JP2007038155A - Catalyst for selective reduction nitrogen oxide by carbon monoxide and its preparing method - Google Patents
Catalyst for selective reduction nitrogen oxide by carbon monoxide and its preparing method Download PDFInfo
- Publication number
- JP2007038155A JP2007038155A JP2005226168A JP2005226168A JP2007038155A JP 2007038155 A JP2007038155 A JP 2007038155A JP 2005226168 A JP2005226168 A JP 2005226168A JP 2005226168 A JP2005226168 A JP 2005226168A JP 2007038155 A JP2007038155 A JP 2007038155A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- silica
- carbon monoxide
- tungsten oxide
- sio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
ディーゼル排ガス中の窒素酸化物を除去する触媒に関するものである。 The present invention relates to a catalyst for removing nitrogen oxides in diesel exhaust gas.
ディーゼル排ガス中には、酸化性の有害成分である窒素酸化物(NOx)が含まれており、これを還元して無害化する際に、排ガス中に含まれる一酸化炭素(CO)と反応させることが、エンジンの作動条件を大きく変動させたり、還元剤をディーゼル車に搭載する必要がなく、望ましい方法である。この無害化反応は前記両反応を酸素が残存する酸化雰囲気下で行う反応であり、白金族元素を含有する触媒が用いられてきた。この反応に、良好な酸化性能を発揮し酸素過剰雰囲気下で耐久性があるイリジウム触媒(特許文献1)およびロジウム触媒(特許文献2)が開発されている。
イリジウム触媒は、イリジウムの微粒子をシリカ(非特許文献1)、酸化タングステン(特許文献2)、酸化亜鉛(特許文献2)などの金属酸化物からなる担体に担持したものが用いられる。シリカに担持したイリジウム触媒は、排ガス中に二酸化硫黄が比較的に多く含まれる場合に有効な結果が得られる。
Diesel exhaust gas contains nitrogen oxides (NOx), which is an oxidative harmful component, and when it is reduced and rendered harmless, it reacts with carbon monoxide (CO) contained in the exhaust gas. This is a desirable method because there is no need to greatly change the operating conditions of the engine or to install a reducing agent in the diesel vehicle. This detoxification reaction is a reaction in which both the reactions are performed in an oxidizing atmosphere in which oxygen remains, and a catalyst containing a platinum group element has been used. For this reaction, an iridium catalyst (Patent Document 1) and a rhodium catalyst (Patent Document 2) that exhibit good oxidation performance and are durable in an oxygen-excess atmosphere have been developed.
As the iridium catalyst, iridium fine particles supported on a carrier made of a metal oxide such as silica (Non-patent Document 1), tungsten oxide (Patent Document 2), and zinc oxide (Patent Document 2) are used. The iridium catalyst supported on silica is effective when a relatively large amount of sulfur dioxide is contained in the exhaust gas.
近年、ディーゼル車に関するNOx排ガス規制はますます強化されてきている。一方、ディーゼル燃料中の硫黄濃度はますます低いレベルに規制されてきている。このような低硫黄燃料を用いた場合には燃焼により発生するSO2濃度が極めて低い排ガスになるので、このようなSO2濃度が極めて低い排ガスに対処するために、排ガス中に含まれるNOxをCOにより還元無害化できる触媒の開発が必要とされている。
SO2 1ppm以下の条件下に、空間速度数万h-1以上ので、NOx転化率が80%を超す触媒としては、Ir/シリカライトを用いるもの(非特許文献3)が知られている。この場合には、実際に工業化する場合には、熱的に安定な酸化物であり、かつ安価かつ大量合成が可能である担体が要求され、この点を解決できるIrを担持した触媒の開発が求められている。
大気汚染による環境問題は益々深刻化しており、ディーゼル燃料として硫黄濃度が低い燃料を用いて、発生するSO2濃度がSO2 1ppm以下となる極めて低い排ガスに対して、その中に含まれるNOxを、COを用いて還元無害化できる触媒の開発が急務とされている。
As a catalyst having a space velocity of tens of thousands of h −1 or more under a condition of
Environmental problems due to air pollution is increasingly serious, with fuel sulfur concentration is low as a diesel fuel, for very low exhaust gas SO 2 concentration of
本発明の課題は、ディーゼル燃料として硫黄濃度が低い燃料を用いて、発生するSO2濃度が、SO21ppm以下となる極めて低い排ガスに対応して、その中に含まれるNOxを、COを用いて還元無害化できる触媒及びその製造方法を提供することである。 An object of the present invention is to use a fuel having a low sulfur concentration as a diesel fuel, correspond to an extremely low exhaust gas in which the generated SO 2 concentration is 1 ppm or less of SO 2 , NOx contained therein is converted to CO It is another object of the present invention to provide a catalyst that can be detoxified by reduction and a method for producing the same.
本発明者らは、SO2非存在下の模擬排ガス条件下、酸化タングステン(WO3)とシリカ(SiO2)を混合して得られる複合体を担体として、これにイリジウムを担持させた触媒を用いて、排ガス中のCOによってNOxを選択的に還元(以下CO-SCRと記述)させることができることを見出して、本発明を完成させた。 The inventors have used a composite obtained by mixing tungsten oxide (WO 3 ) and silica (SiO 2 ) under simulated exhaust gas conditions in the absence of SO 2 as a carrier, and a catalyst having iridium supported thereon. And found that NOx can be selectively reduced (hereinafter referred to as CO-SCR) by CO in the exhaust gas, and the present invention has been completed.
本発明によると、以下の発明が提供される。
(1)イリジウムを酸化タングステン及びシリカからなる複合体に担持したことからなることを特徴とする一酸化炭素による窒素酸化物を選択的に還元する還元用触媒。
(2)前記(1)記載の還元用触媒を水素中で還元処理して得られることを特徴とする一酸化炭素による窒素酸化物を選択的に還元する還元用触媒。
(3)過酸化ポリタングステン酸溶液にシリカゾルを加えて乾燥した後、焼成することにより得られる酸化タングステン及びシリカからなる複合体にイリジウム化合物を含浸させて、イリジウムを酸化タングステン及びシリカからなる複合体に担持したことを特徴とする、一酸化炭素によって窒素酸化物を選択的に還元する還元用触媒の製造方法。
(4)前記(3)記載のイリジウムを酸化タングステン及びシリカからなる複合体に担持したことに引き続いて水素中で還元処理して得られる、一酸化炭素によって窒素酸化物を選択的に還元することを特徴とする還元用触媒の製造方法。
According to the present invention, the following inventions are provided.
(1) A reduction catalyst for selectively reducing nitrogen oxides by carbon monoxide, comprising iridium supported on a composite of tungsten oxide and silica.
(2) A reduction catalyst for selectively reducing nitrogen oxides by carbon monoxide, obtained by reducing the reduction catalyst according to (1) in hydrogen.
(3) A composite composed of tungsten oxide and silica obtained by adding a silica sol to a polytungstic peroxide solution, drying and then firing, and impregnating the composite with iridium compound and iridium containing tungsten oxide and silica A method for producing a reduction catalyst for selectively reducing nitrogen oxides with carbon monoxide.
(4) Nitrogen oxide is selectively reduced by carbon monoxide obtained by supporting iridium described in (3) on a composite composed of tungsten oxide and silica, followed by reduction treatment in hydrogen. A method for producing a catalyst for reduction.
本発明により得られる触媒によれば、硫黄濃度が低い燃料を用いた場合に排ガス中の窒素酸化物の選択的還元反応で、80%を超えるNOx転化率が得られ、また、約90%に達するN2選択率が得られる有用な触媒が得られる。 According to the catalyst obtained by the present invention, when a fuel having a low sulfur concentration is used, a NOx conversion rate exceeding 80% can be obtained in the selective reduction reaction of nitrogen oxides in the exhaust gas, and also about 90%. Useful catalysts are obtained that achieve the N 2 selectivity that is reached.
本発明の触媒は、イリジウムを酸化タングステン及びシリカからなる複合体に担持して得られる触媒である。
この触媒で、イリジウムに対する酸化タングステン及びシリカからなる複合体の割合は、モル比で1対1から1対50の範囲であり、好ましくは、1対2から1対30の範囲が好ましい。1対50の割合を超えて酸化タングステン及びシリカからなる複合体が増加させて用いると、イリジウムによる効果が十分に得られない結果になり、1対1の割合を超えてイリジウムの含有量を増加させてもイリジウムを多量に用いたことによる格別な効果を得ることができない。
The catalyst of the present invention is a catalyst obtained by supporting iridium on a composite composed of tungsten oxide and silica.
In this catalyst, the ratio of the composite composed of tungsten oxide and silica to iridium is in the range of 1: 1 to 1:50, preferably in the range of 1: 2 to 1:30. If the composite of tungsten oxide and silica is used in excess of the ratio of 1:50, the effect of iridium will not be obtained sufficiently, and the content of iridium will exceed the ratio of 1: 1. Even if it makes it, the special effect by having used a large amount of iridium cannot be acquired.
前記酸化タングステン及びシリカからなる複合体は、タングステン酸などの酸化タングステンの前駆体とコロイダルシリカ又はシリカゾルなどのシリカの前駆体を混合して、得られる生成物を乾燥させた後、焼成処理を行って酸化物として得られる。焼成処理は、400℃から600℃程度の範囲で行う。これらは両者が混合物の状態で複合体を形成していると考えられる。そして触媒がその機能を果たす温度域である200〜400℃程度の条件下には複合体として化学的に安定した状態で存在する。また、この範囲の高温下に機械的な強度も維持している。
酸化タングステン及びシリカの割合は、複合体に占める酸化タングステンの含有率が1〜40重量%、最も好ましくは5〜30重量%とする場合に、最大のCO-SCR活性を発揮することができる。
この範囲を保つためには原料物質である酸化タングステン及びシリカの混合割合を調節することにより行うことができる。
前記焼結処理による複合体は多孔質である。
複合体の形態は、使用する触媒の形態応じて適宜決定できる。円筒状、粒状、ハニカム支持体に担持した形状とすることで、通常の使用には対応できる。前記形態の複合体の容量は使用する状態に応じて任意に決めることができる。
触媒担体としては、各々酸化タングステン及びシリカを担体として用いた場合に比較して効果が得られることは以下に記載する実施例と比較例を対比することにより明らかである。
The composite made of tungsten oxide and silica is mixed with a precursor of tungsten oxide such as tungstic acid and a precursor of silica such as colloidal silica or silica sol, and the resulting product is dried, followed by firing treatment. To be obtained as an oxide. The baking treatment is performed in the range of about 400 ° C to 600 ° C. These are considered to form a complex in the form of a mixture of the two. The catalyst exists in a chemically stable state as a complex under conditions of about 200 to 400 ° C., which is a temperature range in which the catalyst performs its function. In addition, the mechanical strength is maintained at a high temperature in this range.
The ratio of tungsten oxide and silica can exert the maximum CO-SCR activity when the content of tungsten oxide in the composite is 1 to 40% by weight, most preferably 5 to 30% by weight.
In order to keep this range, it can be performed by adjusting the mixing ratio of tungsten oxide and silica as raw materials.
The composite by the sintering process is porous.
The form of the composite can be appropriately determined according to the form of the catalyst used. By using a cylindrical shape, a granular shape, or a shape supported on a honeycomb support, it can be used for normal use. The capacity | capacitance of the composite_body | complex of the said form can be arbitrarily determined according to the state to be used.
As a catalyst carrier, it is clear by comparing Examples and Comparative Examples described below that the effects are obtained as compared with the case where tungsten oxide and silica are used as the carrier, respectively.
担体である酸化タングステン及びシリカからなる複合体は以下のようにして製造する。
WO3とSiO2を複合化した担体は、金属タングステン(W)に過酸化水素水を加えて反応させ調製した過酸化ポリタングステン酸溶液(pH=約1.0)に、アンモニア(NH3)水をタングステン酸より過剰に加えて弱アルカリ性(pH=約8.5)とした後、所望量のコロイダルシリカ又はゼリー状シリカゾルを加えて、110°C乾燥した後、500°C、4時間、空気中で焼成することにより得られる。あるいは、この工程でNH3を添加せず、それ以外は同様の処理を行うことで得られた複合担体でもよい。
以上の処理により、複合担体は酸化物の状態で得られる。
A composite composed of tungsten oxide and silica as a carrier is produced as follows.
The carrier in which WO 3 and SiO 2 are combined is prepared by adding ammonia (NH 3 ) water to a peroxide polytungstic acid solution (pH = about 1.0) prepared by reacting hydrogen peroxide water with metal tungsten (W). Add excessive amount to tungstic acid to make it weakly alkaline (pH = 8.5), add a desired amount of colloidal silica or jelly-like silica sol, dry at 110 ° C, and then baked in air at 500 ° C for 4 hours. Can be obtained. Alternatively, a composite carrier obtained by performing the same treatment without adding NH 3 in this step may be used.
By the above treatment, the composite carrier is obtained in an oxide state.
Irを前記複合体に担持する方法は、以下のとおりである。
前記の手順に従って調製したWO3- SiO2複合担体を、Ir(NH3)6(OH)3、H2IrCl6、Ir(NO3)3等のIrの化合物からなる水溶液中に浸して、前記複合体にIrを含浸させる含浸法が採用される。
担体に、前記いずれかのIr化合物を含浸させた後、乾燥、焼成する。
あるいは、WO3-SiO2複合担体を得る前の過酸化ポリタングステン酸溶液とコロイダルシリカ又はゼリー状シリカゾルなどのシリカ前駆体の混合状態に、Ir(NH3)6(OH)3、H2IrCl6、Ir(NO3)3などの化合物をさらに混合した後、乾燥、焼成する方法を用いてもよい。
The method for supporting Ir on the composite is as follows.
The WO 3 —SiO 2 composite support prepared according to the above procedure is immersed in an aqueous solution composed of an Ir compound such as Ir (NH 3 ) 6 (OH) 3 , H 2 IrCl 6 , Ir (NO 3 ) 3 , An impregnation method in which the composite is impregnated with Ir is employed.
The carrier is impregnated with any of the above Ir compounds, dried and fired.
Alternatively, Ir (NH 3 ) 6 (OH) 3 , H 2 IrCl in a mixed state of the polytungstic acid peroxide solution and a silica precursor such as colloidal silica or jelly-like silica sol before obtaining the WO 3 —SiO 2 composite support 6. A method of further mixing a compound such as Ir (NO 3 ) 3 and then drying and firing may be used.
得られたIr/WO3-SiO2触媒は、調製条件にかかわらず、水素(H2)気流中、400℃以上で還元処理されることで活性を発揮する。上限は700℃以下程度である。 The obtained Ir / WO 3 —SiO 2 catalyst exhibits its activity by being reduced at 400 ° C. or higher in a hydrogen (H 2 ) stream regardless of the preparation conditions. The upper limit is about 700 ° C. or less.
このようにして得られるイリジウムを酸化タングステン及びシリカからなる複合体に担持した触媒を、排ガスと接触させて排ガス処理が行われる。
排ガスの組成は、SO2濃度がSO2 1ppm以下であり、NO、COの割合は、およそ1:10である。
排ガスの温度は、200から400℃である。
以下、本発明の実施例を説明する。
Exhaust gas treatment is performed by bringing the catalyst obtained by supporting iridium thus obtained on a composite made of tungsten oxide and silica into contact with exhaust gas.
The composition of the exhaust gas has an SO 2 concentration of 1 ppm or less of SO 2 , and the ratio of NO and CO is approximately 1:10.
The temperature of the exhaust gas is 200 to 400 ° C.
Examples of the present invention will be described below.
金属状態のW粉末11gを入れた2Lビーカーに15%H2O2を70mL加えることにより、WとH2O2が激しく反応し、Wが酸化されるとともに溶解して、過酸化ポリタングステン酸溶液が得られた。次いで、この溶液に対して1/10容の濃NH3水を加えることにより、過酸化ポリタングステン酸アンモニウム溶液を得た。さらに、この溶液に、WO3とSiO2重量比が1:9となるように分量を調節してコロイダルシリカ(触媒化成、Catalloid S-20L)を混合した。その後、この混合溶液を100℃以下で蒸発乾固させ、さらに、500℃、4時間、空気中で焼成した。得られたWO3-SiO2複合体に対して、Ir重量が0.5重量%になるように分量を調節したIr(NH3)6(OH)3水溶液を含浸させ、空気中で、110℃、12時間乾燥後、500℃、4時間焼成して、種々のWO3-SiO2組成比のIr/WO3-SiO2を得た。
比較として、同様の原料から調製した0.5wt% Ir/SiO2および0.5wt% Ir/WO3を調製した。
By adding 70 mL of 15% H 2 O 2 to a 2 L beaker containing 11 g of W powder in a metallic state, W and H 2 O 2 react vigorously, W is oxidized and dissolved, and polytungstic peroxide A solution was obtained. Next, 1/10 volume of concentrated NH 3 water was added to this solution to obtain an ammonium peroxide polytungstate solution. Furthermore, colloidal silica (catalyst conversion, Catalloid S-20L) was mixed with this solution so that the weight ratio of WO 3 and SiO 2 was 1: 9. Thereafter, the mixed solution was evaporated to dryness at 100 ° C. or lower, and further calcined in air at 500 ° C. for 4 hours. The obtained WO 3 —SiO 2 composite was impregnated with an Ir (NH 3 ) 6 (OH) 3 aqueous solution whose amount was adjusted so that the Ir weight was 0.5% by weight, and in air, at 110 ° C., After drying for 12 hours, firing was performed at 500 ° C. for 4 hours to obtain Ir / WO 3 —SiO 2 having various WO 3 —SiO 2 composition ratios.
For comparison, 0.5 wt% Ir / SiO 2 and 0.5 wt% Ir / WO 3 prepared from similar raw materials were prepared.
得られたIr/WO3-SiO2を、粒径0.25mm以下に粉砕し、その0.1gを粒径0.37-0.6mlに整粒した炭化珪素粒子と混合した後、内径8mmの石英ガラス管に触媒床の高さが8mmになるように充填した。触媒床温度を測定するための熱電対を触媒床中心付近に配置した。触媒は反応前に10%H2/He気流中、600℃、1時間還元を施した。1000 ppm NO, 5000ppm CO, 10% O2,
1% H2Oを含むHe希釈混合ガスを反応ガスとし、流量225ml/minで触媒床に流通し、その生成ガスを、ガスセルを設置したFT-IR(NO、NO2分析)およびマイクロガスクロマトグラフ(CO、CO2、N2分析)で分析した。活性評価は、次式に示すNOx(=NO+NO2)転化率およびN2選択率により行った。
NOx転化率=[(NOx入口濃度−NOx出口濃度)/NOx入口濃度]×100(%)、
N2選択率=[N2出口濃度/(N2 + N2O出口濃度)]×100(%)
The obtained Ir / WO 3 —SiO 2 was pulverized to a particle size of 0.25 mm or less, and 0.1 g was mixed with silicon carbide particles sized to a particle size of 0.37 to 0.6 ml, and then put into a quartz glass tube having an inner diameter of 8 mm. The catalyst bed was packed so that its height was 8 mm. A thermocouple for measuring the catalyst bed temperature was placed near the center of the catalyst bed. Before the reaction, the catalyst was reduced in a 10% H 2 / He stream at 600 ° C. for 1 hour. 1000 ppm NO, 5000 ppm CO, 10% O 2 ,
The He diluent gas mixture containing 1% H 2 O with a reaction gas, flows into the catalyst bed at a flow rate of 225 ml / min, and the product gas, FT-IR, which established the gas cell (NO, NO 2 analysis) and micro gas chromatograph (CO, CO 2 , N 2 analysis). The activity was evaluated based on the NOx (= NO + NO 2 ) conversion rate and N 2 selectivity shown in the following formula.
NOx conversion rate = [(NOx inlet concentration−NOx outlet concentration) / NOx inlet concentration] × 100 (%),
N 2 selectivity = [N 2 outlet concentration / (N 2 + N 2 O outlet concentration)] x 100 (%)
0.5wt% Ir/SiO2および0.5wt% Ir/WO3と比べて0.5wt% Ir/WO3-SiO2のNOx転化率は著しく高い値を示した。0.5wt% Ir/WO3-SiO2のNOx転化率、N2選択率ともに反応温度260℃で最大になり、それぞれ86%、89%に達した。
NOx conversion of 0.5wt% Ir / WO 3 -SiO 2 as compared to 0.5wt% Ir / SiO 2 and 0.5wt% Ir / WO 3 showed significantly higher values. Both NOx conversion and N 2 selectivity of 0.5 wt% Ir / WO 3 —SiO 2 reached a maximum at a reaction temperature of 260 ° C., reaching 86% and 89%, respectively.
実施例1において、原料ガスに0.5ppm SO2を添加した条件で0.5wt% Ir/WO3-SiO2および0.5wt% Ir/SiO2について活性試験を行い、SO2共存下および非共存下の最大NOx転化率、N2選択率を表1に示す。
In Example 1, an activity test was performed on 0.5 wt% Ir / WO 3 —SiO 2 and 0.5 wt% Ir / SiO 2 under the condition that 0.5 ppm SO 2 was added to the raw material gas, and in the presence and absence of SO 2 . Table 1 shows the maximum NOx conversion and N 2 selectivity.
0.5ppm SO2を添加しても0.5wt% Ir/WO3-SiO2は高い活性を維持することが分かった。SO2添加による活性促進が報告されているIr/SiO2はSO2濃度が低いために顕著な促進効果は見られなかった。
It was found that 0.5 wt% Ir / WO 3 —SiO 2 maintains high activity even when 0.5 ppm SO 2 is added. Ir / SiO 2, which has been reported to promote activity by the addition of SO 2, did not show a significant promotion effect due to its low SO 2 concentration.
反応ガス中にSO2が共存する場合の影響(実施例2)
Effect of SO 2 coexisting in reaction gas (Example 2)
実施例1において、過酸化ポリタングステン酸アンモニウム溶液に、所望のWO3/(WO3+SiO2)重量比(0から1まで)となるように分量を調節してコロイダルシリカ(触媒化成、Catalloid S-20L)を混合し、同様の処理を行った触媒について同様の活性試験を行った。WO3/(WO3+SiO2)重量比と最大NOx転化率、N2選択率の関係を図2に示す。NOx転化率はWO3含有率が5〜30%の時に80%以上の値を示し、N2選択性も約90%になった。
In Example 1, colloidal silica (catalyst conversion, Catalloid) was prepared by adjusting the amount of the ammonium peroxide polytungstate solution to a desired WO 3 / (WO 3 + SiO 2 ) weight ratio (from 0 to 1). S-20L) was mixed, and the same activity test was performed on the catalyst which was subjected to the same treatment. FIG. 2 shows the relationship between the WO 3 / (WO 3 + SiO 2 ) weight ratio, the maximum NOx conversion rate, and the N 2 selectivity. The NOx conversion showed a value of 80% or more when the WO 3 content was 5 to 30%, and the N 2 selectivity was also about 90%.
実施例1の調製において、過酸化ポリタングステン酸溶液あるいは過酸化ポリタングステン酸アンモニウム溶液に対して、WO3:SiO2=3:7となるように分量を調節してコロイダルシリカを混合した後、同様の処理を行った触媒について同様の活性試験を行った。最大NOx転化率とその時のN2選択率を表2に示す。過酸化ポリタングステン酸へのNH3添加の有無にかかわらず、最大NOx転化率は50%以上、その際のN2選択率は80%以上に達した。 In the preparation of Example 1, after mixing the colloidal silica with the amount adjusted to be WO 3 : SiO 2 = 3: 7 with respect to the polytungstic acid solution or ammonium polytungstate solution, A similar activity test was conducted on the catalyst that had been treated in the same manner. Table 2 shows the maximum NOx conversion rate and N 2 selectivity at that time. Regardless of whether or not NH 3 was added to the peroxide polytungstic acid, the maximum NOx conversion reached 50% or more, and the N 2 selectivity reached 80% or more.
過酸化ポリタングステン酸へのNH3添加の有無の活性への影響(実施例4)
Effect of the presence or absence of NH 3 addition to peroxide polytungstic acid on activity (Example 4)
実施例4の調製において、過酸化ポリタングステン酸溶液あるいは過酸化ポリタングステン酸アンモニウム溶液に対して、WO3:SiO2=3:7となるように分量を調節してコロイダルシリカを混合し、Ir重量が0.5重量%になるように分量を調節したIr(NH3)6(OH)3水溶液を混合した後、この混合溶液を100℃以下で蒸発乾固させ、さらに、500℃、4時間、空気中で焼成して得られた触媒について、同様の活性試験を行った。最大NOx転化率とその時のN2選択率を表3に示す。これらの結果は表2のIrガン身担持と比べて低いことから、Ir前駆体は、WO3-SiO2を作製してから含浸担持する方が望ましいことが分かった。 In the preparation of Example 4, colloidal silica was mixed with adjusting the amount of WO 3 : SiO 2 = 3: 7 with respect to the polyperoxytungstic acid solution or the ammonium peroxytungstate solution, and Ir. After mixing Ir (NH 3 ) 6 (OH) 3 aqueous solution whose amount was adjusted so that the weight was 0.5% by weight, this mixed solution was evaporated to dryness at 100 ° C. or lower, and further, 500 ° C. for 4 hours. A similar activity test was performed on the catalyst obtained by calcination in air. Table 3 shows the maximum NOx conversion rate and N 2 selectivity at that time. Since these results were lower than those shown in Table 2, it was found that the Ir precursor is preferably impregnated and supported after WO 3 —SiO 2 is prepared.
Ir前駆体をWO3-SiO2調製時に混合した際のNH3添加の有無の活性への影響(実施例5)
Effect of the presence or absence of NH 3 addition on the activity when Ir precursor is mixed during the preparation of WO 3 —SiO 2 (Example 5)
実施例1で調製したIr/WO3-SiO2触媒ついて、反応前H2処理の有無に対する最大NOx転化率とその際のN2選択率を表4に示す。H2前処理の有無における最大NOx転化率の差は約50%であり、本触媒はH2前処理が必須であることが分かった。 Table 4 shows the maximum NOx conversion rate and N 2 selectivity at that time for Ir / WO 3 —SiO 2 catalyst prepared in Example 1 with or without H 2 treatment before reaction. The difference in maximum NOx conversion with and without H 2 pretreatment was about 50%, indicating that H 2 pretreatment is essential for this catalyst.
H2前処理の有無の影響(実施例6)
Effect of presence or absence of H 2 pretreatment (Example 6)
本発明の触媒は、ディーゼルエンジン排ガス中のNOxの低減に有効な活性を示すものであり、排ガス規制強化が進められつつあるディーゼル車、あるいはディーゼル車と同じく排ガス中にO2が残存しNOxの還元無害化が難しいリーンバーンガソリン車の排ガス処理技術として利用されることが期待される。 The catalyst of the present invention exhibits an effective activity for reducing NOx in exhaust gas from diesel engines, and diesel vehicles in which exhaust gas regulations are being tightened, or O 2 remains in exhaust gas as in the case of diesel vehicles. It is expected to be used as an exhaust gas treatment technology for lean burn gasoline vehicles that are difficult to reduce and detoxify.
Claims (4)
酸化タングステン及びシリカからなる複合体に、イリジウム化合物を含浸させて、イリジウムを酸化タングステン及びシリカからなる複合体に担持したことを特徴とする一酸化炭素による窒素酸化物を選択的に還元する還元用触媒の製造方法。 A composite composed of tungsten oxide and silica obtained by adding a silica sol to a polytungstic peroxide solution, drying, and firing, impregnated with an iridium compound, and a composite composed of tungsten oxide and silica A method for producing a reduction catalyst for selectively reducing nitrogen oxides by carbon monoxide, which is supported on a catalyst.
A reduction characterized by selectively reducing nitrogen oxide by carbon monoxide obtained by supporting the iridium according to claim 3 on a composite composed of tungsten oxide and silica, followed by reduction treatment in hydrogen. For producing a catalyst for use.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005226168A JP4512691B2 (en) | 2005-08-04 | 2005-08-04 | Catalyst for selective reduction of nitrogen oxides by carbon monoxide and its preparation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005226168A JP4512691B2 (en) | 2005-08-04 | 2005-08-04 | Catalyst for selective reduction of nitrogen oxides by carbon monoxide and its preparation |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007038155A true JP2007038155A (en) | 2007-02-15 |
JP4512691B2 JP4512691B2 (en) | 2010-07-28 |
Family
ID=37796628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005226168A Expired - Fee Related JP4512691B2 (en) | 2005-08-04 | 2005-08-04 | Catalyst for selective reduction of nitrogen oxides by carbon monoxide and its preparation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4512691B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007175654A (en) * | 2005-12-28 | 2007-07-12 | National Institute Of Advanced Industrial & Technology | Catalyst for deoxidizing nitrogen oxide selectively |
JP2009189915A (en) * | 2008-02-13 | 2009-08-27 | Hitachi Ltd | Nitrogen oxide cleaning catalyst and nitrogen oxide cleaning method |
CN112892547A (en) * | 2021-01-18 | 2021-06-04 | 北京科技大学 | Catalyst for simultaneously removing nitrogen oxide and carbon monoxide and preparation method thereof |
CN113275008A (en) * | 2021-05-27 | 2021-08-20 | 北京化工大学 | CO-SCR denitration catalyst and preparation method and application thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7153327B2 (en) * | 2018-12-07 | 2022-10-14 | 国立研究開発法人産業技術総合研究所 | combustion system |
-
2005
- 2005-08-04 JP JP2005226168A patent/JP4512691B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007175654A (en) * | 2005-12-28 | 2007-07-12 | National Institute Of Advanced Industrial & Technology | Catalyst for deoxidizing nitrogen oxide selectively |
JP2009189915A (en) * | 2008-02-13 | 2009-08-27 | Hitachi Ltd | Nitrogen oxide cleaning catalyst and nitrogen oxide cleaning method |
CN112892547A (en) * | 2021-01-18 | 2021-06-04 | 北京科技大学 | Catalyst for simultaneously removing nitrogen oxide and carbon monoxide and preparation method thereof |
CN112892547B (en) * | 2021-01-18 | 2022-12-02 | 北京科技大学 | Catalyst for simultaneously removing nitrogen oxide and carbon monoxide and preparation method thereof |
CN113275008A (en) * | 2021-05-27 | 2021-08-20 | 北京化工大学 | CO-SCR denitration catalyst and preparation method and application thereof |
CN113275008B (en) * | 2021-05-27 | 2023-08-29 | 北京化工大学 | CO-SCR denitration catalyst and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4512691B2 (en) | 2010-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920009112B1 (en) | Three-way catalysts for lean exhaust system | |
US4164546A (en) | Method of removing nitrogen oxides from gaseous mixtures | |
KR970009558B1 (en) | Copper oxide and ceria catalyst | |
KR101626541B1 (en) | The Catalysts for Selective Oxidation of NH3 to N2 and Their Preparation Methods | |
JP4512691B2 (en) | Catalyst for selective reduction of nitrogen oxides by carbon monoxide and its preparation | |
JP2001058130A (en) | Catalyst for nitrogen oxide decomposition | |
JPS5820307B2 (en) | Catalyst for vehicle exhaust gas purification | |
JP3626999B2 (en) | Exhaust gas purification material and exhaust gas purification method | |
JPH0696094B2 (en) | Exhaust gas purification method | |
JP2007175654A (en) | Catalyst for deoxidizing nitrogen oxide selectively | |
JP3234237B2 (en) | Catalyst for removing nitrous oxide in exhaust gas and method for producing the same | |
JP4886613B2 (en) | Nitrogen oxide purification catalyst and nitrogen oxide purification method using the same | |
JPH1066867A (en) | Catalyst for cleaning exhaust gas and method for cleaning exhaust gas by the catalyst | |
JP2649217B2 (en) | Exhaust gas purifying material and exhaust gas purifying method | |
JPH06262078A (en) | Exhaust gas purification material and method of exhaust gas purification | |
JPH11128688A (en) | Purification of waste gas | |
JP3854325B2 (en) | Exhaust gas purification material and exhaust gas purification method | |
JP4895090B2 (en) | NOX selective reduction catalyst | |
JPH06238164A (en) | Catalyst and method for removing nitrogen oxides | |
KR100384016B1 (en) | High durable Pd-Rh three way catalyst for NOx reduction | |
JP2000107602A (en) | Oxidation catalyst for unburned hydrocarbon in waste gas and its preparation | |
JPH06165918A (en) | Method for purifying waste gas | |
JP2007007607A (en) | Method for purifying engine exhaust gas | |
JPH11319566A (en) | Catalyst for removing nitrogen oxide and method for removing nitrogen oxide | |
JP2005218976A (en) | Emission gas purification catalyst and its producing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070314 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090825 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091008 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100309 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100309 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4512691 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140521 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |