[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007140547A - Display device and its manufacturing method - Google Patents

Display device and its manufacturing method Download PDF

Info

Publication number
JP2007140547A
JP2007140547A JP2007016686A JP2007016686A JP2007140547A JP 2007140547 A JP2007140547 A JP 2007140547A JP 2007016686 A JP2007016686 A JP 2007016686A JP 2007016686 A JP2007016686 A JP 2007016686A JP 2007140547 A JP2007140547 A JP 2007140547A
Authority
JP
Japan
Prior art keywords
electrode
layer
reflective
display device
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007016686A
Other languages
Japanese (ja)
Inventor
Kazuhiro Inoue
和弘 井上
Tokuo Koma
徳夫 小間
Shinji Ogawa
真司 小川
Toru Yamashita
徹 山下
Nobuhiko Oda
信彦 小田
Satoshi Ishida
聡 石田
Tsutomu Yamada
努 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007016686A priority Critical patent/JP2007140547A/en
Publication of JP2007140547A publication Critical patent/JP2007140547A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a display device which has uniform electric characteristics of first and second electrodes to a liquid crystal layer, is free of influence of a flicker and parallax, has high display quality and lower power consumption, and is equipped with a reflecting function. <P>SOLUTION: A first substrate 100 has a TFT 110 as a switch element provided for each pixel, and a reflective layer 44, which is insulated from the TFT 110 and reflects light made incident from the side of a second substrate 200 through a second electrode 250 made of ITO etc., formed on an insulating film covering the TFT 110. Further, a first electrode 50 which has a work function similar to that of the second electrode 250 and is made of a transparent conductive material such as ITO is formed closer to a liquid crystal layer 300 than to the reflective layer 44, and connected to the TFT 110. With this constitution, the liquid crystal layer 300 can be AC-driven by the first and second electrodes 50 and 250 with good symmetry. The first electrode 50 and TFT 110 are securely connected through a metal layer 42 for connection which is made of metal having a high fusion point. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、反射機能を備えた反射型あるいは半透過型表示装置などに関する。   The present invention relates to a reflective or transflective display device having a reflective function.

液晶表示装置(以下LCDという)は薄型で低消費電力であるという特徴を備え、現在、コンピュータモニターや、携帯情報機器などのモニターとして広く用いられている。このようなLCDは、一対の基板間に液晶が封入され、それぞれの基板に形成され電極によって間に位置する液晶の配向を制御することで表示を行うものであり、CRT(陰極線管)ディスプレイや、エレクトロルミネッセンス(以下、EL)ディスプレイ等と異なり、原理上自ら発光しないため、観察者に対して画像を表示するには光源を必要とする。   Liquid crystal display devices (hereinafter referred to as LCDs) are characterized by being thin and have low power consumption, and are currently widely used as monitors for computer monitors and portable information devices. In such an LCD, liquid crystal is sealed between a pair of substrates, and display is performed by controlling the orientation of the liquid crystal formed on each substrate and positioned between the electrodes, such as a CRT (cathode ray tube) display, Unlike an electroluminescence (hereinafter, EL) display or the like, since it does not emit light in principle, a light source is required to display an image to an observer.

そこで、透過型LCDでは、各基板に形成する電極として透明電極を採用し、液晶表示パネルの後方や側方に光源を配置し、この光源光の透過量を液晶パネルで制御することで周囲が暗くても明るい表示ができる。しかし、常に光源を点灯させて表示を行うため、光源による電力消費が避けられないこと、また昼間の屋外のように外光が非常に強い環境下では、十分なコントラストが確保できないという特性がある。   Therefore, in a transmissive LCD, a transparent electrode is adopted as an electrode formed on each substrate, a light source is disposed behind or on the side of the liquid crystal display panel, and the amount of light transmitted through the light source is controlled by the liquid crystal panel. Bright display is possible even in the dark. However, since the display is always performed by turning on the light source, power consumption by the light source is inevitable, and sufficient contrast cannot be secured in an environment where the outside light is very strong such as outdoors in the daytime. .

一方、反射型LCDでは、太陽や室内灯等の外光を光源として採用し、液晶パネルに入射するこれらの周囲光を、非観察面側の基板に形成した反射電極によって反射する。そして、液晶層に入射し反射電極で反射された光の液晶パネルからの射出光量を画素ごとに制御することで表示を行う。このように反射型LCDは、光源として外光を採用するため、外光がないと表示が見えないが、透過型LCDと異なり光源による電力消費がなく非常に低消費電力であり、また屋外など周囲が明るいと十分なコントラストが得られる。しかし、この反射型LCDは、従来においては、色再現性や表示輝度など一般的な表示品質の点で透過型と比較すると不十分であるという課題があった。   On the other hand, the reflective LCD employs external light such as the sun and room light as a light source, and reflects the ambient light incident on the liquid crystal panel by a reflective electrode formed on the substrate on the non-observation surface side. Then, display is performed by controlling the amount of light emitted from the liquid crystal panel, which is incident on the liquid crystal layer and reflected by the reflective electrode, for each pixel. As described above, since the reflective LCD employs external light as the light source, the display cannot be seen without external light. However, unlike the transmissive LCD, the power consumption by the light source is very low and the power consumption is very low. If the surroundings are bright, sufficient contrast can be obtained. However, this reflection type LCD has a problem that it is insufficient in comparison with a transmission type in terms of general display quality such as color reproducibility and display luminance.

他方で、機器の低消費電力化に対する要求が一段と強まる状況下では透過型LCDよりも消費電力の小さい反射型LCDは有利であるため、携帯機器の高精細モニター用途などへの採用が試みられており、表示品質の向上のための研究開発が行われている。   On the other hand, reflective LCDs with lower power consumption than transmissive LCDs are advantageous in situations where the demand for lower power consumption of devices is further strengthened, so attempts have been made to adopt them for high-definition monitor applications in portable devices. R & D is being conducted to improve display quality.

図8は、各画素ごとに薄膜トランジスタ(TFT:Thin film Transistor)を備えた従来のアクティブマトリクス型の反射型LCDの1画素あたりの平面構造(第1基板側)を示し、図9は、この図8のC−C線に沿った位置での反射型LCDの概略断面構造を示している。   FIG. 8 shows a planar structure (first substrate side) per pixel of a conventional active matrix reflective LCD having a thin film transistor (TFT) for each pixel. FIG. 8 shows a schematic cross-sectional structure of a reflective LCD at a position along line CC.

反射型LCDは所定ギャップ隔てて貼り合わされた第1基板100と第2基板200との間に液晶層300が封入されて構成されている。第1及び第2基板100及び200としてはガラス基板やプラスチック基板などが用いられ、少なくともこの例では、観察面側に配置される第2基板200には透明基板が採用されている。   The reflective LCD is configured such that a liquid crystal layer 300 is sealed between a first substrate 100 and a second substrate 200 which are bonded to each other with a predetermined gap. As the first and second substrates 100 and 200, a glass substrate, a plastic substrate, or the like is used. At least in this example, a transparent substrate is used as the second substrate 200 disposed on the observation surface side.

第1電極100の液晶側の面には、各画素ごとに薄膜トランジスタ(TFT:Thin film Transistor)110が形成されている。このTFT110の能動層120の例えばドレイン領域には、層間絶縁膜134に形成されたコンタクトホールを介して各画素にデータ信号を供給するためのデータライン136が接続され、ソース領域は、層間絶縁膜134及び平坦化絶縁膜138を貫通するように形成されたコンタクトホールを介して、画素ごとに個別パターンに形成された第1電極(画素電極)150に接続されている。   A thin film transistor (TFT) 110 is formed for each pixel on the liquid crystal side surface of the first electrode 100. A data line 136 for supplying a data signal to each pixel is connected to, for example, a drain region of the active layer 120 of the TFT 110 via a contact hole formed in the interlayer insulating film 134. 134 and a contact hole formed so as to penetrate the planarization insulating film 138, the pixel is connected to a first electrode (pixel electrode) 150 formed in an individual pattern for each pixel.

上記第1電極150としては、反射機能を備えたAl、Agなどが用いられており、この反射電極150上に液晶層300の初期配向を制御するための配向膜160が形成されている。   As the first electrode 150, Al, Ag or the like having a reflection function is used, and an alignment film 160 for controlling the initial alignment of the liquid crystal layer 300 is formed on the reflection electrode 150.

第1基板100と対向配置される第2基板200の液晶側には、カラー表示装置の場合カラーフィルタ(R,G,B)210が形成され、カラーフィルタ210の上に第2電極として、ITO(Indium Tin Oxide)等の透明導電材料が用いられた透明電極250が形成されている。またこの透明電極250の上には、第1基板側と同様の配向膜260が形成されている。   In the case of a color display device, a color filter (R, G, B) 210 is formed on the liquid crystal side of the second substrate 200 disposed opposite to the first substrate 100. ITO is used as a second electrode on the color filter 210. A transparent electrode 250 using a transparent conductive material such as (Indium Tin Oxide) is formed. On the transparent electrode 250, an alignment film 260 similar to that on the first substrate side is formed.

反射型LCDは、上述のような構成を備えており、液晶パネルに入射され、反射電極150で反射され、再び液晶パネルから射出される光の量を、画素ごと制御して所望の表示を行う。   The reflective LCD has the above-described configuration, and performs a desired display by controlling the amount of light incident on the liquid crystal panel, reflected by the reflective electrode 150, and again emitted from the liquid crystal panel for each pixel. .

反射型に限らず、LCDにおいては、焼き付き防止のため液晶を交流電圧駆動している。透過型LCDでは、第1基板上の第1電極及び第2基板の第2電極のいずれも透明であることが求められており、双方とも電極材料としてITOが採用されている。従って、液晶の交流駆動に際して、第1及び第2電極は、互いに正、負電圧をほぼ同一の条件で液晶に印加することができる。   The LCD is not limited to the reflective type, and the liquid crystal is driven with an AC voltage to prevent burn-in. In the transmissive LCD, both the first electrode on the first substrate and the second electrode on the second substrate are required to be transparent, and both employ ITO as an electrode material. Therefore, when the liquid crystal is AC driven, the first and second electrodes can apply positive and negative voltages to the liquid crystal under substantially the same conditions.

しかし、上記図9のように、第1電極150として金属材料からなる反射電極、第2電極250としてITOなどの透明金属酸化材料からなる透明電極を用いた反射型LCDでは、駆動条件によっては、表示のちらつき(フリッカ)が発生したり、液晶の焼き付きの問題が起こることがあった。これは、例えば最近報告されている限界フリッカ周波数(CFF)以下で液晶を駆動した場合に顕著である。CFF以下での駆動とは、LCDにおける一層の低消費電力化を目的として、液晶の駆動周波数(≒第1及び第2電極との対向領域にそれぞれ形成された画素それぞれにおける液晶(液晶容量)へのデータ書き込み周波数)を、例えばNTSC規格などで基準とされている60Hzより低くするなど、人の目にフリッカとして感知され得るCFF以下、例えば40Hz〜30Hzとする試みである。ところが、従来の反射型液晶パネルの各画素をこのようなCFF以下の周波数で駆動したところ、上記フリッカや液晶の焼き付きの問題は顕著となり、表示品質の大幅な低下を招くことがわかったのである。   However, as shown in FIG. 9, in a reflective LCD using a reflective electrode made of a metal material as the first electrode 150 and a transparent electrode made of a transparent metal oxide material such as ITO as the second electrode 250, depending on driving conditions, In some cases, display flickering or liquid crystal burn-in problems occur. This is remarkable, for example, when the liquid crystal is driven at a critical flicker frequency (CFF) or less recently reported. The driving below CFF is a liquid crystal driving frequency (≈ liquid crystal (liquid crystal capacitance) in each pixel formed in a region facing the first and second electrodes for the purpose of further reducing power consumption in the LCD. The data write frequency) is lower than CHz that can be perceived as flicker by human eyes, for example, 40 Hz to 30 Hz, for example, lower than 60 Hz, which is standard in the NTSC standard. However, when each pixel of the conventional reflective liquid crystal panel is driven at such a frequency below CFF, it has been found that the above flicker and liquid crystal burn-in problems become prominent and cause a significant decrease in display quality. .

図8、図9に示すような反射型LCDのフリッカや液晶焼き付き発生の原因について、出願人の研究の結果、これらは上述のような液晶層300に対する第1及び第2電極の電気的性質についての非対称性が原因の一つであることが判明した。この非対称性は、第2電極250に用いられるITOなどの透明金属酸化物の仕事関数が4.7eV〜5.2eV程度であるのに対し、第1電極150に用いられるAlなどの金属の仕事関数が4.2eV〜4.3eV程度と差が大きいことに起因すると考えられる。仕事関数の相違は、同一電圧を各電極に印加した時に、実際に配向膜160,260を介して液晶界面に誘起される電荷に差を生じさせる。そして、このような液晶の配向膜界面に誘起される電荷の差により、液晶層内の不純物イオンなどが一方の電極側に偏り、結果として残留DC電圧が液晶層300に蓄積される。液晶の駆動周波数が低くなればなるほど、この残留DCが液晶に及ぼす影響が大きくなってフリッカや液晶の焼き付き発生が顕著となるため、特に、CFF以下での駆動は実質的には困難であった。   As a result of the applicant's research on the causes of flicker and liquid crystal burn-in of the reflective LCD as shown in FIGS. 8 and 9, these are the electrical properties of the first and second electrodes for the liquid crystal layer 300 as described above. It has been found that this asymmetry is one of the causes. This asymmetry is that the work function of a transparent metal oxide such as ITO used for the second electrode 250 is about 4.7 eV to 5.2 eV, whereas the work of a metal such as Al used for the first electrode 150 is about. This is considered to be due to the large difference between the functions of about 4.2 eV to 4.3 eV. The difference in work function causes a difference in charge actually induced at the liquid crystal interface via the alignment films 160 and 260 when the same voltage is applied to each electrode. Then, due to the difference in charge induced at the liquid crystal alignment film interface, impurity ions and the like in the liquid crystal layer are biased toward one electrode, and as a result, a residual DC voltage is accumulated in the liquid crystal layer 300. The lower the driving frequency of the liquid crystal, the greater the influence of the residual DC on the liquid crystal and the more noticeable flicker and liquid crystal burn-in occur. In particular, driving below CFF was practically difficult. .

なお、反射型LCDとしては、従来、第1第2電極に透過型LCDのようにITOを用い、第1基板の外側(液晶との非対向側)に別途反射板を設ける構造も知られている。し
かし、第1基板の外側に反射板を設けた場合、透明な第1電極150及び透明第1基板の厚さ分だけ光路長が伸び、視差による表示品質の低下が発生しやすい。従って、高い表示品質の要求されるディスプレイ用途の反射型LCDでは、画素電極として反射電極を用いており、上述のように駆動周波数を低くするとフリッカ等を生ずるため、低消費電力化のために駆動周波数を低下させることはできなかった。
As a reflection type LCD, a structure in which ITO is used for the first second electrode like a transmission type LCD and a reflection plate is separately provided outside the first substrate (on the side not facing the liquid crystal) is conventionally known. Yes. However, when a reflecting plate is provided outside the first substrate, the optical path length is increased by the thickness of the transparent first electrode 150 and the transparent first substrate, and display quality is likely to deteriorate due to parallax. Therefore, reflective LCDs for display applications that require high display quality use reflective electrodes as pixel electrodes, and if the drive frequency is lowered as described above, flicker or the like occurs, so that it is driven to reduce power consumption. The frequency could not be reduced.

上記課題を解決するために本発明は、液晶層に対する第1及び第2電極の電気的特性をそろえ、フリッカや視差の影響がなく、表示品質が高くて低消費電力な反射機能を備えた表示装置を実現することを目的とする。   In order to solve the above-described problems, the present invention provides a display with a reflective function that matches the electrical characteristics of the first and second electrodes with respect to the liquid crystal layer, has no influence of flicker and parallax, has high display quality, and low power consumption. The object is to realize the device.

上記目的を達成するために、本発明は、第1電極を備える第1基板と第2電極を備える第2基板との間に液晶層が封入されて構成され画素ごとの表示を行う表示装置において、前記第1基板は、さらに、画素ごとに設けられたスイッチ素子と、前記スイッチ素子を覆う絶縁膜の上に前記スイッチ素子と絶縁されて形成され、前記液晶層に第2基板側から入射される光を反射する反射層を備え、前記第1電極は、前記反射層を直接覆って形成された透明導電材料から構成され、かつ前記スイッチ素子に電気的に接続されている。   In order to achieve the above object, the present invention provides a display device configured to display each pixel, in which a liquid crystal layer is sealed between a first substrate including a first electrode and a second substrate including a second electrode. The first substrate is further formed on a switch element provided for each pixel and on the insulating film covering the switch element so as to be insulated from the switch element, and is incident on the liquid crystal layer from the second substrate side. The first electrode is made of a transparent conductive material formed directly covering the reflective layer, and is electrically connected to the switch element.

以上のように第1基板側において、液晶層側に第2基板の第2電極と同様の特性を備える透明な第1電極を配置し、この第1電極の下層であって、層間絶縁膜や平坦化絶縁膜などの絶縁膜の上に形成され、各画素のスイッチ素子とは絶縁された反射層を配置することで、液晶層を第1電極と第2電極とによって対称性よく駆動することができる。特に、各画素における液晶層の駆動周波数を例えば60Hzより低く設定した場合でも、フリッカなどを発生することなく高品質な表示が可能である。   As described above, on the first substrate side, the transparent first electrode having the same characteristics as the second electrode of the second substrate is disposed on the liquid crystal layer side, and the lower layer of the first electrode is an interlayer insulating film or A liquid crystal layer is driven with good symmetry by the first electrode and the second electrode by disposing a reflective layer formed on an insulating film such as a planarizing insulating film and insulated from the switch element of each pixel. Can do. In particular, even when the driving frequency of the liquid crystal layer in each pixel is set lower than 60 Hz, for example, high quality display is possible without causing flicker.

本発明の他の態様では、上記表示装置において、前記スイッチ素子を覆う前記絶縁膜に形成されたコンタクトホール内には接続用金属層が形成され、前記スイッチ素子と前記第1電極とは、該接続用金属層を介して電気的に接続される。   In another aspect of the present invention, in the display device, a connection metal layer is formed in a contact hole formed in the insulating film covering the switch element, and the switch element and the first electrode include It is electrically connected through a metal layer for connection.

本発明の他の態様では、上記表示装置において、前記接続用金属層には、少なくとも前記第1電極との接触面において、高融点金属材料が用いられている。   In another aspect of the present invention, in the above display device, the connection metal layer is made of a refractory metal material at least on the contact surface with the first electrode.

本発明の他の態様では、上記表示装置において、前記第1電極の前記透明導電性材料の仕事関数と、前記第2基板の液晶層側に形成される前記第2電極の透明導電性材料の仕事関数との差は、0.5eV以下である。   In another aspect of the present invention, in the display device, the work function of the transparent conductive material of the first electrode and the transparent conductive material of the second electrode formed on the liquid crystal layer side of the second substrate. The difference from the work function is 0.5 eV or less.

本発明の他の態様では、透明な第1電極を備える第1基板と透明な第2電極を備える第2基板との間に液晶層が封入されて構成された表示装置の製造方法であって、前記第1基板上に薄膜トランジスタを形成し、前記薄膜トランジスタを覆って少なくとも一層の絶縁膜を形成し、前記絶縁膜の前記薄膜トランジスタの能動層に対応する領域にコンタクトホールを形成し、前記コンタクトホール領域に接続用金属層を形成し、前記絶縁膜及び前記接続用金属層上を覆って反射材料層を形成し、前記接続用金属層上を除く所定画素領域に該材料層が残るようにパターニングして反射層を形成し、前記反射層及び前記接続用金属層を覆って透明導電材料からなる第1電極を形成し、前記薄膜トランジスタに前記接続用金属層を介して前記第1電極を電気的に接続する。   In another aspect of the present invention, there is provided a method for manufacturing a display device configured by enclosing a liquid crystal layer between a first substrate having a transparent first electrode and a second substrate having a transparent second electrode. Forming a thin film transistor on the first substrate, forming at least one insulating film covering the thin film transistor, forming a contact hole in a region of the insulating film corresponding to an active layer of the thin film transistor, and forming the contact hole region A connection metal layer is formed, a reflective material layer is formed over the insulating film and the connection metal layer, and patterning is performed so that the material layer remains in a predetermined pixel region except on the connection metal layer. Forming a reflective layer, covering the reflective layer and the connecting metal layer, forming a first electrode made of a transparent conductive material, and attaching the first electrode to the thin film transistor via the connecting metal layer. The gas to be connected.

このように、液晶側に第1電極を配置した構成において、薄膜トランジスタと第1電極の間に接続用金属層を介在させることにより、第1電極の下層に形成される上記反射層のパターニング時に、薄膜トランジスタの電極や能動層などが劣化することを防止でき、反射層の上に形成される第1電極と薄膜トランジスタとを確実に接続することができる。   Thus, in the configuration in which the first electrode is disposed on the liquid crystal side, by interposing the connecting metal layer between the thin film transistor and the first electrode, the patterning of the reflective layer formed below the first electrode, It is possible to prevent deterioration of the electrode and active layer of the thin film transistor, and it is possible to reliably connect the first electrode formed on the reflective layer and the thin film transistor.

この発明では、反射型または半透過型LCDのように一方の基板側に射層を形成する必要がある場合においても、同等な特性を有する第1電極と第2電極とを液晶層に対して同等な位置に配置できる。従って、液晶を対称性よく交流駆動することができる。このため、液晶の駆動周波数を例えばCFF以下に設定したような場合であっても、フリッカの発生なく、また焼き付きを発生させることなく高品質な表示を行うことができる。   In the present invention, even when it is necessary to form a projecting layer on one substrate side as in the case of a reflective or transflective LCD, the first electrode and the second electrode having equivalent characteristics are connected to the liquid crystal layer. Can be placed in the same position. Therefore, the liquid crystal can be AC driven with good symmetry. For this reason, even when the driving frequency of the liquid crystal is set to CFF or less, for example, high-quality display can be performed without flickering and without causing burn-in.

以下、図面を用いて本発明の好適な実施の形態(以下実施形態という)について説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments (hereinafter referred to as embodiments) of the invention will be described with reference to the drawings.

図1は、本実施形態に係る反射型LCDとして反射型アクティブマトリクスLCDの第1基板側の平面構成の一部、図2は、図1のA−A線に沿った位置におけるLCDの概略断面構成を示している。アクティブマトリクス型LCDでは、表示領域内にマトリクス状に複数の画素が設けられ、各画素に対してTFTなどのスイッチ素子が設けられる。スイッチ素子は、第1及び第2基板の一方、例えば第1基板100側に画素ごとに形成され、このスイッチ素子に個別パターンに形成された画素電極(第1電極)50が接続されている。   FIG. 1 is a part of a planar configuration on the first substrate side of a reflective active matrix LCD as a reflective LCD according to the present embodiment, and FIG. 2 is a schematic cross section of the LCD at a position along the line AA in FIG. The configuration is shown. In an active matrix LCD, a plurality of pixels are provided in a matrix in a display area, and a switch element such as a TFT is provided for each pixel. The switch element is formed for each pixel on one of the first and second substrates, for example, the first substrate 100 side, and a pixel electrode (first electrode) 50 formed in an individual pattern is connected to the switch element.

第1及び第2基板100,200には、ガラスなどの透明基板が用いられ、第1基板100と対向する第2基板200側には、従来と同様に、カラータイプの場合にはカラーフィルタ210が形成され、このカラーフィルタ210上に透明導電材料からなる第2電極250が形成されている。第2電極250の透明導電材料としては、IZO(Indium Zinc Oxide)やITOなどが採用される。なお、アクティブマトリクス型では、この第2電極250は各画素に対する共通電極として形成されている。また、このような第2電極250の上には、ポリイミドなどからなる配向膜260が形成されている。   A transparent substrate such as glass is used for the first and second substrates 100 and 200, and a color filter 210 is provided on the second substrate 200 side facing the first substrate 100 in the case of a color type as in the conventional case. The second electrode 250 made of a transparent conductive material is formed on the color filter 210. As the transparent conductive material of the second electrode 250, IZO (Indium Zinc Oxide), ITO, or the like is employed. In the active matrix type, the second electrode 250 is formed as a common electrode for each pixel. Further, an alignment film 260 made of polyimide or the like is formed on the second electrode 250.

以上のような構成の第2基板側に対し、本実施形態では、第1基板側の液晶層300に対する電気的特性を揃えるような電極構造が採用されている。具体的には、図2に示すように、第1基板100上の配向膜の直下に、従来のような反射金属電極ではなく、第2電極250と仕事関数の類似した材料、即ち、IZOやITOなど、第2電極250と同様の透明導電材料からなる第1電極50を形成している。そして、反射型LCDとするため、この第1電極50の下層には、第2基板側からの入射光を反射する反射層44が形成されている。   In contrast to the second substrate side having the above-described configuration, in the present embodiment, an electrode structure is adopted so that the electrical characteristics of the liquid crystal layer 300 on the first substrate side are aligned. Specifically, as shown in FIG. 2, a material having a work function similar to that of the second electrode 250 instead of the conventional reflective metal electrode, that is, an IZO or the like, is directly below the alignment film on the first substrate 100. The first electrode 50 made of the same transparent conductive material as the second electrode 250 such as ITO is formed. In order to obtain a reflective LCD, a reflective layer 44 that reflects incident light from the second substrate side is formed below the first electrode 50.

第1電極50として用いる材料は、第2電極250の材料と同一とすることにより、液晶層300に対し、同一の仕事関数の電極が、間に配向膜60,260を介して配置されることになるため、第1電極50と第2電極250とにより液晶層300を非常に対称性よく交流駆動することが可能となる。但し、第1電極50と第2電極250とはその仕事関数が完全に同一でなくても、液晶層300を対称性よく駆動可能な限り近似していればよい。例えば、両電極の仕事関数の差を0.5eV程度以下とすれば、液晶の駆動周波数を上述のようなCFF以下とした場合であっても、フリッカや液晶の焼き付きなく、高品質な表示が可能となる。   The material used as the first electrode 50 is the same as the material of the second electrode 250, so that an electrode having the same work function is disposed with respect to the liquid crystal layer 300 through the alignment films 60 and 260. Therefore, the liquid crystal layer 300 can be AC driven with very good symmetry by the first electrode 50 and the second electrode 250. However, the first electrode 50 and the second electrode 250 may be approximated as long as the liquid crystal layer 300 can be driven with good symmetry even if their work functions are not completely the same. For example, if the difference between the work functions of both electrodes is about 0.5 eV or less, even if the liquid crystal drive frequency is CFF or less as described above, high-quality display is possible without flicker or liquid crystal burn-in. It becomes possible.

このような条件を満たす第1電極50及び第2電極250としては、例えば、第1電極50にIZO(仕事関数4.7eV〜5.2eV)、第2電極250にITO(仕事関数4.7eV〜5.0eV)、あるいはその逆などが可能であり、材料の選択にあたっては、透過率、パターニング精度などプロセス上の特性や、製造コストなどを考慮して各電極に用いる材料をそれぞれ選択してもよい。   As the first electrode 50 and the second electrode 250 that satisfy such conditions, for example, IZO (work function 4.7 eV to 5.2 eV) is used for the first electrode 50 and ITO (work function 4.7 eV) is used for the second electrode 250. -5.0 eV), or vice versa, and in selecting the material, select the material to be used for each electrode in consideration of process characteristics such as transmittance, patterning accuracy, manufacturing cost, etc. Also good.

反射層44としては、Al、Ag、これらの合金(本実施形態ではAl−Nd合金)など、反射特性に優れた材料を少なくともその表面側(液晶層側)に用いる。また、反射層44はAl等の金属材料の単独層であってもよいが、平坦化絶縁膜38と接する下地層としてMo等の高融点金属層を設けてもよい。このような下地層を形成すれば、反射層44と平坦化絶縁膜38との密着性が向上するため、素子の信頼性向上を図ることができる。なお、図2の構成では、平坦化絶縁膜38の各画素領域内に所望の角度の傾斜面が形成されており、この平坦化絶縁膜38を覆って反射層44を積層することで、反射層44の表面に同様な傾斜が形成されている。このような傾斜面を最適な角度、位置で形成すれば、各画素毎に外光を集光して射出することができ、例えばディスプレイの正面位置での表示輝度の向上を図ることが可能である。もちろん、このような傾斜面は必ずしも存在しなくてもよい。   As the reflection layer 44, a material having excellent reflection characteristics such as Al, Ag, and an alloy thereof (Al—Nd alloy in this embodiment) is used at least on the surface side (liquid crystal layer side). The reflective layer 44 may be a single layer of a metal material such as Al, but a refractory metal layer such as Mo may be provided as a base layer in contact with the planarization insulating film 38. By forming such a base layer, the adhesion between the reflective layer 44 and the planarization insulating film 38 is improved, so that the reliability of the element can be improved. In the configuration of FIG. 2, an inclined surface having a desired angle is formed in each pixel region of the planarization insulating film 38, and a reflective layer 44 is laminated so as to cover the planarization insulating film 38. A similar slope is formed on the surface of the layer 44. If such an inclined surface is formed at an optimum angle and position, it is possible to collect and emit external light for each pixel. For example, it is possible to improve the display brightness at the front position of the display. is there. Of course, such an inclined surface does not necessarily exist.

反射層44は以上のようにAlなど導電性材料によって構成されるが、この反射層44上に積層される第1電極50と、反射層44とは電気的に絶縁される。絶縁される理由は、第1電極50の材料としてIZOや、ITO等を採用する場合、これらがスパッタリングによって成膜されることによる。即ち、Alなどからなる反射層44は、スパッタリング雰囲気に晒されることで、表面で酸化反応が起き、自然酸化膜で覆われるためである。そこで、本実施形態では、この反射層44は従来の反射型LCDのように液晶を駆動するための第1電極としては利用せず、反射層44の上に形成した透明導電層を第1電極50として用いて液晶層300に表示内容に応じた電圧を印加することとしている。   The reflection layer 44 is made of a conductive material such as Al as described above, but the first electrode 50 laminated on the reflection layer 44 and the reflection layer 44 are electrically insulated. The reason for the insulation is that when IZO, ITO, or the like is used as the material of the first electrode 50, these are formed by sputtering. That is, the reflective layer 44 made of Al or the like is exposed to a sputtering atmosphere, so that an oxidation reaction occurs on the surface and the reflective layer 44 is covered with a natural oxide film. Therefore, in the present embodiment, the reflective layer 44 is not used as the first electrode for driving the liquid crystal unlike the conventional reflective LCD, and the transparent conductive layer formed on the reflective layer 44 is the first electrode. 50 is used to apply a voltage corresponding to the display content to the liquid crystal layer 300.

ところで、最近、光透過機能と反射機能の両方を備えたいわゆる半透過型LCDが提案されており、この半透過型としては、透過型LCDと同様、ITOなどの画素電極が先に形成されて、この透明電極の一部領域を覆ってAlなどの反射電極を積層する構成が知られている。このような半透過型LCDでは、基板側から透明電極層/反射電極層を順に積層すれば2つの電極層は電気的に接続されて1つの画素電極として機能する。しかし、上述のように、液晶層側に反射電極が配置されるので、第2電極との仕事関数の相違から、液晶層300を対称性よく駆動できないという問題が生じてしまう。さらに、電気的な対称性を向上させるため、この電極の積層順を逆にすることが考えられるが、上述のように反射電極に用いられるAlやAg系の金属材料は、その表面に自然酸化膜が形成されやすく、特に、これらの金属層の形成後に、透明導電材料層を形成するためのスパッタリングなどに晒されることで自然酸化膜に表面が覆われ、金属層と透明電極とが絶縁されてしまう。従って、単に電極の積層順を変えただけでは、第1基板側では、透明電極によって液晶を駆動することができず、結局、第1基板側と第2基板側とで液晶に対する電気的特性を揃えることができないのである。   Recently, a so-called transflective LCD having both a light transmissive function and a reflective function has been proposed. As in the transmissive LCD, a pixel electrode such as ITO is formed first. A configuration is known in which a reflective electrode such as Al is laminated so as to cover a partial region of the transparent electrode. In such a transflective LCD, if a transparent electrode layer / reflective electrode layer are sequentially laminated from the substrate side, the two electrode layers are electrically connected to function as one pixel electrode. However, as described above, since the reflective electrode is disposed on the liquid crystal layer side, there is a problem that the liquid crystal layer 300 cannot be driven with good symmetry due to the work function difference from the second electrode. Furthermore, in order to improve electrical symmetry, it may be possible to reverse the stacking order of the electrodes. However, as described above, Al and Ag-based metal materials used for the reflective electrode are naturally oxidized on the surface. Films are easily formed, especially after these metal layers are formed, the surface is covered with a natural oxide film by being exposed to sputtering for forming a transparent conductive material layer, and the metal layer and the transparent electrode are insulated. End up. Therefore, the liquid crystal cannot be driven by the transparent electrode on the first substrate side simply by changing the stacking order of the electrodes. As a result, the electrical characteristics of the liquid crystal on the first substrate side and the second substrate side are changed. It cannot be aligned.

これに対し、本実施形態では、反射層44は第1電極50及びTFT110のいずれからも絶縁し、かつ接続用金属層42を第1電極50とTFT110(例えばTFT110のソース電極40)との間に介在させるので第1電極50とTFT110とを確実に接続できる。また、第2基板側と同様に、第1基板側でも液晶層に近接配置された透明導電材料からなる第1電極50によって、液晶を駆動することが可能となっている。   In contrast, in the present embodiment, the reflective layer 44 is insulated from both the first electrode 50 and the TFT 110, and the connection metal layer 42 is disposed between the first electrode 50 and the TFT 110 (for example, the source electrode 40 of the TFT 110). Therefore, the first electrode 50 and the TFT 110 can be reliably connected. Similarly to the second substrate side, the liquid crystal can be driven by the first electrode 50 made of a transparent conductive material disposed in the vicinity of the liquid crystal layer on the first substrate side.

ここで、第1電極50とTFT110とを接続するために本実施形態において採用する上記金属層42に求められる条件は、(i)IZOやITOなどからなる第1電極50との電気的接続がとれること、(ii)TFT110に図2のように例えばAlなどのソース電極40が設けられる場合、このソース電極40と電気的にコンタクトでき、ソース電極40が省略される場合には、半導体(ここでは多結晶シリコン)能動層と電気的接続できること、
(iii)画素ごとの個別形状に反射層44をパターニングする際に、この反射層44の
エッチング液によって除去されないこと、
などである。このような金属層42としては、Mo、Ti、Crなどの高融点金属材料を用いることが好適である。
Here, the conditions required for the metal layer 42 employed in this embodiment to connect the first electrode 50 and the TFT 110 are (i) electrical connection with the first electrode 50 made of IZO, ITO, or the like. (Ii) When the TFT 110 is provided with a source electrode 40 such as Al as shown in FIG. 2, it can be electrically contacted with the source electrode 40, and when the source electrode 40 is omitted, a semiconductor (here In the case of polycrystalline silicon) it can be electrically connected to the active layer,
(Iii) When the reflective layer 44 is patterned into individual shapes for each pixel, the reflective layer 44 is not removed by the etching solution;
Etc. As such a metal layer 42, it is preferable to use a refractory metal material such as Mo, Ti, or Cr.

以下、本実施形態のような第1電極50と対応するTFT110とを確実に接続するための構造、及びこの構造を実現する製造方法について説明する。   Hereinafter, a structure for reliably connecting the first electrode 50 and the corresponding TFT 110 as in this embodiment, and a manufacturing method for realizing this structure will be described.

TFT110としては、トップゲート型を採用しており、また、能動層20としてアモルファスシリコン(a−Si)をレーザアニールで多結晶化して得た多結晶シリコン(p−Si)を用いている。もちろん、TFT110は、トップゲート型p−Siに限定されるものではなく、ボトムゲート型でもよいし、能動層にa−Siが採用されていてもよい。TFT110の能動層20のソース・ドレイン領域20s、20dにドープされる不純物は、n導電型、p導電型のいずれでもよいが、本実施形態ではリンなどのn導電型不純物をドープし、n−ch型のTFT110を採用している。   As the TFT 110, a top gate type is adopted, and as the active layer 20, polycrystalline silicon (p-Si) obtained by polycrystallizing amorphous silicon (a-Si) by laser annealing is used. Of course, the TFT 110 is not limited to the top gate type p-Si, but may be a bottom gate type, or a-Si may be employed for the active layer. Impurities doped in the source / drain regions 20s and 20d of the active layer 20 of the TFT 110 may be either n-conductivity type or p-conductivity type. In this embodiment, n-type impurity such as phosphorus is doped and n− A ch-type TFT 110 is employed.

TFT110の能動層20はゲート絶縁膜30に覆われ、ゲート絶縁膜30上にCrなどからなりゲートラインを兼用するゲート電極32が形成されている。そして、このゲート電極32形成後、このゲート電極をマスクとして能動層20には上記不純物がドープされてソース及びドレイン領域20s、20d、そして不純物がドープされないチャネル領域20cが形成される。次に、このTFT110全体を覆って層間絶縁膜34が形成し、この層間絶縁膜34にコンタクトホールを形成した後、電極材料が形成され、このコンタクトホールを介して、それぞれ、上記p−Si能動層20のソース領域20sにソース電極40が接続され、ドレイン領域20dにドレイン電極36が接続される。なお、本実施形態では、ドレイン電極36は、各TFT110に表示内容に応じたデータ信号を供給するデータラインを兼用している。一方、ソース電極40は、後述するように画素電極である第1電極50に接続される。   The active layer 20 of the TFT 110 is covered with a gate insulating film 30, and a gate electrode 32 made of Cr or the like and also serving as a gate line is formed on the gate insulating film 30. Then, after the gate electrode 32 is formed, the active layer 20 is doped with the impurity by using the gate electrode as a mask to form source and drain regions 20s and 20d, and a channel region 20c not doped with the impurity. Next, an interlayer insulating film 34 is formed so as to cover the entire TFT 110, and a contact hole is formed in the interlayer insulating film 34. After that, an electrode material is formed, and each of the p-Si active layers is formed through the contact hole. A source electrode 40 is connected to the source region 20s of the layer 20, and a drain electrode 36 is connected to the drain region 20d. In the present embodiment, the drain electrode 36 also serves as a data line for supplying a data signal corresponding to display contents to each TFT 110. On the other hand, the source electrode 40 is connected to a first electrode 50 that is a pixel electrode, as will be described later.

ソース電極40及びドレイン電極36の形成後、基板全面を覆ってアクリル樹脂などの樹脂材料からなる平坦化絶縁膜38が形成され、ソース電極40の形成領域にコンタクトホールが形成され、ここに接続用金属層42が形成され、ソース電極40とこの金属層42とが接続される。ソース電極40としてAlなどが用いられている場合に、金属層42としてMo等の金属材料を採用することで、ソース電極40との接続は良好なオーミックコンタクトとなる。なお、図3に示すように、ソース電極40を省略することも可能であり、この場合、金属層42は、TFT110のシリコン能動層20と接することとなるが、Mo等の金属は、このような半導体材料との間でオーミックコンタクトを確立することができる。   After the source electrode 40 and the drain electrode 36 are formed, a planarization insulating film 38 made of a resin material such as an acrylic resin is formed so as to cover the entire surface of the substrate, and a contact hole is formed in a region where the source electrode 40 is formed. A metal layer 42 is formed, and the source electrode 40 and the metal layer 42 are connected. When Al or the like is used as the source electrode 40, a metal material such as Mo is used as the metal layer 42, so that the connection with the source electrode 40 becomes a good ohmic contact. As shown in FIG. 3, the source electrode 40 can be omitted. In this case, the metal layer 42 is in contact with the silicon active layer 20 of the TFT 110. Ohmic contact can be established with various semiconductor materials.

接続用金属層42の積層・パターニング後、基板全面に反射層44を構成する、Al−Nd合金や、Alなどの反射特性に優れた材料が蒸着やスパッタリングなどによって積層される。積層されたこの反射材料は、少なくとも、金属層42と後に形成される第1電極50とのコンタクトを妨げないようTFT110のソース領域付近(金属層42の形成領域)に残存しないようにエッチング除去され、図1に示すようなパターンの反射層44が各画素に形成される。なお、TFT110(特にチャネル領域20c)に光が照射されてリーク電流が発生してしまうことを防止し、かつ反射可能な領域(つまり表示領域)をできるだけ広くするために、本実施形態では、反射層44は、図1のように、TFT110のチャネル上方領域にも積極的に形成している。   After the connection metal layer 42 is laminated and patterned, an Al—Nd alloy or a material having excellent reflection characteristics such as Al constituting the reflection layer 44 is laminated on the entire surface of the substrate by vapor deposition or sputtering. The laminated reflective material is etched away so as not to remain in the vicinity of the source region of the TFT 110 (the formation region of the metal layer 42) so as not to prevent at least the contact between the metal layer 42 and the first electrode 50 to be formed later. A reflective layer 44 having a pattern as shown in FIG. 1 is formed on each pixel. In the present embodiment, in order to prevent the TFT 110 (particularly the channel region 20c) from being irradiated with light and to generate a leakage current, and to make the reflective region (that is, the display region) as wide as possible, As shown in FIG. 1, the layer 44 is also actively formed in the region above the channel of the TFT 110.

このような反射層44のパターニングに際し、上記Mo等からなる金属層42は、十分な厚さ(例えば0.2μm)を備え、かつエッチング液に対して十分な耐性を備える。従って、金属層42上の反射層44をエッチング除去した後もこの金属層42は完全に除去
されずにコンタクトホール内に残存することができる。また、多くの場合、ソース電極40等には、反射層44と同様な材料(Al等)から構成されるため、上記金属層42が存在しないと、ソース電極40が反射層44のエッチング液に浸食されて断線等が発生してしまう。しかし、本実施形態のように金属層42を設けることで、反射層44のパターニングに耐えて、ソース電極40との良好な電気的接続を維持することができる。
When the reflective layer 44 is patterned, the metal layer 42 made of Mo or the like has a sufficient thickness (for example, 0.2 μm) and a sufficient resistance to the etching solution. Therefore, even after the reflective layer 44 on the metal layer 42 is removed by etching, the metal layer 42 can remain in the contact hole without being completely removed. In many cases, the source electrode 40 and the like are made of the same material (Al or the like) as that of the reflective layer 44. Corrosion causes disconnection and the like. However, by providing the metal layer 42 as in this embodiment, it is possible to withstand the patterning of the reflective layer 44 and maintain a good electrical connection with the source electrode 40.

反射層44のパターニング後、透明導電層がスパッタリングによって反射層44を含む基板全面を覆うように積層される。ここで、上述のようにAlなどからなる反射層44の表面は、このとき絶縁性の自然酸化膜(図3の符号46参照)で覆われるが、Mo等の高融点金属は、スパッタリング雰囲気に晒されても表面は酸化されない。従って、コンタクト領域において露出した金属層42は、この金属層42の上に積層される第1電極用の透明導電層との間でオーミックコンタクトすることができる。なお、透明導電層は、成膜後、図1に示すように画素毎に独立した形状にパターニングされ、これにより画素電極(第1電極)50が得られる。また、各画素領域に第1電極50が形成された後、基板全面を覆うようにポリイミドなどからなる配向膜60が形成され第1基板側が完成する。後は、配向膜260まで形成した第2基板200とこの第1基板100とを一定のギャップに離して基板の周辺部分で貼り合わせ、基板間に液晶を封入して、液晶表示装置を得る。   After patterning the reflective layer 44, a transparent conductive layer is laminated by sputtering so as to cover the entire surface of the substrate including the reflective layer 44. Here, as described above, the surface of the reflective layer 44 made of Al or the like is covered with an insulating natural oxide film (see reference numeral 46 in FIG. 3) at this time, but refractory metals such as Mo are exposed to the sputtering atmosphere. When exposed, the surface is not oxidized. Therefore, the metal layer 42 exposed in the contact region can be in ohmic contact with the transparent conductive layer for the first electrode laminated on the metal layer 42. The transparent conductive layer is patterned into an independent shape for each pixel as shown in FIG. 1 after film formation, whereby a pixel electrode (first electrode) 50 is obtained. Further, after the first electrode 50 is formed in each pixel region, an alignment film 60 made of polyimide or the like is formed so as to cover the entire surface of the substrate, and the first substrate side is completed. Thereafter, the second substrate 200 formed up to the alignment film 260 and the first substrate 100 are separated from each other by a predetermined gap and bonded together at the peripheral portion of the substrate, and liquid crystal is sealed between the substrates to obtain a liquid crystal display device.

本実施形態の金属層42は、図4に示すように、ソース電極41がMo等の高融点金属層によってAl層が挟まれた多層構造を備える場合においても、ソース電極41と良好な接続を維持できる。図4に示すソース電極41(データラインを兼用するドレイン電極37も同様)は、能動層20側から順にMo層41a/Al層41b/Mo層41cが積層されて構成されており、p−Siからなる能動層20側にMo層41aが形成されていることで、Al層41b中にSi原子が移動して能動層に欠陥が生ずることを防止しており、また最上層にMo層41cが形成されていることで、コンタクト形成、金属層42の形成・エッチング工程を経ても、金属層42との間の電気的接続が良好に維持すること可能としている。もちろん、本実施形態では、金属層42として、ソース電極41の最上層と同様なMo等を用いるので、図4に示すようなソース電極41とも非常に良好にコンタクトすることができる。   As shown in FIG. 4, the metal layer 42 of the present embodiment has good connection with the source electrode 41 even when the source electrode 41 has a multilayer structure in which an Al layer is sandwiched between refractory metal layers such as Mo. Can be maintained. The source electrode 41 shown in FIG. 4 (the same applies to the drain electrode 37 that also serves as a data line) is configured by laminating an Mo layer 41a / Al layer 41b / Mo layer 41c in this order from the active layer 20 side. The Mo layer 41a is formed on the active layer 20 side so that Si atoms are prevented from moving into the Al layer 41b to cause defects in the active layer, and the Mo layer 41c is the uppermost layer. By being formed, it is possible to maintain good electrical connection with the metal layer 42 even after contact formation and the formation / etching process of the metal layer 42. Of course, in the present embodiment, Mo or the like similar to that of the uppermost layer of the source electrode 41 is used as the metal layer 42, and therefore the contact with the source electrode 41 as shown in FIG.

また、本実施形態の金属層42が、図4に示すソース電極41のような多層構造を備えていてもよい。このような金属層42の多層構造としては、例えば下層から順にMo等の高融点金属層/Al等の導電層/Mo等の高融点金属層の3層構造、あるいはAl等の導電層/Mo等の高融点金属層の2層構造が採用できる。このような多層の金属層42が採用される場合に、下に配置されるソース電極40としては、図4のような上記多層構造であってもよいし、Alなどの単層構造であってもよい。さらに、図3に示すように金属層43を能動層20と直接コンタクトさせる場合においては、金属層43として、上記同様の3層または2層構造を採用することも可能である。いずれの場合においても、金属層42,43は、反射層44のエッチングに耐え、かつ該第1電極50形成時に表面に絶縁膜が形成されずに安定かつ電気的接続特性を維持する必要があり、少なくとも、第1電極50と接する表面側に高融点金属層が形成されていることが好適である。   Further, the metal layer 42 of the present embodiment may have a multilayer structure like the source electrode 41 shown in FIG. As such a multilayer structure of the metal layer 42, for example, a refractory metal layer such as Mo / a conductive layer such as Al / a three-layer structure of a refractory metal layer such as Mo or a conductive layer / Mo such as Al in order from the lower layer. A two-layer structure of a refractory metal layer such as can be adopted. When such a multilayer metal layer 42 is employed, the source electrode 40 disposed below may have the multilayer structure as shown in FIG. 4 or a single layer structure such as Al. Also good. Further, when the metal layer 43 is in direct contact with the active layer 20 as shown in FIG. 3, the same three-layer or two-layer structure as described above can be adopted as the metal layer 43. In any case, the metal layers 42 and 43 need to withstand the etching of the reflective layer 44 and maintain stable and electrical connection characteristics without forming an insulating film on the surface when the first electrode 50 is formed. It is preferable that a refractory metal layer is formed at least on the surface side in contact with the first electrode 50.

次に、半透過型LCDについて説明する。以上では、反射層44が1画素領域内のほぼ全域に形成された反射型LCDを例に説明した。しかし本発明は反射型としてだけでなく半透過型LCDにも適用することが可能である。   Next, a transflective LCD will be described. In the above description, the reflective LCD in which the reflective layer 44 is formed in almost the entire area of one pixel region has been described as an example. However, the present invention can be applied not only as a reflection type but also to a transflective LCD.

図5は、このような半透過型アクティブマトリクスLCDの一画素あたりの平面構成、図6は、図5のB−B線に沿った位置におけるLCDの概略断面構成を示している。上記図1及び図2に示した反射型LCDにおいて、反射層44は、1画素領域のほぼ全て(TFTとのコンタクト領域は除く)に形成されている。これに対し、図5及び図6に示すよ
うな半透過型LCDでは、1画素内に反射層44及び透明第1電極50が積層された反射領域と、反射層44が除去されて、透明第1電極50しか存在しない光透過領域とが形成されている。
FIG. 5 shows a planar configuration per pixel of such a transflective active matrix LCD, and FIG. 6 shows a schematic cross-sectional configuration of the LCD at a position along the line BB in FIG. In the reflective LCD shown in FIGS. 1 and 2, the reflective layer 44 is formed in almost all of one pixel region (excluding the contact region with the TFT). On the other hand, in the transflective LCD as shown in FIGS. 5 and 6, the reflective region in which the reflective layer 44 and the transparent first electrode 50 are laminated in one pixel and the reflective layer 44 are removed, and the transparent first A light transmission region in which only one electrode 50 exists is formed.

このような半透過型LCDにおいても、第1電極50を反射層44よりも液晶層側に配置しつつ、反射層44は、その直上に形成される第1電極50と自然酸化膜46によって絶縁し、またTFT110と第1電極50とのコンタクトを妨げないようこの領域から除去する。従って、この半透過型LCDによっても、仕事関数の近似した第1電極50及び第2電極250によって、それぞれ配向膜を間に挟んで液晶層300を対称性よく交流駆動でき、かつ、周囲光の強さ等に応じて光源を切り替えることで、反射表示、透過表示のいずれも行うことができる。   Also in such a transflective LCD, the first electrode 50 is disposed closer to the liquid crystal layer than the reflective layer 44, and the reflective layer 44 is insulated by the first electrode 50 and the natural oxide film 46 formed immediately above the reflective layer 44. In addition, the TFT 110 and the first electrode 50 are removed from this region so as not to interfere with the contact. Therefore, also in this transflective LCD, the liquid crystal layer 300 can be AC driven with good symmetry with the alignment film interposed between the first electrode 50 and the second electrode 250 having approximate work functions, and the ambient light By switching the light source according to the intensity or the like, either reflective display or transmissive display can be performed.

以上、反射層44を備える反射または半透過型のLCDについて説明したが、本発明に係るスイッチ素子(TFT)、接続用金属層、反射層及び透明第1電極の構成を、ELディスプレイに適用することで、反射機能を透明な第1電極の下部に設けつつ、この第1電極と下層のTFTとを確実に接続することができる。図7は本実施形態に係るアクティブマトリクス型のELディスプレイの各画素における部分断面構造を示す。   Although the reflective or transflective LCD including the reflective layer 44 has been described above, the configuration of the switch element (TFT), the connecting metal layer, the reflective layer, and the transparent first electrode according to the present invention is applied to an EL display. Thus, the reflective function can be provided below the transparent first electrode, and the first electrode and the lower TFT can be reliably connected. FIG. 7 shows a partial cross-sectional structure of each pixel of the active matrix EL display according to this embodiment.

図7のELディスプレイにおいて採用された素子は、発光材料として有機化合物を用いた有機EL素子90であり、陽極80と陰極86との間に有機素子層88が形成されている。有機素子層88は、少なくとも有機発光機能分子を含む発光層83を備え、有機化合物の特性、発光色などにより単層構造、2層、3層またはそれ以上の多層構造から構成することができる。図7の例では、有機素子層88は、基板側100に配置される陽極80側から正孔輸送層82/発光層83/電子輸送層84がこの順に形成され、発光層83は陽極80と同様に画素ごとに個別パターンとされ、正孔輸送層82及び電子輸送層84が陰極86と同様に全画素共通で形成されている。なお、隣接する画素間で各陽極80を絶縁し、また陽極80のエッジ領域において上層の陰極86とのショートを防止する目的で、隣接画素の陽極間領域には平坦化絶縁膜39が形成されている。   The element employed in the EL display of FIG. 7 is an organic EL element 90 using an organic compound as a light emitting material, and an organic element layer 88 is formed between an anode 80 and a cathode 86. The organic element layer 88 includes a light emitting layer 83 containing at least an organic light emitting functional molecule, and can be constituted of a single layer structure, two layers, three layers or more multilayer structures depending on the characteristics of the organic compound, the emission color, and the like. In the example of FIG. 7, the organic element layer 88 includes a hole transport layer 82 / a light emitting layer 83 / an electron transport layer 84 formed in this order from the anode 80 side disposed on the substrate side 100. Similarly, an individual pattern is formed for each pixel, and the hole transport layer 82 and the electron transport layer 84 are formed in common for all pixels like the cathode 86. For the purpose of insulating each anode 80 between adjacent pixels and preventing a short circuit with the upper cathode 86 in the edge region of the anode 80, a planarizing insulating film 39 is formed in the region between the anodes of adjacent pixels. ing.

以上のような構成の有機EL素子90は、陽極80から注入される正孔と陰極86から注入される電子とが発光層83で再結合して有機発光分子が励起され、これが基底状態に戻る際に光が放射される。このように有機EL素子90は電流駆動型の発光素子であり、陽極80は、有機素子層88に対して十分な正孔注入能力を備える必要があり、仕事関数の高いITO、IZOなどの透明導電材料が用いられることが多い。従って、多くの場合、発光層83からの光は、この透明な陽極80側から透明な基板100を透過して外部に射出される。しかし、図7に示すアクティブマトリクス型有機ELディスプレイでは、陰極側から光を射出することができる。   In the organic EL element 90 configured as described above, holes injected from the anode 80 and electrons injected from the cathode 86 are recombined in the light emitting layer 83 to excite organic light emitting molecules, which return to the ground state. When light is emitted. As described above, the organic EL element 90 is a current-driven light-emitting element, and the anode 80 needs to have a sufficient hole injection capability for the organic element layer 88, and has a high work function such as ITO or IZO. Conductive materials are often used. Therefore, in many cases, the light from the light emitting layer 83 is transmitted to the outside through the transparent substrate 100 from the transparent anode 80 side. However, in the active matrix organic EL display shown in FIG. 7, light can be emitted from the cathode side.

このような図7のディスプレイは、上記有機EL素子90を駆動するためのTFT110、金属層42、反射層44、そして、有機EL素子90の陽極80は、例えば図2に示すような上述のTFT110、金属層42、反射層44及び第1電極50と同様の構成が採用されている。従って、陽極80に透明導電材料を用いた場合において、この陽極80の下層に、該陽極80と絶縁されたAlやAl−Nd合金など反射特性に優れた材料かからなる反射層44を設けることができる。このため、有機EL素子90の陰極86として、陽極80と同様にITOやIZOなどの透明導電材料を用いるか、または光を透過可能な程度薄くAl、Agなどの金属材料を用いて形成することで(開口部を設けてもよい)、発光層83からの光を陰極86側から外部に射出するトップエミッション型構造を容易に実現することができる。即ち、図7に示すように、陽極80の下層には反射層44が配置されているため、陽極80側に進んだ光は反射層44で反射され、結局発光層83で得られた光を陰極86側から射出することが可能となる。   In the display of FIG. 7, the TFT 110 for driving the organic EL element 90, the metal layer 42, the reflective layer 44, and the anode 80 of the organic EL element 90 are, for example, the TFT 110 as shown in FIG. The same configuration as that of the metal layer 42, the reflective layer 44, and the first electrode 50 is employed. Therefore, in the case where a transparent conductive material is used for the anode 80, a reflective layer 44 made of a material having excellent reflection characteristics such as Al or Al—Nd alloy insulated from the anode 80 is provided below the anode 80. Can do. For this reason, as the anode 86 of the organic EL element 90, a transparent conductive material such as ITO or IZO is used similarly to the anode 80, or a metal material such as Al or Ag is thin enough to transmit light. Thus, a top emission type structure in which light from the light emitting layer 83 is emitted from the cathode 86 side to the outside can be easily realized. That is, as shown in FIG. 7, since the reflective layer 44 is disposed below the anode 80, the light traveling toward the anode 80 is reflected by the reflective layer 44, and eventually the light obtained by the light emitting layer 83 is converted. It becomes possible to emit from the cathode 86 side.

本発明の実施形態に係るアクティブマトリクス型の反射型LCDの第1基板側の概略平面構成を示す図である。It is a figure which shows the schematic planar structure by the side of the 1st board | substrate of the active matrix type reflective LCD which concerns on embodiment of this invention. 図1のA−A線に沿った位置における反射型LCDの概略断面構成を示す図である。It is a figure which shows schematic sectional structure of the reflection type LCD in the position along the AA line of FIG. 図1のA−A線に沿った位置における反射型LCDの他の概略断面構成を示す図である。It is a figure which shows the other schematic cross-sectional structure of the reflection type LCD in the position along the AA line of FIG. 図1のA−A線に沿った位置における反射型LCDの他の概略断面構成を示す図である。It is a figure which shows the other schematic cross-sectional structure of the reflection type LCD in the position along the AA line of FIG. 本発明の実施形態に係るアクティブマトリクス型の半透過型LCDの第1基板側の概略平面構成を示す図である。1 is a diagram showing a schematic plan configuration of a first substrate side of an active matrix transflective LCD according to an embodiment of the present invention. 図5のB−B線に沿った位置における半透過型LCDの概略断面構成を示す図である。It is a figure which shows schematic sectional structure of the transflective LCD in the position along the BB line of FIG. 本発明のアクティブマトリクス型の有機ELディスプレイの概略断面構造を示す図である。It is a figure which shows schematic sectional structure of the active matrix type organic electroluminescent display of this invention. 従来のアクティブマトリクス型の反射型LCDにおける第1基板側の一部平面構造を示す図である。It is a figure which shows the partial planar structure by the side of the 1st board | substrate in the conventional active matrix type reflection type LCD. 図8のC−C線に沿った位置における従来の反射型LCDの概略断面構造を示す図である。It is a figure which shows schematic sectional structure of the conventional reflection type LCD in the position along CC line | wire of FIG.

符号の説明Explanation of symbols

20 能動層(p−Si層)、30 ゲート絶縁膜、32 ゲート電極(ゲートライン)、34 層間絶縁膜、
36,37 ドレイン電極(データライン)、38,39 平坦化絶縁膜、40,41
ソース電極、
42、43 接続用金属層、44 反射層、46 自然酸化膜、50 第1電極、60,260 配向膜、
80 陽極(第1電極)、82 正孔輸送層、83 発光層、84 電子輸送層、86
陰極(第2電極)、
88 有機素子層、90 有機EL素子、100 第1基板、110 TFT、200
第2基板、
210 カラーフィルタ、250 第2電極、300 液晶層。
20 active layer (p-Si layer), 30 gate insulating film, 32 gate electrode (gate line), 34 interlayer insulating film,
36, 37 Drain electrode (data line), 38, 39 Planarization insulating film, 40, 41
Source electrode,
42, 43 Metal layer for connection, 44 Reflective layer, 46 Natural oxide film, 50 First electrode, 60, 260 Alignment film,
80 anode (first electrode), 82 hole transport layer, 83 light emitting layer, 84 electron transport layer, 86
Cathode (second electrode),
88 organic element layer, 90 organic EL element, 100 first substrate, 110 TFT, 200
A second substrate,
210 color filter, 250 second electrode, 300 liquid crystal layer.

Claims (6)

第1基板に形成された第1電極及び第2電極と、
前記第1電極と前記第2電極との間に形成された有機素子層とで構成され画素ごとの表示を行う表示装置であって、
前記第1基板は、さらに、
前記画素ごとに設けられたスイッチ素子と、
前記有機素子層からの光を反射する反射層を備え、
前記第1電極は光を透過可能な材料から構成され、かつ前記スイッチ素子に電気的に接続されていることを特徴とする表示装置。
A first electrode and a second electrode formed on the first substrate;
A display device configured to display each pixel, which includes an organic element layer formed between the first electrode and the second electrode;
The first substrate further includes:
A switch element provided for each of the pixels;
A reflective layer for reflecting light from the organic element layer;
The display device, wherein the first electrode is made of a material capable of transmitting light, and is electrically connected to the switch element.
請求項1に記載の表示装置において、
前記光を透過可能な材料は、薄膜化したアルミニウムまたは薄膜化した銀であることを特徴とする表示装置。
The display device according to claim 1,
The display device characterized in that the light-transmitting material is thinned aluminum or thinned silver.
請求項1または2に記載の表示装置において、
前記第1電極は開口部が形成されていることを特徴とする表示装置。
The display device according to claim 1 or 2,
The display device, wherein the first electrode has an opening.
請求項1に記載の表示装置において、
前記光を透過可能な材料は、ITOまたはIZOであることを特徴とする表示装置。
The display device according to claim 1,
The display device, wherein the light transmissive material is ITO or IZO.
請求項1〜4のいずれか1項に記載の表示装置において、
前記第1電極は前記反射層を覆って形成されていることを特徴とする表示装置。
The display device according to any one of claims 1 to 4,
The display device, wherein the first electrode is formed to cover the reflective layer.
第1基板に形成された第1電極及び第2電極と、
前記第1電極と前記第2電極との間に形成された有機EL素子とで構成され画素ごとの表示を行う表示装置の製造方法であって、
前記第1基板上に薄膜トランジスタを形成し、
前記薄膜トランジスタを覆って絶縁膜を形成し、
前記絶縁膜の前記薄膜トランジスタの能動層に対応する領域にコンタクトホールを形成し、
前記コンタクトホール領域に接続用金属層を形成し、
前記絶縁膜及び前記接続用金属層上を覆って反射材料層を形成し、前記接続用金属層上を除く所定画素領域に該反射材料層が残るようにパターニングして反射層を形成し、
前記反射層及び前記接続用金属層を覆って光を透過可能な材料からなる第1電極を形成し、該第1電極は前記接続用金属層を介して前記薄膜トランジスタに電気的に接続することを特徴とする表示装置の製造方法。
A first electrode and a second electrode formed on the first substrate;
A method of manufacturing a display device configured to display each pixel, which is configured by an organic EL element formed between the first electrode and the second electrode,
Forming a thin film transistor on the first substrate;
Forming an insulating film covering the thin film transistor;
Forming a contact hole in a region of the insulating film corresponding to an active layer of the thin film transistor;
Forming a metal layer for connection in the contact hole region;
A reflective material layer is formed covering the insulating film and the connection metal layer, and a reflective layer is formed by patterning so that the reflective material layer remains in a predetermined pixel region except on the connection metal layer,
Forming a first electrode made of a material capable of transmitting light so as to cover the reflective layer and the connection metal layer, and the first electrode is electrically connected to the thin film transistor through the connection metal layer; A display device manufacturing method.
JP2007016686A 2007-01-26 2007-01-26 Display device and its manufacturing method Withdrawn JP2007140547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016686A JP2007140547A (en) 2007-01-26 2007-01-26 Display device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016686A JP2007140547A (en) 2007-01-26 2007-01-26 Display device and its manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001400996A Division JP3995476B2 (en) 2001-12-28 2001-12-28 Display device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2007140547A true JP2007140547A (en) 2007-06-07

Family

ID=38203375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016686A Withdrawn JP2007140547A (en) 2007-01-26 2007-01-26 Display device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007140547A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069251A (en) * 2007-09-11 2009-04-02 Casio Comput Co Ltd Display panel and its manufacturing method
WO2011058790A1 (en) * 2009-11-12 2011-05-19 シャープ株式会社 Thin film transistor and display device
JP2012155701A (en) * 2011-01-21 2012-08-16 Samsung Electronics Co Ltd Touch sensing substrate and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069251A (en) * 2007-09-11 2009-04-02 Casio Comput Co Ltd Display panel and its manufacturing method
WO2011058790A1 (en) * 2009-11-12 2011-05-19 シャープ株式会社 Thin film transistor and display device
US8653531B2 (en) 2009-11-12 2014-02-18 Sharp Kabushiki Kaisha Thin film transistor and display device
JP2012155701A (en) * 2011-01-21 2012-08-16 Samsung Electronics Co Ltd Touch sensing substrate and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3995476B2 (en) Display device and manufacturing method thereof
JP3953320B2 (en) Display device and manufacturing method thereof
KR100582131B1 (en) A display apparatus having reflective layer
EP2416363B1 (en) Organic electroluminescent device
KR20030057437A (en) Liquid crystal display
JP2003255378A (en) Liquid crystal display
JP4446500B2 (en) Liquid crystal display
KR100846611B1 (en) Liquid crystal display device
JP2007140547A (en) Display device and its manufacturing method
JP2006154494A (en) Display device and method of manufacturing the same
JP3953340B2 (en) Display device

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100121