JP2007144024A - Three-dimensional measurement endoscope using self-mixing laser - Google Patents
Three-dimensional measurement endoscope using self-mixing laser Download PDFInfo
- Publication number
- JP2007144024A JP2007144024A JP2005345210A JP2005345210A JP2007144024A JP 2007144024 A JP2007144024 A JP 2007144024A JP 2005345210 A JP2005345210 A JP 2005345210A JP 2005345210 A JP2005345210 A JP 2005345210A JP 2007144024 A JP2007144024 A JP 2007144024A
- Authority
- JP
- Japan
- Prior art keywords
- distance
- self
- measurement
- semiconductor laser
- mixing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Radar Systems And Details Thereof (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
- Endoscopes (AREA)
Abstract
Description
この発明は、内視鏡における対象物までの距離を計測する技術に関する。 The present invention relates to a technique for measuring a distance to an object in an endoscope.
従来、内視鏡において対象物までの距離を計測するためには、対象物にスポット光を照射し、その画像をカメラで捉えてカメラ,照射器及びスポットの位置から三角測量の原理に基づいて、距離を求めていた(特許文献1,2参照)。
しかしながら、この手法においてはカメラ−照射器間の基軸長が内視鏡の先端部のサイズを超えることができず、その精度に問題があった。
また、三角測量によらない距離計測技術も考えられている(特許文献3,4及び非特許文献1参照)。これは対象物に照射したレーザ光と、対象物からの反射光とを自己干渉(自己混合)させ、発振周波数の変化から距離を求める技術であるが、2次元的な走査手段が必要であり装置が大きいものとなっていた。
However, in this method, the base axis length between the camera and the irradiator cannot exceed the size of the distal end portion of the endoscope, and there is a problem in accuracy.
Further, a distance measurement technique that does not rely on triangulation has been considered (see
三角測量法による限り、内視鏡における基軸長の短さを克服することは困難である。また、自己混合レーザによる距離測定は、機械的手段による2次元的な走査を行っていたために計測点が少なく、利用価値の低いものとなっていた。 As long as the triangulation method is used, it is difficult to overcome the short base length of the endoscope. Further, the distance measurement by the self-mixing laser has been performed with two-dimensional scanning by mechanical means, and therefore has a small number of measurement points and has low utility value.
この発明は、三角測量法と自己混合レーザ距離測定法との併用により実用上の価値を高めるものである。
非接触型の距離計測法として、これまで三角測量法、光切断法、モアレトポグラフィ法が使われてきている。これに対し、自己混合レーザによる距離測定法とは、レーザ光を連続三角波で周波数変調することにより距離を測定する技術であり、三角測量法等とは一線を画する技術である。
この発明では、レーザ光を連続三角波で周波数変調する自己混合半導体レーザ(Self-Mixing Laser Diode:以下「SM−LD」という)による距離計を三角測量法と併用することとする。
The present invention increases practical value by combining the triangulation method and the self-mixing laser distance measurement method.
As a non-contact type distance measuring method, the triangulation method, the light section method, and the moire topography method have been used so far. On the other hand, the distance measurement method using a self-mixing laser is a technology for measuring the distance by frequency-modulating laser light with a continuous triangular wave, and the triangulation method or the like is a technology that sets a line.
In the present invention, a distance meter using a self-mixing laser diode (Self-Mixing Laser Diode: hereinafter referred to as “SM-LD”) that modulates the frequency of laser light with a continuous triangular wave is used in combination with the triangulation method.
SM−LDを用いる距離計の原理自体は既に知られているが、以下に概略を説明する。
図1にSM−LD距離速度計の基本構成を示す。発振器(1)により発生された三角波電圧はレーザダイオード電流源(2)に与えられるため、レーザダイオード(3)に与えられる電流は三角波で変調されることとなる。ダイオードへの注入電流増加時には共振器内の屈折率の減少と温度上昇を引き起こし、レーザ光の周波数が低くなる。またレーザ光強度も変調される。周波数変調されたレーザダイオードからの出射光は、レンズを通り、ターゲット表面に照射される。ターゲット表面で散乱した光の一部は出射光と同一の経路を逆に辿りレーザダイオード共振器に戻る。
すると、その戻り光は共振器内の光と自己干渉(自己混合)を起こし、レーザダイオードパッケージに内蔵されているフォトダイオード(4)の出力波形に、変調三角波及び外部共振器共振状態の変化に起因する階段状の変化(モードホップ)が重なって現れる。
The principle of the distance meter using SM-LD is already known, but the outline will be described below.
FIG. 1 shows the basic configuration of the SM-LD range velocimeter. Since the triangular wave voltage generated by the oscillator (1) is applied to the laser diode current source (2), the current applied to the laser diode (3) is modulated by the triangular wave. When the injection current to the diode increases, the refractive index in the resonator decreases and the temperature rises, and the frequency of the laser light decreases. The laser light intensity is also modulated. Light emitted from the frequency-modulated laser diode passes through the lens and is irradiated onto the target surface. A part of the light scattered on the target surface reversely follows the same path as the emitted light and returns to the laser diode resonator.
Then, the return light causes self-interference (self-mixing) with the light in the resonator, and the output waveform of the photodiode (4) incorporated in the laser diode package changes to the modulation triangular wave and the resonance state of the external resonator. The resulting step-like changes (mode hops) appear to overlap.
すなわち、図2に示すように、レーザダイオード(3)の内部の反射面(11,12)で構成される長さL1の内部共振器と、外部の対象物(6)の表面の反射面(13)とレーザ表面の反射面(12)で構成される長さL2の外部共振器とが結合された複合共振器が構成されており、変調周波数と複合共振器の共振周波数との間で干渉が生じ、発振強度に影響を与える。
この階段状の変化(モードホップ)は、変調三角波の上昇部と下降部とにおいて周期的である。モードホップ信号の周波数(周期)は、レーザダイオードとターゲット間の距離Lと、レーザダイオードの光軸方向のターゲット速度vに依存する。したがって、モードホップ周波数(周期)を計測すれば、レーザダイオードからターゲットまでの距離及びターゲットの速度が決定される。このように、SM−LD距離速度計測の光学系は、フォトダイオードを内蔵したレーザダイオードパッケージと集光レンズだけで、非常にコンパクトに構成することができる。
That is, as shown in FIG. 2, the internal resonator having a length L1 constituted by the internal reflection surfaces (11, 12) of the laser diode (3) and the reflection surface of the surface of the external object (6) ( 13) and an external resonator having a length L2 constituted by the reflection surface (12) of the laser surface are combined, and interference occurs between the modulation frequency and the resonance frequency of the composite resonator. Affects the oscillation intensity.
This step-like change (mode hop) is periodic at the rising and falling portions of the modulated triangular wave. The frequency (period) of the mode hop signal depends on the distance L between the laser diode and the target and the target velocity v in the optical axis direction of the laser diode. Therefore, if the mode hop frequency (period) is measured, the distance from the laser diode to the target and the speed of the target are determined. As described above, the SM-LD distance-velocity measuring optical system can be configured to be very compact by using only a laser diode package and a condenser lens with a built-in photodiode.
自己混合半導体レーザは、周期的に発振周波数を変化させる半導体レーザと、該半導体レーザから放射された光を対象物に照射するとともに該対象物からの反射光の一部を前記半導体レーザに帰還し結合させる光学系と、前記半導体レーザの出力を計測する光電変換素子と、該光電変換素子の出力変化から対象物までの距離を求める演算回路とを具備してなり、小型化が図れる。
SM−LD距離速度計測の光学系は小型であるが、基本構造のままでは照射点の1点までの距離しか測れない。そこで回転ミラーや振動ミラーにより走査を行うことにより、これまで複数点の距離を計測していた。しかしながら、かかる構成では内視鏡のような小型機器に用いることは困難である。
The self-mixing semiconductor laser irradiates an object with light emitted from the semiconductor laser that periodically changes the oscillation frequency and returns a part of the reflected light from the object to the semiconductor laser. The optical system to be coupled, a photoelectric conversion element that measures the output of the semiconductor laser, and an arithmetic circuit that obtains the distance from the change in output of the photoelectric conversion element to the object can be miniaturized.
Although the SM-LD distance velocity measurement optical system is small, only the distance to one irradiation point can be measured with the basic structure. Therefore, the distance of a plurality of points has been measured so far by scanning with a rotating mirror or a vibrating mirror. However, it is difficult to use such a configuration for a small device such as an endoscope.
図3に、内視鏡(20)の先端部に撮像素子であるCCD(22)と、SM−LD(8)とを設けた例を示している。CCD(22)には撮像用のレンズ(21)が設けられ、SM−LD(8)には投射用のレンズ(5)が設けられている。単体のSM−LDでは一箇所にのみ光を照射するので、一点でのみの距離計測となるから、ここでは2次元配列した複数のSM−LD素子を用いることが望ましい。
SM−LD素子を複数配置すれば、それぞれからの信号を処理して複数点までの距離情報を得る。これには内視鏡の先端部に設ける形態と、中間部または操作側に設けて光ファイバーで伝送する形態とがある。SM−LD素子の配置も好ましくは2次元の面状配置であるが、格納空間の制約により1次元のアレイ状配置となることもある。
FIG. 3 shows an example in which a CCD (22) and an SM-LD (8) as an image pickup device are provided at the distal end portion of the endoscope (20). The CCD (22) is provided with an imaging lens (21), and the SM-LD (8) is provided with a projection lens (5). Since a single SM-LD irradiates light only at one point, distance measurement is performed only at one point. Therefore, it is desirable here to use a plurality of two-dimensionally arranged SM-LD elements.
If a plurality of SM-LD elements are arranged, signals from each are processed to obtain distance information up to a plurality of points. There are a form provided at the distal end of the endoscope and a form provided at the intermediate part or the operation side and transmitted by an optical fiber. The arrangement of the SM-LD elements is also preferably a two-dimensional planar arrangement, but may be a one-dimensional array arrangement due to storage space constraints.
CCD(22)で撮像された対象物(6)の像は、制御装置(30)内の信号処理回路(32)で処理され、SM−LD(8)から得られた距離情報とともに表示装置(31)に表示される。一点のみの距離情報であれば、表示エリアの一部に数値情報として表示するが、多点で距離情報が得られれば三次元表示することが可能となる。
一点のみの距離情報を得るにあたっては、複数配置されたSM−LD素子のうち一つを利用して距離表示を希望する対象点にレーザ光を照射することとなる。あとで説明するアクチュエータによるスキャンを行うときには、アクチュエータによる変位を制御し、任意の対象点にレーザ光を照射する。これらはスキャン動作の一時停止と考えることができる。
一方で、三次元表示するには右目用画像と左目用画像とを作成し、表示装置(31)として立体視可能な表示器を用いる必要がある。簡易化するならば等高線表示とし、基準位置の等高線を白あるいは黄色で表示し、基準位置より遠い等高線を徐々に青く、基準位置より近い等高線を徐々に赤く表示することとすれば、通常のカラー表示器が採用できる。
また、単体のSM−LD素子が小型であっても三次元表示するために2次元配列を行うと大型化するため、内視鏡(20)の先端部に収納することは困難となる。この場合には図4に示すように、光ファイバー(23)を用いて、光伝送することにより解決できる。
SM−LD(8)からのレーザ光は結像用のレンズ(10)により光ファイバー(23)の端面に照射される。この光は、光ファイバー(23)内を通過し、他の端面より放射されるが、投射用のレンズ(5)により、対象物(6)の表面に焦点を結ぶように調節される。対象物からの反射光も同様に逆の経路を辿りSM−LD(8)にフィードバックされる。
The image of the object (6) picked up by the CCD (22) is processed by the signal processing circuit (32) in the control device (30), and the display device (with the distance information obtained from the SM-LD (8)). 31). If the distance information is only one point, it is displayed as numerical information in a part of the display area. However, if the distance information is obtained at multiple points, three-dimensional display is possible.
In obtaining distance information of only one point, laser light is irradiated to a target point for which distance display is desired using one of a plurality of arranged SM-LD elements. When scanning by an actuator, which will be described later, displacement by the actuator is controlled and an arbitrary target point is irradiated with laser light. These can be considered as temporary suspension of the scanning operation.
On the other hand, for three-dimensional display, it is necessary to create a right-eye image and a left-eye image and use a stereoscopic display device as the display device (31). If simplified, contour lines are displayed, the contour lines at the reference position are displayed in white or yellow, contour lines far from the reference position are gradually blue, and contour lines near the reference position are gradually displayed in red. A display can be used.
Further, even if a single SM-LD element is small, if it is two-dimensionally arranged for three-dimensional display, it will become large, and it will be difficult to store it at the distal end of the endoscope (20). In this case, as shown in FIG. 4, it can be solved by optical transmission using an optical fiber (23).
The laser light from the SM-LD (8) is irradiated to the end face of the optical fiber (23) by the imaging lens (10). This light passes through the optical fiber (23) and is emitted from the other end face, but is adjusted by the projection lens (5) to focus on the surface of the object (6). Similarly, the reflected light from the object follows the reverse path and is fed back to the SM-LD (8).
複数のSM−LD素子を用いて2次元に配列すると大型化し、コスト的にも割高である。
解決策として、ピエゾ素子のような小型のアクチュエータにより照射点を変位させて、複数点までの距離情報を得る。このためには、SM−LD素子そのものを変位させる形態と、SM−LD素子からの光を伝送してきた光ファイバーの端面を変位させる形態とがある。この例を図5に示す。
図5(a)は、SM−LD(8)にアクチュエータ(24)を結合させ、光軸と直交する方向に変位させる。これにより照射点の変位が期待できる。図5(b)は光ファイバー(23)を光中継に用いた際の例である。図5(a)と同様にSM−LD(8)を変位させている。図5(c)は図5(b)と同じく光ファイバー(23)を用いる例であるが、ここではSM−LD(8)ではなく、光ファイバー(23)の端面をアクチュエータ(24)により光軸と直交する方向に移動させている。図5(c)の変形として対象物(6)側の光ファイバー(23)の端面を変位させてもよいことは、当業者にとって自明であろう。
また、SM−LD(8)や光ファイバー(23)端面の変位に代えて、レンズ(5,10)を光軸と直交する方向に変位させても同様の効果が得られるものである。なお、図5(d)は、先に述べたSM−LD素子を複数配列し、時分割で順次発光させることにより対象物(6)の異なる位置を照射する例を示している。時分割の駆動に代えて、液晶シャッタなどの電子的シャッタを用いて等価的に順次発光する構成も可能である。
If a two-dimensional arrangement is made using a plurality of SM-LD elements, the size increases and the cost is high.
As a solution, the irradiation point is displaced by a small actuator such as a piezo element to obtain distance information up to a plurality of points. For this purpose, there are a form in which the SM-LD element itself is displaced and a form in which the end face of the optical fiber that has transmitted light from the SM-LD element is displaced. An example of this is shown in FIG.
In FIG. 5A, the actuator (24) is coupled to the SM-LD (8) and displaced in the direction perpendicular to the optical axis. Thereby, the displacement of the irradiation point can be expected. FIG. 5B is an example when the optical fiber (23) is used for optical relay. Similar to FIG. 5A, the SM-LD (8) is displaced. FIG. 5 (c) is an example using the optical fiber (23) as in FIG. 5 (b), but here the end surface of the optical fiber (23) is not the SM-LD (8) but the optical axis by the actuator (24). It is moved in the orthogonal direction. It will be obvious to those skilled in the art that the end face of the optical fiber (23) on the object (6) side may be displaced as a modification of FIG. 5 (c).
Further, the same effect can be obtained by displacing the lenses (5, 10) in the direction orthogonal to the optical axis instead of the displacement of the end face of the SM-LD (8) or the optical fiber (23). FIG. 5D shows an example in which a plurality of SM-LD elements described above are arranged and light is emitted sequentially in a time-division manner to irradiate different positions of the object (6). Instead of time-division driving, an equivalent sequential light emission using an electronic shutter such as a liquid crystal shutter is also possible.
対象物の観察範囲全体にドット・パターンを投光する。この画像を撮像素子で捉え、パターン認識の処理を行った後、対応点ごとに三角測量法を用いて距離を求める。これと並行してSM−LDによるビーム光により視野となる範囲の中央部(注目点)を中心とする狭い範囲を重点的に走査し、距離を求める。
現在の技術水準では、内視鏡における基線長の短さから、SM−LDによる距離測定のほうが三角測量によるものよりも精度が高い。
したがって、この発明によれば中央部付近を精度が高く測定でき、かつ走査範囲を限定することにより測定点密度も高く測定できる。なお、距離測定用のパターンはドット・パターンに限定されることなく、クロス・パターンやストライプ・パターンなど種々のパターンであってもよい。
A dot pattern is projected over the entire observation range of the object. After capturing this image with an image sensor and performing pattern recognition processing, a distance is obtained for each corresponding point using a triangulation method. In parallel with this, a narrow range centering on the central portion (attention point) of the range that becomes the field of view is focused by the beam light from the SM-LD, and the distance is obtained.
In the current state of the art, the distance measurement by SM-LD is more accurate than that by triangulation because of the short baseline length in the endoscope.
Therefore, according to the present invention, the vicinity of the central portion can be measured with high accuracy, and the measurement point density can also be measured with high accuracy by limiting the scanning range. The distance measurement pattern is not limited to a dot pattern, and may be various patterns such as a cross pattern and a stripe pattern.
図6に観察範囲と距離測定範囲との関係を示す。
撮像素子であるCCD(22)で撮影される範囲は、観察範囲(26)として示され、最も広い範囲である。パターン投影部(25)によりドット・パターンが投影される範囲は、パターン投影範囲(27)で示され、観察範囲のやや内側に設定される。SM−LD(8)により距離測定がなされる範囲は、SM−LD測定範囲(28)として中央部に設定される。所望される測定点の配置密度により、適宜測定範囲は増減される。
FIG. 6 shows the relationship between the observation range and the distance measurement range.
The range photographed by the CCD (22) that is the image sensor is shown as an observation range (26), which is the widest range. The range in which the dot pattern is projected by the pattern projection unit (25) is indicated by the pattern projection range (27), and is set slightly inside the observation range. The range in which the distance is measured by the SM-LD (8) is set at the center as the SM-LD measurement range (28). The measurement range is appropriately increased or decreased depending on the desired arrangement density of measurement points.
SM−LDにより測定された距離情報により、三角測量法により測定された情報を補正すると、三角測量法による測定誤差が修正できる。この補正は両者で同一ポイントの測定値が得られればその差を誤差とし、同一ポイントの測定値がなければ補間により演算したり、ある面積内の平均値をもって誤差とする。また、既知の距離に平面板を配置し、距離及び/または画面内位置ごとに予め補正値を演算し記憶することも可能である。これらの補正は基本的に制御装置(30)内の信号処理回路(32)でなされる。 If the information measured by the triangulation method is corrected by the distance information measured by the SM-LD, the measurement error by the triangulation method can be corrected. In this correction, if a measurement value at the same point is obtained by both, the difference is regarded as an error, and if there is no measurement value at the same point, it is calculated by interpolation, or an average value within a certain area is regarded as an error. It is also possible to place a flat plate at a known distance and calculate and store a correction value in advance for each distance and / or position in the screen. These corrections are basically made by the signal processing circuit (32) in the control device (30).
この発明は、SM−LD(自己混合半導体レーザ)を用いることにより、これまでの三角測量に基づく計測に比べて、基線長の影響を受けることなく対象物までの距離測定が可能となった。また、単体のSM−LD素子(または光ファイバー端面あるいはレンズ)を光軸に直交する方向に変位させることにより、面走査が可能となり、これにより三次元画像表示(立体視)が可能となった。 In the present invention, by using an SM-LD (self-mixing semiconductor laser), the distance to the object can be measured without being affected by the baseline length as compared with the conventional measurement based on triangulation. In addition, surface scanning is possible by displacing a single SM-LD element (or an optical fiber end face or lens) in a direction perpendicular to the optical axis, thereby enabling three-dimensional image display (stereoscopic view).
1 発振部
2 駆動部
3 フォトダイオード
4 レーザダイオード
5,10,21 レンズ
6 対象物
7 測定回路
8 SM−LD(自己混合半導体レーザ)
20 内視鏡
22 CCD
23 光ファイバー
DESCRIPTION OF SYMBOLS 1 Oscillator 2 Driver 3
20
23 Optical fiber
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005345210A JP2007144024A (en) | 2005-11-30 | 2005-11-30 | Three-dimensional measurement endoscope using self-mixing laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005345210A JP2007144024A (en) | 2005-11-30 | 2005-11-30 | Three-dimensional measurement endoscope using self-mixing laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007144024A true JP2007144024A (en) | 2007-06-14 |
Family
ID=38206135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005345210A Pending JP2007144024A (en) | 2005-11-30 | 2005-11-30 | Three-dimensional measurement endoscope using self-mixing laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007144024A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010008061A (en) * | 2008-06-24 | 2010-01-14 | Yamatake Corp | Physical quantity sensor and physical quantity measurement method |
JP2010078561A (en) * | 2008-09-29 | 2010-04-08 | Yamatake Corp | Reflective photoelectric switch and object detection method |
JP2010101642A (en) * | 2008-10-21 | 2010-05-06 | Yamatake Corp | Physical quantity sensor and physical quantity measurement method |
JP2010117145A (en) * | 2008-11-11 | 2010-05-27 | Yamatake Corp | Physical quantity sensor and method for measuring physical quantity |
CN102033314A (en) * | 2009-09-25 | 2011-04-27 | 独立行政法人日本原子力研究开发机构 | Image capturing apparatus, image displaying method and recording medium, image displaying program being recorded thereon |
WO2012161239A1 (en) * | 2011-05-24 | 2012-11-29 | オリンパス株式会社 | Endoscope |
JP2013501247A (en) * | 2009-07-31 | 2013-01-10 | レモプティックス ソシエテ アノニム | Optical microprojection system and projection method |
JP2015052555A (en) * | 2013-09-09 | 2015-03-19 | 株式会社神戸製鋼所 | Measurement method of inside of furnace refractory worn state |
US9581802B2 (en) | 2011-05-24 | 2017-02-28 | Olympus Corporation | Endoscope device, and measurement method |
US10342459B2 (en) | 2011-04-27 | 2019-07-09 | Olympus Corporation | Endoscope apparatus and measuring method |
KR102205290B1 (en) * | 2019-12-30 | 2021-01-21 | 한국건설기술연구원 | Image-based structure measurement system using additional light sources |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0542097A (en) * | 1991-08-16 | 1993-02-23 | Olympus Optical Co Ltd | Endoscope for three-dimensional measurement |
JP2005501279A (en) * | 2001-08-23 | 2005-01-13 | ユニバーシティ・オブ・ワシントン | Collect depth-enhanced images |
-
2005
- 2005-11-30 JP JP2005345210A patent/JP2007144024A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0542097A (en) * | 1991-08-16 | 1993-02-23 | Olympus Optical Co Ltd | Endoscope for three-dimensional measurement |
JP2005501279A (en) * | 2001-08-23 | 2005-01-13 | ユニバーシティ・オブ・ワシントン | Collect depth-enhanced images |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010008061A (en) * | 2008-06-24 | 2010-01-14 | Yamatake Corp | Physical quantity sensor and physical quantity measurement method |
JP2010078561A (en) * | 2008-09-29 | 2010-04-08 | Yamatake Corp | Reflective photoelectric switch and object detection method |
JP2010101642A (en) * | 2008-10-21 | 2010-05-06 | Yamatake Corp | Physical quantity sensor and physical quantity measurement method |
JP2010117145A (en) * | 2008-11-11 | 2010-05-27 | Yamatake Corp | Physical quantity sensor and method for measuring physical quantity |
JP2013501247A (en) * | 2009-07-31 | 2013-01-10 | レモプティックス ソシエテ アノニム | Optical microprojection system and projection method |
US9004698B2 (en) | 2009-07-31 | 2015-04-14 | Lemoptix Sa | Optical micro-projection system and projection method |
CN102033314A (en) * | 2009-09-25 | 2011-04-27 | 独立行政法人日本原子力研究开发机构 | Image capturing apparatus, image displaying method and recording medium, image displaying program being recorded thereon |
US10342459B2 (en) | 2011-04-27 | 2019-07-09 | Olympus Corporation | Endoscope apparatus and measuring method |
US10898110B2 (en) | 2011-04-27 | 2021-01-26 | Olympus Corporation | Endoscope apparatus and measuring method |
JP2012239834A (en) * | 2011-05-24 | 2012-12-10 | Olympus Corp | Endoscope device |
US9581802B2 (en) | 2011-05-24 | 2017-02-28 | Olympus Corporation | Endoscope device, and measurement method |
US9622644B2 (en) | 2011-05-24 | 2017-04-18 | Olympus Corporation | Endoscope |
WO2012161239A1 (en) * | 2011-05-24 | 2012-11-29 | オリンパス株式会社 | Endoscope |
US10368721B2 (en) | 2011-05-24 | 2019-08-06 | Olympus Corporation | Endoscope |
JP2015052555A (en) * | 2013-09-09 | 2015-03-19 | 株式会社神戸製鋼所 | Measurement method of inside of furnace refractory worn state |
KR102205290B1 (en) * | 2019-12-30 | 2021-01-21 | 한국건설기술연구원 | Image-based structure measurement system using additional light sources |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111025317B (en) | Adjustable depth measuring device and measuring method | |
US7699469B2 (en) | System and method for tracking eyeball motion | |
US6741082B2 (en) | Distance information obtaining apparatus and distance information obtaining method | |
US10419741B2 (en) | Systems and methods for compression of three dimensional depth sensing | |
CN111487639B (en) | Laser ranging device and method | |
US20130188043A1 (en) | Active illumination scanning imager | |
TW201350786A (en) | Form measuring apparatus, structure manufacturing system, scanning apparatus, method for measuring form, method for manufacturing structure, and non-transitory computer readable medium storing program for measuring form | |
JP2007144024A (en) | Three-dimensional measurement endoscope using self-mixing laser | |
CN110658529A (en) | Integrated beam splitting scanning unit and manufacturing method thereof | |
JP4997406B1 (en) | Shape measuring device, depth measuring device and film thickness measuring device | |
CN217818613U (en) | Line laser imaging system and 3D shooting equipment | |
KR101175780B1 (en) | 3-Dimension depth camera using the Infrared laser projection display | |
CN110716189A (en) | Transmitter and distance measurement system | |
US9562761B2 (en) | Position measuring device | |
JP2017073546A (en) | Edge emitting laser light source and three-dimensional image obtaining apparatus including the same | |
CN111487603A (en) | Laser emission unit and manufacturing method thereof | |
JP7523970B2 (en) | Measuring device and measuring method | |
JP2007105140A (en) | Three-dimensional measurement endoscope using self-mixing laser | |
JP2021018079A (en) | Imaging apparatus, measuring device, and measuring method | |
JP2020166061A (en) | Optical scanning device | |
JP3973979B2 (en) | 3D shape measuring device | |
CN211426798U (en) | Integrated beam splitting scanning unit | |
JP2004053532A (en) | Optical shape measuring device | |
CN211148902U (en) | Transmitter and distance measurement system | |
JP2001153612A (en) | Three-dimensional image pickup device and method, and inteference light generating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100615 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101019 |