[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007155221A - Combustion heater - Google Patents

Combustion heater Download PDF

Info

Publication number
JP2007155221A
JP2007155221A JP2005351629A JP2005351629A JP2007155221A JP 2007155221 A JP2007155221 A JP 2007155221A JP 2005351629 A JP2005351629 A JP 2005351629A JP 2005351629 A JP2005351629 A JP 2005351629A JP 2007155221 A JP2007155221 A JP 2007155221A
Authority
JP
Japan
Prior art keywords
combustion
combustion chamber
plate
air supply
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005351629A
Other languages
Japanese (ja)
Other versions
JP4704900B2 (en
Inventor
Hideyuki Tomiura
英行 冨浦
Yoshito Umeda
良人 梅田
Satoshi Haneki
敏 羽木
Seigo Kurachi
清悟 倉知
Kazuji Murase
数司 村瀬
Toshio Furuhashi
鋭夫 古橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eiken Ind Co Ltd
Rinnai Corp
Toho Gas Co Ltd
Original Assignee
Eiken Ind Co Ltd
Rinnai Corp
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eiken Ind Co Ltd, Rinnai Corp, Toho Gas Co Ltd filed Critical Eiken Ind Co Ltd
Priority to JP2005351629A priority Critical patent/JP4704900B2/en
Publication of JP2007155221A publication Critical patent/JP2007155221A/en
Application granted granted Critical
Publication of JP4704900B2 publication Critical patent/JP4704900B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Gas Burners (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently heat an object to be heated, and to prevent incomplete combustion due to leakage of premixed gas, in a combustion heater provided with a combustion chamber 15 of a center part, an air supply passage 16 supplying the premixed gas to the combustion chamber, and an exhaust passage 17 passing combustion gas generated by combustion of the premixed gas in the combustion chamber in a body 2 with one side face covered by a heating plate 12 for heating the object to be heated, and another side face covered by a heat insulating plate 13. <P>SOLUTION: A partition plate 14 is provided between the heating plate 12 and the heat insulating plate 13, the exhaust passage 17 is formed between the heating plate 12 and the partition plate 14, and the air supply passage 16 is formed between the heat insulating plate 13 and the partition plate 14. The combustion chamber 15 is divided into a heat insulating plate side and a heating plate side by the partition plate 14, and a communication hole 18 with a smaller area than a cross-sectional area of the combustion chamber 15, communicating the two portions is formed in the partition plate 14. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、マイクロコンバスタ(小型燃焼器)の技術を利用した燃焼加熱器に関する。   The present invention relates to a combustion heater using a micro combustor (small combustor) technique.

従来、スイスロール型のマイクロコンバスタを用いた燃焼加熱器が知られている(例えば、特許文献1参照)。この燃焼加熱器は、対向する一方の側面が被加熱物を加熱するための加熱板で覆われ、他方の側面が断熱板で覆われた器体内に、中央部の燃焼室と、燃焼室を中心とする2重の渦巻状の流路とを設け、一方の渦巻状流路を燃焼室に予混合ガスを供給する給気流路とし、他方の渦巻状流路を燃焼室での予混合ガスの燃焼により生じた燃焼ガスが流れる排気流路とするものである。予混合ガスは、給気流路と排気流路とを仕切る渦巻状のガイド壁を介して燃焼ガスと熱交換されて予熱され、小さな燃焼室でも燃焼が継続する。そして、燃焼ガスの熱により加熱板が加熱され、加熱板からの伝熱や輻射熱で被加熱物が加熱される。   Conventionally, a combustion heater using a Swiss roll type micro combustor is known (see, for example, Patent Document 1). This combustion heater has a combustion chamber in the center and a combustion chamber in a container in which one side surface facing is covered with a heating plate for heating an object to be heated and the other side surface is covered with a heat insulating plate. A double spiral channel is provided at the center, and one spiral channel is used as an air supply channel for supplying a premixed gas to the combustion chamber, and the other spiral channel is a premixed gas in the combustion chamber. This is an exhaust passage through which combustion gas generated by the combustion of the gas flows. The premixed gas is preheated by exchanging heat with the combustion gas via a spiral guide wall that partitions the air supply passage and the exhaust passage, and combustion continues even in a small combustion chamber. Then, the heating plate is heated by the heat of the combustion gas, and the object to be heated is heated by heat transfer or radiant heat from the heating plate.

この燃焼加熱器は電気ヒータの代替品として使用できる。また、ガスコンロのバーナに代えてこの燃焼加熱器を用いれば、裸火が出ないため安全になると共に、加熱部がフラットになって掃除が容易になるといった、最近流行のIHコンロと同様の効果が得られる。   This combustion heater can be used as an alternative to an electric heater. Also, if this combustion heater is used instead of a gas stove burner, it will be safe because there will be no open flame, and the heating section will be flat and easy to clean, which is the same effect as the recently popular IH stove. Is obtained.

然し、上記従来の燃焼加熱器では以下の不具合を生ずる。即ち、この燃焼加熱器は、給気流路及び排気流路の一側面が共に加熱板で閉塞され、両流路の他側面が共に断熱板で閉塞される構造になっており、そのため、排気流路に流れる燃焼ガスが加熱板だけでなく断熱板にも触れ、断熱板が燃焼ガスにより直接加熱される。その結果、断熱板を介しての燃焼ガスの放熱を完全に防止することは困難になる。更に、加熱板に排気流路に流れる燃焼ガスに加えて給気流路に流れる予混合ガスも触れ、加熱板が燃焼ガスと予混合ガスとの中間温度になり、断熱板を介しての燃焼ガスの放熱ロスと相俟って、被加熱物の加熱効率が悪くなる。また、給気流路と排気流路は上記の如く渦巻状のガイド壁で仕切られるが、このガイド壁の側縁をその全長に亘って加熱板と断熱板とに気密に接合することは困難であり、予混合ガスが燃焼室の手前で給気流路から排気流路にリークして、不完全燃焼するおそれもある。
特開2004−20083号公報
However, the conventional combustion heater has the following problems. In other words, this combustion heater has a structure in which one side of the air supply channel and the exhaust channel are both closed by the heating plate, and the other side of both channels is closed by the heat insulating plate. The combustion gas flowing in the passage touches not only the heating plate but also the heat insulating plate, and the heat insulating plate is directly heated by the combustion gas. As a result, it becomes difficult to completely prevent the heat release of the combustion gas through the heat insulating plate. Furthermore, in addition to the combustion gas flowing in the exhaust passage in addition to the combustion gas flowing to the heating plate, the premixed gas flowing in the supply passage is also touched so that the heating plate becomes an intermediate temperature between the combustion gas and the premixed gas, and the combustion gas passes through the heat insulating plate. Combined with the heat dissipation loss, the heating efficiency of the object to be heated becomes worse. In addition, the air supply channel and the exhaust channel are partitioned by the spiral guide wall as described above, but it is difficult to airtightly join the side edge of the guide wall to the heating plate and the heat insulating plate over the entire length thereof. In addition, the premixed gas may leak from the supply passage to the exhaust passage before the combustion chamber, resulting in incomplete combustion.
Japanese Patent Laid-Open No. 2004-20083

本発明は、以上の点に鑑み、上記従来の燃焼加熱器を改良し、被加熱物を効率良く加熱できるようにすると共に、予混合ガスのリークによる不完全燃焼の発生も防止できるようにした高品質の燃焼加熱器を提供することをその課題としている。   In view of the above points, the present invention has improved the above-described conventional combustion heater so that the object to be heated can be efficiently heated, and the occurrence of incomplete combustion due to leakage of the premixed gas can be prevented. The problem is to provide a high quality combustion heater.

上記課題を解決するために、本発明は、対向する一方の側面が被加熱物を加熱するための加熱板で覆われ、他方の側面が断熱板で覆われた器体内に、中央部の燃焼室と、燃焼室に予混合ガスを供給する給気流路と、燃焼室での予混合ガスの燃焼により生じた燃焼ガスが流れる排気流路とが設けられ、排気流路に流れる燃焼ガスの熱により、給気流路に流れる予混合ガスが予熱されると共に加熱板が加熱されるようにした燃焼加熱器において、加熱板と断熱板との間に設けられた中仕切り板を備え、加熱板と中仕切り板との間に排気流路が設けられると共に、断熱板と中仕切り板との間に給気流路が設けられ、中仕切り板を介して燃焼ガスと予混合ガスとの熱交換が行われるようにしたことを特徴とする。   In order to solve the above-described problems, the present invention is directed to the combustion of a central portion in a container in which one side surface facing is covered with a heating plate for heating an object to be heated and the other side surface is covered with a heat insulating plate. Chamber, an air supply passage for supplying the premixed gas to the combustion chamber, and an exhaust passage through which the combustion gas generated by the combustion of the premixed gas in the combustion chamber flows are provided, and the heat of the combustion gas flowing in the exhaust passage In the combustion heater in which the premixed gas flowing through the air supply passage is preheated and the heating plate is heated, the combustion heater includes a partition plate provided between the heating plate and the heat insulating plate, An exhaust passage is provided between the partition plate and an air supply passage is provided between the heat insulating plate and the partition plate, and heat exchange between the combustion gas and the premixed gas is performed via the partition plate. It is characterized by the fact that

本発明によれば、予混合ガスが中仕切り板を介しての燃焼ガスとの熱交換で予熱され、従来の燃焼加熱器と同様に小さな燃焼室でも燃焼が継続する。そして、本発明では、燃焼ガスが加熱板と中仕切り板との間の排気流路を断熱板に触れることなく流れるため、断熱板は燃焼ガスにより加熱されず、断熱板を介しての燃焼ガスの放熱を容易に防止することができる。更に、予混合ガスは断熱板と中仕切り板との間の給気流路を加熱板に触れることなく流れるため、加熱板が予混合ガスに熱を奪われることなく高温に加熱され、断熱板を介しての燃焼ガスの放熱ロスを防止できることと相俟って、被加熱物を高効率で加熱することができる。   According to the present invention, the premixed gas is preheated by heat exchange with the combustion gas via the partition plate, and combustion continues in a small combustion chamber as in the conventional combustion heater. In the present invention, since the combustion gas flows through the exhaust passage between the heating plate and the partition plate without touching the heat insulating plate, the heat insulating plate is not heated by the combustion gas, and the combustion gas passes through the heat insulating plate. Can be easily prevented. Furthermore, since the premixed gas flows through the air supply passage between the heat insulating plate and the partition plate without touching the heating plate, the heating plate is heated to a high temperature without taking heat away from the premixed gas, In combination with the ability to prevent the loss of heat dissipation of the combustion gas, the object to be heated can be heated with high efficiency.

また、本発明では、給気流路と排気流路とが中仕切り板で区画されているため、予混合ガスが給気流路から排気流路にリークすることはなく、予混合ガスのリークによる不完全燃焼を確実に防止できる。   Further, in the present invention, since the air supply flow path and the exhaust flow path are partitioned by the partition plate, the premixed gas does not leak from the air supply flow path to the exhaust flow path. Complete combustion can be reliably prevented.

本発明において、燃焼室は、中仕切り板により断熱板側の部分と加熱板側の部分との2部分に区画され、中仕切り板に、これら2部分を連通する、燃焼室の断面積より小面積の連通穴が形成されていることが望ましい。これによれば、燃焼室が中間で絞られることになり、給気流路から燃焼室の断熱板側の部分に流入する予混合ガスが燃焼室の加熱板側の部分を経て排気流路に短絡的に流れることが防止される。そのため、予混合ガスの燃焼室内での滞留時間が確保されて、燃焼が安定する。   In the present invention, the combustion chamber is divided into two parts, a part on the heat insulating plate side and a part on the heating plate side, by the partition plate, and is smaller than the cross-sectional area of the combustion chamber that communicates the two parts with the partition plate. It is desirable that a communication hole having an area is formed. According to this, the combustion chamber is throttled in the middle, and the premixed gas flowing from the air supply passage into the portion on the heat insulation plate side of the combustion chamber is short-circuited to the exhaust passage through the portion on the heating plate side of the combustion chamber. Flow is prevented. Therefore, the residence time of the premixed gas in the combustion chamber is ensured, and combustion is stabilized.

また、給気流路及び排気流路は、夫々、燃焼室を中心とする渦巻状に形成されていることが望ましい。これによれば、燃焼室内に予混合ガスの旋回流を生ずることになり、予混合ガスの燃焼室内での滞留時間が確保されると共に混合が促進されて、燃焼が一層安定する。また、排気流路の流路長が長くなり、加熱板に対する燃焼ガスの接触時間も長くなって、加熱板が効率良く加熱される。   Further, it is desirable that the air supply passage and the exhaust passage are each formed in a spiral shape with the combustion chamber as the center. According to this, a swirling flow of the premixed gas is generated in the combustion chamber, and the residence time of the premixed gas in the combustion chamber is ensured and the mixing is promoted to further stabilize the combustion. Further, the length of the exhaust passage is increased, the contact time of the combustion gas with the heating plate is increased, and the heating plate is efficiently heated.

ところで、上記従来の燃焼加熱器では、給気流路の渦巻きの方向と排気流路の渦巻きの方向とが同じになる。即ち、給気流路が外方から中央の燃焼室に向けて例えば時計方向に旋回する渦巻きである場合、排気流路も外方から中央の燃焼室に向けて時計方向に旋回する渦巻きになる。これは、排気流路が中央の燃焼室から外方に向けて反時計方向に旋回する渦巻きになることを意味する。そのため、給気流路から燃焼室に流入する予混合ガスの旋回方向に対し燃焼室から排気流路に流出する燃焼ガスの旋回方向が逆向きになる。その結果、通過抵抗が大きくなって、給気流路に予混合ガスを供給する給気装置の能力を高くすることが必要になる。これに対し、給気流路の渦巻きの方向と排気流路の渦巻きの方向とが互いに逆向きであれば、給気流路から燃焼室に流入する予混合ガスの旋回方向と燃焼室から排気流路に流出する燃焼ガスの旋回方向とが同じ向きになり、通過抵抗が減少して、給気流路に予混合ガスを供給する給気装置が比較的小能力のもので済み、コストダウンを図る上で有利である。   By the way, in the above-mentioned conventional combustion heater, the direction of the vortex in the air supply passage and the direction of the vortex in the exhaust passage are the same. That is, when the supply air flow path is a spiral swirling clockwise, for example, from the outside toward the central combustion chamber, the exhaust flow path is also a swirl swirling clockwise from the outside, toward the central combustion chamber. This means that the exhaust flow path becomes a spiral swirling counterclockwise from the central combustion chamber. Therefore, the swirl direction of the combustion gas flowing out from the combustion chamber to the exhaust flow path is opposite to the swirl direction of the premixed gas flowing into the combustion chamber from the supply air flow path. As a result, the passage resistance increases, and it is necessary to increase the capacity of the air supply device that supplies the premixed gas to the air supply flow path. On the other hand, if the swirl direction of the supply air flow path and the swirl direction of the exhaust flow path are opposite to each other, the swirling direction of the premixed gas flowing into the combustion chamber from the supply air flow path and the exhaust flow path from the combustion chamber The swirling direction of the combustion gas flowing out into the air flow direction is the same, the passage resistance is reduced, and the air supply device that supplies the premixed gas to the air supply flow path has a relatively small capacity, so that the cost can be reduced. Is advantageous.

ここで、給気流路から燃焼室への予混合ガスの流入部は、流入部の幅が消炎距離以下になるように形成して、燃焼室から給気流路への逆火を防止することが必要である。そのため、予混合ガスの供給流量を大きくすると、限られた面積の流入部における予混合ガスの流速が速くなり、火炎の吹き飛び現象を生じ易くなる。この場合、渦巻状に形成される給気流路から燃焼室への予混合ガスの流入部が複数設けられていれば、流入部の合計面積の増加で各流入部における予混合ガスの流速が低下し、火炎の吹き飛び現象の発生が防止される。更に、燃焼室内の予混合ガスの流れが一様になり、燃焼が一層安定する。   Here, the inflow portion of the premixed gas from the supply passage to the combustion chamber may be formed so that the width of the inflow portion is equal to or less than the extinguishing distance to prevent backfire from the combustion chamber to the intake passage. is necessary. Therefore, when the supply flow rate of the premixed gas is increased, the flow rate of the premixed gas in the inflow portion having a limited area is increased, and a flame blowing phenomenon is likely to occur. In this case, if a plurality of inflow portions of the premixed gas from the air supply passage formed in a spiral shape to the combustion chamber are provided, the flow area of the premixed gas in each inflow portion decreases as the total area of the inflow portion increases. Thus, the occurrence of a flame blowing phenomenon is prevented. Furthermore, the flow of the premixed gas in the combustion chamber becomes uniform, and combustion is further stabilized.

給気流路及び排気流路の形状は上記渦巻状に限らない。例えば、給気流路を燃焼室を中心とする放射状に形成しても良い。そして、これら放射状の給気流路の径方向内端に位置させて燃焼室への予混合ガスの流入部が複数設けられていれば、各流入部における予混合ガスの流速が低下して、火炎の吹き飛び現象の発生が防止されると共に、燃焼室の中心部で各流入部からの予混合ガスがぶつかり合って流速がほぼ零になる淀み点ができ、点火しやすくなる。更に、燃焼室内の予混合ガスの流れが一様になり、燃焼が安定する。   The shapes of the air supply channel and the exhaust channel are not limited to the spiral shape. For example, the air supply channel may be formed radially with the combustion chamber as the center. If a plurality of inflow portions of the premixed gas to the combustion chamber are provided at the radially inner ends of these radial air supply passages, the flow velocity of the premixed gas in each inflow portion decreases, and the flame Is prevented from occurring, and at the center of the combustion chamber, premixed gas from the respective inflow portions collide with each other to create a stagnation point where the flow velocity becomes almost zero, and ignition is easy. Furthermore, the flow of the premixed gas in the combustion chamber becomes uniform, and the combustion is stabilized.

また、給気流路及び排気流路を、夫々、燃焼室と中心とする渦巻状又は放射状に形成する場合、燃焼ガスにより予混合ガスを十分に予熱できるように、給気流路や排気流路の流路幅を狭めて、給気流路や排気流路のトータルの流路長を長くすることが考えられる。然し、これでは、通過抵抗が大きくなって、給気装置の能力を高くすることが必要になる。これに対し、加熱板と断熱板との少なくとも一方の板に対向する中仕切り板の側面に、該一方の板と中仕切り板との間に形成される給気流路又は排気流路の流路幅内に位置させて、該一方の板との間に隙間が空くようにフィン部が突設されていれば、燃焼ガスによる予混合ガスの加熱効率がフィン部によって高められる。そのため、給気流路や排気流路の流路幅を然程狭くしなくても、燃焼ガスにより予混合ガスを十分に予熱できるようになり、給気装置が比較的小能力のもので済む。   In addition, when the air supply flow path and the exhaust flow path are respectively formed in a spiral shape or a radial shape centering on the combustion chamber, the air supply flow path and the exhaust flow path can be sufficiently preheated by the combustion gas. It is conceivable to narrow the flow path width and increase the total flow path length of the air supply flow path and the exhaust flow path. However, this increases the passage resistance and makes it necessary to increase the capacity of the air supply device. On the other hand, on the side surface of the partition plate facing at least one of the heating plate and the heat insulating plate, the air supply channel or the exhaust channel formed between the one plate and the partition plate If the fin portion is provided so as to be positioned within the width so as to leave a gap between the one plate, the heating efficiency of the premixed gas by the combustion gas is enhanced by the fin portion. Therefore, the premixed gas can be sufficiently preheated by the combustion gas without reducing the width of the air supply flow path or the exhaust flow path so much, and the air supply apparatus can be of a relatively small capacity.

また、燃焼ガスにより加熱板を効率良く加熱するため、渦巻状又は放射状の排気流路の流路幅を狭めることも考えられるが、これでは、通過抵抗が大きくなって、給気装置の能力を高くすることが必要になる。これに対し、加熱板の中仕切り板に対向する内面に、排気流路の流路幅内に位置させて、中仕切り板との間に隙間が空くようにフィン部が突設されていれば、燃焼ガスによる加熱板の加熱効率がフィン部によって高められる。そのため、排気流路の流路幅を然程狭くしなくても、燃焼ガスにより加熱板を効率良く加熱できるようになり、給気装置が比較的小能力のもので済む。   In addition, in order to efficiently heat the heating plate with the combustion gas, it is conceivable to narrow the width of the spiral or radial exhaust flow path, but this increases the passage resistance and increases the capacity of the air supply device. It needs to be high. On the other hand, on the inner surface facing the partition plate of the heating plate, if it is located within the flow channel width of the exhaust channel and a fin portion protrudes so as to leave a gap with the partition plate The heating efficiency of the heating plate by the combustion gas is enhanced by the fin portion. Therefore, the heating plate can be efficiently heated by the combustion gas without reducing the width of the exhaust passage so much, and the air supply device can have a relatively small capacity.

尚、予混合ガスへの点火は点火プラグにより行われる。そして、燃焼室に断熱板側から点火プラグが挿入されていれば、点火プラグ用のコードが熱で損傷することを防止できる。   The premixed gas is ignited by a spark plug. If the ignition plug is inserted into the combustion chamber from the heat insulating plate side, the ignition plug cord can be prevented from being damaged by heat.

図1を参照して、1はガスコンロの熱源等に用いる燃焼加熱器を示している。この燃焼加熱器1は、円盤状の器体2と、器体2の周囲一側の給気ジョイント3と、器体2の周囲他側の排気ジョイント4とを備えており、給気ジョイント3に給気装置5が接続される。給気装置5は、ブロアー6と、ブロアー6からの空気を給気ジョイント3に導く通路7に介設したベンチュリーミキサ8とを備えており、ベンチュリーミキサ8に電磁弁9とゼロガバナー10とを介設したガス通路11を介して燃焼ガスが供給される。ゼロガバナー11は2次圧を大気圧に調圧するものであり、空気流量に比例した流量で燃料ガスがベンチュリーミキサ8に吸引され、空気過剰率が1.1程度の予混合ガスが生成される。   Referring to FIG. 1, reference numeral 1 denotes a combustion heater used as a heat source for a gas stove. The combustion heater 1 includes a disk-shaped body 2, an air supply joint 3 on one side around the body 2, and an exhaust joint 4 on the other side around the body 2. The air supply device 5 is connected. The air supply device 5 includes a blower 6 and a venturi mixer 8 interposed in a passage 7 that guides air from the blower 6 to the air supply joint 3. The venturi mixer 8 includes an electromagnetic valve 9 and a zero governor 10. Combustion gas is supplied through the interposed gas passage 11. The zero governor 11 adjusts the secondary pressure to atmospheric pressure. The fuel gas is sucked into the venturi mixer 8 at a flow rate proportional to the air flow rate, and a premixed gas having an excess air ratio of about 1.1 is generated. .

燃焼加熱器1の器体2は、図2に示す如く、軸方向に対向する一方の側面(上面)が調理容器等の被加熱物を加熱するための耐熱合金製の加熱板12で覆われ、他方の側面(下面)が耐熱合金製の金属板13aとその下面に積層したセラミックス等の断熱材13bとから成る断熱板13で覆われている。また、器体2は、加熱板12と断熱板13との間に設けられた耐熱合金製の中仕切り板14を備えている。そして、器体2内の中央部に燃焼室15が設けられると共に、断熱板13と中仕切り板14との間に、燃焼室15に予混合ガスを供給する、給気ジョイント3に連なる給気流路16が設けられ、更に、加熱板12と中仕切り板14との間に、燃焼室15での予混合ガスの燃焼により生じた燃焼ガスが流れる、排気ジョイント4に連なる排気流路17が設けられている。また、燃焼室15は、中仕切り板14により断熱板13側の部分と加熱板12側の部分との2部分に区画され、中仕切り板14に、これら2部分を連通する、燃焼室15の断面積より小面積の連通穴18が形成されている。また、燃焼室15には、断熱板13側から点火プラグ19が挿入されており、点火プラグ19の火花放電により予混合ガスに点火される。   The body 2 of the combustion heater 1 is covered with a heating plate 12 made of a heat-resistant alloy for heating an object to be heated such as a cooking vessel, as shown in FIG. The other side surface (lower surface) is covered with a heat insulating plate 13 made of a heat-resistant alloy metal plate 13a and a heat insulating material 13b such as ceramics laminated on the lower surface. The container body 2 includes a partition plate 14 made of a heat-resistant alloy provided between the heating plate 12 and the heat insulating plate 13. In addition, a combustion chamber 15 is provided in the central portion of the vessel body 2, and a supply air stream connected to the air supply joint 3 that supplies a premixed gas to the combustion chamber 15 between the heat insulating plate 13 and the partition plate 14. A passage 16 is provided, and an exhaust passage 17 connected to the exhaust joint 4 is provided between the heating plate 12 and the partition plate 14 and the combustion gas generated by the combustion of the premixed gas in the combustion chamber 15 flows. It has been. Further, the combustion chamber 15 is divided into two parts, a part on the heat insulating plate 13 side and a part on the heating plate 12 side, by the partition plate 14, and the two parts are communicated with the partition plate 14. A communication hole 18 having a smaller area than the cross-sectional area is formed. A spark plug 19 is inserted into the combustion chamber 15 from the heat insulating plate 13 side, and the premixed gas is ignited by spark discharge of the spark plug 19.

ここで、予混合ガスは中仕切り板14を介しての燃焼ガスとの熱交換で予熱され、小さな燃焼室15でも燃焼が継続する。また、中仕切り板14に形成した連通穴18により燃焼室15が中間で絞られるため、給気流路16から燃焼室15の断熱板13側の部分に流入する予混合ガスが燃焼室15の加熱板12側の部分を経て排気流路17に短絡的に流れることが防止される。これにより、予混合ガスの燃焼室15内での滞留時間が確保され、燃焼が安定する。   Here, the premixed gas is preheated by heat exchange with the combustion gas via the partition plate 14, and combustion continues even in the small combustion chamber 15. Further, since the combustion chamber 15 is throttled in the middle by the communication hole 18 formed in the intermediate partition plate 14, the premixed gas flowing into the portion on the heat insulating plate 13 side of the combustion chamber 15 from the air supply passage 16 heats the combustion chamber 15. It is possible to prevent a short circuit from flowing into the exhaust passage 17 through the portion on the plate 12 side. Thereby, the residence time of the premixed gas in the combustion chamber 15 is ensured, and combustion is stabilized.

更に、燃焼ガスが加熱板12と中仕切り板14との間の排気流路17を断熱板13に触れることなく流れるため、断熱板13は燃焼ガスにより加熱されず、断熱板13を介しての燃焼ガスの放熱を容易に防止することができる。更に、予混合ガスは断熱板13と中仕切り板14との間の給気流路16を加熱板12に触れることなく流れるため、加熱板12が予混合ガスに熱を奪われることなく高温に加熱され、断熱板13を介しての燃焼ガスの放熱ロスを防止できることと相俟って、被加熱物を高効率で加熱することができる。   Further, since the combustion gas flows through the exhaust passage 17 between the heating plate 12 and the partition plate 14 without touching the heat insulating plate 13, the heat insulating plate 13 is not heated by the combustion gas and passes through the heat insulating plate 13. The heat release of the combustion gas can be easily prevented. Further, since the premixed gas flows through the air supply passage 16 between the heat insulating plate 13 and the partition plate 14 without touching the heating plate 12, the heating plate 12 is heated to a high temperature without taking heat away from the premixed gas. In addition, in combination with the ability to prevent the heat loss of the combustion gas through the heat insulating plate 13, the object to be heated can be heated with high efficiency.

また、給気流路16と排気流路17とが中仕切り板14により軸方向に分離されるため、給気流路16に流れる予混合ガスが燃焼室15の手前で排気流路17にリークすることはなく、予混合ガスのリークによる不完全燃焼の発生を確実に防止できる。更に、断熱板13側から点火プラグ19を挿入するため、点火プラグ19用のコードが熱で損傷することも防止できる。   Further, since the air supply passage 16 and the exhaust passage 17 are separated in the axial direction by the partition plate 14, the premixed gas flowing through the air supply passage 16 leaks into the exhaust passage 17 before the combustion chamber 15. Incomplete combustion due to premixed gas leakage can be reliably prevented. Furthermore, since the spark plug 19 is inserted from the heat insulating plate 13 side, it is possible to prevent the cord for the spark plug 19 from being damaged by heat.

ここで、給気流路16及び排気流路17は、夫々、燃焼室15を中心とする渦巻状に形成されている。これを詳述するに、中仕切り板14の下面には、図3に示す如く、断熱板13に接する2重の渦巻状のガイド壁20,20が一体に形成されている。ガイド壁20の少なくとも最外側の1周部分の下側縁は、断熱板13に気密にロー付け又は溶接される。これにより、断熱板13と中仕切り板14との間に、ガイド壁20,20間の隙間で構成される2重の渦巻状の給気流路16,16が形成される。また、両給気流路16,16の下流端に、燃焼室15への予混合ガスの流入部15aが点対称の位置関係で一対に設けられている。両給気流路16,16の上流端は給気ジョイント3に接続されている。かくして、給気ジョイント3からの予混合ガスは、両給気流路16,16を経由して、両流入部15a,15aから燃焼室15に流入し、燃焼室15内に予混合ガスの旋回流を生ずる。そのため、燃焼室15内での予混合ガスの滞留時間が確保されると共に混合が促進され、燃焼の安定に寄与する。   Here, the air supply passage 16 and the exhaust passage 17 are each formed in a spiral shape with the combustion chamber 15 as the center. In detail, as shown in FIG. 3, double spiral guide walls 20 and 20 that are in contact with the heat insulating plate 13 are integrally formed on the lower surface of the partition plate 14. The lower edge of at least the outermost circumferential portion of the guide wall 20 is airtightly brazed or welded to the heat insulating plate 13. As a result, double spiral air supply passages 16, 16 formed by a gap between the guide walls 20, 20 are formed between the heat insulating plate 13 and the partition plate 14. In addition, a pair of premixed gas inflow portions 15a to the combustion chamber 15 are provided at a downstream end of both the air supply passages 16 and 16 in a point-symmetrical positional relationship. The upstream ends of both the air supply channels 16, 16 are connected to the air supply joint 3. Thus, the premixed gas from the air supply joint 3 flows into the combustion chamber 15 from both the inflow portions 15a and 15a via the both air supply passages 16 and 16, and the swirling flow of the premixed gas into the combustion chamber 15 Is produced. Therefore, the residence time of the premixed gas in the combustion chamber 15 is ensured and mixing is promoted, contributing to stable combustion.

尚、各流入部15aは、燃焼室15から給気流路16への逆火を防止するため、流入部15aの幅が消炎距離以下になるように形成する必要がある。ここで、流入部15aが1個であると、予混合ガスの供給流量を大きくした場合、流入部15aにおける予混合ガスの流速が速くなり、火炎の吹き飛び現象を生じ易くなる。これに対し、本実施形態のように流入部15aを2個設ければ、流入部15aの合計面積の増加で各流入部15aにおける予混合ガスの流速が低下し、火炎の吹き飛び現象の発生が防止される。また、流入部15aが1個であると、燃焼室15内の一部に予混合ガスが片寄って流れる可能性があるが、流入部15aを2個設けることで、燃焼室15内の予混合ガスの流れが一様になり、このことも燃焼の安定に寄与する。尚、流入部15aの数は3個以上であっても良い。   Each inflow portion 15a needs to be formed so that the width of the inflow portion 15a is equal to or less than the extinguishing distance in order to prevent backfire from the combustion chamber 15 to the air supply passage 16. Here, when the number of inflow portions 15a is one, when the supply flow rate of the premixed gas is increased, the flow rate of the premixed gas in the inflow portion 15a is increased, and a flame blowing phenomenon is likely to occur. On the other hand, if two inflow portions 15a are provided as in the present embodiment, the flow rate of the premixed gas in each inflow portion 15a decreases due to an increase in the total area of the inflow portions 15a, and the occurrence of a flame blowing phenomenon occurs. Is prevented. Further, if there is one inflow portion 15a, there is a possibility that the premixed gas flows in a part in the combustion chamber 15. However, by providing two inflow portions 15a, the premixing in the combustion chamber 15 is possible. The gas flow becomes uniform, which also contributes to the stability of combustion. The number of inflow portions 15a may be three or more.

また、本実施形態では、断熱板13の内面に、点火プラグ19の挿入箇所を囲うようにして窪み13cを形成している。これにより、点火プラグ19の近傍に予混合ガスが滞留しやすくなり、点火性が向上する。   In the present embodiment, a recess 13 c is formed on the inner surface of the heat insulating plate 13 so as to surround the insertion location of the spark plug 19. As a result, the premixed gas tends to stay in the vicinity of the spark plug 19 and the ignitability is improved.

中仕切り板14の上面には、図4に示す如く、加熱板12に接する2重の渦巻状ガイド壁21,21が一体に形成されている。ガイド壁21の少なくとも最外側の1周部分の上側縁は、加熱板12に気密にロー付け又は溶接される。これにより、加熱板12と中仕切り板14との間に、ガイド壁21,21間の隙間で構成される2重の渦巻状の排気流路17,17が形成される。そして、両排気流路17,17の上流端に、燃焼室15からの燃焼ガスの流出部15bが点対称の位置関係で一対に設けられている。両排気流路17,17の下流端は排気ジョイント4に接続されている。   As shown in FIG. 4, double spiral guide walls 21 and 21 that are in contact with the heating plate 12 are integrally formed on the upper surface of the partition plate 14. The upper edge of at least the outermost peripheral portion of the guide wall 21 is airtightly brazed or welded to the heating plate 12. Thereby, between the heating plate 12 and the partition plate 14, double spiral exhaust passages 17 and 17 constituted by a gap between the guide walls 21 and 21 are formed. A pair of combustion gas outflow portions 15b from the combustion chamber 15 are provided at the upstream ends of the exhaust passages 17 and 17 in a point-symmetrical positional relationship. The downstream ends of both the exhaust passages 17, 17 are connected to the exhaust joint 4.

このように排気流路17を渦巻状に形成すれば、排気流路17の流路長が長くなって、加熱板12に対する燃焼ガスの接触時間も長く確保され、加熱板12が効率良く加熱される。   If the exhaust flow path 17 is formed in a spiral shape in this way, the flow path length of the exhaust flow path 17 is increased, the contact time of the combustion gas with the heating plate 12 is also ensured, and the heating plate 12 is efficiently heated. The

ここで、給気流路16の渦巻きの方向と排気流路17の渦巻きの方向とは互いに逆向きになっている。具体的に説明すれば、給気流路16は、図3に示す如く、外方から燃焼室15に向けて時計方向に旋回する渦巻きであるが、排気流路17は、図4に示す如く、外方から燃焼室15に向けて反時計方向に旋回する渦巻き、即ち、燃焼室15から外方に向けて時計方向に旋回する渦巻きである。これによれば、給気流路16から燃焼室15に時計方向に旋回しつつ流入する予混合ガスの燃焼で燃焼室15内に生ずる時計方向に旋回する燃焼ガスが旋回方向を変えることなくスムーズに燃焼室15から排気流路17に流れ出て、通過抵抗が減少する。そのため、給気装置5のブロアー6が比較的小能力のもので済む。   Here, the direction of the vortex in the air supply channel 16 and the direction of the vortex in the exhaust channel 17 are opposite to each other. More specifically, the air supply passage 16 is a spiral swirling in the clockwise direction from the outside toward the combustion chamber 15 as shown in FIG. 3, while the exhaust passage 17 is as shown in FIG. A spiral swirling counterclockwise from the outside toward the combustion chamber 15, that is, a swirl swirling clockwise from the combustion chamber 15 toward the outside. According to this, the combustion gas swirling in the clockwise direction generated in the combustion chamber 15 by the combustion of the premixed gas flowing while swirling clockwise from the supply air flow path 16 to the combustion chamber 15 smoothly without changing the swirling direction. It flows out from the combustion chamber 15 to the exhaust passage 17 and the passage resistance decreases. Therefore, the blower 6 of the air supply device 5 only needs to have a relatively small capacity.

尚、上記第1実施形態では、給気流路16を2重の渦巻状に形成したが、給気流路16を、図5に示す第2実施形態の如く、単純な渦巻状に形成しても良い。この場合、給気流路16の下流端部のみを隔壁20aにより2重の渦巻状に分岐することで、燃焼室15への予混合ガスの流入部15aを第1実施形態と同様に2個設けることができる。また、排気流路17も、給気流路16と同様に単純な渦巻状に形成できる。この場合、燃焼室15から排気流路17への燃焼ガスの流出部15bは、逆火防止のために面積が限定される流入部15aと異なり、大きく形成できる。従って、排気流路17の上流端部を敢えて2重の渦巻状に分岐して、流出部15bを2個設ける必要はない。   In the first embodiment, the air supply channel 16 is formed in a double spiral shape, but the air supply channel 16 may be formed in a simple spiral shape as in the second embodiment shown in FIG. good. In this case, only the downstream end portion of the air supply passage 16 is branched into a double spiral shape by the partition wall 20a, so that two inflow portions 15a of the premixed gas to the combustion chamber 15 are provided as in the first embodiment. be able to. Further, the exhaust passage 17 can also be formed in a simple spiral like the air supply passage 16. In this case, the outflow part 15b of the combustion gas from the combustion chamber 15 to the exhaust passage 17 can be formed larger, unlike the inflow part 15a whose area is limited to prevent backfire. Therefore, it is not necessary to divide the upstream end portion of the exhaust passage 17 into a double spiral and provide two outflow portions 15b.

このように、給気流路16や排気流路17を単純な渦巻状に形成すると、第1実施形態のものに比し給気流路16や排気流路17の流路幅が広くなって、通過抵抗が減少し、ブロアー6の能力は一層小さくて済む。反面、給気流路16や排気流路17のトータル流路長が第1実施形態のものに比し短くなり、予混合ガスの予熱不足を生ずる可能性がある。   Thus, if the air supply flow path 16 and the exhaust flow path 17 are formed in a simple spiral shape, the flow width of the air supply flow path 16 and the exhaust flow path 17 is wider than that of the first embodiment, and the passage The resistance is reduced and the capacity of the blower 6 is smaller. On the other hand, the total flow path length of the air supply flow path 16 and the exhaust flow path 17 becomes shorter than that of the first embodiment, which may cause insufficient preheating of the premixed gas.

そこで、図6に示す第3実施形態では、中仕切り板14の断熱板13に対向する側面(下面)に、渦巻状の給気流路16の流路幅内に位置させて、断熱板13との間に隙間が空くようにフィン部14aを一体に突設すると共に、中仕切り板14の加熱板12に対向する側面(上面)に、渦巻状の排気流路17の流路幅内に位置させて、加熱板12との間に隙間が空くようにフィン部14bを一体に突設している。これによれば、燃焼ガスによる予混合ガスの加熱効率がフィン部14a,14bによって高められる。従って、通過抵抗を減少させるため、給気流路16や排気流路17の流路幅を広くしても、燃焼ガスにより予混合ガスを十分に予熱できるようになる。尚、中仕切り板14に両フィン部14a,14bの何れか一方のみを突設することも可能である。   Therefore, in the third embodiment shown in FIG. 6, the side wall (lower surface) of the partition plate 14 facing the heat insulating plate 13 is positioned within the flow path width of the spiral air supply flow channel 16, The fin portions 14a are integrally projected so that a gap is provided between them, and the side surface (upper surface) facing the heating plate 12 of the partition plate 14 is positioned within the flow path width of the spiral exhaust flow path 17. The fin portion 14b is integrally projected so that a gap is left between the heating plate 12 and the heating plate 12. According to this, the heating efficiency of the premixed gas by the combustion gas is enhanced by the fin portions 14a and 14b. Therefore, in order to reduce the passage resistance, the premixed gas can be sufficiently preheated by the combustion gas even if the width of the air supply flow path 16 or the exhaust flow path 17 is increased. It is also possible to project only one of the fin portions 14a and 14b on the partition plate 14.

また、図7に示す第4実施形態の如く、加熱板12の中仕切り板14に対向する内面に、渦巻状の排気流路17の流路幅内に位置させて、中仕切り板14との間に隙間が空くようにフィン部12aを一体に突設しても良い。これによれば、燃焼ガスによる加熱板12の加熱効率がフィン部12aによって高められる。従って、通過抵抗を減少させるため、排気流路17の流路幅を広くしても、燃焼ガスにより加熱板12を効率良く加熱できるようになる。更に、第4実施形態では、中仕切り板17の下面に第3実施形態と同様のフィン部17aを突設しており、予混合ガスも効率良く予熱される。   Further, as in the fourth embodiment shown in FIG. 7, the inner surface facing the partition plate 14 of the heating plate 12 is positioned within the flow channel width of the spiral exhaust channel 17, and the partition plate 14 The fin portions 12a may be integrally projected so that a gap is left between them. According to this, the heating efficiency of the heating plate 12 by combustion gas is improved by the fin part 12a. Accordingly, in order to reduce the passage resistance, the heating plate 12 can be efficiently heated by the combustion gas even when the exhaust passage 17 is wide. Furthermore, in 4th Embodiment, the fin part 17a similar to 3rd Embodiment is protrudingly provided in the lower surface of the partition plate 17, and premixed gas is preheated efficiently.

以上、給気流路16及び排気流路17を渦巻状に形成した実施形態について説明したが、給気流路16を、図8に示す第5実施形態の如く、燃焼室15を中心とする放射状に形成しても良い。より具体的に説明すれば、第5実施形態では、中仕切り板14の下面に、断熱板13と中仕切り板14との間の空間を囲う環状の囲い壁22を一体に形成して、この囲い壁22内に給気ジョイント3から予混合ガスを流入させている。そして、中仕切り板14の下面に、囲い壁22より内方に位置させて、放射状に複数のガイド壁20´を一体に形成し、これらガイド壁20´間の間隙により放射状に複数の給気流路16が形成されるようにしている。また、これら放射状の給気流路16の径方向内端に位置させて燃焼室15への予混合ガスの流入部15aが複数設けられている。   As described above, the embodiment in which the supply air flow channel 16 and the exhaust flow channel 17 are formed in a spiral shape has been described. However, the supply air flow channel 16 is radially formed around the combustion chamber 15 as in the fifth embodiment shown in FIG. It may be formed. More specifically, in the fifth embodiment, an annular wall 22 that surrounds the space between the heat insulating plate 13 and the middle partition plate 14 is integrally formed on the lower surface of the middle partition plate 14. A premixed gas is allowed to flow into the enclosure wall 22 from the air supply joint 3. A plurality of guide walls 20 ′ are integrally formed radially on the lower surface of the partition plate 14 from the surrounding wall 22, and a plurality of air supply airflows are radially formed by gaps between the guide walls 20 ′. A path 16 is formed. A plurality of premixed gas inflow portions 15 a to the combustion chamber 15 are provided at the radially inner ends of the radial air supply passages 16.

これによれば、逆火防止のために各流入部15aの面積が限定されても、流入部15aの合計面積が大きくなって、各流入部15aにおける予混合ガスの流速が低下し、火炎の吹き飛び現象の発生が防止される。また、燃焼室15の中心部で各流入部15aからの予混合ガスがぶつかり合って流速がほぼ零になる淀み点ができ、点火しやすくなる。更に、燃焼室15内の予混合ガスの流れが一様になり、燃焼が安定する。   According to this, even if the area of each inflow part 15a is limited to prevent backfire, the total area of the inflow part 15a increases, the flow velocity of the premixed gas in each inflow part 15a decreases, and the flame The occurrence of the blow-off phenomenon is prevented. Moreover, the premixed gas from each inflow part 15a collides with the center part of the combustion chamber 15, and the stagnation point where the flow velocity becomes almost zero is formed, and ignition is easy. Furthermore, the flow of the premixed gas in the combustion chamber 15 becomes uniform, and the combustion is stabilized.

尚、このように給気流路16を放射状に形成する場合、排気流路17も同様の放射状に形成しても良いが、排気流路17を渦巻状に形成して、給気流路16のみを放射状に形成することも可能である。また、給気流路16や排気流路17を放射状に形成する場合にも、上記第3実施形態や第4実施形態と同様に、中仕切り板14にフィン部14a,14bを突設したり、加熱板12にフィン部12aを突設したりすることで、給気流路16や排気流路17の流路幅を然程狭めることなく、燃焼ガスにより予混合ガスや加熱板12を効率良く加熱できるようになる。   When the air supply channel 16 is formed radially as described above, the exhaust channel 17 may be formed in the same radial manner, but the exhaust channel 17 is formed in a spiral shape so that only the air supply channel 16 is formed. It is also possible to form them radially. Further, when the air supply passage 16 and the exhaust passage 17 are formed radially, fin portions 14a and 14b are protruded from the partition plate 14 in the same manner as in the third and fourth embodiments. By providing the fin portion 12a on the heating plate 12, the premixed gas and the heating plate 12 can be efficiently heated by the combustion gas without reducing the width of the air supply passage 16 and the exhaust passage 17 so much. become able to.

また、上記実施形態では、給気流路16や排気流路17を渦巻状又は放射状に形成するガイド壁20,20´,21を中仕切り板14に一体に形成したが、排気流路17用のガイド壁21は加熱板12に一体に形成しても良く、更には、給気流路16用のガイド壁20,20´と排気流路17用のガイド壁21とを中仕切り板14及び加熱板12とは別体として、これらガイド壁20,20´,21を断熱板13及び加熱板12と中仕切り板14との間に介設することも可能である。   In the above embodiment, the guide walls 20, 20 ′, 21 that form the air supply flow path 16 and the exhaust flow path 17 in a spiral shape or a radial shape are integrally formed on the partition plate 14. The guide wall 21 may be formed integrally with the heating plate 12. Furthermore, the guide walls 20 and 20 ′ for the air supply passage 16 and the guide wall 21 for the exhaust passage 17 are divided into the partition plate 14 and the heating plate. These guide walls 20, 20 ′, and 21 can be interposed between the heat insulating plate 13 and the heating plate 12 and the partition plate 14 as a separate body.

本発明の第1実施形態の燃焼加熱器の平面図。The top view of the combustion heater of 1st Embodiment of this invention. 図1のII−II線切断正面図。The II-II line cutting | disconnection front view of FIG. 図2のIII−III線切断平面図。FIG. 3 is a plan view taken along line III-III in FIG. 2. 図2のIV−IV線切断平面図。The IV-IV line cutting | disconnection top view of FIG. 第2実施形態の燃焼加熱器の図3に対応する切断平面図。The cutting top view corresponding to FIG. 3 of the combustion heater of 2nd Embodiment. 第3実施形態の燃焼加熱器の図2に対応する切断正面図。The cutting | disconnection front view corresponding to FIG. 2 of the combustion heater of 3rd Embodiment. 第4実施形態の燃焼加熱器の図2に対応する切断正面図。The cutting | disconnection front view corresponding to FIG. 2 of the combustion heater of 4th Embodiment. 第5実施形態の燃焼加熱器の図3に対応する切断平面図。The cutting top view corresponding to FIG. 3 of the combustion heater of 5th Embodiment.

符号の説明Explanation of symbols

1…燃焼加熱器、2…器体、12…加熱板、12a…フィン部、13…断熱板、14…中仕切り板、14a,14b…フィン部、15…燃焼室、15a…流入部、16…給気流路、17…排気流路、18…連通穴、19…点火プラグ。   DESCRIPTION OF SYMBOLS 1 ... Combustion heater, 2 ... Body, 12 ... Heating plate, 12a ... Fin part, 13 ... Heat insulation board, 14 ... Partition plate, 14a, 14b ... Fin part, 15 ... Combustion chamber, 15a ... Inflow part, 16 Air supply passage, 17 ... exhaust passage, 18 ... communication hole, 19 ... spark plug.

Claims (9)

対向する一方の側面が被加熱物を加熱するための加熱板で覆われ、他方の側面が断熱板で覆われた器体内に、中央部の燃焼室と、燃焼室に予混合ガスを供給する給気流路と、燃焼室での予混合ガスの燃焼により生じた燃焼ガスが流れる排気流路とが設けられ、排気流路に流れる燃焼ガスの熱により、給気流路に流れる予混合ガスが予熱されると共に加熱板が加熱されるようにした燃焼加熱器において、
加熱板と断熱板との間に設けられた中仕切り板を備え、加熱板と中仕切り板との間に排気流路が設けられると共に、断熱板と中仕切り板との間に給気流路が設けられ、中仕切り板を介して燃焼ガスと予混合ガスとの熱交換が行われるようにしたことを特徴とする燃焼加熱器。
A premixed gas is supplied to the combustion chamber in the center and the combustion chamber in a container body whose one side surface is covered with a heating plate for heating the object to be heated and the other side surface is covered with a heat insulating plate. An air supply passage and an exhaust passage through which combustion gas generated by combustion of the premixed gas in the combustion chamber flows are provided, and the premixed gas flowing in the air supply passage is preheated by the heat of the combustion gas flowing in the exhaust passage. In the combustion heater in which the heating plate is heated,
A partition plate provided between the heating plate and the heat insulation plate is provided, an exhaust passage is provided between the heating plate and the partition plate, and an air supply passage is provided between the heat insulation plate and the partition plate. A combustion heater provided, wherein heat exchange between the combustion gas and the premixed gas is performed via an intermediate partition plate.
前記燃焼室は、前記中仕切り板により前記断熱板側の部分と前記加熱板側の部分との2部分に区画され、中仕切り板に、これら2部分を連通する、燃焼室の断面積より小面積の連通穴が形成されていることを特徴とする請求項1記載の燃焼加熱器。   The combustion chamber is divided into two parts, a part on the heat insulating plate side and a part on the heating plate side, by the partition plate, and is smaller than the cross-sectional area of the combustion chamber that communicates the two parts with the partition plate. The combustion heater according to claim 1, wherein a communication hole having an area is formed. 前記給気流路及び前記排気流路は、夫々、前記燃焼室を中心とする渦巻状に形成されていることを特徴とする請求項1又は2記載の燃焼加熱器。   The combustion heater according to claim 1 or 2, wherein each of the air supply passage and the exhaust passage is formed in a spiral shape with the combustion chamber as a center. 前記給気流路の渦巻きの方向と前記排気流路の渦巻きの方向とは互いに逆向きであることを特徴とする請求項3記載の燃焼加熱器。   The combustion heater according to claim 3, wherein the direction of vortex in the air supply passage and the direction of vortex in the exhaust passage are opposite to each other. 前記給気流路から前記燃焼室への予混合ガスの流入部が複数設けられていることを特徴とする請求項3又は4記載の燃焼加熱器。   The combustion heater according to claim 3 or 4, wherein a plurality of premixed gas inflow portions from the supply air flow path to the combustion chamber are provided. 前記給気流路は前記燃焼室を中心とする放射状に形成され、これら放射状の給気流路の径方向内端に位置させて燃焼室への予混合ガスの流入部が複数設けられていることを特徴とする請求項1又は2記載の燃焼加熱器。   The air supply flow path is formed radially with the combustion chamber as the center, and a plurality of premixed gas inflow portions to the combustion chamber are provided at the radial inner ends of the radial air supply flow paths. The combustion heater according to claim 1 or 2, characterized by the above. 前記給気流路及び前記排気流路は、夫々、前記燃焼室と中心とする渦巻状又は放射状に形成され、前記加熱板と前記断熱板との少なくとも一方の板に対向する前記中仕切り板の側面に、該一方の板と中仕切り板との間に形成される給気流路又は排気流路の流路幅内に位置させて、該一方の板との間に隙間が空くようにフィン部が突設されていることを特徴とする請求項1又は2記載の燃焼加熱器。   The air supply channel and the exhaust channel are each formed in a spiral shape or a radial shape centering on the combustion chamber, and are side surfaces of the partition plate facing at least one of the heating plate and the heat insulating plate. In addition, the fin portion is positioned within the flow path width of the air supply flow path or the exhaust flow path formed between the one plate and the partition plate so that a gap is left between the one plate and the air flow path. The combustion heater according to claim 1, wherein the combustion heater is protruded. 前記排気流路は前記燃焼室を中心とする渦巻状又は放射状に形成され、前記加熱板の前記中仕切り板に対向する内面に、排気流路の流路幅内に位置させて、中仕切り板との間に隙間が空くようにフィン部が突設されていることを特徴とする請求項1又は2記載の燃焼加熱器。   The exhaust passage is formed in a spiral shape or a radial shape centering on the combustion chamber, and is located on the inner surface of the heating plate facing the partition plate within the flow passage width of the exhaust passage. The combustion heater according to claim 1, wherein a fin portion is provided so as to leave a gap therebetween. 前記燃焼室に前記断熱板側から点火プラグが挿入されていることを特徴とする請求項1〜8の何れか1項に記載の燃焼加熱器。   The combustion heater according to any one of claims 1 to 8, wherein a spark plug is inserted into the combustion chamber from the heat insulating plate side.
JP2005351629A 2005-12-06 2005-12-06 Combustion heater Expired - Fee Related JP4704900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005351629A JP4704900B2 (en) 2005-12-06 2005-12-06 Combustion heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005351629A JP4704900B2 (en) 2005-12-06 2005-12-06 Combustion heater

Publications (2)

Publication Number Publication Date
JP2007155221A true JP2007155221A (en) 2007-06-21
JP4704900B2 JP4704900B2 (en) 2011-06-22

Family

ID=38239832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005351629A Expired - Fee Related JP4704900B2 (en) 2005-12-06 2005-12-06 Combustion heater

Country Status (1)

Country Link
JP (1) JP4704900B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212082A (en) * 2006-02-10 2007-08-23 Ishikawajima Harima Heavy Ind Co Ltd Combustion heater
JP2007212081A (en) * 2006-02-10 2007-08-23 Ishikawajima Harima Heavy Ind Co Ltd Combustion heater
JP2009041878A (en) * 2007-08-10 2009-02-26 Toho Gas Co Ltd Heat exchanger and heating cooker using the same
JP2009041877A (en) * 2007-08-10 2009-02-26 Toho Gas Co Ltd Combustor piping, and combustor and gas appliance using the same
JP2009186153A (en) * 2008-02-08 2009-08-20 Paloma Ind Ltd Heating cooker
JP2010054089A (en) * 2008-08-27 2010-03-11 Toho Gas Co Ltd Member for combustor, and combustor
JP2010060227A (en) * 2008-09-05 2010-03-18 Toho Gas Co Ltd Flame detecting method and combustor
JP2012097986A (en) * 2010-11-04 2012-05-24 Ihi Corp Combustion heater
JP2013019603A (en) * 2011-07-12 2013-01-31 Ihi Corp Combustion heater and combustion heating system
WO2013015313A1 (en) * 2011-07-27 2013-01-31 株式会社Ihi Combustion heater
WO2013082686A1 (en) * 2011-12-08 2013-06-13 Whirpool S.A. Grid for cooking equipment
JP2016017641A (en) * 2014-07-04 2016-02-01 株式会社Ihi Combustion heater
CN112013389A (en) * 2019-05-31 2020-12-01 宁波方太厨具有限公司 Air guide plate for combustor and combustor with air guide plate
CN112013391A (en) * 2019-05-31 2020-12-01 宁波方太厨具有限公司 Air guide plate for combustor and combustor with air guide plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949447A (en) * 1982-09-13 1984-03-22 Kogata Gas Reibou Gijutsu Kenkyu Kumiai Heat exchanger for combustion equipment
JP2004020083A (en) * 2002-06-18 2004-01-22 Kaoru Maruta Micro combustion heater
JP2005076974A (en) * 2003-08-29 2005-03-24 Ishikawajima Harima Heavy Ind Co Ltd Micro-combustor
JP2005076973A (en) * 2003-08-29 2005-03-24 Ishikawajima Harima Heavy Ind Co Ltd Micro-combustor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949447A (en) * 1982-09-13 1984-03-22 Kogata Gas Reibou Gijutsu Kenkyu Kumiai Heat exchanger for combustion equipment
JP2004020083A (en) * 2002-06-18 2004-01-22 Kaoru Maruta Micro combustion heater
JP2005076974A (en) * 2003-08-29 2005-03-24 Ishikawajima Harima Heavy Ind Co Ltd Micro-combustor
JP2005076973A (en) * 2003-08-29 2005-03-24 Ishikawajima Harima Heavy Ind Co Ltd Micro-combustor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212081A (en) * 2006-02-10 2007-08-23 Ishikawajima Harima Heavy Ind Co Ltd Combustion heater
JP4494345B2 (en) * 2006-02-10 2010-06-30 株式会社Ihi Combustion heater
JP4494346B2 (en) * 2006-02-10 2010-06-30 株式会社Ihi Combustion heater
JP2007212082A (en) * 2006-02-10 2007-08-23 Ishikawajima Harima Heavy Ind Co Ltd Combustion heater
JP2009041878A (en) * 2007-08-10 2009-02-26 Toho Gas Co Ltd Heat exchanger and heating cooker using the same
JP2009041877A (en) * 2007-08-10 2009-02-26 Toho Gas Co Ltd Combustor piping, and combustor and gas appliance using the same
JP2009186153A (en) * 2008-02-08 2009-08-20 Paloma Ind Ltd Heating cooker
JP2010054089A (en) * 2008-08-27 2010-03-11 Toho Gas Co Ltd Member for combustor, and combustor
JP2010060227A (en) * 2008-09-05 2010-03-18 Toho Gas Co Ltd Flame detecting method and combustor
US9395079B2 (en) 2010-11-04 2016-07-19 Ihi Corporation Combustion heater
JP2012097986A (en) * 2010-11-04 2012-05-24 Ihi Corp Combustion heater
JP2013019603A (en) * 2011-07-12 2013-01-31 Ihi Corp Combustion heater and combustion heating system
JP2013029218A (en) * 2011-07-27 2013-02-07 Ihi Corp Combustion heater
CN103688108A (en) * 2011-07-27 2014-03-26 株式会社Ihi Combustion heater
WO2013015313A1 (en) * 2011-07-27 2013-01-31 株式会社Ihi Combustion heater
US9410699B2 (en) 2011-07-27 2016-08-09 Ihi Corporation Combustion heater
WO2013082686A1 (en) * 2011-12-08 2013-06-13 Whirpool S.A. Grid for cooking equipment
JP2016017641A (en) * 2014-07-04 2016-02-01 株式会社Ihi Combustion heater
CN112013389A (en) * 2019-05-31 2020-12-01 宁波方太厨具有限公司 Air guide plate for combustor and combustor with air guide plate
CN112013391A (en) * 2019-05-31 2020-12-01 宁波方太厨具有限公司 Air guide plate for combustor and combustor with air guide plate
CN112013391B (en) * 2019-05-31 2023-01-17 宁波方太厨具有限公司 Air guide plate for combustor and combustor with air guide plate

Also Published As

Publication number Publication date
JP4704900B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP4704900B2 (en) Combustion heater
JP4912170B2 (en) Concentration burning burner and combustion apparatus using the same
JP2005195214A (en) Combustion device
WO2012153751A1 (en) Tubular flame burner and radiant tube heater
TWI412710B (en) Combustor
TWI465675B (en) Combustor
JP2005201514A (en) Multitubular once-through boiler
JP2014029256A (en) Infrared combustion device
JP6782441B2 (en) Small vortex combustor
TWI415947B (en) Top burner hot air stove
JP4729967B2 (en) Gas burning burner
JP7260365B2 (en) premixed combustion burner
JP3891075B2 (en) Two-stage combustion device
JP2018009756A (en) Compact-sized vortex combustor
JP2018009721A (en) Compact-sized vortex combustor
JP2548398B2 (en) Burner
JP4689425B2 (en) Micro combustor
JPH0478886B2 (en)
JP3891074B2 (en) Two-stage combustion device
JP2548399B2 (en) Burner
JPH0297810A (en) Burner
TW202434836A (en) Regenerative burner
JPH10132202A (en) Once-through boiler
JP2010127553A (en) Combustion apparatus
JP2009041877A (en) Combustor piping, and combustor and gas appliance using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

R150 Certificate of patent or registration of utility model

Ref document number: 4704900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees