行った露光において、図25に示した露光面上のむらがどのように改善されるかを示した説明図である。
この例では、上記の自然数TとしてT=253が導出され、第1行目から第253行目のマイクロミラーが選択されたものとする。選択されなかった第254行目から第256行目のマイクロミラーに対しては、前記使用描素部制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しない。図28に示すとおり、第512列目付近の露光領域では、露光過多及び露光不足は、ほぼ完全に解消され、理想的な2重露光に極めて近い均一な露光が実現される。
この例では、上記の自然数TとしてT=253が導出され、第1行目から第253行目のマイクロミラーが選択されたものとする。選択されなかった第254行目から第256行目のマイクロミラーに対しては、前記使用描素部制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しない。図28に示すとおり、第512列目付近の露光領域では、露光過多及び露光不足は、ほぼ完全に解消され、理想的な2重露光に極めて近い均一な露光が実現される。
一方、図28の左方の領域(図中のc(1)付近)では、前記角度歪みにより、被露光面上における光点列の傾斜角度が中央付近(図中のc(512)付近)の領域における光線列の傾斜角度よりも小さくなっている。したがって、c(512)を基準として測定された実傾斜角度θ´に基づいて選択されたマイクロミラーのみによる露光では、偶数列による露光パターン及び奇数列による露光パターンのそれぞれにおいて、理想的な2重露光に対して露光不足となる領域がわずかに生じてしまう。
しかしながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重ね合わせてなる実際の露光パターンにおいては、露光量不足となる領域が互いに補完され、前記角度歪みによる露光むらを、2重露光による埋め合わせの効果で最小とすることができる。
しかしながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重ね合わせてなる実際の露光パターンにおいては、露光量不足となる領域が互いに補完され、前記角度歪みによる露光むらを、2重露光による埋め合わせの効果で最小とすることができる。
また、図28の右方の領域(図中のc(1024)付近)では、前記角度歪みにより、被露光面上における光線列の傾斜角度が、中央付近(図中のc(512)付近)の領域における光線列の傾斜角度よりも大きくなっている。したがって、c(512)を基準として測定された実傾斜角度θ’に基づいて選択されたマイクロミラーによる露光では、図に示すように、理想的な2重露光に対して露光過多となる領域がわずかに生じてしまう。
しかしながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重ね合わせてなる実際の露光パターンにおいては、露光過多となる領域が互いに補完され、前記角度歪による濃度むらを、2重露光による埋め合わせの効果で最小とすることができる。
しかしながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重ね合わせてなる実際の露光パターンにおいては、露光過多となる領域が互いに補完され、前記角度歪による濃度むらを、2重露光による埋め合わせの効果で最小とすることができる。
本実施形態(1)では、上述のとおり、第512列目の光線列の実傾斜角度θ’が測定され、該実傾斜角度θ’を用い、前記式(4)により導出されたTに基づいて使用するマイクロミラー58を選択したが、前記実傾斜角度θ’の特定方法としては、複数の描素部の列方向(光点列)と、前記露光ヘッドの走査方向とがなす複数の実傾斜角度をそれぞれ測定し、それらの平均値、中央値、最大値、及び最小値のいずれかを実傾斜角度θ’として特定し、前記式4等によって実際の露光時に実際に使用するマイクロミラーを選択する形態としてもよい。
前記平均値又は前記中央値を実傾斜角度θ’とすれば、理想的なN重露光に対して露光過多となる領域と露光不足となる領域とのバランスがよい露光を実現することができる。例えば、露光過多となる領域と、露光量不足となる領域との合計面積が最小に抑えられ、かつ、露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるような露光を実現することが可能である。
また、前記最大値を実傾斜角度θ’とすれば、理想的なN重露光に対して露光過多となる領域の排除をより重要視した露光を実現することができ、例えば、露光不足となる領域の面積を最小に抑え、かつ、露光過多となる領域が生じないような露光を実現することが可能である。
更に、前記最小値を実傾斜角度θ’とすれば、理想的なN重露光に対して露光不足となる領域の排除をより重要視した露光を実現することができ、例えば、露光過多となる領域の面積を最小に抑え、かつ、露光不足となる領域が生じないような露光を実現することが可能である。
前記平均値又は前記中央値を実傾斜角度θ’とすれば、理想的なN重露光に対して露光過多となる領域と露光不足となる領域とのバランスがよい露光を実現することができる。例えば、露光過多となる領域と、露光量不足となる領域との合計面積が最小に抑えられ、かつ、露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるような露光を実現することが可能である。
また、前記最大値を実傾斜角度θ’とすれば、理想的なN重露光に対して露光過多となる領域の排除をより重要視した露光を実現することができ、例えば、露光不足となる領域の面積を最小に抑え、かつ、露光過多となる領域が生じないような露光を実現することが可能である。
更に、前記最小値を実傾斜角度θ’とすれば、理想的なN重露光に対して露光不足となる領域の排除をより重要視した露光を実現することができ、例えば、露光過多となる領域の面積を最小に抑え、かつ、露光不足となる領域が生じないような露光を実現することが可能である。
一方、前記実傾斜角度θ’の特定は、同一の描素部の列(光点列)中の少なくとも2つの光点の位置に基づく方法に限定されない。例えば、同一描素部列c(n)中の1つ又は複数の光点の位置と、該c(n)近傍の列中の1つ又は複数の光点の位置とから求めた角度を、実傾斜角度θ’として特定してもよい。
具体的には、c(n)中の1つの光点位置と、露光ヘッドの走査方向に沿って直線上かつ近傍の光点列に含まれる1つ又は複数の光点位置とを検出し、これらの位置情報から、実傾斜角度θ´を求めることができる。更に、c(n)列近傍の光点列中の少なくとも2つの光点(例えば、c(n)を跨ぐように配置された2つの光点)の位置に基づいて求めた角度を、実傾斜角度θ’として特定してもよい。
具体的には、c(n)中の1つの光点位置と、露光ヘッドの走査方向に沿って直線上かつ近傍の光点列に含まれる1つ又は複数の光点位置とを検出し、これらの位置情報から、実傾斜角度θ´を求めることができる。更に、c(n)列近傍の光点列中の少なくとも2つの光点(例えば、c(n)を跨ぐように配置された2つの光点)の位置に基づいて求めた角度を、実傾斜角度θ’として特定してもよい。
以上のように、露光装置10を用いた本実施形態(1)の使用描素部の指定方法によれば、各露光ヘッドの取付角度誤差やパターン歪みの影響による解像度のばらつきや濃度のむらを軽減し、理想的なN重露光を実現することができる。
(2)複数露光ヘッド間における使用描素部の指定方法<1>
本実施形態(2)では、露光装置10により、感光層12に対して2重露光を行う場合であって、複数の露光ヘッド30により形成された被露光面上の重複露光領域であるヘッド間つなぎ領域において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の、理想的な状態からのずれに起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
本実施形態(2)では、露光装置10により、感光層12に対して2重露光を行う場合であって、複数の露光ヘッド30により形成された被露光面上の重複露光領域であるヘッド間つなぎ領域において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の、理想的な状態からのずれに起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
各露光ヘッド30即ち各DMD36の設定傾斜角度θとしては、露光ヘッド30の取付角度誤差等がない理想的な状態であれば、使用可能な1024列×256行の描素部マイクロミラー58を使用してちょうど2重露光となる角度θidealを採用するものとする。
この角度θidealは、上記の実施形態(1)と同様にして前記式1〜3から求められる
。本実施形態(2)において、露光装置10は、各露光ヘッド30即ち各DMD36の取付角度がこの角度θidealとなるように、初期調整されているものとする。
この角度θidealは、上記の実施形態(1)と同様にして前記式1〜3から求められる
。本実施形態(2)において、露光装置10は、各露光ヘッド30即ち各DMD36の取付角度がこの角度θidealとなるように、初期調整されているものとする。
図29は、上記のように初期調整された露光装置10において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の、理想的な状態からのずれの影響により、被露光面上のパターンに生じる濃度むらの例を示した説明図である。各露光ヘッドのX軸方向に関する相対位置のずれは、露光ヘッド間の相対位置の微調整が困難であるために生じ得るものである。
図29の上段部分は、ステージ14を静止させた状態で感光層12の被露光面上に投影される、露光ヘッド3012と3021が有するDMD36の使用可能なマイクロミラー58からの光点群のパターンを示した図である。図29の下段部分は、上段部分に示したような光点群のパターンが現れている状態でステージ14を移動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を、露光エリア3212と3221について示したものである。
なお、図29では、説明の便宜のため、使用可能なマイクロミラー58の1列おきの露光パターンを、画素列群Aによる露光パターンと画素列群Bによる露光パターンとに分けて示してあるが、実際の被露光面上における露光パターンは、これら2つの露光パターンを重ね合わせたものである。
なお、図29では、説明の便宜のため、使用可能なマイクロミラー58の1列おきの露光パターンを、画素列群Aによる露光パターンと画素列群Bによる露光パターンとに分けて示してあるが、実際の被露光面上における露光パターンは、これら2つの露光パターンを重ね合わせたものである。
図29の例では、上記したX軸方向に関する露光ヘッド3012と3021との間の相対位置の、理想的な状態からのずれの結果として、画素列群Aによる露光パターンと画素列群Bによる露光パターンとの双方で、露光エリア3212と3221の前記ヘッド間つなぎ領域において、理想的な2重露光の状態よりも露光量過多な部分が生じてしまっている。
上記したような、複数の前記露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域に現れる濃度むらを軽減するために、本実施形態(2)では、前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド3012と3021からの光点群のうち、被露光面上に形成される前記ヘッド間つなぎ領域を構成する光点のいくつかについて、その位置(座標)を検出する。該位置(座標)に基づいて、前記描素部選択手段として前記光検出器に接続された演算装置を用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。
−位置(座標)の検出−
図30は、図29と同様の露光エリア3212及び3221と、対応するスリット28との位置関係を示した上面図である。スリット28の大きさは、露光ヘッド3012と3021による露光済み領域34間の重複部分の幅を十分覆う大きさ、即ち、露光ヘッド3012と3021により被露光面上に形成される前記ヘッド間つなぎ領域を十分覆う大きさとされている。
図30は、図29と同様の露光エリア3212及び3221と、対応するスリット28との位置関係を示した上面図である。スリット28の大きさは、露光ヘッド3012と3021による露光済み領域34間の重複部分の幅を十分覆う大きさ、即ち、露光ヘッド3012と3021により被露光面上に形成される前記ヘッド間つなぎ領域を十分覆う大きさとされている。
図31は、一例として露光エリア3221の光点P(256、1024)の位置を検出する際の検出手法を説明した上面図である。
まず、第256行目第1024列目のマイクロミラーを点灯させた状態で、ステージ14をゆっくり移動させてスリット28をY軸方向に沿って相対移動させ、光点P(256、1024)が上流側のスリット28aと下流側のスリット28bの間に来るような任意の位置に、スリット28を位置させる。このときのスリット28aとスリット28bとの交点の座標を(X0、Y0)とする。この座標(X0、Y0)の値は、ステージ14に与えられた駆動信号が示す上記の位置までのステージ14の移動距離、及び、既知であるスリット28のX方向位置から決定され、記録される。
まず、第256行目第1024列目のマイクロミラーを点灯させた状態で、ステージ14をゆっくり移動させてスリット28をY軸方向に沿って相対移動させ、光点P(256、1024)が上流側のスリット28aと下流側のスリット28bの間に来るような任意の位置に、スリット28を位置させる。このときのスリット28aとスリット28bとの交点の座標を(X0、Y0)とする。この座標(X0、Y0)の値は、ステージ14に与えられた駆動信号が示す上記の位置までのステージ14の移動距離、及び、既知であるスリット28のX方向位置から決定され、記録される。
次に、ステージ14を移動させ、スリット28をY軸に沿って図31における右方に相対移動させる。そして、図31において二点鎖線で示すように、光点P(256、1024)の光が左側のスリット28bを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0、Y1)を、光点P(256、1024)の位置として記録する。
次いで、ステージ14を反対方向に移動させ、スリット28をY軸に沿って図31における左方に相対移動させる。そして、図31において二点鎖線で示すように、光点P(256、1024)の光が右側のスリット28aを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0、Y2)を、光点P(256、1024)として記録する。
以上の測定結果から、光点P(256、1024)の被露光面における位置を示す座標(X、Y)を、X=X0+(Y1−Y2)/2、Y=(Y1+Y2)/2の計算により決定する。
−不使用描素部の特定−
図29の例では、まず、露光エリア3212の光点P(256、1)の位置を、上記の光点位置検出手段としてスリット28と光検出器の組により検出する。続いて、露光エリア3221の第256行目の光点行r(256)上の各光点の位置を、P(256、1024)、P(256、1023)・・・と順番に検出していき、露光エリア3212の光点P(256、1)よりも大きいX座標を示す露光エリア3221の光点P(256、n)が検出されたところで、検出動作を終了する。そして、露光エリア3221の光点列c(n+1)からc(1024)を構成する光点に対応するマイクロミラーを、本露光時に使用しないマイクロミラー(不使用描素部)として特定する。
例えば、図29において、露光エリア3221の光点P(256、1020)が、露光エリア3212の光点P(256、1)よりも大きいX座標を示し、その露光エリア3221の光点P(256、1020)が検出されたところで検出動作が終了したとすると、図32において斜線で覆われた部分70に相当する露光エリア3221の第1021行から第1024行を構成する光点に対応するマイクロミラーが、本露光時に使用しないマイクロミラーとして特定される。
図29の例では、まず、露光エリア3212の光点P(256、1)の位置を、上記の光点位置検出手段としてスリット28と光検出器の組により検出する。続いて、露光エリア3221の第256行目の光点行r(256)上の各光点の位置を、P(256、1024)、P(256、1023)・・・と順番に検出していき、露光エリア3212の光点P(256、1)よりも大きいX座標を示す露光エリア3221の光点P(256、n)が検出されたところで、検出動作を終了する。そして、露光エリア3221の光点列c(n+1)からc(1024)を構成する光点に対応するマイクロミラーを、本露光時に使用しないマイクロミラー(不使用描素部)として特定する。
例えば、図29において、露光エリア3221の光点P(256、1020)が、露光エリア3212の光点P(256、1)よりも大きいX座標を示し、その露光エリア3221の光点P(256、1020)が検出されたところで検出動作が終了したとすると、図32において斜線で覆われた部分70に相当する露光エリア3221の第1021行から第1024行を構成する光点に対応するマイクロミラーが、本露光時に使用しないマイクロミラーとして特定される。
次に、N重露光の数Nに対して、露光エリア3212の光点P(256、N)の位置が検出される。本実施形態(2)では、N=2であるので、光点P(256、2)の位置が検出される。
続いて、露光エリア3221の光点列のうち、上記で本露光時に使用しないマイクロミラーに対応する光点列として特定されたものを除き、最も右側の第1020列を構成する光点の位置を、P(1、1020)から順番にP(1、1020)、P(2、1020)・・・と検出していき、露光エリア3212の光点P(256、2)よりも大きいX座標を示す光点P(m、1020)が検出されたところで、検出動作を終了する。
その後、前記光検出器に接続された演算装置において、露光エリア3212の光点P(256、2)のX座標と、露光エリア3221の光点P(m、1020)及びP(m−1、1020)のX座標とが比較され、露光エリア3221の光点P(m、1020)のX座標の方が露光エリア3212の光点P(256、2)のX座標に近い場合は、露光エリア3221の光点P(1、1020)からP(m−1、1020)に対応するマイクロミラーが本露光時に使用しないマイクロミラーとして特定される。
また、露光エリア3221の光点P(m−1、1020)のX座標の方が露光エリア3212の光点P(256、2)のX座標に近い場合は、露光エリア3221の光点P(1、1020)からP(m−2、1020)に対応するマイクロミラーが、本露光に使用しないマイクロミラーとして特定される。
更に、露光エリア3212の光点P(256、N−1)即ち光点P(256、1)の位置と、露光エリア3221の次列である第1019列を構成する各光点の位置についても、同様の検出処理及び使用しないマイクロミラーの特定が行われる。
続いて、露光エリア3221の光点列のうち、上記で本露光時に使用しないマイクロミラーに対応する光点列として特定されたものを除き、最も右側の第1020列を構成する光点の位置を、P(1、1020)から順番にP(1、1020)、P(2、1020)・・・と検出していき、露光エリア3212の光点P(256、2)よりも大きいX座標を示す光点P(m、1020)が検出されたところで、検出動作を終了する。
その後、前記光検出器に接続された演算装置において、露光エリア3212の光点P(256、2)のX座標と、露光エリア3221の光点P(m、1020)及びP(m−1、1020)のX座標とが比較され、露光エリア3221の光点P(m、1020)のX座標の方が露光エリア3212の光点P(256、2)のX座標に近い場合は、露光エリア3221の光点P(1、1020)からP(m−1、1020)に対応するマイクロミラーが本露光時に使用しないマイクロミラーとして特定される。
また、露光エリア3221の光点P(m−1、1020)のX座標の方が露光エリア3212の光点P(256、2)のX座標に近い場合は、露光エリア3221の光点P(1、1020)からP(m−2、1020)に対応するマイクロミラーが、本露光に使用しないマイクロミラーとして特定される。
更に、露光エリア3212の光点P(256、N−1)即ち光点P(256、1)の位置と、露光エリア3221の次列である第1019列を構成する各光点の位置についても、同様の検出処理及び使用しないマイクロミラーの特定が行われる。
その結果、例えば、図32において網掛けで覆われた領域72を構成する光点に対応するマイクロミラーが、実際の露光時に使用しないマイクロミラーとして追加される。これらのマイクロミラーには、常時、そのマイクロミラーの角度をオフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に使用されない。
このように、実際の露光時に使用しないマイクロミラーを特定し、該使用しないマイクロミラーを除いたものを、実際の露光時に使用するマイクロミラーとして選択することにより、露光エリア3212と3221の前記ヘッド間つなぎ領域において、理想的な2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とすることができ、図32の下段に示すように、理想的な2重露光に極めて近い均一な露光を実現することができる。
なお、上記の例においては、図32において網掛けで覆われた領域72を構成する光点の特定に際し、露光エリア3212の光点P(256、2)のX座標と、露光エリア3221の光点P(m、1020)及びP(m−1、1020)のX座標との比較を行わずに、ただちに、露光エリア3221の光点P(1、1020)からP(m−2、1020)に対応するマイクロミラーを、本露光時に使用しないマイクロミラーとして特定してもよい。その場合、前記ヘッド間つなぎ領域において、理想的な2重露光に対して露光過多となる領域の面積が最小になり、かつ露光不足となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
また、露光エリア3221の光点P(1、1020)からP(m−1、1020)に対応するマイクロミラーを、本露光に使用しないマイクロミラーとして特定してもよい。その場合、前記ヘッド間つなぎ領域において、理想的な2重露光に対して露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
更に、前記ヘッド間つなぎ領域において、理想的な2重描画に対して露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるように、実際に使用するマイクロミラーを選択することとしてもよい。
また、露光エリア3221の光点P(1、1020)からP(m−1、1020)に対応するマイクロミラーを、本露光に使用しないマイクロミラーとして特定してもよい。その場合、前記ヘッド間つなぎ領域において、理想的な2重露光に対して露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
更に、前記ヘッド間つなぎ領域において、理想的な2重描画に対して露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるように、実際に使用するマイクロミラーを選択することとしてもよい。
以上のように、露光装置10を用いた本実施形態(2)の使用描素部の指定方法によれば、複数の露光ヘッドのX軸方向に関する相対位置のずれに起因する解像度のばらつきと濃度むらとを軽減し、理想的なN重露光を実現することができる。
(3)複数露光ヘッド間における使用描素部の指定方法<2>
本実施形態(3)では、露光装置10により、感光層12に対して2重露光を行う場合であって、複数の露光ヘッド30により形成された被露光面上の重複露光領域であるヘッド間つなぎ領域において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の理想的な状態からのずれ、並びに各露光ヘッドの取付角度誤差、及び2つの露光ヘッド間の相対取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
本実施形態(3)では、露光装置10により、感光層12に対して2重露光を行う場合であって、複数の露光ヘッド30により形成された被露光面上の重複露光領域であるヘッド間つなぎ領域において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の理想的な状態からのずれ、並びに各露光ヘッドの取付角度誤差、及び2つの露光ヘッド間の相対取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
各露光ヘッド30即ち各DMD36の設定傾斜角度としては、露光ヘッド30の取付角度誤差等がない理想的な状態であれば、使用可能な1024列×256行の描素部(マイクロミラー58)を使用してちょうど2重露光となる角度θidealよりも若干大きい角度を採用するものとする。
この角度θidealは、前記式1〜3を用いて上記(1)の実施形態と同様にして求められる値であり、本実施形態では、上記のとおりs=256、N=2であるので、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、例えば0.50度程度の角度を採用するとよい。露光装置10は、調整可能な範囲内で、各露光ヘッド30即ち各DMD36の取付角度がこの設定傾斜角度θに近い角度となるように、初期調整されているものとする。
この角度θidealは、前記式1〜3を用いて上記(1)の実施形態と同様にして求められる値であり、本実施形態では、上記のとおりs=256、N=2であるので、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、例えば0.50度程度の角度を採用するとよい。露光装置10は、調整可能な範囲内で、各露光ヘッド30即ち各DMD36の取付角度がこの設定傾斜角度θに近い角度となるように、初期調整されているものとする。
図33は、上記のように各露光ヘッド30即ち各DMD36の取付角度が初期調整された露光装置10において、2つの露光ヘッド(一例として露光ヘッド3012と3021)の取付角度誤差、並びに各露光ヘッド3012と3021間の相対取付角度誤差及び相対位置のずれの影響により、露光面上のパターンに生じるむらの例を示した説明図である。
図33の例では、図29の例と同様の、X軸方向に関する露光ヘッド3012と3021の相対位置のずれの結果として、一列おきの光点群(画素列群A及びB)による露光パターンの双方で、露光エリア3212と3221の被露光面上の前記露光ヘッドの走査方向と直交する座標軸上で重複する露光領域において、理想的な2重露光の状態よりも露光量過多な領域74が生じ、これが濃度むらを引き起こしている。
更に、図33の例では、各露光ヘッドの設定傾斜角度θを前記式(1)を満たす角度θidealよりも若干大きくしたことによる結果、及び各露光ヘッドの取付角度の微調整が困難であるために、実際の取付角度が上記の設定傾斜角度θからずれてしまったことの結果として、被露光面上の前記露光ヘッドの走査方向と直交する座標軸上で重複する露光領域以外の領域でも、一列おきの光点群(画素列群A及びB)による露光パターンの双方で、複数の描素部列により形成された、被露光面上の重複露光領域である描素部列間つなぎ領域において、理想的な2重露光の状態よりも露光過多となる領域76が生じ、これがさらなる濃度むらを引き起こしている。
更に、図33の例では、各露光ヘッドの設定傾斜角度θを前記式(1)を満たす角度θidealよりも若干大きくしたことによる結果、及び各露光ヘッドの取付角度の微調整が困難であるために、実際の取付角度が上記の設定傾斜角度θからずれてしまったことの結果として、被露光面上の前記露光ヘッドの走査方向と直交する座標軸上で重複する露光領域以外の領域でも、一列おきの光点群(画素列群A及びB)による露光パターンの双方で、複数の描素部列により形成された、被露光面上の重複露光領域である描素部列間つなぎ領域において、理想的な2重露光の状態よりも露光過多となる領域76が生じ、これがさらなる濃度むらを引き起こしている。
本実施形態(3)では、まず、各露光ヘッド3012と3021の取付角度誤差及び相対取付角度のずれの影響による濃度むらを軽減するための使用画素選択処理を行う。
具体的には、前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド3012と3021のそれぞれについて、実傾斜角度θ’を特定し、該実傾斜角度θ’に基づき、前記描素部選択手段として光検出器に接続された演算装置を用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。
具体的には、前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド3012と3021のそれぞれについて、実傾斜角度θ’を特定し、該実傾斜角度θ’に基づき、前記描素部選択手段として光検出器に接続された演算装置を用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。
−実傾斜角度θ’の特定−
実傾斜角度θ’の特定は、露光ヘッド3012ついては露光エリア3212内の光点P(1、1)とP(256、1)の位置を、露光ヘッド3021については露光エリア3221内の光点P(1、1024)とP(256、1024)の位置を、それぞれ上述した実施形態(2)で用いたスリット28と光検出器の組により検出し、それらを結ぶ直線の傾斜角度と、露光ヘッドの走査方向とがなす角度を測定することにより行われる。
実傾斜角度θ’の特定は、露光ヘッド3012ついては露光エリア3212内の光点P(1、1)とP(256、1)の位置を、露光ヘッド3021については露光エリア3221内の光点P(1、1024)とP(256、1024)の位置を、それぞれ上述した実施形態(2)で用いたスリット28と光検出器の組により検出し、それらを結ぶ直線の傾斜角度と、露光ヘッドの走査方向とがなす角度を測定することにより行われる。
−不使用描素部の特定−
そのようにして特定された実傾斜角度θ’を用いて、光検出器に接続された演算装置は、上述した実施形態(1)における演算装置と同様、下記式4
ttanθ’=N(式4)
の関係を満たす値tに最も近い自然数Tを、露光ヘッド3012と3021のそれぞれについて導出し、DMD36上の第(T+1)行目から第256行目のマイクロミラーを、本露光に使用しないマイクロミラーとして特定する処理を行う。
例えば、露光ヘッド3012についてはT=254、露光ヘッド3021についてはT=255が導出されたとすると、図34において斜線で覆われた部分78及び80を構成する光点に対応するマイクロミラーが、本露光に使用しないマイクロミラーとして特定される。これにより、露光エリア3212と3221のうちヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とすることができる。
そのようにして特定された実傾斜角度θ’を用いて、光検出器に接続された演算装置は、上述した実施形態(1)における演算装置と同様、下記式4
ttanθ’=N(式4)
の関係を満たす値tに最も近い自然数Tを、露光ヘッド3012と3021のそれぞれについて導出し、DMD36上の第(T+1)行目から第256行目のマイクロミラーを、本露光に使用しないマイクロミラーとして特定する処理を行う。
例えば、露光ヘッド3012についてはT=254、露光ヘッド3021についてはT=255が導出されたとすると、図34において斜線で覆われた部分78及び80を構成する光点に対応するマイクロミラーが、本露光に使用しないマイクロミラーとして特定される。これにより、露光エリア3212と3221のうちヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とすることができる。
ここで、上記の値tに最も近い自然数を導出することに代えて、値t以上の最小の自然数を導出することとしてもよい。その場合、露光エリア3212と3221の、複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光量過多となる面積が最小になり、かつ露光量不足となる面積が生じないようになすことができる。
あるいは、値t以下の最大の自然数を導出することとしてもよい。その場合、露光エリア3212と3221の、複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようになすことができる。
複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して、露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるように、本露光時に使用しないマイクロミラーを特定することとしてもよい。
あるいは、値t以下の最大の自然数を導出することとしてもよい。その場合、露光エリア3212と3221の、複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようになすことができる。
複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して、露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるように、本露光時に使用しないマイクロミラーを特定することとしてもよい。
その後、図34において斜線で覆われた領域78及び80を構成する光点以外の光点に対応するマイクロミラーに関して、図29から17を用いて説明した本実施形態(3)と同様の処理がなされ、図34において斜線で覆われた領域82及び網掛けで覆われた領域84を構成する光点に対応するマイクロミラーが特定され、本露光時に使用しないマイクロミラーとして追加される。
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しない。
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しない。
以上のように、露光装置10を用いた本実施形態(3)の使用描素部の指定方法によれば、複数の露光ヘッドのX軸方向に関する相対位置のずれ、並びに各露光ヘッドの取付角度誤差、及び露光ヘッド間の相対取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的なN重露光を実現することができる。
以上、露光装置10による使用描素部指定方法ついて詳細に説明したが、上記実施形態(1)〜(3)は一例に過ぎず、本発明の範囲を逸脱することなく種々の変更が可能である。
また、上記の実施形態(1)〜(3)では、被露光面上の光点の位置を検出するための手段として、スリット28と単一セル型の光検出器の組を用いたが、これに限られずいかなる形態のものを用いてもよく、例えば2次元検出器等を用いてもよい。
更に、上記の実施形態(1)〜(3)では、スリット28と光検出器の組による被露光面上の光点の位置検出結果から実傾斜角度θ’を求め、その実傾斜角度θ’に基づいて使用するマイクロミラーを選択したが、実傾斜角度θ’の導出を介さずに使用可能なマイクロミラーを選択する形態としてもよい。更には、例えばすべての使用可能なマイクロミラーを用いた参照露光を行い、参照露光結果の目視による解像度や濃度のむらの確認等により、操作者が使用するマイクロミラーを手動で指定する形態も、本発明の範囲に含まれるものである。
なお、被露光面上に生じ得るパターン歪みには、上記の例で説明した角度歪みの他にも、種々の形態が存在する。
一例としては、図35Aに示すように、DMD36上の各マイクロミラー58からの光線が、異なる倍率で露光面上の露光エリア32に到達してしまう倍率歪みの形態がある。
また、別の例として、図35Bに示すように、DMD36上の各マイクロミラー58からの光線が、異なるビーム径で露光面上の露光エリア32に到達してしまうビーム径歪みの形態もある。これらの倍率歪み及びビーム径歪みは、主として、DMD36と露光面間の光学系の各種収差やアラインメントずれに起因して生じる。
更に別の例として、DMD36上の各マイクロミラー58からの光線が、異なる光量で露光面上の露光エリア32に到達してしまう光量歪みの形態もある。この光量歪みは、各種収差やアラインメントずれのほか、DMD36と露光面間の光学要素(例えば1枚レンズである図5A及び図5Bのレンズ52及び54)の透過率の位置依存性や、DMD36自体による光量むらに起因して生じる。これらの形態のパターン歪みも、露光面上に形成されるパターンに解像度や濃度のむらを生じさせる。
一例としては、図35Aに示すように、DMD36上の各マイクロミラー58からの光線が、異なる倍率で露光面上の露光エリア32に到達してしまう倍率歪みの形態がある。
また、別の例として、図35Bに示すように、DMD36上の各マイクロミラー58からの光線が、異なるビーム径で露光面上の露光エリア32に到達してしまうビーム径歪みの形態もある。これらの倍率歪み及びビーム径歪みは、主として、DMD36と露光面間の光学系の各種収差やアラインメントずれに起因して生じる。
更に別の例として、DMD36上の各マイクロミラー58からの光線が、異なる光量で露光面上の露光エリア32に到達してしまう光量歪みの形態もある。この光量歪みは、各種収差やアラインメントずれのほか、DMD36と露光面間の光学要素(例えば1枚レンズである図5A及び図5Bのレンズ52及び54)の透過率の位置依存性や、DMD36自体による光量むらに起因して生じる。これらの形態のパターン歪みも、露光面上に形成されるパターンに解像度や濃度のむらを生じさせる。
上記の実施形態(1)〜(3)によれば、本露光に実際に使用するマイクロミラーを選択した後の、これらの形態のパターン歪みの残留要素も、上記の角度歪みの残留要素と同様、2重露光による埋め合わせの効果で均すことができる。
<<参照露光>>
上記の実施形態(1)〜(3)の変更例として、使用可能なマイクロミラーのうち、(N−1)列おきのマイクロミラー列、又は全光点行のうち1/N行に相当する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行い、均一な露光を実現できるように、前記参照露光に使用されたマイクロミラー中、実際の露光時に使用しないマイクロミラーを特定することとしてもよい。
前記参照露光手段による参照露光の結果をサンプル出力し、該出力された参照露光結果に対し、解像度のばらつきや濃度のむらを確認し、実傾斜角度を推定するなどの分析を行う。前記参照露光の結果の分析は、操作者の目視による分析であってもよい。
上記の実施形態(1)〜(3)の変更例として、使用可能なマイクロミラーのうち、(N−1)列おきのマイクロミラー列、又は全光点行のうち1/N行に相当する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行い、均一な露光を実現できるように、前記参照露光に使用されたマイクロミラー中、実際の露光時に使用しないマイクロミラーを特定することとしてもよい。
前記参照露光手段による参照露光の結果をサンプル出力し、該出力された参照露光結果に対し、解像度のばらつきや濃度のむらを確認し、実傾斜角度を推定するなどの分析を行う。前記参照露光の結果の分析は、操作者の目視による分析であってもよい。
図36A及び図36Bは、単一露光ヘッドを用い、(N−1)列おきのマイクロミラーのみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図36Aに実線で示した奇数列の光点列に対応するマイクロミラーのみを使用して参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定したりすることで、本露光時において使用するマイクロミラーを指定することができる。
例えば、図36Bに斜線で覆って示す光点列に対応するマイクロミラー以外のマイクロミラーが、奇数列の光点列を構成するマイクロミラー中、本露光において実際に使用されるものとして指定される。偶数列の光点列については、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、奇数列の光点列に対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、奇数列及び偶数列双方のマイクロミラーを使用した本露光においては、理想的な2重露光に近い状態が実現できる。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図36Aに実線で示した奇数列の光点列に対応するマイクロミラーのみを使用して参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定したりすることで、本露光時において使用するマイクロミラーを指定することができる。
例えば、図36Bに斜線で覆って示す光点列に対応するマイクロミラー以外のマイクロミラーが、奇数列の光点列を構成するマイクロミラー中、本露光において実際に使用されるものとして指定される。偶数列の光点列については、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、奇数列の光点列に対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、奇数列及び偶数列双方のマイクロミラーを使用した本露光においては、理想的な2重露光に近い状態が実現できる。
図37は、複数の露光ヘッドを用い、(N−1)列おきのマイクロミラーのみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図37に実線で示した、X軸方向に関して隣接する2つの露光ヘッド(一例として露光ヘッド3012と3021)の奇数列の光点列に対応するマイクロミラーのみを使用して、参照露光を行い、参照露光結果をサンプル出力する。前記出力された参照露光結果に基づき、2つの露光ヘッドにより被露光面上に形成されるヘッド間つなぎ領域以外の領域における解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定したりすることで、本露光時において使用するマイクロミラーを指定することができる。
例えば、図37に斜線で覆って示す領域86及び網掛けで示す領域88内の光点列に対応するマイクロミラー以外のマイクロミラーが、奇数列の光点を構成するマイクロミラー中、本露光時において実際に使用されるものとして指定される。偶数列の光点列については、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、奇数列目の画素列に対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に実際に使用するマイクロミラーを指定することにより、奇数列及び偶数列双方のマイクロミラーを使用した本露光においては、2つの露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において、理想的な2重露光に近い状態が実現できる。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図37に実線で示した、X軸方向に関して隣接する2つの露光ヘッド(一例として露光ヘッド3012と3021)の奇数列の光点列に対応するマイクロミラーのみを使用して、参照露光を行い、参照露光結果をサンプル出力する。前記出力された参照露光結果に基づき、2つの露光ヘッドにより被露光面上に形成されるヘッド間つなぎ領域以外の領域における解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定したりすることで、本露光時において使用するマイクロミラーを指定することができる。
例えば、図37に斜線で覆って示す領域86及び網掛けで示す領域88内の光点列に対応するマイクロミラー以外のマイクロミラーが、奇数列の光点を構成するマイクロミラー中、本露光時において実際に使用されるものとして指定される。偶数列の光点列については、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、奇数列目の画素列に対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に実際に使用するマイクロミラーを指定することにより、奇数列及び偶数列双方のマイクロミラーを使用した本露光においては、2つの露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において、理想的な2重露光に近い状態が実現できる。
図38A及び図38Bは、単一露光ヘッドを用い、全光点行数の1/N行に相当する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図38Aに実線で示した1行目から128(=256/2)行目の光点に対応するマイクロミラーのみを使用して参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、本露光時において使用するマイクロミラーを指定することができる。
例えば、図38Bに斜線で覆って示す光点群に対応するマイクロミラー以外のマイクロミラーが、第1行目から第128行目のマイクロミラー中、本露光時において実際に使用されるものとして指定され得る。第129行目から第256行目のマイクロミラーについては、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、第1行目から第128行目のマイクロミラーに対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、全体のマイクロミラーを使用した本露光においては、理想的な2重露光に近い状態が実現できる。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図38Aに実線で示した1行目から128(=256/2)行目の光点に対応するマイクロミラーのみを使用して参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、本露光時において使用するマイクロミラーを指定することができる。
例えば、図38Bに斜線で覆って示す光点群に対応するマイクロミラー以外のマイクロミラーが、第1行目から第128行目のマイクロミラー中、本露光時において実際に使用されるものとして指定され得る。第129行目から第256行目のマイクロミラーについては、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、第1行目から第128行目のマイクロミラーに対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、全体のマイクロミラーを使用した本露光においては、理想的な2重露光に近い状態が実現できる。
図39は、複数の露光ヘッドを用い、X軸方向に関して隣接する2つの露光ヘッド(一例として露光ヘッド3012と3021)について、それぞれ全光点行数の1/N行に相当する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図39に実線で示した第1行目から第128(=256/2)行目の光点に対応するマイクロミラーのみを使用して、参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、2つの露光ヘッドにより被露光面上に形成されるヘッド間つなぎ領域以外の領域における解像度のばらつきや濃度のむらを最小限に抑えた本露光が実現できるように、本露光時において使用するマイクロミラーを指定することができる。
例えば、図39に斜線で覆って示す領域90及び網掛けで示す領域92内の光点列に対応するマイクロミラー以外のマイクロミラーが、第1行目から第128行目のマイクロミラー中、本露光時において実際に使用されるものとして指定される。第129行目から第256行目のマイクロミラーについては、別途同様に参照露光を行って、本露光に使用するマイクロミラーを指定してもよいし、第1行目から第128行目のマイクロミラーに対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、2つの露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において理想的な2重露光に近い状態が実現できる。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図39に実線で示した第1行目から第128(=256/2)行目の光点に対応するマイクロミラーのみを使用して、参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、2つの露光ヘッドにより被露光面上に形成されるヘッド間つなぎ領域以外の領域における解像度のばらつきや濃度のむらを最小限に抑えた本露光が実現できるように、本露光時において使用するマイクロミラーを指定することができる。
例えば、図39に斜線で覆って示す領域90及び網掛けで示す領域92内の光点列に対応するマイクロミラー以外のマイクロミラーが、第1行目から第128行目のマイクロミラー中、本露光時において実際に使用されるものとして指定される。第129行目から第256行目のマイクロミラーについては、別途同様に参照露光を行って、本露光に使用するマイクロミラーを指定してもよいし、第1行目から第128行目のマイクロミラーに対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、2つの露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において理想的な2重露光に近い状態が実現できる。
以上の実施形態(1)〜(3)及び変更例においては、いずれも本露光を2重露光とする場合について説明したが、これに限定されず、2重露光以上のいかなる多重露光としてもよい。特に3重露光から7重露光程度とすることにより、高解像度を確保し、解像度のばらつき及び濃度むらが軽減された露光を実現することができる。
また、上記の実施形態及び変更例に係る露光装置には、更に、画像データが表す2次元パターンの所定部分の寸法が、選択された使用画素により実現できる対応部分の寸法と一致するように、画像データを変換する機構が設けられていることが好ましい。そのように画像データを変換することによって、所望の2次元パターンどおりの高精細なパターンを露光面上に形成することができる。
[その他の工程]
前記その他の工程としては、特に制限はなく、公知のパターン形成における工程の中から適宜選択することが挙げられるが、例えば、現像工程、エッチング工程、メッキ工程、及び硬化処理工程などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
前記現像工程は、前記露光工程により前記感光層を露光し、該感光層の露光した領域を硬化させた後、未硬化領域を除去することにより現像し、パターンを形成する工程である。
前記その他の工程としては、特に制限はなく、公知のパターン形成における工程の中から適宜選択することが挙げられるが、例えば、現像工程、エッチング工程、メッキ工程、及び硬化処理工程などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
前記現像工程は、前記露光工程により前記感光層を露光し、該感光層の露光した領域を硬化させた後、未硬化領域を除去することにより現像し、パターンを形成する工程である。
−現像工程−
前記現像工程は、例えば、現像手段により好適に実施することができる。
前記現像手段としては、現像液を用いて現像することができる限り特に制限はなく、目的に応じて適宜選択することができ、例えば、前記現像液を噴霧する手段、前記現像液を塗布する手段、前記現像液に浸漬させる手段などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
また、前記現像手段は、前記現像液を交換する現像液交換手段、前記現像液を供給する現像液供給手段などを有していてもよい。
前記現像工程は、例えば、現像手段により好適に実施することができる。
前記現像手段としては、現像液を用いて現像することができる限り特に制限はなく、目的に応じて適宜選択することができ、例えば、前記現像液を噴霧する手段、前記現像液を塗布する手段、前記現像液に浸漬させる手段などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
また、前記現像手段は、前記現像液を交換する現像液交換手段、前記現像液を供給する現像液供給手段などを有していてもよい。
前記現像液としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルカリ性液、水系現像液、有機溶剤などが挙げられ、これらの中でも、弱アルカリ性の水溶液が好ましい。該弱アルカリ性液の塩基成分としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナトリウム、リン酸カリウム、ピロリン酸ナトリウム、ピロリン酸カリウム、硼砂などが挙げられる。
前記弱アルカリ性の水溶液のpHとしては、例えば、約8〜12が好ましく、約9〜11がより好ましい。前記弱アルカリ性の水溶液としては、例えば、0.1〜5質量%の炭酸ナトリウム水溶液又は炭酸カリウム水溶液などが挙げられる。
前記現像液の温度としては、前記感光層の現像性に合わせて適宜選択することができ、例えば、約25℃〜40℃が好ましい。
前記現像液の温度としては、前記感光層の現像性に合わせて適宜選択することができ、例えば、約25℃〜40℃が好ましい。
前記現像液は、界面活性剤、消泡剤、有機塩基(例えば、エチレンジアミン、エタノールアミン、テトラメチルアンモニウムハイドロキサイド、ジエチレントリアミン、トリエチレンペンタミン、モルホリン、トリエタノールアミン等)や、現像を促進させるため有機溶剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミド類、ラクトン類等)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶液と有機溶剤を混合した水系現像液であってもよく、有機溶剤単独であってもよい。
−エッチング工程−
前記エッチング工程としては、公知のエッチング処理方法の中から適宜選択した方法により行うことができる。
前記エッチング処理に用いられるエッチング液としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記金属層が銅で形成されている場合には、塩化第二銅溶液、塩化第二鉄溶液、アルカリエッチング溶液、過酸化水素系エッチング液などが挙げられ、これらの中でも、エッチングファクターの点から塩化第二鉄溶液が好ましい。また、公知のサンドブラスト法を用いることができる。
前記エッチング工程によりエッチング処理した後に前記パターンを除去することにより、前記基体の表面に配線パターン(回路)を形成することができる。
前記エッチング工程としては、公知のエッチング処理方法の中から適宜選択した方法により行うことができる。
前記エッチング処理に用いられるエッチング液としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記金属層が銅で形成されている場合には、塩化第二銅溶液、塩化第二鉄溶液、アルカリエッチング溶液、過酸化水素系エッチング液などが挙げられ、これらの中でも、エッチングファクターの点から塩化第二鉄溶液が好ましい。また、公知のサンドブラスト法を用いることができる。
前記エッチング工程によりエッチング処理した後に前記パターンを除去することにより、前記基体の表面に配線パターン(回路)を形成することができる。
−メッキ工程−
前記メッキ工程としては、公知のメッキ処理の中から適宜選択した適宜選択した方法により行うことができる。
前記メッキ処理としては、例えば、硫酸銅メッキ、ピロリン酸銅メッキ等の銅メッキ、ハイスローはんだメッキ等のはんだメッキ、ワット浴(硫酸ニッケル−塩化ニッケル)メッキ、スルファミン酸ニッケル等のニッケルメッキ、ハード金メッキ、ソフト金メッキ等の金メッキなど処理が挙げられる。
前記メッキ工程によりメッキ処理した後に前記パターンを除去することにより、また更に必要に応じて不要部をレジスト剥離処理等で除去することにより、前記基体の表面に金属配線パターン(回路)を形成することができる。
前記メッキ工程としては、公知のメッキ処理の中から適宜選択した適宜選択した方法により行うことができる。
前記メッキ処理としては、例えば、硫酸銅メッキ、ピロリン酸銅メッキ等の銅メッキ、ハイスローはんだメッキ等のはんだメッキ、ワット浴(硫酸ニッケル−塩化ニッケル)メッキ、スルファミン酸ニッケル等のニッケルメッキ、ハード金メッキ、ソフト金メッキ等の金メッキなど処理が挙げられる。
前記メッキ工程によりメッキ処理した後に前記パターンを除去することにより、また更に必要に応じて不要部をレジスト剥離処理等で除去することにより、前記基体の表面に金属配線パターン(回路)を形成することができる。
−硬化処理工程−
前記硬化処理工程は、前記ソルダーレジストとしての感光性組成物からなる前記感光層に対し、前記現像工程が行われた後、形成された永久パターンに対して硬化処理を行う工程である。
前記硬化処理工程は、前記ソルダーレジストとしての感光性組成物からなる前記感光層に対し、前記現像工程が行われた後、形成された永久パターンに対して硬化処理を行う工程である。
前記硬化処理としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、全面露光処理、全面加熱処理などが好適に挙げられる。
前記全面露光処理の方法としては、例えば、前記現像工程の後に、前記永久パターンが形成された前記感光性積層体上の全面を露光する方法が挙げられる。該全面露光により、前記感光層を形成する感光性組成物中の樹脂の硬化が促進され、前記永久パターンの表面が硬化される。
前記全面露光を行う装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、超高圧水銀灯などのUV露光機が好適に挙げられる。
前記全面露光を行う装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、超高圧水銀灯などのUV露光機が好適に挙げられる。
前記全面加熱処理の方法としては、前記現像工程の後に、前記永久パターンが形成された前記感光性積層体上の全面を加熱する方法が挙げられる。該全面加熱により、前記永久パターンの表面の膜強度が高められる。
前記全面加熱における加熱温度としては、120〜250℃が好ましく、120〜200℃がより好ましい。該加熱温度が120℃未満であると、加熱処理による膜強度の向上が得られないことがあり、250℃を超えると、前記感光性組成物中の樹脂の分解が生じ、膜質が弱く脆くなることがある。
前記全面加熱における加熱時間としては、10〜120分が好ましく、15〜60分がより好ましい。
前記全面加熱を行う装置としては、特に制限はなく、公知の装置の中から、目的に応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、IRヒーターなどが挙げられる。
前記全面加熱における加熱温度としては、120〜250℃が好ましく、120〜200℃がより好ましい。該加熱温度が120℃未満であると、加熱処理による膜強度の向上が得られないことがあり、250℃を超えると、前記感光性組成物中の樹脂の分解が生じ、膜質が弱く脆くなることがある。
前記全面加熱における加熱時間としては、10〜120分が好ましく、15〜60分がより好ましい。
前記全面加熱を行う装置としては、特に制限はなく、公知の装置の中から、目的に応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、IRヒーターなどが挙げられる。
〔プリント配線板の製造方法〕
本発明の前記パターン形成方法は、プリント配線板の製造、特にスルーホール又はビアホールなどのホール部を有するプリント配線板の製造に好適に使用することができる。以下、本発明のパターン形成方法を利用したプリント配線板の製造方法の一例について説明する。
本発明の前記パターン形成方法は、プリント配線板の製造、特にスルーホール又はビアホールなどのホール部を有するプリント配線板の製造に好適に使用することができる。以下、本発明のパターン形成方法を利用したプリント配線板の製造方法の一例について説明する。
スルーホール又はビアホールなどのホール部を有するプリント配線板の製造方法としては、(1)前記基体としてホール部を有するプリント配線板形成用基板上に、前記パターン形成材料を、その感光層が前記基体側となる位置関係にて積層して感光性積層体を形成し、(2)前記感光性積層体の前記基体とは反対の側から、所望の領域に光照射行い感光層を硬化させ、(3)前記感光性積層体から前記パターン形成材料における支持体を除去し、(4)前記感光性積層体における感光層を現像して、該感光性積層体中の未硬化部分を除去することによりパターンを形成することができる。
なお、前記(3)における前記支持体の除去は、前記(2)と前記(4)との間で行う代わりに、前記(1)と前記(2)との間で行ってもよい。
その後、プリント配線板を得るには、前記形成したパターンを用いて、前記プリント配線板形成用基板をエッチング処理又はメッキ処理する方法(例えば、公知のサブトラクティブ法又はアディティブ法(例えば、セミアディティブ法、フルアディティブ法))により処理すればよい。これらの中でも、工業的に有利なテンティングでプリント配線板を形成するためには、前記サブトラクティブ法が好ましい。前記処理後プリント配線板形成用基板に残存する硬化樹脂は剥離させ、また、前記セミアディティブ法の場合は、剥離後さらに銅薄膜部をエッチングすることにより、所望のプリント配線板を製造することができる。また、多層プリント配線板も、前記プリント配線板の製造法と同様に製造が可能である。
次に、前記パターン形成材料を用いたスルーホールを有するプリント配線板の製造方法について、更に説明する。
まずスルーホールを有し、表面が金属メッキ層で覆われたプリント配線板形成用基板を用意する。前記プリント配線板形成用基板としては、例えば、銅張積層基板及びガラス−エポキシなどの絶縁基体に銅メッキ層を形成した基板又はこれらの基板に層間絶縁膜を積層し、銅メッキ層を形成した基板(積層基板)を用いることができる。
次に、前記パターン形成材料上に保護フィルムを有する場合には、該保護フィルムを剥離して、前記パターン形成材料における感光層が前記プリント配線板形成用基板の表面に接するようにして加圧ローラを用いて圧着する(積層工程)。これにより、前記プリント配線板形成用基板と前記感光性積層体とをこの順に有する感光性積層体が得られる。
前記パターン形成材料の積層温度としては、特に制限はなく、例えば、室温(15〜30℃)又は加熱下(30〜180℃)が挙げられ、これらの中でも、加温下(60〜140℃)が好ましい。
前記圧着ロールのロール圧としては、特に制限はなく、例えば、0.1〜1MPaが好ましい。
前記圧着の速度としては、特に制限はなく、1〜3m/分が好ましい。また、前記プリント配線板形成用基板を予備加熱しておいてもよく、また、減圧下で積層してもよい。
前記パターン形成材料の積層温度としては、特に制限はなく、例えば、室温(15〜30℃)又は加熱下(30〜180℃)が挙げられ、これらの中でも、加温下(60〜140℃)が好ましい。
前記圧着ロールのロール圧としては、特に制限はなく、例えば、0.1〜1MPaが好ましい。
前記圧着の速度としては、特に制限はなく、1〜3m/分が好ましい。また、前記プリント配線板形成用基板を予備加熱しておいてもよく、また、減圧下で積層してもよい。
前記感光性積層体の形成は、前記プリント配線板形成用基板上に前記パターン形成材料を積層してもよく、また、前記パターン形成材料製造用の感光性組成物溶液などを前記プリント配線板形成用基板の表面に直接塗布し、乾燥させることにより前記プリント配線板形成用基板上に感光層及び支持体を積層してもよい。
次に、前記感光性積層体の基体とは反対側の面から、光を照射して感光層を硬化させる。なお、この際、必要に応じて(例えば、支持体の光透過性が不十分な場合など)前記支持体を剥離してから露光を行ってもよい。
この時点で、前記支持体を未だ剥離していない場合には、前記感光性積層体から前記支持体を剥離する(剥離工程)。
次に、前記プリント配線板形成用基板上の感光層の未硬化領域を、適当な現像液にて溶解除去して、配線パターン形成用の硬化層とスルーホールの金属層保護用硬化層のパターンを形成し、前記プリント配線板形成用基板の表面に金属層を露出させる(現像工程)。
また、現像後に必要に応じて後加熱処理や後露光処理によって、硬化部の硬化反応を更に促進させる処理をおこなってもよい。現像は上記のようなウエット現像法であってもよく、ドライ現像法であってもよい。
次いで、前記プリント配線板形成用基板の表面に露出した金属層をエッチング液で溶解除去する(エッチング工程)。スルーホールの開口部は、硬化樹脂組成物(テント膜)で覆われているので、エッチング液がスルーホール内に入り込んでスルーホール内の金属メッキを腐食することなく、スルーホールの金属メッキは所定の形状で残ることになる。これより、前記プリント配線板形成用基板に配線パターンが形成される。
前記エッチング液としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記金属層が銅で形成されている場合には、塩化第二銅溶液、塩化第二鉄溶液、アルカリエッチング溶液、過酸化水素系エッチング液などが挙げられ、これらの中でも、エッチングファクターの点から塩化第二鉄溶液が好ましい。
次に、強アルカリ水溶液などにて前記硬化層を剥離片として、前記プリント配線板形成用基板から除去する(硬化物除去工程)。
前記強アルカリ水溶液における塩基成分としては、特に制限はなく、例えば、水酸化ナトリウム、水酸化カリウムなどが挙げられる。
前記強アルカリ水溶液のpHとしては、例えば、約12〜14が好ましく、約13〜14がより好ましい。
前記強アルカリ水溶液としては、特に制限はなく、例えば、1〜10質量%の水酸化ナトリウム水溶液又は水酸化カリウム水溶液などが挙げられる。
前記強アルカリ水溶液における塩基成分としては、特に制限はなく、例えば、水酸化ナトリウム、水酸化カリウムなどが挙げられる。
前記強アルカリ水溶液のpHとしては、例えば、約12〜14が好ましく、約13〜14がより好ましい。
前記強アルカリ水溶液としては、特に制限はなく、例えば、1〜10質量%の水酸化ナトリウム水溶液又は水酸化カリウム水溶液などが挙げられる。
また、プリント配線板は、多層構成のプリント配線板であってもよい。なお、前記パターン形成材料は上記のエッチングプロセスのみでなく、メッキプロセスに使用してもよい。前記メッキ法としては、例えば、硫酸銅メッキ、ピロリン酸銅メッキ等の銅メッキ、ハイフローはんだメッキ等のはんだメッキ、ワット浴(硫酸ニッケル−塩化ニッケル)メッキ、スルファミン酸ニッケル等のニッケルメッキ、ハード金メッキ、ソフト金メッキ等の金メッキなどが挙げられる。
なお、前記基体が多層配線基板などのプリント配線板である場合は、該プリント配線板上に前記ソルダーレジストとしての感光性組成物からなる感光層を形成し、更に、以下のように半田付けを行うことができる。
即ち、前記現像工程により、前記永久パターンである硬化層が形成され、前記プリント配線板の表面に金属層が露出される。該プリント配線板の表面に露出した金属層の部位に対して金メッキを行った後、半田付けを行う。そして、半田付けを行った部位に、半導体や部品などを実装する。このとき、前記硬化層による永久パターンが、保護膜あるいは絶縁膜(層間絶縁膜)としての機能を発揮し、外部からの衝撃や隣同士の電極の導通が防止される。
即ち、前記現像工程により、前記永久パターンである硬化層が形成され、前記プリント配線板の表面に金属層が露出される。該プリント配線板の表面に露出した金属層の部位に対して金メッキを行った後、半田付けを行う。そして、半田付けを行った部位に、半導体や部品などを実装する。このとき、前記硬化層による永久パターンが、保護膜あるいは絶縁膜(層間絶縁膜)としての機能を発揮し、外部からの衝撃や隣同士の電極の導通が防止される。
〔用途〕
本発明の感光性組成物、該感光性組成物により形成された感光層を有する前記パターン形成材料及び前記感光性積層体は、温度に対する感度変動が少なく、高精細なパターンを形成可能であるため、各種パターンの形成、カラーフィルタ、柱材、リブ材、スペーサー、隔壁等の液晶構造部材の製造、ホログラム、マイクロマシン、プルーフの製造などに好適に用いることができる。
本発明のパターン形成装置及びパターン形成方法は、本発明の前記感光性積層体を備えているため、各種パターンの形成、カラーフィルタ、柱材、リブ材、スペーサー、隔壁等の液晶構造部材の製造、ホログラム、マイクロマシン、プルーフの製造などに好適に用いることができる。
本発明の感光性組成物、該感光性組成物により形成された感光層を有する前記パターン形成材料及び前記感光性積層体は、温度に対する感度変動が少なく、高精細なパターンを形成可能であるため、各種パターンの形成、カラーフィルタ、柱材、リブ材、スペーサー、隔壁等の液晶構造部材の製造、ホログラム、マイクロマシン、プルーフの製造などに好適に用いることができる。
本発明のパターン形成装置及びパターン形成方法は、本発明の前記感光性積層体を備えているため、各種パターンの形成、カラーフィルタ、柱材、リブ材、スペーサー、隔壁等の液晶構造部材の製造、ホログラム、マイクロマシン、プルーフの製造などに好適に用いることができる。
以下、実施例により本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
−パターン形成材料の製造−
前記支持体として16μm厚のポリエチレンテレフタレートフィルム(16FB50、東レ(株)製)に、下記の組成からなる感光性組成物溶液を調製し、超音波分散機((株)エスエムテー、UH−600)で、分散後、塗布し乾燥させて、15μm厚の感光層(回路形成用レジスト層)を形成し、次いで、該感光層の上に、前記保護フィルムとして20μm厚のポリプロピレンフィルム(E200、王子製紙(株)製)をラミネートで積層し、前記パターン形成材料を製造した。
−パターン形成材料の製造−
前記支持体として16μm厚のポリエチレンテレフタレートフィルム(16FB50、東レ(株)製)に、下記の組成からなる感光性組成物溶液を調製し、超音波分散機((株)エスエムテー、UH−600)で、分散後、塗布し乾燥させて、15μm厚の感光層(回路形成用レジスト層)を形成し、次いで、該感光層の上に、前記保護フィルムとして20μm厚のポリプロピレンフィルム(E200、王子製紙(株)製)をラミネートで積層し、前記パターン形成材料を製造した。
[感光性組成物溶液の組成]
・カーボンナノチューブ(ワコーケミカル社製、商品名:カーボンナノチューブ(多層)、販売元:和光純薬工業(株)) 0.01質量部
・t−ブチルカテコール 0.0049質量部
・メタクリル酸/メチルメタクリレート/スチレン共重合体
(共重合体組成(質量比):29/19/52、質量平均分子量:60,000、
酸価189、30質量%濃度品、メチルエチルケトン/プロピレングリコールモノメ
チルエーテル溶媒) 84.4質量部
・下記構造式(64)で表される重合性モノマー 8.2質量部
・デカメチレンジイソシアネートとテトラエチレンオキシドモノメタクリレートの
1/2モル比付加物 8.2質量部
・ドデカプロピレングリコールジアクリレート 4.3重量部
・2,2−ビス(o−クロロフェニル)−4,4’,5,5’−テトラフェニルビイ
ミダゾール 3.4質量部
・下記構造式(65)で表される増感剤 0.20質量部
・マラカイトグリーンシュウ酸 0.03質量部
・ロイコクリスタルバイオレット 0.2質量部
・メチルエチルケトン 30質量部
・プロピレングリコールモノメチルエーテル 40質量部
・フッ素系界面活性剤(大日本インキ社製、F780F、30質量%濃度品、メチルエ
チルケトン/プロピレングリコールモノメチルエーテル溶媒) 0.14質量部
なお、前記バインダー(メタクリル酸/メチルメタクリレート/スチレン共重合体)のガラス転移温度(Tg)は、131℃であった。
・カーボンナノチューブ(ワコーケミカル社製、商品名:カーボンナノチューブ(多層)、販売元:和光純薬工業(株)) 0.01質量部
・t−ブチルカテコール 0.0049質量部
・メタクリル酸/メチルメタクリレート/スチレン共重合体
(共重合体組成(質量比):29/19/52、質量平均分子量:60,000、
酸価189、30質量%濃度品、メチルエチルケトン/プロピレングリコールモノメ
チルエーテル溶媒) 84.4質量部
・下記構造式(64)で表される重合性モノマー 8.2質量部
・デカメチレンジイソシアネートとテトラエチレンオキシドモノメタクリレートの
1/2モル比付加物 8.2質量部
・ドデカプロピレングリコールジアクリレート 4.3重量部
・2,2−ビス(o−クロロフェニル)−4,4’,5,5’−テトラフェニルビイ
ミダゾール 3.4質量部
・下記構造式(65)で表される増感剤 0.20質量部
・マラカイトグリーンシュウ酸 0.03質量部
・ロイコクリスタルバイオレット 0.2質量部
・メチルエチルケトン 30質量部
・プロピレングリコールモノメチルエーテル 40質量部
・フッ素系界面活性剤(大日本インキ社製、F780F、30質量%濃度品、メチルエ
チルケトン/プロピレングリコールモノメチルエーテル溶媒) 0.14質量部
なお、前記バインダー(メタクリル酸/メチルメタクリレート/スチレン共重合体)のガラス転移温度(Tg)は、131℃であった。
但し、構造式(64)中、EOは、エチレンオキサイド基を表し、POは、プロピレンオキサイド基を表し、POは下記構造式(iii)及び(iv)のいずれであってもよく、m+nの平均値は10であり、p+qの平均値は4である。
前記基体として、表面を研磨、水洗、乾燥した銅張積層板(スルーホールなし、銅厚み12μm)の表面に、前記パターン形成材料の前記保護フィルムを剥がしながら、該パターン形成材料の感光層が前記銅張積層板に接するようにしてラミネーター(MODEL8B−720−PH、大成ラミネーター(株)製)を用いて圧着させ、前記銅張積層板と、前記感光層と、前記ポリエチレンテレフタレートフィルム(支持体)とがこの順に積層された感光性積層体を調製した。
圧着条件は、圧着ロール温度105℃、圧着ロール圧力0.3MPa、ラミネート速度1m/分とした。
前記感光性積層体を用い、前記感光性組成物からなる感光層を露光し、該感光層の感度、解像度、温度に対する感度変動、エッジラフネスを下記の方法により測定した。用いた露光装置は、405nmのレーザ光源を有するパターン形成装置を用いてマスクレス露光するタイプのものである。なお、前記パターン形成装置は、前記DMDからなる光変調手段を有している。
結果を表1に示す。
圧着条件は、圧着ロール温度105℃、圧着ロール圧力0.3MPa、ラミネート速度1m/分とした。
前記感光性積層体を用い、前記感光性組成物からなる感光層を露光し、該感光層の感度、解像度、温度に対する感度変動、エッジラフネスを下記の方法により測定した。用いた露光装置は、405nmのレーザ光源を有するパターン形成装置を用いてマスクレス露光するタイプのものである。なお、前記パターン形成装置は、前記DMDからなる光変調手段を有している。
結果を表1に示す。
<感度の測定>
前記感光性積層体における前記パターン形成材料の感光層に対し、前記ポリエチレンテレフタレートフィルム(支持体)側から、前記光照射手段としての405nmのレーザ光源を有するパターン形成装置を用いて、1mJ/cm2から21/6倍間隔で100mJ/cm2までの光エネルギー量の異なる光を照射して露光し、前記感光層の一部の領域を硬化させた。
室温にて15分間静置した後、前記積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取り、銅張積層板上の前記感光層の全面に、炭酸ナトリウム水溶液(30℃、1質量%)をスプレー圧0.15MPaにて、下記の方法により求めた最短現像時間の2倍の時間スプレーし、未硬化の領域を溶解除去し、残った硬化領域の厚みを測定した。
次いで、光の照射量と、硬化層の厚さとの関係をプロットして感度曲線を得た。こうして得た感度曲線から、硬化領域の厚さが未露光時の厚みと同じ15μmとなった時の光エネルギー量を、感光層を硬化させるために必要な光エネルギー量とした。
この結果、前記感光層を硬化させるために必要な光エネルギー量は、3mJ/cm2であった。なお、前記パターン形成装置は、前記DMDからなる光変調手段を有し、前記パターン形成材料を備えている。
前記感光性積層体における前記パターン形成材料の感光層に対し、前記ポリエチレンテレフタレートフィルム(支持体)側から、前記光照射手段としての405nmのレーザ光源を有するパターン形成装置を用いて、1mJ/cm2から21/6倍間隔で100mJ/cm2までの光エネルギー量の異なる光を照射して露光し、前記感光層の一部の領域を硬化させた。
室温にて15分間静置した後、前記積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取り、銅張積層板上の前記感光層の全面に、炭酸ナトリウム水溶液(30℃、1質量%)をスプレー圧0.15MPaにて、下記の方法により求めた最短現像時間の2倍の時間スプレーし、未硬化の領域を溶解除去し、残った硬化領域の厚みを測定した。
次いで、光の照射量と、硬化層の厚さとの関係をプロットして感度曲線を得た。こうして得た感度曲線から、硬化領域の厚さが未露光時の厚みと同じ15μmとなった時の光エネルギー量を、感光層を硬化させるために必要な光エネルギー量とした。
この結果、前記感光層を硬化させるために必要な光エネルギー量は、3mJ/cm2であった。なお、前記パターン形成装置は、前記DMDからなる光変調手段を有し、前記パターン形成材料を備えている。
<最短現像時間の測定>
前記感光性積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取り、銅張積層板上の前記感光層の全面に30℃の1質量%炭酸ナトリウム水溶液を0.15MPaの圧力にてスプレーし、炭酸ナトリウム水溶液のスプレー開始から銅張積層板上の感光層が溶解除去されるまでに要した時間を測定し、これを最短現像時間とした。この最短現像時間が短い程、現像性に優れる。
この結果、前記最短現像時間は、10秒であった。
前記感光性積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取り、銅張積層板上の前記感光層の全面に30℃の1質量%炭酸ナトリウム水溶液を0.15MPaの圧力にてスプレーし、炭酸ナトリウム水溶液のスプレー開始から銅張積層板上の感光層が溶解除去されるまでに要した時間を測定し、これを最短現像時間とした。この最短現像時間が短い程、現像性に優れる。
この結果、前記最短現像時間は、10秒であった。
<解像度の測定>
上記と同様の方法により前記感光性積層体を作製し、室温(23℃、55%RH)にて10分間静置した。得られた前記感光性積層体のポリエチレンテレフタレートフィルム(支持体)上から、前記パターン形成装置を用いて、ライン/スペース=1/1でライン幅5μm〜20μmまで1μm刻みで各線幅の露光を行い、ライン幅20μm〜50μmまで5μm刻みで各線幅の露光を行った。この際の露光量は、感度測定で得られた前記パターン形成材料の感光層を硬化させるために必要な光エネルギー量である。
室温にて10分間静置した後、前記感光性積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取った。銅張積層板上の感光層の全面に、前記現像液として炭酸ナトリウム水溶液(30℃、1質量%)をスプレー圧0.15MPaにて前記の方法により求めた最短現像時間の2倍の時間スプレーし、未硬化領域を溶解除去した。この様にして得られた硬化樹脂パターン付き銅張積層板の表面を光学顕微鏡で観察し、硬化樹脂パターンのラインにツマリ、ヨレ等の異常のない最小のライン幅を測定し、これを解像度とした。該解像度は数値が小さいほど良好である。
上記と同様の方法により前記感光性積層体を作製し、室温(23℃、55%RH)にて10分間静置した。得られた前記感光性積層体のポリエチレンテレフタレートフィルム(支持体)上から、前記パターン形成装置を用いて、ライン/スペース=1/1でライン幅5μm〜20μmまで1μm刻みで各線幅の露光を行い、ライン幅20μm〜50μmまで5μm刻みで各線幅の露光を行った。この際の露光量は、感度測定で得られた前記パターン形成材料の感光層を硬化させるために必要な光エネルギー量である。
室温にて10分間静置した後、前記感光性積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取った。銅張積層板上の感光層の全面に、前記現像液として炭酸ナトリウム水溶液(30℃、1質量%)をスプレー圧0.15MPaにて前記の方法により求めた最短現像時間の2倍の時間スプレーし、未硬化領域を溶解除去した。この様にして得られた硬化樹脂パターン付き銅張積層板の表面を光学顕微鏡で観察し、硬化樹脂パターンのラインにツマリ、ヨレ等の異常のない最小のライン幅を測定し、これを解像度とした。該解像度は数値が小さいほど良好である。
<温度に対する感度変動の測定>
上記解像度の測定と同様の方法で、但し、感光性積層体を室温(22℃、55%RH)で放置したところを、27℃、55%RHに変更し、ライン/スペース=1/1でライン幅20μmの線幅の露光を行った。この際の露光量は、5mJ/cm2とした。
得られたパターンを光学顕微鏡で観察し、硬化樹脂パターンのライン幅を測定し、ライン幅20μmとなるときの露光量を求めた。室温(22℃、55%RH)で放置したときの露光量をD0とし、27℃、55%RHで放置したときの露光量をD1として、|(D1−D0)|の値を算出した。温度変化に対する露光量の変動が小さいほど良好である。
上記解像度の測定と同様の方法で、但し、感光性積層体を室温(22℃、55%RH)で放置したところを、27℃、55%RHに変更し、ライン/スペース=1/1でライン幅20μmの線幅の露光を行った。この際の露光量は、5mJ/cm2とした。
得られたパターンを光学顕微鏡で観察し、硬化樹脂パターンのライン幅を測定し、ライン幅20μmとなるときの露光量を求めた。室温(22℃、55%RH)で放置したときの露光量をD0とし、27℃、55%RHで放置したときの露光量をD1として、|(D1−D0)|の値を算出した。温度変化に対する露光量の変動が小さいほど良好である。
<エッジラフネスの測定>
前記パターン形成装置を用いて、前記露光ヘッドの走査方向と直交する方向の横線パターンが形成されるように露光を行った以外は、前記解像度の測定と同様にしてパターンを形成した。得られたパターンのうち、ライン幅30μmのラインの任意の5箇所について、レーザ顕微鏡(VK−9500、キーエンス(株)製;対物レンズ50倍)を用いて観察し、視野内のエッジ位置のうち、最も膨らんだ箇所(山頂部)と、最もくびれた箇所(谷底部)との差を絶対値として求め、観察した5箇所の平均値を算出し、これをエッジラフネスとした。該エッジラフネスは、値が小さい程、良好な性能を示すため好ましい。
前記パターン形成装置を用いて、前記露光ヘッドの走査方向と直交する方向の横線パターンが形成されるように露光を行った以外は、前記解像度の測定と同様にしてパターンを形成した。得られたパターンのうち、ライン幅30μmのラインの任意の5箇所について、レーザ顕微鏡(VK−9500、キーエンス(株)製;対物レンズ50倍)を用いて観察し、視野内のエッジ位置のうち、最も膨らんだ箇所(山頂部)と、最もくびれた箇所(谷底部)との差を絶対値として求め、観察した5箇所の平均値を算出し、これをエッジラフネスとした。該エッジラフネスは、値が小さい程、良好な性能を示すため好ましい。
(実施例2)
実施例1のカーボンナノチューブの量を0.01質量部(感光層全固形分あたり0.02質量%に相当)から0.001質量部(感光層全固形分あたり0.002質量%に相当)に変更した以外は実施例1と同様にして、感光性積層体を作製し、実施例1と同様の評価を行った。結果を表1に示す。
実施例1のカーボンナノチューブの量を0.01質量部(感光層全固形分あたり0.02質量%に相当)から0.001質量部(感光層全固形分あたり0.002質量%に相当)に変更した以外は実施例1と同様にして、感光性積層体を作製し、実施例1と同様の評価を行った。結果を表1に示す。
(実施例3)
実施例1のカーボンナノチューブの量を0.01質量部(感光層全固形分あたり0.02質量%に相当)から0.0001質量部(感光層全固形分あたり0.0002質量%に相当)に変更した以外は実施例1と同様にして、感光性積層体を作製し、実施例1と同様の評価を行った。結果を表1に示す。
実施例1のカーボンナノチューブの量を0.01質量部(感光層全固形分あたり0.02質量%に相当)から0.0001質量部(感光層全固形分あたり0.0002質量%に相当)に変更した以外は実施例1と同様にして、感光性積層体を作製し、実施例1と同様の評価を行った。結果を表1に示す。
(実施例4)
実施例1のカーボンナノチューブの量を0.01質量部(感光層全固形分あたり0.02質量%に相当)から0.1質量部(感光層全固形分あたり0.2質量%に相当)に変更した以外は実施例1と同様にして、感光性積層体を作製し、実施例1と同様の評価を行った。結果を表1に示す。
実施例1のカーボンナノチューブの量を0.01質量部(感光層全固形分あたり0.02質量%に相当)から0.1質量部(感光層全固形分あたり0.2質量%に相当)に変更した以外は実施例1と同様にして、感光性積層体を作製し、実施例1と同様の評価を行った。結果を表1に示す。
(実施例5)
実施例1において、前記感光性組成物中のカーボンナノチューブ(ワコーケミカル社製、商品名:カーボンナノチューブ(多層)、販売元:和光純薬工業(株))を、Strem Chemicals, Inc.社製のカーボンナノチューブ(単層)(販売元:和光純薬工業(株))に代え、添加量を0.01質量部(感光層全固形分あたり0.02質量%に相当)から1質量部(感光層全固形分あたり2質量%に相当)に変更した以外は実施例1と同様にして、感光性積層体を作製し、実施例1と同様の評価を行った。結果を表1に示す。
実施例1において、前記感光性組成物中のカーボンナノチューブ(ワコーケミカル社製、商品名:カーボンナノチューブ(多層)、販売元:和光純薬工業(株))を、Strem Chemicals, Inc.社製のカーボンナノチューブ(単層)(販売元:和光純薬工業(株))に代え、添加量を0.01質量部(感光層全固形分あたり0.02質量%に相当)から1質量部(感光層全固形分あたり2質量%に相当)に変更した以外は実施例1と同様にして、感光性積層体を作製し、実施例1と同様の評価を行った。結果を表1に示す。
(実施例6)
実施例1において、前記感光性組成物中のカーボンナノチューブ(ワコーケミカル社製、商品名:カーボンナノチューブ(多層)(販売元:和光純薬工業(株)))を、Ulvick Inc.社製、商品名フラーレンC60/C70(販売元:和光純薬工業(株)))に代えた以外は、実施例1と同様にしてパターン形成材料、及び感光性積層体を製造した。
得られた前記感光性積層体を用い、実施例1と同様にして評価を行った。結果を表1に示す。
実施例1において、前記感光性組成物中のカーボンナノチューブ(ワコーケミカル社製、商品名:カーボンナノチューブ(多層)(販売元:和光純薬工業(株)))を、Ulvick Inc.社製、商品名フラーレンC60/C70(販売元:和光純薬工業(株)))に代えた以外は、実施例1と同様にしてパターン形成材料、及び感光性積層体を製造した。
得られた前記感光性積層体を用い、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例7)
実施例1において、前記感光性組成物中の前記構造式(65)で表される増感剤を、下記構造式(66)で表される増感剤に代えた以外は、実施例1と同様にしてパターン形成材料、及び感光性積層体を製造した。
得られた前記感光性積層体を用い、実施例1と同様にして評価を行った。結果を表1に示す。
実施例1において、前記感光性組成物中の前記構造式(65)で表される増感剤を、下記構造式(66)で表される増感剤に代えた以外は、実施例1と同様にしてパターン形成材料、及び感光性積層体を製造した。
得られた前記感光性積層体を用い、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例8)
実施例1において、前記感光性組成物中の前記構造式(65)で表される増感剤を、下記構造式(67)で表される増感剤に代えた以外は、実施例1と同様にしてパターン形成材料、及び感光性積層体を製造した。
得られた前記感光性積層体を用い、実施例1と同様にして評価を行った。結果を表1に示す。
実施例1において、前記感光性組成物中の前記構造式(65)で表される増感剤を、下記構造式(67)で表される増感剤に代えた以外は、実施例1と同様にしてパターン形成材料、及び感光性積層体を製造した。
得られた前記感光性積層体を用い、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例9)
実施例1において、前記感光性組成物中の前記構造式(65)で表される増感剤を、2−クロロ−10−ブチルアクリドン(増感剤)に代えた以外は、実施例1と同様にしてパターン形成材料、及び感光性積層体を製造した。
得られた前記感光性積層体を用い、前記感光層の感度、解像度、エッジラフネスを実施例1と同様にして測定した。結果を表1に示す。
実施例1において、前記感光性組成物中の前記構造式(65)で表される増感剤を、2−クロロ−10−ブチルアクリドン(増感剤)に代えた以外は、実施例1と同様にしてパターン形成材料、及び感光性積層体を製造した。
得られた前記感光性積層体を用い、前記感光層の感度、解像度、エッジラフネスを実施例1と同様にして測定した。結果を表1に示す。
(実施例10)
実施例1において、前記感光性組成物中の前記構造式(65)で表される増感剤を、チオキサントン化合物(商品名SpeedcureCPTX、Lambson Group Ltd.製)(増感剤)に代えた以外は、実施例1と同様にしてパターン形成材料、及び感光性積層体を製造した。
得られた前記感光性積層体を用い、前記感光層の感度、解像度、エッジラフネスを実施例1と同様にして測定した。結果を表1に示す。
実施例1において、前記感光性組成物中の前記構造式(65)で表される増感剤を、チオキサントン化合物(商品名SpeedcureCPTX、Lambson Group Ltd.製)(増感剤)に代えた以外は、実施例1と同様にしてパターン形成材料、及び感光性積層体を製造した。
得られた前記感光性積層体を用い、前記感光層の感度、解像度、エッジラフネスを実施例1と同様にして測定した。結果を表1に示す。
(実施例11)
実施例1において、前記感光性組成物中の前記構造式(65)で表される増感剤を、9−フェニルアクリジン(増感剤)に代えた以外は、実施例1と同様にしてパターン形成材料、及び感光性積層体を製造した。
得られた前記感光性積層体を用い、前記感光層の感度、解像度、エッジラフネスを実施例1と同様にして測定した。結果を表1に示す。
実施例1において、前記感光性組成物中の前記構造式(65)で表される増感剤を、9−フェニルアクリジン(増感剤)に代えた以外は、実施例1と同様にしてパターン形成材料、及び感光性積層体を製造した。
得られた前記感光性積層体を用い、前記感光層の感度、解像度、エッジラフネスを実施例1と同様にして測定した。結果を表1に示す。
(実施例12)
実施例1において、前記感光性組成物中の前記構造式(65)で表される増感剤を、下記構造式(68)で表される塩基性核を有する化合物(増感剤)に代えた以外は、実施例1と同様にしてパターン形成材料、及び感光性積層体を製造した。
実施例1において、前記感光性組成物中の前記構造式(65)で表される増感剤を、下記構造式(68)で表される塩基性核を有する化合物(増感剤)に代えた以外は、実施例1と同様にしてパターン形成材料、及び感光性積層体を製造した。
得られた前記感光性積層体を用い、前記感光層の感度、解像度、エッジラフネスを実施例1と同様にして測定した。結果を表1に示す。
(実施例13)
実施例1において、前記感光性組成物中の前記構造式(65)で表される増感剤を、下記構造式(69)で表される酸性核を有する化合物(増感剤)に代えた以外は、実施例1と同様にしてパターン形成材料、及び感光性積層体を製造した。
実施例1において、前記感光性組成物中の前記構造式(65)で表される増感剤を、下記構造式(69)で表される酸性核を有する化合物(増感剤)に代えた以外は、実施例1と同様にしてパターン形成材料、及び感光性積層体を製造した。
得られた前記感光性積層体を用い、前記感光層の感度、解像度、エッジラフネスを実施例1と同様にして測定した。結果を表1に示す。
(実施例14)
実施例1において、前記感光性組成物中の前記構造式(65)で表される増感剤を、下記構造式(70)で表される蛍光増白剤(増感剤)に代えた以外は、実施例1と同様にしてパターン形成材料、及び感光性積層体を製造した。
実施例1において、前記感光性組成物中の前記構造式(65)で表される増感剤を、下記構造式(70)で表される蛍光増白剤(増感剤)に代えた以外は、実施例1と同様にしてパターン形成材料、及び感光性積層体を製造した。
得られた前記感光性積層体を用い、前記感光層の感度、解像度、エッジラフネス、を実施例1と同様にして測定した。結果を表1に示す。
(実施例15)
実施例1において、パターン形成装置を、下記に説明するものに代えて2重露光を行った以外は、実施例1と同様にして評価を行った。結果を表1に示す。
実施例1において、パターン形成装置を、下記に説明するものに代えて2重露光を行った以外は、実施例1と同様にして評価を行った。結果を表1に示す。
<<パターン形成装置>>
前記光照射手段として図12〜18に示した合波レーザ光源と、前記光変調手段として図6に概略図を示した主走査方向にマイクロミラー58が1024個配列されたマイクロミラー列が、副走査方向に768組配列された内、1024個×256列のみを駆動するように制御したDMD36と、図5に示した光を前記パターン形成材料に結像する光学系とを有する露光ヘッド30を備えたパターン形成装置10を用いた。
前記光照射手段として図12〜18に示した合波レーザ光源と、前記光変調手段として図6に概略図を示した主走査方向にマイクロミラー58が1024個配列されたマイクロミラー列が、副走査方向に768組配列された内、1024個×256列のみを駆動するように制御したDMD36と、図5に示した光を前記パターン形成材料に結像する光学系とを有する露光ヘッド30を備えたパターン形成装置10を用いた。
各露光ヘッド30すなわち各DMD36の設定傾斜角度としては、使用可能な1024列×256行のマイクロミラー58を使用してちょうど2重露光となる角度θidealよりも若干大きい角度を採用した。この角度θidealは、N重露光の数N、使用可能なマイクロミラー58の列方向の個数s、使用可能なマイクロミラー58の列方向の間隔p、及び露光ヘッド30を傾斜させた状態においてマイクロミラーによって形成される走査線のピッチδに対し、下記式1、
spsinθideal≧Nδ(式1)
により与えられる。本実施形態におけるDMD36は、上記のとおり、縦横の配置間隔が等しい多数のマイクロミラー58が矩形格子状に配されたものであるので、
pcosθideal=δ(式2)
であり、上記式1は、
stanθideal=N(式3)
であり、s=256、N=2であるので、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、たとえば0.50度を採用した。
spsinθideal≧Nδ(式1)
により与えられる。本実施形態におけるDMD36は、上記のとおり、縦横の配置間隔が等しい多数のマイクロミラー58が矩形格子状に配されたものであるので、
pcosθideal=δ(式2)
であり、上記式1は、
stanθideal=N(式3)
であり、s=256、N=2であるので、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、たとえば0.50度を採用した。
まず、2重露光における解像度のばらつきと露光むらを補正するため、被露光面の露光パターンの状態を調べた。結果を図33に示した。図33においては、ステージ14を静止させた状態でパターン形成材料12の被露光面上に投影される、露光ヘッド3012と3021が有するDMD36の使用可能なマイクロミラー58からの光点群のパターンを示した。また、下段部分に、上段部分に示したような光点群のパターンが現れている状態でステージ14を移動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を、露光エリア3212と3221について示した。なお、図33では、説明の便宜のため、使用可能なマイクロミラー58の1列おきの露光パターンを、画素列群Aによる露光パターンと画素列群Bによる露光パターンとに分けて示したが、実際の被露光面上における露光パターンは、これら2つの露光パターンを重ね合わせたものである。
図33に示したとおり、露光ヘッド3012と3021の間の相対位置の、理想的な状態からのずれの結果として、画素列群Aによる露光パターンと画素列群Bによる露光パターンとの双方で、露光エリア3212と3221の前記露光ヘッドの走査方向と直交する座標軸上で重複する露光領域において、理想的な2重露光の状態よりも露光過多な領域が生じていることが判る。
前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド3012ついては露光エリア3212内の光点P(1,1)とP(256,1)の位置を、露光ヘッド3021については露光エリア3221内の光点P(1,1024)とP(256,1024)の位置を検出し、それらを結ぶ直線の傾斜角度と、露光ヘッドの走査方向とがなす角度を測定した。
実傾斜角度θ’を用いて、下記式4
ttanθ’=N(式4)
の関係を満たす値tに最も近い自然数Tを、露光ヘッド3012と3021のそれぞれについて導出した。露光ヘッド3012についてはT=254、露光ヘッド3021についてはT=255がそれぞれ導出された。その結果、図34において斜線で覆われた部分78及び80を構成するマイクロミラーが、本露光時に使用しないマイクロミラーとして特定された。
ttanθ’=N(式4)
の関係を満たす値tに最も近い自然数Tを、露光ヘッド3012と3021のそれぞれについて導出した。露光ヘッド3012についてはT=254、露光ヘッド3021についてはT=255がそれぞれ導出された。その結果、図34において斜線で覆われた部分78及び80を構成するマイクロミラーが、本露光時に使用しないマイクロミラーとして特定された。
その後、図34において斜線で覆われた領域78及び80を構成する光点以外の光点に対応するマイクロミラーに関して、同様にして図34において斜線で覆われた領域82及び網掛けで覆われた領域84を構成する光点に対応するマイクロミラーが特定され、本露光時に使用しないマイクロミラーとして追加された。
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しないように制御した。
これにより、露光エリア3212と3221のうち、複数の前記露光ヘッドで形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とすることができる。
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しないように制御した。
これにより、露光エリア3212と3221のうち、複数の前記露光ヘッドで形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とすることができる。
(比較例1)
実施例1において、カーボンナノチューブを添加したところを、添加せずに感光性組成物を調製した以外は同様にして、パターン形成材料、及び感光性積層体を製造した。
得られた前記感光性積層体を用い、前記感光層の感度、解像度、エッジラフネスを実施例1と同様にして測定した。結果を表1に示す。
実施例1において、カーボンナノチューブを添加したところを、添加せずに感光性組成物を調製した以外は同様にして、パターン形成材料、及び感光性積層体を製造した。
得られた前記感光性積層体を用い、前記感光層の感度、解像度、エッジラフネスを実施例1と同様にして測定した。結果を表1に示す。
(実施例16)
−パターン形成材料の製造−
前記支持体として16μm厚のポリエチレンテレフタレートフィルムに、下記の組成からなる感光性組成物溶液を塗布し乾燥させて、35μm厚の感光層(ソルダーレジスト層)を形成し、次いで、該感光層の上に、前記保護フィルムとして20μm厚のポリプロピレンフィルムをラミネートで積層し、前記パターン形成材料を製造した。
−パターン形成材料の製造−
前記支持体として16μm厚のポリエチレンテレフタレートフィルムに、下記の組成からなる感光性組成物溶液を塗布し乾燥させて、35μm厚の感光層(ソルダーレジスト層)を形成し、次いで、該感光層の上に、前記保護フィルムとして20μm厚のポリプロピレンフィルムをラミネートで積層し、前記パターン形成材料を製造した。
〔感光性組成物溶液の組成〕
・カーボンナノチューブ(ワコーケミカル社製、商品名:カーボンナノチューブ(多層)、販売元:和光純薬工業(株)) 0.01質量部
・N−フェニルグリシン 0.2質量部
・硫酸バリウム(堺化学工業社製、B30)分散液 63質量部
・エポキシアクリレート化合物:バインダー
(PR−300、濃度67%、昭和高分子(株)製) 24.5質量部
・側鎖に(メタ)アクリロイル基及びカルボキシル基を有するビニル共重合体:バイン
ダー(SPC−2X、濃度60%、昭和高分子(株)製) 13.8質量部
・下記構造式(71)で表されるエポキシ化合物:熱架橋剤 16.7質量部
・ジペンタエリスリトールヘキサアクリレート:重合性化合物 5.5質量部
・下記構造式(72)で表される増感剤 0.23質量部
・イルガキュア369(チバ・スペシャルティ・ケミカルズ(株)社製) 5質量部
・フェノキサジン 0.055質量部
・ジシアンジアミド 0.4質量部
・2MA−OK(四国化成工業(株)製) 0.3質量部
・フタロシアニングリーン 0.42質量部
・F780F(大日本インキ(株)製の30質量%濃度品 メチルエチルケトン溶液)
0.066質量部
・メチルエチルケトン 60.0質量部
・カーボンナノチューブ(ワコーケミカル社製、商品名:カーボンナノチューブ(多層)、販売元:和光純薬工業(株)) 0.01質量部
・N−フェニルグリシン 0.2質量部
・硫酸バリウム(堺化学工業社製、B30)分散液 63質量部
・エポキシアクリレート化合物:バインダー
(PR−300、濃度67%、昭和高分子(株)製) 24.5質量部
・側鎖に(メタ)アクリロイル基及びカルボキシル基を有するビニル共重合体:バイン
ダー(SPC−2X、濃度60%、昭和高分子(株)製) 13.8質量部
・下記構造式(71)で表されるエポキシ化合物:熱架橋剤 16.7質量部
・ジペンタエリスリトールヘキサアクリレート:重合性化合物 5.5質量部
・下記構造式(72)で表される増感剤 0.23質量部
・イルガキュア369(チバ・スペシャルティ・ケミカルズ(株)社製) 5質量部
・フェノキサジン 0.055質量部
・ジシアンジアミド 0.4質量部
・2MA−OK(四国化成工業(株)製) 0.3質量部
・フタロシアニングリーン 0.42質量部
・F780F(大日本インキ(株)製の30質量%濃度品 メチルエチルケトン溶液)
0.066質量部
・メチルエチルケトン 60.0質量部
なお、上記硫酸バリウム分散液は、硫酸バリウム(堺化学社製、B30)22質量部と、上記PR−300のジエチレングリコールモノメチルエーテルアセテート67質量%溶液12質量部と、メチルエチルケトン29質量部と、を予め混合した後、モーターミルM−200(アイガー社製)で、直径1.0mmのジルコニアビーズを用い、周速9m/sにて3.5時間分散して調製した。
−永久パターンの形成−
−−積層体の調製−−
次に、前記基材として、配線形成済みの銅張積層板(スルーホールなし、銅厚み12μm)の表面に化学研磨処理を施して調製した。該銅張積層板上に、前記感光性フィルムの感光層が前記銅張積層板に接するようにして、前記感光性フィルムにおける保護フィルムを剥がしながら、真空ラミネーター(ニチゴーモートン(株)製、VP130)を用いて積層させ、前記銅張積層板と、前記感光層と、前記ポリエチレンテレフタレートフィルム(支持体)とがこの順に積層された感光性積層体を調製した。
圧着条件は、真空引き時間40秒、圧着温度70℃、圧着圧力0.2MPa、加圧時間10秒とした。
前記感光性積層体を用い、前記感光性組成物からなる感光層を露光し、該感光層の感度、解像度、エッジラフネスを実施例1と同様にして測定した。結果を表1に示す。
なお、最短現像時間は、20秒であった。
−−積層体の調製−−
次に、前記基材として、配線形成済みの銅張積層板(スルーホールなし、銅厚み12μm)の表面に化学研磨処理を施して調製した。該銅張積層板上に、前記感光性フィルムの感光層が前記銅張積層板に接するようにして、前記感光性フィルムにおける保護フィルムを剥がしながら、真空ラミネーター(ニチゴーモートン(株)製、VP130)を用いて積層させ、前記銅張積層板と、前記感光層と、前記ポリエチレンテレフタレートフィルム(支持体)とがこの順に積層された感光性積層体を調製した。
圧着条件は、真空引き時間40秒、圧着温度70℃、圧着圧力0.2MPa、加圧時間10秒とした。
前記感光性積層体を用い、前記感光性組成物からなる感光層を露光し、該感光層の感度、解像度、エッジラフネスを実施例1と同様にして測定した。結果を表1に示す。
なお、最短現像時間は、20秒であった。
(比較例2)
実施例16において、前記感光性組成物中のカーボンナノチューブを添加したところを、添加せずに調製した以外は、実施例16と同様にしてパターン形成材料、及び感光性積層体を製造した。
得られた前記感光性積層体を用い、前記感光層の感度、解像度、エッジラフネスを実施例1と同様にして測定した。結果を表1に示す。
実施例16において、前記感光性組成物中のカーボンナノチューブを添加したところを、添加せずに調製した以外は、実施例16と同様にしてパターン形成材料、及び感光性積層体を製造した。
得られた前記感光性積層体を用い、前記感光層の感度、解像度、エッジラフネスを実施例1と同様にして測定した。結果を表1に示す。
B1〜B7 レーザビーム
L1〜L7 コリメータレンズ
LD1〜LD7 GaN系半導体レーザ
10 露光装置
12 感光層
14 移動ステージ
18 設置台
20 ガイド
22 ゲート
24 スキャナ
26 センサ(カメラ)
28 スリット
30 露光ヘッド
36 デジタル・マイクロミラー・デバイス(DMD)
38 ファイバアレイ光源
40 集光レンズ系
50 結像レンズ系
58 マイクロミラー(描素部)
60 レーザモジュール
62 マルチモード光ファイバ
64 光ファイバ
66 レーザ出射部
110 ヒートブロック
111 マルチキャビティレーザ
113 ロッドレンズ
114 レンズアレイ
140 レーザアレイ
200 集光レンズ
L1〜L7 コリメータレンズ
LD1〜LD7 GaN系半導体レーザ
10 露光装置
12 感光層
14 移動ステージ
18 設置台
20 ガイド
22 ゲート
24 スキャナ
26 センサ(カメラ)
28 スリット
30 露光ヘッド
36 デジタル・マイクロミラー・デバイス(DMD)
38 ファイバアレイ光源
40 集光レンズ系
50 結像レンズ系
58 マイクロミラー(描素部)
60 レーザモジュール
62 マルチモード光ファイバ
64 光ファイバ
66 レーザ出射部
110 ヒートブロック
111 マルチキャビティレーザ
113 ロッドレンズ
114 レンズアレイ
140 レーザアレイ
200 集光レンズ
Claims (34)
- パターン情報に基づいて、光を変調しながら、露光ヘッドと感光層の被露光面とを相対走査して露光することにより、前記被露光面上に二次元パターンを形成する前記感光層に含有される感光性組成物であって、
少なくともバインダー、重合性化合物、光重合開始剤、及び炭素系ナノ材料を含むことを特徴とする感光性組成物。 - 感光層を露光し現像した場合に、露光及び現像後において、前記感光層の被露光部の厚みが変化しない露光の最小エネルギー量が、0.1mJ/cm2〜100mJ/cm2である前記感光層に含有される感光性組成物であって、
少なくともバインダー、重合性化合物、光重合開始剤、及び炭素系ナノ材料を含むことを特徴とする感光性組成物。 - パターン情報に基づいて、光を変調しながら、露光ヘッドと感光層の被露光面とを相対走査して露光することにより、前記被露光面上に二次元パターンを形成する露光に用いられる前記感光層に含有される感光性組成物であって、
前記感光層を露光し現像した場合に、露光及び現像後において、前記感光層の被露光部の厚みが変化しない露光の最小エネルギー量が、0.1mJ/cm2〜100mJ/cm2であり、
少なくともバインダー、重合性化合物、光重合開始剤、及び炭素系ナノ材料を含むことを特徴とする感光性組成物。 - 前記炭素系ナノ材料が、カーボンナノチューブ、フラーレン、及びカーボンマイクロコイルからなる群より選択される少なくとも1種であることを特徴とする請求項1〜請求項3のいずれか1項に記載の感光性組成物。
- 増感剤を含有することを特徴とする請求項1〜請求項4のいずれか1項に記載の感光性組成物。
- 前記増感剤が、縮環系化合物、ジ置換アミノベンゼンを部分構造として有する化合物、塩基性核を有する化合物、酸性核を有する化合物、及び蛍光増白剤からなる群より選択される少なくとも1種を含むことを特徴とする請求項5のいずれか1項に記載の感光性組成物。
- 前記縮環系化合物が、アクリドン系化合物、チオキサントン系化合物、クマリン系化合物、及びアクリジン系化合物からなる群より選択される少なくとも1種を含むことを特徴とする請求項6に記載の感光性組成物。
- 前記ジ置換アミノベンゼンを部分構造として有する化合物が、下記一般式(I)〜(VII)で表される少なくとも1種の化合物であることを特徴とする請求項6又は請求項7に記載の感光性組成物。
〔一般式(I)中、R1、R2、R5、及びR6は、それぞれ独立して、脂肪族基及び芳香族基のいずれかを表し、R3、R4、R7、R8、及びR9〜R12は、それぞれ独立して、水素原子又は一価の置換基を表す。R1とR2、R5とR6、R1とR3、R2とR4、R5とR7、及びR6とR8は、それぞれ独立して、互いに結合し、含窒素複素環を形成していてもよい。〕
〔一般式(II)中、R21及びR22は、それぞれ独立して、脂肪族基及び芳香族基のいずれかを表し、R23〜R30は、それぞれ独立して、水素原子及び一価の置換基のいずれかを表し、Xは、酸素原子、硫黄原子、ジアルキルメチレン基、イミノ基、及び脂肪族基若しくは芳香族基が置換したイミノ基のいずれかを表す。R21とR22、R21とR23、及びR22とR24は、それぞれ独立して、互いに結合し、含窒素複素環を形成していてもよく、複素環に縮合するベンゼン環は置換基を有していてもよい。〕
〔一般式(III)中、R31及びR32は、それぞれ独立して、脂肪族基及び芳香族基のいずれかを表し、R33〜R37は、それぞれ独立して、水素原子及び一価の置換基のいずれかを表し、R38は、一価の置換基を表す。R31とR32、R31とR33、及びR32とR34は、それぞれ独立して、互いに結合し、含窒素複素環を形成していてもよい。〕
〔一般式(IV)中、R41及びR42は、それぞれ独立して、脂肪族基及び芳香族基のいずれかを表し、R43〜R47は、それぞれ独立して、水素原子及び一価の置換基を表し、Yは、酸素原子及びNR48のいずれかを表し、R48は、水素原子及び一価の置換基のいずれかを表す。R41とR42、R41とR43、及びR42とR44は、それぞれ独立して、互いに結合し、含窒素複素環を形成していてもよい。〕
〔一般式(V)〜(VII)中、環A〜Gは、それぞれ独立に芳香族炭化水素環及び芳香族複素環のいずれかを基本骨格とするものであり、環Aと環B、環Dと環E、環Fと環Gは、それぞれ独立に、互いに結合してNを含む結合環を形成していても良い。
前記一般式(VI)中、連結基Lは、芳香族炭化水素環及び芳香族複素環の少なくともいずれかを含む連結基を表し、連結基LとNとは、該芳香族炭化水素環及び芳香族複素環のいずれかで結合しており、nは2以上のいずれかの整数を表す。
前記一般式(VII)中、Rは、置換基を有していても良いアルキル基を表す。
なお、環A〜G及び連結基Lは、置換基を有していても良く、これらの置換基同士が互いに結合して環を形成していても良い。〕 - 前記塩基性核を有する化合物が、シアニン系色素、ヘミシアニン系色素、スチリル系色素、ストレプトシアニン系色素からなる群より選択される少なくとも1種であることを特徴とする請求項6〜請求項8のいずれか1項に記載の感光性組成物。
- 前記酸性核を有する化合物が、メロシアニン化合物及びロダシアニン化合物からなる群より選択される少なくとも1種であることを特徴とする請求項6〜請求項9のいずれか1項に記載の感光性組成物。
- 前記蛍光増白剤が、非イオン性核を有する化合物であることを特徴とする請求項6〜請求項10のいずれか1項に記載の感光性組成物。
- 前記光重合開始剤が、ハロゲン化炭化水素誘導体、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、メタロセン類、及びアシルホスフィンオキシド化合物からなる群より選択される少なくとも1種のラジカル発生剤であることを特徴とする請求項1〜請求項11のいずれか1項に記載の感光性組成物。
- 前記重合性化合物が、ウレタン基及びアリール基の少なくともいずれかを有するモノマーを含むことを特徴とする請求項1〜請求項12のいずれか1項に記載の感光性組成物。
- 前記重合性化合物が、エチレンオキサイド基及びプロピレンオキサイド基の少なくともいずれかを有するモノマーであることを特徴とする請求項1〜請求項13のいずれか1項に記載の感光性組成物。
- 前記バインダーが共重合体を含み、該共重合体がスチレン又はスチレン誘導体の少なくともいずれかに由来する構造単位を有することを特徴とする請求項1〜請求項14のいずれか1項に記載の感光性組成物。
- 前記バインダーのガラス転移温度(Tg)が、80℃以上であることを特徴とする請求項1〜請求項15のいずれか1項に記載の感光性組成物。
- 更に熱架橋剤を含み、
且つ、前記バインダーがエポキシアクリレート化合物の少なくとも1種、並びに、側鎖に(メタ)アクリロイル基及び酸性基を有するビニル共重合体の少なくとも1種の少なくともいずれかを含むことを特徴とする請求項1〜請求項16のいずれか1項に記載の感光性組成物。 - 前記熱架橋剤が、エポキシ化合物、オキセタン化合物、ポリイソシアネート化合物、ポリイソシアネート化合物にブロック剤を反応させて得られる化合物、及びメラミン誘導体からなる群より選択される少なくとも1種であることを特徴とする請求項17に記載の感光性組成物。
- 支持体と、該支持体上に請求項1〜請求項18のいずれか1項に記載の感光性組成物を含む感光層と、を少なくとも有することを特徴とするパターン形成材料。
- 支持体上に、該支持体に近い側から順にクッション層と前記感光層とを設けてなることを特徴とする請求項19に記載のパターン形成材料。
- 基体上に、請求項1〜請求項18のいずれか1項に記載の感光性組成物を含む感光層を設けてなることを特徴とする感光性積層体。
- 前記感光層が、請求項19又は請求項20に記載のパターン形成材料により形成されてなることを特徴とする請求項21に記載の感光性積層体。
- 請求項21又は請求項22に記載の感光性積層体の感光層に対して、露光する露光工程を少なくとも含むことを特徴とするパターン形成方法。
- 前記露光工程において、350〜415nmの波長のレーザ光で露光することを特徴とする請求項23に記載のパターン形成方法。
- 前記露光工程において、感光層に対し、光照射手段、及び前記光照射手段からの光を受光し出射するn個(ただし、nは2以上の自然数)の2次元状に配列された描素部を有し、パターン情報に応じて前記描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露光ヘッドの走査方向に対し、前記描素部の列方向が所定の設定傾斜角度θをなすように配置された露光ヘッドを用い、
前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部を指定し、
前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部の制御を行い、
前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて行われることを特徴とする請求項23又は請求項24に記載のパターン形成方法。 - 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域の露光に関与する描素部のうち、前記ヘッド間つなぎ領域におけるN重露光を実現するために使用する前記描素部を指定することを特徴とする請求項25に記載のパターン形成方法。
- 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外の領域におけるN重露光を実現するために使用する前記描素部を指定することを特徴とする請求項25又は請求項26に記載のパターン形成方法。
- 設定傾斜角度θが、N重露光数のN、描素部の列方向の個数s、前記描素部の列方向の間隔p、及び露光ヘッドを傾斜させた状態において該露光ヘッドの走査方向と直交する方向に沿った描素部の列方向のピッチδに対し、次式、spsinθideal≧Nδを満たすθidealに対し、θ≧θidealの関係を満たすように設定されることを特徴とする請求項25〜請求項27のいずれか1項に記載のパターン形成方法。
- 使用描素部指定手段が、
描素部により生成されて被露光面上の露光領域を構成する描素単位としての光点位置を、被露光面上において検出する光点位置検出手段と、
前記光点位置検出手段による検出結果に基づき、N重露光を実現するために使用する描素部を選択する描素部選択手段と
を備えることを特徴とする請求項25〜請求項28のいずれか1項に記載のパターン形成方法。 - パターン情報が表すパターンの所定部分の寸法が、指定された使用描素部により実現できる対応部分の寸法と一致するように前記パターン情報を変換することを特徴とする請求項25〜請求項29のいずれか1項に記載のパターン形成方法。
- 前記露光工程の後に、感光層を現像する現像工程を有することを特徴とする請求項23〜請求項30のいずれか1項に記載のパターン形成方法。
- 前記現像工程の後に、エッチング処理工程及びめっき処理工程の少なくとも一方の工程を有することを特徴とする請求項31に記載のパターン形成方法。
- 前記現像工程の後に、感光層に対して硬化処理を行う硬化処理工程を有することを特徴とする請求項31に記載のパターン形成方法。
- 前記感光性積層体に、保護膜、層間絶縁膜、又はソルダーレジストパターンの少なくともいずれかを形成することを特徴とする請求項33に記載のパターン形成方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005351356A JP2007156111A (ja) | 2005-12-05 | 2005-12-05 | 感光性組成物、パターン形成材料、感光性積層体、及びパターン形成方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005351356A JP2007156111A (ja) | 2005-12-05 | 2005-12-05 | 感光性組成物、パターン形成材料、感光性積層体、及びパターン形成方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007156111A true JP2007156111A (ja) | 2007-06-21 |
Family
ID=38240560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005351356A Pending JP2007156111A (ja) | 2005-12-05 | 2005-12-05 | 感光性組成物、パターン形成材料、感光性積層体、及びパターン形成方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007156111A (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010132812A (ja) * | 2008-12-05 | 2010-06-17 | Nec Corp | カーボンナノチューブインク組成物及びカーボンナノチューブインク組成物の噴霧方法 |
JP2010164907A (ja) * | 2009-01-19 | 2010-07-29 | Mitsubishi Paper Mills Ltd | 感光性組成物および平版印刷版 |
ITTO20100193A1 (it) * | 2010-03-15 | 2011-09-16 | St Microelectronics Srl | Metodo di fotolitografia ad elevata risoluzione per la realizzazione di nanostrutture, in particolare nella fabbricazione di dispositivi elettronici integrati |
WO2011129186A1 (ja) * | 2010-04-15 | 2011-10-20 | ニチゴー・モートン株式会社 | 感光性樹脂組成物、これを用いたフォトレジストフィルム、レジストパターンの形成方法及びプリント配線板の製造方法 |
JP2012189888A (ja) * | 2011-03-11 | 2012-10-04 | Fujifilm Corp | 青色感光性組成物、カラーフィルタ、カラーフィルタの製造方法、液晶表示装置、及び有機el表示装置 |
JP2015513224A (ja) * | 2012-03-30 | 2015-04-30 | エーエスエムエル ネザーランズ ビー.ブイ. | リソグラフィ装置、デバイス製造方法及びアテニュエータの製造方法 |
CN112882144A (zh) * | 2021-01-21 | 2021-06-01 | 北京理工大学 | 基于纳米环图案化界面的紫外滤光结构及其设计方法 |
CN114623762A (zh) * | 2020-12-11 | 2022-06-14 | 中国科学院上海光学精密机械研究所 | 一种用于双光束及多光束三维重合对准的方法 |
-
2005
- 2005-12-05 JP JP2005351356A patent/JP2007156111A/ja active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010132812A (ja) * | 2008-12-05 | 2010-06-17 | Nec Corp | カーボンナノチューブインク組成物及びカーボンナノチューブインク組成物の噴霧方法 |
JP2010164907A (ja) * | 2009-01-19 | 2010-07-29 | Mitsubishi Paper Mills Ltd | 感光性組成物および平版印刷版 |
ITTO20100193A1 (it) * | 2010-03-15 | 2011-09-16 | St Microelectronics Srl | Metodo di fotolitografia ad elevata risoluzione per la realizzazione di nanostrutture, in particolare nella fabbricazione di dispositivi elettronici integrati |
US8715915B2 (en) | 2010-03-15 | 2014-05-06 | Stmicroelectronics S.R.L. | High-resolution photolithographic method for forming nanostructures, in particular in the manufacture of integrated electronic devices |
WO2011129186A1 (ja) * | 2010-04-15 | 2011-10-20 | ニチゴー・モートン株式会社 | 感光性樹脂組成物、これを用いたフォトレジストフィルム、レジストパターンの形成方法及びプリント配線板の製造方法 |
CN102844709A (zh) * | 2010-04-15 | 2012-12-26 | 日合墨东株式会社 | 感光性树脂组合物、使用其的光致抗蚀膜、抗蚀图案的形成方法及印刷电路板的制造方法 |
TWI416257B (zh) * | 2011-03-11 | 2013-11-21 | Fujifilm Corp | 藍色感光性組成物、彩色濾光片、彩色濾光片之製造方法、液晶顯示裝置、及有機el顯示裝置 |
JP2012189888A (ja) * | 2011-03-11 | 2012-10-04 | Fujifilm Corp | 青色感光性組成物、カラーフィルタ、カラーフィルタの製造方法、液晶表示装置、及び有機el表示装置 |
JP2015513224A (ja) * | 2012-03-30 | 2015-04-30 | エーエスエムエル ネザーランズ ビー.ブイ. | リソグラフィ装置、デバイス製造方法及びアテニュエータの製造方法 |
US9594304B2 (en) | 2012-03-30 | 2017-03-14 | Asml Netherlands B.V. | Lithography apparatus, a device manufacturing method, a method of manufacturing an attenuator |
CN114623762A (zh) * | 2020-12-11 | 2022-06-14 | 中国科学院上海光学精密机械研究所 | 一种用于双光束及多光束三维重合对准的方法 |
CN114623762B (zh) * | 2020-12-11 | 2023-02-10 | 中国科学院上海光学精密机械研究所 | 一种用于双光束及多光束三维重合对准的方法 |
CN112882144A (zh) * | 2021-01-21 | 2021-06-01 | 北京理工大学 | 基于纳米环图案化界面的紫外滤光结构及其设计方法 |
CN112882144B (zh) * | 2021-01-21 | 2021-11-30 | 北京理工大学 | 基于纳米环图案化界面的紫外滤光结构及其设计方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007197390A (ja) | オキシム誘導体、感光性組成物、パターン形成材料、感光性積層体、並びにパターン形成装置及びパターン形成方法 | |
CN101124516B (zh) | 图案形成材料、以及图案形成装置和图案形成方法 | |
JP4996870B2 (ja) | 光重合開始剤、感光性組成物、感光性フィルム、感光性積層体、永久パターン形成方法、及びプリント基板 | |
JP2007079120A (ja) | 感光性組成物、パターン形成材料、感光性積層体、並びにパターン形成装置及びパターン形成方法 | |
JP2007108629A (ja) | 感光性組成物、パターン形成材料、感光性積層体、並びにパターン形成装置及びパターン形成方法 | |
JP2007156111A (ja) | 感光性組成物、パターン形成材料、感光性積層体、及びパターン形成方法 | |
JP4208145B2 (ja) | パターン形成用組成物、パターン形成材料、及びパターン形成装置並びにパターン形成方法 | |
JP5063764B2 (ja) | パターン形成材料、並びに、パターン形成装置及びパターン形成方法 | |
JP2007017814A (ja) | パターン形成材料、並びにパターン形成装置及び永久パターン形成方法 | |
JP2006220863A (ja) | パターン形成材料、並びにパターン形成装置及びパターン形成方法 | |
JP2007086224A (ja) | パターン形成材料、並びにパターン形成装置及びパターン形成方法 | |
JP2005249970A (ja) | パターン形成材料、並びにパターン形成装置及びパターン形成方法 | |
JP2007108628A (ja) | 感光性組成物、パターン形成材料、感光性積層体、並びにパターン形成装置及びパターン形成方法 | |
JP2007078890A (ja) | 感光性組成物、パターン形成材料、感光性積層体、並びにパターン形成装置及びパターン形成方法 | |
JP4651524B2 (ja) | パターン形成材料、並びに、パターン形成装置及びパターン形成方法 | |
JP2007178459A (ja) | パターン形成材料、並びにパターン形成装置及びパターン形成方法 | |
JP2007187924A (ja) | パターン形成材料、並びに、パターン形成装置及びパターン形成方法 | |
JP2006227223A (ja) | パターン形成用組成物、パターン形成材料、及びパターン形成方法 | |
JP2007286487A (ja) | 感光性組成物、感光性フィルム、永久パターン形成方法、及びプリント基板 | |
JP4468201B2 (ja) | パターン形成用組成物、パターン形成材料、及びパターン形成装置並びにパターン形成方法 | |
JP2007079114A (ja) | 感光性組成物、パターン形成材料、感光性積層体、並びにパターン形成装置及びパターン形成方法 | |
JP2006251390A (ja) | パターン形成材料、並びにパターン形成装置及びパターン形成方法 | |
JP2006251562A (ja) | パターン形成材料、並びにパターン形成装置及びパターン形成方法 | |
JP2007078889A (ja) | 感光性組成物、パターン形成材料、感光性積層体、並びにパターン形成装置及びパターン形成方法 | |
JP4520879B2 (ja) | パターン形成材料、及びパターン形成装置並びにパターン形成方法 |