JP2007154233A - Low-temperature operation type magnetic refrigeration working substance, and magnetic refrigeration method - Google Patents
Low-temperature operation type magnetic refrigeration working substance, and magnetic refrigeration method Download PDFInfo
- Publication number
- JP2007154233A JP2007154233A JP2005348583A JP2005348583A JP2007154233A JP 2007154233 A JP2007154233 A JP 2007154233A JP 2005348583 A JP2005348583 A JP 2005348583A JP 2005348583 A JP2005348583 A JP 2005348583A JP 2007154233 A JP2007154233 A JP 2007154233A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic refrigeration
- magnetic
- temperature
- type
- working substance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
Landscapes
- Hard Magnetic Materials (AREA)
Abstract
Description
本発明は、70K以下の温度で動作する低温動作型の磁気冷凍作業物質NaZn13型La1-zCez(FexMnySi1-x-y)13および磁気冷凍方法に関する。 The present invention relates to a low temperature operation type magnetic refrigeration working substance NaZn 13 type La 1-z Ce z (Fe x Mn y Si 1-xy) 13 and a magnetic refrigeration method of operating at temperatures below 70K.
次世代クリーンエネルギー源として期待される水素を多量に貯蔵および輸送するための手段の一つとして、水素ガスを沸点である20K程度まで冷却して液化する方法が提案されているが、本方式を実現するためには、液化に要するコストの低減が強く求められている。このような状況において、気体冷凍に代わる新しい水素ガスの液化冷凍技術として磁気冷凍が注目されている。磁気冷凍では磁性体を冷媒(冷凍作業物質)とし、その磁気熱量効果、すなわち等温状態で磁性体の磁気秩序を磁場で変化させた際に生じる等温磁気エントロピー変化、および断熱状態で磁場を変化させた際に生じる断熱温度変化を利用する。固体冷媒を用いた磁気冷凍においては従来の気体冷凍の圧縮損失分が低減され、また、コンプレッサ−の振動も無いので冷却温度低下に伴う冷凍効率低下も少なく抑えられる。このため、磁気冷凍の安定かつ高い冷凍効率は水素貯蔵のための冷凍技術に最適である。また、安全かつ容易に極低温の液体水素貯蔵容器内で蒸発してくる水素ガスをその場で再液化することもできる。磁気冷凍による水素液化の実現に向けて、20K近傍において、低い磁場で大きな磁気熱量効果を示す、高効率な低温動作型磁気冷凍作業物質の開発が望まれている。 As one of means for storing and transporting a large amount of hydrogen expected as a next-generation clean energy source, a method of cooling and liquefying hydrogen gas to about 20K, which is the boiling point, has been proposed. In order to realize this, there is a strong demand for reducing the cost required for liquefaction. Under such circumstances, magnetic refrigeration has attracted attention as a new liquefaction refrigeration technology for hydrogen gas that replaces gas refrigeration. In magnetic refrigeration, a magnetic substance is used as a refrigerant (refrigeration work substance), and its magnetocaloric effect, that is, the isothermal magnetic entropy change that occurs when the magnetic order of the magnetic substance is changed in the isothermal state, and the magnetic field is changed in the adiabatic state. The adiabatic temperature change that occurs in the event is used. In magnetic refrigeration using a solid refrigerant, the compression loss of conventional gas refrigeration is reduced, and since there is no vibration of the compressor, a decrease in refrigeration efficiency due to a decrease in cooling temperature can be suppressed. For this reason, the stable and high refrigeration efficiency of magnetic refrigeration is optimal for refrigeration technology for hydrogen storage. Further, the hydrogen gas evaporated in the cryogenic liquid hydrogen storage container can be liquefied on the spot safely and easily. In order to realize hydrogen liquefaction by magnetic refrigeration, it is desired to develop a highly efficient low-temperature operation type magnetic refrigeration working material that exhibits a large magnetocaloric effect at a low magnetic field in the vicinity of 20K.
立方晶のNaZn13型構造を有するLa(FexSi1-x)13は、キュリー温度約180K直上において、遍歴電子メタ磁性転移(磁場印加による常磁性から強磁性への1次相転移)を示す。転移に伴い磁化が大きく変化するため、巨大磁気熱量効果が生じる。(例えば、特許文献1参照)また、La(FexSi1-x)13に水素を吸収させることで、キュリー温度は約180Kから340K程度まで上昇し、水素吸収後もキュリー温度直上ではメタ磁性転移が生じる。そのため、水素吸収La(FexSi1-x)13Hyの水素濃度を制御することで、約180Kから340Kの任意の温度範囲でメタ磁性転移に起因した巨大磁気熱量効果が得られる。(例えば、特許文献2参照) La (Fe x Si 1-x ) 13 having a cubic NaZn 13 type structure has an itinerant electron metamagnetic transition (paramagnetic to ferromagnetism primary phase transition by applying a magnetic field) just above the Curie temperature of about 180K. Show. Since the magnetization changes greatly with the transition, a giant magnetocaloric effect occurs. (For example, see Patent Document 1) In addition, by absorbing hydrogen into La (Fe x Si 1-x ) 13 , the Curie temperature rises from about 180 K to about 340 K, and after absorption of hydrogen, the metamagnetism is just above the Curie temperature. Metastasis occurs. Therefore, by controlling the hydrogen concentration of hydrogen - absorbing La (Fe x Si 1-x ) 13 H y , a giant magnetocaloric effect due to the metamagnetic transition can be obtained in an arbitrary temperature range of about 180 K to 340 K. (For example, see Patent Document 2)
また、最近、La(FexSi1-x)13のLaのCe部分置換(例えば、非特許文献1参照)やFeのMn部分置換(例えば、非特許文献2参照)で、キュリー温度が低下する事が明らかとなった。さらに、CeおよびMn部分置換したLa1-zCez(FexMnySi1-x-y)13の組成を、0.86≦x≦0.88、0.0≦y≦0.03および0.0≦z≦0.35の間で制御することで、キュリー温度は70Kから180Kの任意の温度範囲で制御出来る。CeおよびMn部分置換後においても、キュリー温度直上ではメタ磁性転移が生じるため、70Kから180Kの任意の温度範囲でメタ磁性転移に起因した巨大磁気熱量効果が得られる。(例えば、非特許文献3参照) Recently, the Curie temperature has decreased due to the Ce partial substitution of La in La (Fe x Si 1-x ) 13 (see, for example, Non-Patent Document 1) and the Mn partial substitution of Fe (see, for example, Non-Patent Document 2). It became clear to do. Furthermore, the composition of La 1-z Ce z (Fe x Mn y Si 1-xy) 13 that Ce and Mn partially substituted, 0.86 ≦ x ≦ 0.88,0.0 ≦ y ≦ 0.03 and 0 By controlling between 0.0 ≦ z ≦ 0.35, the Curie temperature can be controlled in any temperature range from 70K to 180K. Even after partial substitution of Ce and Mn, the metamagnetic transition occurs just above the Curie temperature, so that a giant magnetocaloric effect due to the metamagnetic transition is obtained in an arbitrary temperature range of 70K to 180K. (For example, see Non-Patent Document 3)
しかし、これまでに、La(FexSi1-x)13系化合物のキュリー温度の70K以下への低下制御、およびLa(FexSi1-x)13系化合物を利用した70K以下で巨大磁気熱量効果を示す低温動作型磁気冷凍作業物質の開発は行なわれていない。従って、La(FexSi1-x)13系化合物は20K近傍での水素液化等の、低温動作を必要とする磁気冷凍技術に対応する事が出来ない。 However, this up, La (Fe x Si 1-x ) 13 based reduction control of the Curie temperature 70K to the following compounds, and La (Fe x Si 1-x ) 13 compounds giant magneto below 70K using No low temperature operation type magnetic refrigeration work material which shows a caloric effect has been developed. Therefore, La (Fe x Si 1-x ) 13 -based compounds cannot cope with magnetic refrigeration technology that requires low-temperature operation such as hydrogen liquefaction around 20K.
上記のように、NaZn13型La(FexSi1-x)13は、約180Kのキュリー温度直上において巨大磁気熱量効果を示し、キュリー温度はCeおよびMn部分置換により約70Kまで低下する。本発明は、CeおよびMn部分置換したLa1-zCez(FexMnySi1-x-y)13のキュリー温度の、さらなる低下制御を行い、70K以下の温度領域で巨大磁気熱量効果を示す高性能な低温動作型磁気冷凍作業物質および、それらを用いた冷凍方法を提供することを目的としている。 As described above, NaZn 13 type La (Fe x Si 1-x ) 13 exhibits a giant magnetocaloric effect just above the Curie temperature of about 180 K, and the Curie temperature is lowered to about 70 K by Ce and Mn partial substitution. The invention, of the Curie temperature of La 1-z Ce z (Fe x Mn y Si 1-xy) 13 that Ce and Mn partially substituted performs further reduction control, showing the giant magnetocaloric effect in the following temperature range 70K It is an object of the present invention to provide a high-performance low-temperature operation type magnetic refrigeration working material and a refrigeration method using them.
本発明によれば、磁気冷凍作業物質であるNaZn13型La(FexSi1-x)13において、CeおよびMnで部分置換し、その組成をLa1-zCez(FexMnySi1-x-y)13とし、xの値を0.84から0.86、yの値を0.030から0.050、zの値を0.0から0.5において構成することを特徴とする低温動作型磁気冷凍作業物質が得られる。 According to the present invention, in the NaZn 13 type La (Fe x Si 1-x ) 13 which is a magnetic refrigerant material, partially replaced by Ce and Mn, La 1-z of the composition Ce z (Fe x Mn y Si 1-xy ) 13 , and the x value is 0.84 to 0.86, the y value is 0.030 to 0.050, and the z value is 0.0 to 0.5. Low temperature operation type magnetic refrigeration working material is obtained.
更には、前記低温動作型磁気冷凍作業物質NaZn13型La1-zCez(FexMnySi1-x-y)13を1種類あるいはその組成を変えたものを複数に、5 T以下の強さの磁場を印加して冷却制御を行う磁気冷凍方法が得られる Furthermore, a plurality of ones the cold operation magnetic refrigerant material NaZn 13 type La 1-z Ce z (Fe x Mn y Si 1-xy) 13 for changing one or its composition, the following strong 5 T A magnetic refrigeration method that controls cooling by applying a magnetic field
また、前記低温動作型磁気冷凍作業物質NaZn13型La1-zCez(FexMnySi1-x-y)13を用いて、温度0K付近から70K付近の範囲を冷却制御することを特徴とする磁気冷凍方法が得られる。 Further, a wherein using a low temperature operation type magnetic refrigeration working substance NaZn 13 type La 1-z Ce z (Fe x Mn y Si 1-xy) 13, to cool control range around 70K from near the temperature 0K A magnetic refrigeration method is obtained.
また、前記低温動作型磁気冷凍作業物質NaZn13型La1-zCez(FexMnySi1-x-y)13を用いて、温度0K付近から70K付近の範囲を冷却制御する磁気冷凍方法において、NaZn13型La1-zCez(FexMnySi1-x-y)13の組成を2種類として構成したことを特徴とする磁気冷凍方法が得られる。 Further, by using the low temperature operation type magnetic refrigeration working substance NaZn 13 type La 1-z Ce z (Fe x Mn y Si 1-xy) 13, the magnetic refrigeration method for cooling control range around 70K from near the temperature 0K , magnetic refrigeration method being characterized in that constitute the composition of NaZn 13 type La 1-z Ce z (Fe x Mn y Si 1-xy) 13 as two types are obtained.
また、前記構成において、温度60K付近から70K付近の範囲ではLa0.65Ce0.35(Fe0.850Mn0.030Si0.120)13で構成し、温度0K付近から60K付近の範囲ではLa0.75Ce0.25(Fe0.850Mn0.035Si0.115)13にて構成したことを特徴とする磁気冷凍方法が得られる。 In the above configuration, La 0.65 Ce 0.35 (Fe 0.850 Mn 0.030 Si 0.120 ) 13 is formed in the temperature range from about 60 K to 70 K, and La 0.75 Ce 0.25 (Fe 0.850 Mn 0.035) in the range from about 0 K to 60 K. A magnetic refrigeration method characterized by comprising Si 0.115 ) 13 is obtained.
本発明によれば、磁気冷凍作業物質NaZn13型La1-zCez(FexMnySi1-x-y)13のCeおよびMn置換量を制御することで0Kから70Kの任意の温度において、優れた磁気熱量特性を示す低温動作型磁気冷凍作業物質が得られ、それらを利用した磁気冷凍方法が得られる。 According to the present invention, at any temperature 70K from 0K by controlling the Ce and Mn substitution of the magnetic refrigeration working substance NaZn 13 type La 1-z Ce z (Fe x Mn y Si 1-xy) 13, A low-temperature operation type magnetic refrigeration working material having excellent magnetocaloric characteristics is obtained, and a magnetic refrigeration method using them is obtained.
以下、本発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
試料は、以下の手順で作製した。まず、組成がLa0.65Ce0.35(Fe0.860Mn0.025Si0.115)13、La0.65Ce0.35(Fe0.850Mn0.030Si0.120)13およびLa0.75Ce0.25(Fe0.850Mn0.035Si0.115)13となるようにLa、Ce、Fe、Mn、Si原料を所定量配合した。その後、この配合した原料をアーク溶解炉にて溶解した。鋳造合金を取り出し、電気炉に移して、La0.65Ce0.35(Fe0.860Mn0.025Si0.115)13およびLa0.65Ce0.35(Fe0.850Mn0.030Si0.120)13には1423Kで14日間、La0.75Ce0.25(Fe0.850Mn0.035Si0.115)13には1373Kで10日間の均質化熱処理を施した。均質化熱処理では、熱処理中における酸化を防ぐために、鋳造合金の試料を石英管に入れ、石英管の開放端から排気し、石英管内を5×10-5 Torr以下まで真空引きした後、石英管を加熱して封じた。試料を急冷すると熱処理で形成されたNaZn13型相が安定に保持されて異相の析出が防止できるので、熱処理後、試料を封入した石英管を素早く電気炉から取り出して氷水で冷却した。試料の酸化を防止するため、試料を室温程度まで冷却した後、石英管を割り、試料を取り出した。 The sample was prepared by the following procedure. First, La 0.65 Ce 0.35 (Fe 0.860 Mn 0.025 Si 0.115 ) 13 , La 0.65 Ce 0.35 (Fe 0.850 Mn 0.030 Si 0.120 ) 13 and La 0.75 Ce 0.25 (Fe 0.850 Mn 0.035 Si 0.115 ) 13 , Ce, Fe, Mn, Si raw materials were blended in predetermined amounts. Thereafter, the blended raw material was melted in an arc melting furnace. The cast alloy was taken out and transferred to an electric furnace. La 0.65 Ce 0.35 (Fe 0.860 Mn 0.025 Si 0.115 ) 13 and La 0.65 Ce 0.35 (Fe 0.850 Mn 0.030 Si 0.120 ) 13 were 14 days at 1423 K, La 0.75 Ce 0.25 ( Fe 0.850 Mn 0.035 Si 0.115 ) 13 was subjected to homogenization heat treatment at 1373K for 10 days. In homogenization heat treatment, in order to prevent oxidation during heat treatment, a cast alloy sample is put in a quartz tube, evacuated from the open end of the quartz tube, and the quartz tube is evacuated to 5 × 10 -5 Torr or less, and then the quartz tube Was sealed by heating. When the sample was rapidly cooled, the NaZn 13 type phase formed by the heat treatment was stably maintained, and precipitation of foreign phases could be prevented. After the heat treatment, the quartz tube enclosing the sample was quickly taken out of the electric furnace and cooled with ice water. In order to prevent oxidation of the sample, the sample was cooled to about room temperature, and then the quartz tube was broken and the sample was taken out.
図1にLa0.65Ce0.35(Fe0.860Mn0.025Si0.115)13、La0.65Ce0.35(Fe0.850Mn0.030Si0.120)13およびLa0.75Ce0.25(Fe0.850Mn0.035Si0.115)13の等温磁気エントロピー変化を示す。La0.65Ce0.35(Fe0.850Mn0.030Si0.120)13は、約60K近傍において、0から2Tの磁場変化で-12 J/kg Kの等温磁気エントロピー変化を示す。 Figure 1 shows the isothermal magnetic entropy changes of La 0.65 Ce 0.35 (Fe 0.860 Mn 0.025 Si 0.115 ) 13 , La 0.65 Ce 0.35 (Fe 0.850 Mn 0.030 Si 0.120 ) 13 and La 0.75 Ce 0.25 (Fe 0.850 Mn 0.035 Si 0.115 ) 13. Show. La 0.65 Ce 0.35 (Fe 0.850 Mn 0.030 Si 0.120 ) 13 shows an isothermal magnetic entropy change of −12 J / kg K with a magnetic field change of 0 to 2 T in the vicinity of about 60K.
また、La0.75Ce0.25(Fe0.850Mn0.035Si0.115)13は水素の沸点である20K近傍において、0から2Tの磁場変化で-5 J/kg Kの等温磁気エントロピー変化を示す。つまり、La1-zCez(FexMnySi1-x-y)13のCeおよびMn濃度を制御することで、70 K以下の温度範囲においても、大きな等温磁気エントロピー変化が得られる。 La 0.75 Ce 0.25 (Fe 0.850 Mn 0.035 Si 0.115 ) 13 exhibits an isothermal magnetic entropy change of −5 J / kg K with a magnetic field change of 0 to 2 T in the vicinity of 20 K which is the boiling point of hydrogen. That is, by controlling the Ce and Mn concentration of La 1-z Ce z (Fe x Mn y Si 1-xy) 13, even in a temperature range below 70 K, large isothermal magnetic entropy change is obtained.
等温磁気エントロピーの最大値だけでなく、RCP(Relative Cooling Power)も磁気冷凍機の冷凍能力に強く影響を及ぼす重要な磁気熱量特性の1つである。RCPは下式で定義される。 In addition to the maximum value of isothermal magnetic entropy, RCP (Relative Cooling Power) is one of the important magnetocaloric characteristics that strongly affects the refrigeration capacity of a magnetic refrigerator. RCP is defined by the following equation.
ここで、ΔSm MAXは等温磁気エントロピー変化ピークの最大値、δTは磁気エントロピー変化のピークの半値幅である。図1から、La0.65Ce0.35(Fe0.850Mn0.030Si0.120)13およびLa0.75Ce0.25(Fe0.850Mn0.035Si0.115)13のRCPは442J/kgおよび525J/kgであり、非常に大きい。 Here, ΔS m MAX is the maximum value of the isothermal magnetic entropy change peak, and ΔT is the half-value width of the peak of the magnetic entropy change. From FIG. 1, the RCPs of La 0.65 Ce 0.35 (Fe 0.850 Mn 0.030 Si 0.120 ) 13 and La 0.75 Ce 0.25 (Fe 0.850 Mn 0.035 Si 0.115 ) 13 are 442 J / kg and 525 J / kg, which are very large.
従って、La1-zCez(FexMnySi1-x-y)13は、CeおよびMn濃度を制御することで、0Kから70Kの任意の温度範囲において巨大磁気熱量効果を示す低温動作型磁気冷凍作業物質として、水素液化等の磁気冷凍技術に応用されることが期待できる。 Accordingly, La 1-z Ce z ( Fe x Mn y Si 1-xy) 13 , by controlling the Ce and Mn concentration, low temperature operation type magnetic illustrating the giant magnetocaloric effect at any temperature range 70K from 0K As a refrigeration material, it can be expected to be applied to magnetic refrigeration technology such as hydrogen liquefaction.
図2にLa0.65Ce0.35(Fe0.860Mn0.025Si0.115)13、La0.65Ce0.35(Fe0.850Mn0.030Si0.120)13およびLa0.75Ce0.25(Fe0.850Mn0.035Si0.115)13の熱磁気曲線を示す。La0.65Ce0.35(Fe0.860Mn0.025Si0.115)13およびLa0.65Ce0.35(Fe0.850Mn0.030Si0.120)13は温度上昇に伴いヒステリシスを伴った磁化の急激な変化を示す。つまり、La0.65Ce0.35(Fe0.860Mn0.025Si0.115)13およびLa0.65Ce0.35(Fe0.850Mn0.030Si0.120)13は、約100Kおよび60Kのキュリー温度で温度誘起1次相転移を示す。一方、La0.75Ce0.25(Fe0.850Mn0.035Si0.115)13では明瞭な転移は見られず、強磁性が消失している。この事は、La1-zCez(FexMnySi1-x-y)13のCeおよびMn濃度を制御することで、キュリー温度は70 K以下まで低下し、0から180Kの温度範囲で制御出来ることを意味している。 Fig. 2 shows the thermomagnetic curves of La 0.65 Ce 0.35 (Fe 0.860 Mn 0.025 Si 0.115 ) 13 , La 0.65 Ce 0.35 (Fe 0.850 Mn 0.030 Si 0.120 ) 13 and La 0.75 Ce 0.25 (Fe 0.850 Mn 0.035 Si 0.115 ) 13 . La 0.65 Ce 0.35 (Fe 0.860 Mn 0.025 Si 0.115 ) 13 and La 0.65 Ce 0.35 (Fe 0.850 Mn 0.030 Si 0.120 ) 13 show a sudden change in magnetization with hysteresis with increasing temperature. That is, La 0.65 Ce 0.35 (Fe 0.860 Mn 0.025 Si 0.115 ) 13 and La 0.65 Ce 0.35 (Fe 0.850 Mn 0.030 Si 0.120 ) 13 exhibit a temperature-induced primary phase transition at Curie temperatures of about 100 K and 60 K. On the other hand, in La 0.75 Ce 0.25 (Fe 0.850 Mn 0.035 Si 0.115 ) 13 , no clear transition is observed, and ferromagnetism disappears. This is, by controlling the Ce and Mn concentration of La 1-z Ce z (Fe x Mn y Si 1-xy) 13, the Curie temperature is lowered to below 70 K, controlled from 0 in a temperature range of 180K It means you can do it.
図3に、La0.75Ce0.25(Fe0.850Mn0.035Si0.115)13の5Kにおける磁化曲線を示す。無磁場中冷却後(1回目)、磁化曲線は大きなヒステリシスを示す。また、磁化過程では、約3 Tに変極点を有したs時型の曲線を示す。つまり、本化合物は、無磁場中冷却後(1回目)の磁化過程において、約3 Tで常磁性から強磁性へのメタ磁性転移を示す。一方、減磁過程における磁化曲線は強磁性の振る舞いを示し、メタ磁性転移は観測されなかった。また、その後(2回目)、磁場を印加しても磁化曲線は強磁性の振る舞いを示し、メタ磁性転移は観測されなかった。つまり、La0.75Ce0.25(Fe0.850Mn0.035Si0.115)13は、基底状態において、無磁場中冷却を行えば磁化過程でメタ磁性転移を示すが、強磁性状態に転移した後は無磁場中でも強磁性となり、不可逆的なメタ磁性転移を示す。従って、La1-zCez(FexMnySi1-x-y)13のCeおよびMn置換量を制御することで、メタ磁性転移を保持しつつ、キュリー温度は0から180Kの温度範囲で制御する事が出来る。 FIG. 3 shows the magnetization curve of La 0.75 Ce 0.25 (Fe 0.850 Mn 0.035 Si 0.115 ) 13 at 5K. After cooling in a magnetic field (first time), the magnetization curve shows a large hysteresis. In the magnetization process, an s-hour curve having an inflection point at about 3 T is shown. That is, this compound exhibits a metamagnetic transition from paramagnetism to ferromagnetism at about 3 T in the magnetization process after cooling in a magnetic field (first time). On the other hand, the magnetization curve in the demagnetization process showed ferromagnetism and no metamagnetic transition was observed. After that (second time), even when a magnetic field was applied, the magnetization curve showed ferromagnetic behavior and no metamagnetic transition was observed. In other words, La 0.75 Ce 0.25 (Fe 0.850 Mn 0.035 Si 0.115 ) 13 exhibits a metamagnetic transition in the magnetization process when cooled in a magnetic field in the ground state, but is strong in a magnetic field after transition to a ferromagnetic state. It becomes magnetic and exhibits irreversible metamagnetic transition. Accordingly, La 1-z Ce z ( Fe x Mn y Si 1-xy) 13 by controlling the Ce and Mn substitution of, while maintaining the meta-magnetic transition, the Curie temperature is controlled from 0 in a temperature range of 180K I can do it.
図4にLa0.75Ce0.25(Fe0.850Mn0.035Si0.115)13において、基底状態をメタ磁性転移により強磁性状態とした後の熱磁気曲線を示す。磁化は、温度上昇に伴い約15Kで急激に減少し、常磁性状態となる。そこで、La0.75Ce0.25(Fe0.850Mn0.035Si0.115)13の15K以上での磁化曲線を図5に示す。15K以上では、磁化過程だけでなく、減磁過程においてもメタ磁性転移が観測される。つまり、La0.75Ce0.25(Fe0.850Mn0.035Si0.115)13は、15K以上では可逆的なメタ磁性転移を示す。 FIG. 4 shows a thermomagnetic curve of La 0.75 Ce 0.25 (Fe 0.850 Mn 0.035 Si 0.115 ) 13 after changing the ground state to a ferromagnetic state by metamagnetic transition. Magnetization rapidly decreases at about 15K as the temperature rises, and enters a paramagnetic state. Therefore, FIG. 5 shows a magnetization curve of La 0.75 Ce 0.25 (Fe 0.850 Mn 0.035 Si 0.115 ) 13 at 15 K or more. Above 15K, metamagnetic transition is observed not only in the magnetization process but also in the demagnetization process. That is, La 0.75 Ce 0.25 (Fe 0.850 Mn 0.035 Si 0.115 ) 13 shows a reversible metamagnetic transition at 15 K or more.
等温磁気エントロピー変化ΔSm は、磁気的性質とMaxwellの関係より次式で関係付けられる。 The isothermal magnetic entropy change ΔS m is related by the following equation from the relationship between magnetic properties and Maxwell.
ここで、Mは磁化、Bは印加磁場、Tは温度である。つまり、上式は一定磁場中における磁化の温度変化が大きいと、大きな等温磁気エントロピー変化も得られる事を意味している。La0.65Ce0.35(Fe0.850Mn0.030Si0.120)13は、図2で明らかように、キュリー温度での温度誘起1次相転移に伴い磁化が大きく温度変化するために、60K近傍で大きな等温磁気エントロピー変化およびRCPを示したと推測される。また、La0.75Ce0.25(Fe0.850Mn0.035Si0.115)13は、基底状態では図3で示したような不可逆的なメタ磁性転移であるが、図5で示したように、15K以上では可逆的なメタ磁性転移により一定磁場中で大きな磁化の温度変化が生じるので、20K近傍で大きな等温磁気エントロピー変化およびRCPを示したと推測される。 Here, M is magnetization, B is an applied magnetic field, and T is temperature. That is, the above equation means that a large isothermal magnetic entropy change can be obtained if the temperature change of magnetization in a constant magnetic field is large. As shown in Fig. 2, La 0.65 Ce 0.35 (Fe 0.850 Mn 0.030 Si 0.120 ) 13 has a large isothermal magnetic entropy around 60K because the magnetization changes greatly with the temperature-induced primary phase transition at the Curie temperature. It is speculated that it showed changes and RCP. In addition, La 0.75 Ce 0.25 (Fe 0.850 Mn 0.035 Si 0.115 ) 13 is an irreversible metamagnetic transition as shown in FIG. 3 in the ground state, but is reversible at 15 K or more as shown in FIG. It is presumed that a large isothermal magnetic entropy change and RCP were exhibited in the vicinity of 20K because a large temperature change of magnetization occurred in a constant magnetic field due to a metamagnetic transition.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005348583A JP2007154233A (en) | 2005-12-02 | 2005-12-02 | Low-temperature operation type magnetic refrigeration working substance, and magnetic refrigeration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005348583A JP2007154233A (en) | 2005-12-02 | 2005-12-02 | Low-temperature operation type magnetic refrigeration working substance, and magnetic refrigeration method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007154233A true JP2007154233A (en) | 2007-06-21 |
Family
ID=38238973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005348583A Pending JP2007154233A (en) | 2005-12-02 | 2005-12-02 | Low-temperature operation type magnetic refrigeration working substance, and magnetic refrigeration method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007154233A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009068077A (en) * | 2007-09-13 | 2009-04-02 | Tohoku Univ | Alloy material, magnetic material, method for manufacturing magnetic material, and magnetic material manufactured by the method |
CN103814144A (en) * | 2011-09-14 | 2014-05-21 | 株式会社电装 | Magnetic refrigeration material and method for manufacturing magnetic refrigeration material |
WO2018088168A1 (en) * | 2016-11-14 | 2018-05-17 | サンデンホールディングス株式会社 | Magnetic heat pump device |
JP2018091391A (en) * | 2016-12-01 | 2018-06-14 | 株式会社前川製作所 | System for liquefying boil-off gas |
WO2024117407A1 (en) * | 2022-11-28 | 2024-06-06 | 한국재료연구원 | Magnetic cooling material and method for preparing same |
-
2005
- 2005-12-02 JP JP2005348583A patent/JP2007154233A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009068077A (en) * | 2007-09-13 | 2009-04-02 | Tohoku Univ | Alloy material, magnetic material, method for manufacturing magnetic material, and magnetic material manufactured by the method |
CN103814144A (en) * | 2011-09-14 | 2014-05-21 | 株式会社电装 | Magnetic refrigeration material and method for manufacturing magnetic refrigeration material |
WO2018088168A1 (en) * | 2016-11-14 | 2018-05-17 | サンデンホールディングス株式会社 | Magnetic heat pump device |
JP2018091391A (en) * | 2016-12-01 | 2018-06-14 | 株式会社前川製作所 | System for liquefying boil-off gas |
WO2024117407A1 (en) * | 2022-11-28 | 2024-06-06 | 한국재료연구원 | Magnetic cooling material and method for preparing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7993542B2 (en) | Magnetic material for magnetic refrigeration | |
US6676772B2 (en) | Magnetic material | |
US8109100B2 (en) | Magnetocaloric refrigerant | |
JP5158485B2 (en) | Magnetic alloy and method for producing the same | |
US11225703B2 (en) | Magnetocaloric alloys useful for magnetic refrigeration applications | |
JP2010060211A (en) | Magnetic material for magnetic refrigeration, magnetic refrigeration device, and magnetic refrigeration system | |
Gębara et al. | Magnetocaloric effect of the LaFe11. 2Co0. 7Si1. 1 modified by partial substitution of La by Pr or Ho | |
JP2010077484A (en) | Magnetic material for magnetic refrigeration, magnetic refrigeration device, and magnetic refrigeration system | |
KR101915242B1 (en) | Magnetic refrigeration material | |
JP5686314B2 (en) | Rare earth magnetic refrigerant for magnetic refrigeration system | |
JP2015141016A (en) | Magnetic refrigerator and cooling device including the same | |
JP2009221494A (en) | Magnetic refrigerating material | |
Clifford et al. | Multicaloric Effects in (MnNiSi) 1− x (Fe₂Ge) x Alloys | |
JP2006089839A (en) | Magnetic refrigeration working substance and magnetic refrigeration system | |
JP2007084897A (en) | Magnetic refrigeration working substance, and magnetic refrigeration method | |
JP2007154233A (en) | Low-temperature operation type magnetic refrigeration working substance, and magnetic refrigeration method | |
Fujita et al. | Magnetocaloric properties in (La, R)(Fe, Mn, Si) 13H (R= Ce and Pr)—toward a better alloy design that results in a reduction in volume of permanent magnets and the establishment of long-term reliability in cooling systems | |
Kamiya et al. | Hydrogen liquefaction by magnetic refrigeration | |
Bin et al. | Effect of proportion change of aluminum and silicon on magnetic entropy change and magnetic properties in La0. 8Ce0. 2Fe11. 5Al1. 5-xSix compounds | |
Do et al. | Effect of Cerium Doping on Crystal Structure and Magnetic Properties of La1− yCeyFe11. 44Si1. 56 Compounds | |
JP2014227557A (en) | Magnetic refrigeration apparatus magnetic working substance and magnetic refrigeration apparatus | |
WO2022186017A1 (en) | Erco2-based magnetocaloric compound and magnetic refrigeration device using same | |
JP6648884B2 (en) | Magnetic refrigeration material | |
JP4482695B2 (en) | Low-temperature magnetic refrigeration work material and magnetic refrigeration system | |
WO2022209879A1 (en) | Erco2-based magnetocaloric compound and magnetic refrigeration device using same |