[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007037369A - Rolling stock driving system - Google Patents

Rolling stock driving system Download PDF

Info

Publication number
JP2007037369A
JP2007037369A JP2005221207A JP2005221207A JP2007037369A JP 2007037369 A JP2007037369 A JP 2007037369A JP 2005221207 A JP2005221207 A JP 2005221207A JP 2005221207 A JP2005221207 A JP 2005221207A JP 2007037369 A JP2007037369 A JP 2007037369A
Authority
JP
Japan
Prior art keywords
power
power generation
drive system
vehicle
vehicle drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005221207A
Other languages
Japanese (ja)
Other versions
JP4738087B2 (en
Inventor
Yosuke Nakazawa
沢 洋 介 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005221207A priority Critical patent/JP4738087B2/en
Publication of JP2007037369A publication Critical patent/JP2007037369A/en
Application granted granted Critical
Publication of JP4738087B2 publication Critical patent/JP4738087B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling stock driving system for preventing wasteful fuel consumption by optimizing the energy efficiency of a train composition as a whole and for maintaining an operational traveling distance and economic efficiency. <P>SOLUTION: The rolling stock driving system is provided with a plurality of power generation means arranged dispersedly to each of a plurality of rolling stocks constituting one train composition, a power transmission means for transmitting the power of a plurality of the power generation means, a power conversion device for converting the power transmitted by the power transmission means to drive power for a drive motor to allow the train composition to travel, and a power generation intensive management control means that controls power generated by a plurality of the power generation means and is mounted to one of a plurality of the rolling stocks in order to output a command to start an arbitrary number of the power generation means in a plurality of the power-generation means. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車両駆動システムに関し、特に、発電手段として燃料電池を搭載する車両駆動システムに関する。   The present invention relates to a vehicle drive system, and more particularly to a vehicle drive system in which a fuel cell is mounted as power generation means.

従来、ディーゼルカーやディーゼル機関車など発電手段を有する鉄道車両駆動システムにおいては、単独の車両で駆動するものがほとんどであった。また複数の車両を接続して編成を構成する編成列車駆動システムでは、地上に張り巡らされた架線からパンタグラフを介して電力を供給するものが一般的であるが、架線の保守低減などの目的から編成車両に発電手段を設ける架線レスシステムの検討が一部で進められている。   Conventionally, most railway vehicle drive systems having power generation means such as diesel cars and diesel locomotives are driven by a single vehicle. Also, in train train drive systems that connect trains to form trains, power is generally supplied from overhead wires that run over the ground via pantographs, but for purposes such as reducing maintenance of overhead wires. Some studies are underway on an overhead wire-less system in which power generation means is provided in a train.

特許文献1に記載された「鉄道車両駆動システム」においては、図6に示すように、前記架線レスシステム検討の流れに類するものとして、発電手段4を集中的に搭載する車両3aと、乗客を乗せる車両3bとから構成される編成システム2が一例として記載されている。このシステム2は、発電手段4と、電力伝達手段5と、図示されない駆動モータへの電力を変換する電力変換装置7と、車輪9とを備え、電力変換装置7はそれぞれの車両3a、3bに分散配置されている。発電手段4は例えば先頭車両3aに集中的に配置されており、このシステム2は発電手段4が振動や騒音を発する例えばディーゼル発電機などより構成されている場合に有効なシステム構成である。   In the “railway vehicle drive system” described in Patent Document 1, as shown in FIG. 6, as similar to the flow of examination of the overhead wire-less system, a vehicle 3 a on which power generation means 4 is intensively installed, and passengers A knitting system 2 composed of a vehicle 3b to be placed is described as an example. The system 2 includes a power generation unit 4, a power transmission unit 5, a power conversion device 7 that converts power to a drive motor (not shown), and wheels 9. The power conversion device 7 is provided in each vehicle 3a, 3b. Distributed. The power generation means 4 is intensively arranged in the leading vehicle 3a, for example, and this system 2 is an effective system configuration when the power generation means 4 is composed of, for example, a diesel generator that generates vibration and noise.

一方、将来の高効率発電手段として、近年、燃料電池が脚光を浴びており、その開発も精力的に進められている。鉄道車両駆動システムの発電手段として燃料電池を適用することを想定した場合、水素燃料タンクの配置、燃料電池の低騒音低振動特性、燃料電池が中小容量の方が構成しやすいという設計・適用特性などを考慮すると、列車編成の各車両に分散配置されるのが最適な構成であると考えられる。   On the other hand, as a future high-efficiency power generation means, fuel cells have attracted attention in recent years, and their development has been energetically advanced. Assuming that fuel cells are used as power generation means for railway vehicle drive systems, hydrogen fuel tank arrangement, low noise and low vibration characteristics of fuel cells, and design and application characteristics that fuel cells are easier to configure with small and medium capacity In consideration of the above, it is considered that the optimal configuration is distributed to each train-organized vehicle.

しかしながら、このように分散配置した場合、各燃料電池の出力をそれぞれ独立して制御すると、駆動のための電力量があまり必要でない運転状態においても複数の燃料電池を無駄に動作させてしまうなど、全体効率を最適化することができず、無駄な動力を浪費することによる燃料消費量の増大などにより航続距離が低下したり、経済性が低下したりするという問題があった。
特開2005−27447号
However, in this distributed arrangement, if the output of each fuel cell is controlled independently, a plurality of fuel cells are wastefully operated even in an operation state in which the amount of power for driving is not necessary, etc. The overall efficiency cannot be optimized, and there has been a problem that the cruising range is reduced due to an increase in fuel consumption due to wasted power, and the economy is reduced.
JP 2005-27447 A

本発明は、列車編成全体でのエネルギー効率を最適化して無駄な燃料消費の防止と運行航続距離や経済性の維持を可能にする車両駆動システムを提供することを目的とする。   It is an object of the present invention to provide a vehicle drive system that optimizes the energy efficiency of the entire train organization to prevent wasteful fuel consumption and maintain the operation range and economy.

本発明の基本構成による車両駆動システムは、1つの列車編成を構成する複数の車両それぞれに分散配置された複数の発電手段と、前記複数の発電手段の電力を伝達する電力伝達手段と、前記電力伝達手段により伝達された電力を、前記列車編成を走行させる駆動用の電動機の駆動電力に変換する電力変換装置と、前記複数の発電手段の発電を集中的に管理すると共に前記電力伝達手段を介して前記電力変換装置へ伝達される電力量を集中的に制御するために前記複数の車両の何れかに搭載された発電集中管理制御手段と、を備えることを特徴とする。   The vehicle drive system according to the basic configuration of the present invention includes a plurality of power generation means distributed in each of a plurality of vehicles constituting one train formation, a power transmission means for transmitting power of the plurality of power generation means, and the power A power conversion device that converts the power transmitted by the transmission means into drive power for a driving motor that travels the train formation, and centrally manages the power generation of the plurality of power generation means and through the power transmission means Power generation centralized management control means mounted on any of the plurality of vehicles to centrally control the amount of power transmitted to the power converter.

上記基本構成による車両駆動システムにおいて、前記複数の発電手段は燃料電池を含んでおり、前記複数の車両のそれぞれには前記燃料電池のそれぞれに供給される燃料を充填した燃料タンクが搭載されると共に、前記発電集中管理制御手段は前記複数の発電手段の起動および発電電力量の少なくとも一方の制御指令を出力させていても良い。   In the vehicle drive system according to the above basic configuration, the plurality of power generation means include fuel cells, and each of the plurality of vehicles is equipped with a fuel tank filled with fuel supplied to each of the fuel cells. The power generation centralized management control means may output a control command for at least one of activation of the plurality of power generation means and generated power.

上記段落による車両駆動システムにおいて、前記発電集中管理制御手段は、前記複数の発電手段のそれぞれに供給される前記燃料タンクのそれぞれの燃料の残量情報に基づいてそれぞれの発電手段の起動および発電電力量の少なくとも一方を制御するようにしても良い。   In the vehicle drive system according to the above paragraph, the power generation centralized management control unit is configured to start each power generation unit and generate power based on the remaining amount information of each fuel in the fuel tank supplied to each of the plurality of power generation units. You may make it control at least one of quantity.

上記基本構成に係る車両駆動システムにおいて、前記発電集中管理制御手段は、1つの列車編成全体が必要とする電力量に基づいて各車両に搭載された発電手段の起動台数および発電電力量の少なくとも一方を制御するようにしても良い。   In the vehicle drive system according to the basic configuration described above, the power generation centralized management control means includes at least one of the number of activated power generation means mounted on each vehicle and the amount of generated power based on the amount of power required for one entire train organization. May be controlled.

上記基本構成に係る車両駆動システムにおいて、前記発電集中管理制御手段は、路線情報データベースの情報に基づいて、それぞれの発電手段の起動および発電電力量の少なくとも一方を制御するようにしても良い。   In the vehicle drive system according to the basic configuration described above, the power generation centralized management control unit may control at least one of activation of each power generation unit and generated power based on information in the route information database.

上記基本構成に係る車両駆動システムにおいて、前記電力伝達手段は、それぞれの車両に設けられた充放電変換装置を介してそれぞれの車両に設けられた複数のエネルギー蓄積装置に接続されており、前記発電集中管理制御手段は、前記複数のエネルギー蓄積装置のエネルギー残量の総エネルギー量に基づいて、それぞれの発電手段の起動および発電電力量の少なくとも一方を制御する一態様を有するように構成しても良い。   In the vehicle drive system according to the basic configuration, the power transmission means is connected to a plurality of energy storage devices provided in each vehicle via a charge / discharge conversion device provided in each vehicle, and the power generation unit The central management control means may be configured to have an aspect for controlling at least one of activation of the respective power generation means and generated power based on the total energy amount of the remaining energy of the plurality of energy storage devices. good.

上記一態様の構成による車両駆動システムにおいて、前記複数のエネルギー蓄積装置に接続された前記充放電変換装置は、前記電力伝達手段のそれぞれの車両部分の電圧が一定となるように充放電電力を制御するようにしても良い。   In the vehicle drive system according to the configuration of the above aspect, the charge / discharge conversion device connected to the plurality of energy storage devices controls charge / discharge power so that the voltage of each vehicle portion of the power transmission means is constant. You may make it do.

上記一態様の構成による車両駆動システムにおいて、前記複数のエネルギー蓄積装置に接続された前記充放電変換装置は、自らの充放電電力の関数となる電圧指令値に前記電力伝達手段の電圧が追従するように充放電電力を制御するようにしても良い。   In the vehicle drive system according to the configuration of the above aspect, the charge / discharge conversion device connected to the plurality of energy storage devices follows the voltage command value that is a function of its charge / discharge power. Thus, the charge / discharge power may be controlled.

上記一態様の構成による車両駆動システムにおいて、前記複数のエネルギー蓄積装置は前記複数の車両のそれぞれに搭載された電気2重層キャパシタであり、該電気2重層キャパシタの充電作用と放電作用を利用して前記エネルギー蓄積装置にエネルギーを補充するようにしても良い。   In the vehicle drive system according to the configuration of the above aspect, each of the plurality of energy storage devices is an electric double layer capacitor mounted on each of the plurality of vehicles, and uses a charging action and a discharging action of the electric double layer capacitor. The energy storage device may be replenished with energy.

上記一態様に係る車両駆動システムにおいて、前記電力伝達手段により伝達された電力を蓄積して前記駆動電力が不足するときにその不足電力分を補充する車両用の補助電源をさらに備えるようにしても良い。   The vehicle drive system according to the above aspect may further include an auxiliary power supply for the vehicle that accumulates the electric power transmitted by the electric power transmission unit and supplements the insufficient electric power when the driving electric power is insufficient. good.

本発明による車両駆動システムによれば、列車編成全体でのエネルギー効率を最適化して無駄な燃料消費の防止でき、運行航続距離や経済性を維持できる。   According to the vehicle drive system of the present invention, energy efficiency in the entire train organization can be optimized to prevent wasteful fuel consumption, and the operation cruising distance and economy can be maintained.

以下、添付図面を参照しながら、本発明に係る車両駆動システムの実施形態について詳細に説明する。   Hereinafter, embodiments of a vehicle drive system according to the present invention will be described in detail with reference to the accompanying drawings.

[第1実施形態]
図1は、この発明の基本構成としての第1実施形態の車両駆動システムを示すブロック図である。図1において、第1実施形態の車両駆動システム1は、1つの列車編成2を構成する複数の車両3のそれぞれに分散配置された複数の発電手段4と、複数の発電手段4の電力を伝達する電力伝達手段5と、電力伝達手段5により伝達された電力を、列車編成2を走行させる駆動用の電動機6の駆動電力に変換する電力変換装置7と、複数の発電手段4の発電を集中的に管理すると共に電力伝達手段5を介して電力変換装置7へ伝達される電力量を集中的に制御するために複数の車両3の何れかに搭載された発電集中管理制御手段8と、を備える。駆動用の電動機6は、車輪9に動力を伝達している。なお、発電手段4は、近年実用化に向けて急速に進歩している燃料電池11を含んでいても良く、その場合、例えば水素やエタノール等の燃料を充填した燃料タンク12も各車両3毎に配置されている。
[First Embodiment]
FIG. 1 is a block diagram showing a vehicle drive system of a first embodiment as a basic configuration of the present invention. In FIG. 1, a vehicle drive system 1 according to the first embodiment transmits a plurality of power generation means 4 distributed in each of a plurality of vehicles 3 constituting one train formation 2 and the power of the plurality of power generation means 4. The power transmission means 5 that performs the power transmission by the power transmission means 5, the power conversion device 7 that converts the power transmitted by the power transmission means 5 into the drive power of the driving motor 6 that runs the train formation 2, and the power generation by the plurality of power generation means 4. Power generation centralized management control means 8 mounted on any of the plurality of vehicles 3 in order to centrally control and centrally control the amount of power transmitted to the power converter 7 via the power transmission means 5. Prepare. The driving electric motor 6 transmits power to the wheels 9. The power generation means 4 may include a fuel cell 11 that has been rapidly progressing toward practical use in recent years. In this case, a fuel tank 12 filled with fuel such as hydrogen or ethanol is also provided for each vehicle 3. Is arranged.

上記構成を備える車両駆動システム1においては、複数の発電手段4の出力を電力伝達手段5で接続した上で、車両駆動用電動機6を制御する電力変換装置7に電力を供給するように構成しており、各発電手段4の出力電力または起動台数を、編成車両に搭載された発電集中管理制御手段7からの指令に基づいて動作させることにより、列車編成1全体の効率を最適化した駆動システムを構成することができる。   The vehicle drive system 1 having the above configuration is configured to supply power to the power conversion device 7 that controls the vehicle drive motor 6 after the outputs of the plurality of power generation means 4 are connected by the power transmission means 5. Drive system that optimizes the efficiency of the entire train formation 1 by operating the output power or the number of starting units of each power generation means 4 based on a command from the power generation centralized management control means 7 mounted on the formation vehicle. Can be configured.

[第2実施形態]
次に、本発明の第2実施形態に係る車両駆動システムについて図2を参照しながら説明する。この第2実施形態は、第1実施形態の発電手段4が燃料電池11と燃料タンク12とにより構成されていることを明示した構成を示している。図2において、第2実施形態における車両駆動システム1は、各車両3に搭載された燃料電池11と、燃料タンク12と、駆動モータ電力変換装置7と、各燃料電池11と駆動モータ電力変換装置7とをそれぞれ接続する電力伝達手段5と、例えば先頭車両3に集中して搭載された発電集中管理制御手段8とで構成されている。
[Second Embodiment]
Next, a vehicle drive system according to a second embodiment of the present invention will be described with reference to FIG. This 2nd Embodiment has shown the structure which specified that the electric power generation means 4 of 1st Embodiment was comprised by the fuel cell 11 and the fuel tank 12. FIG. In FIG. 2, the vehicle drive system 1 in the second embodiment includes a fuel cell 11, a fuel tank 12, a drive motor power conversion device 7, each fuel cell 11 and a drive motor power conversion device mounted on each vehicle 3. 7 and a power generation centralized management control means 8 that is mounted on the leading vehicle 3 in a concentrated manner, for example.

第1実施形態でも説明したように、燃料電池11と燃料タンク12とにより発電手段4が構成されており、燃料電池11と燃料タンク12を合わせた重量が、各車両3に均等に配分されるようになっている。発電集中管理制御手段8は、主として電子回路等により構成されているためにかなり軽量であるのに対して、燃料電池11と燃料タンク12は現状ではかなりの重量を有しており、そのためこれらの重量を有する構成要素はそれぞれの車両3に分散配置されていることが望ましい。   As described in the first embodiment, the fuel cell 11 and the fuel tank 12 constitute the power generation means 4, and the combined weight of the fuel cell 11 and the fuel tank 12 is equally distributed to each vehicle 3. It is like that. The power generation centralized management control means 8 is composed of an electronic circuit or the like and is therefore quite light. On the other hand, the fuel cell 11 and the fuel tank 12 currently have a considerable weight. It is desirable that the components having weight are distributed in each vehicle 3.

燃料電池11は、現在開発されているものはかなりの重量を有しており、また、燃料タンク12も液体水素等が充填されているために、燃料が満杯で充填されている場合には相当な重量となる。したがって、大容量の燃料電池11と大容量の燃料タンク12とを製造して1台の車両に搭載することは設計上からも好ましくない。このため、燃料電池を発電手段4として用いる車両駆動システムにおいては、中小規模の燃料電池11とこれとセットとなった燃料タンク12とを各車両3に分散配置している。   The fuel cell 11 currently developed has a considerable weight, and since the fuel tank 12 is also filled with liquid hydrogen or the like, it is appropriate when the fuel is full. It becomes a heavy weight. Therefore, it is not preferable from a design point of view to manufacture a large-capacity fuel cell 11 and a large-capacity fuel tank 12 and mount them on one vehicle. For this reason, in a vehicle drive system that uses a fuel cell as the power generation means 4, medium and small-sized fuel cells 11 and fuel tanks 12 that are combined with the fuel cells 11 are distributed in each vehicle 3.

また、この第2実施形態による車両駆動システムにおいては、発電集中管理制御手段8は、発電手段4としての複数の燃料電池11のそれぞれに供給される燃料タンク12のそれぞれの燃料の残量情報に基づいて、それぞれの発電手段4の起動および発電電力量の少なくとも一方を制御するようにしている。   Further, in the vehicle drive system according to the second embodiment, the power generation centralized management control means 8 uses the remaining fuel amount information of the fuel tank 12 supplied to each of the plurality of fuel cells 11 as the power generation means 4. Based on this, at least one of the activation of each power generation means 4 and the amount of generated power is controlled.

さらに、第1および第2実施形態において、発電集中管理制御手段8は、1つの列車編成2の全体が必要とする電力量に基づいて各車両3に搭載された発電手段4の起動台数および発電電力量の少なくとも一方を制御する用にしている。   Furthermore, in the first and second embodiments, the power generation centralized management control means 8 is configured to generate the number of power generation means 4 mounted on each vehicle 3 and the power generation based on the amount of power required for the entire train formation 2. It is used to control at least one of the electric energy.

また、第1および第2実施形態において、発電集中管理制御手段8は、図1および図2には図示されない路線情報データベースの情報に基づいて、それぞれの発電手段4の起動および発電電力量の少なくとも一方を制御するようにしている。   Further, in the first and second embodiments, the power generation centralized management control means 8 is based on the information in the route information database not shown in FIG. 1 and FIG. One is controlled.

[第3実施形態]
次に、EDLC(Electric Double Layer Capacitor)をエネルギー蓄積要素として用いた電力貯蔵システムを併用した第3実施形態に係る車両駆動システムについて、図3に示すブロック図を用いて説明する。また、各車両に搭載されるシステムの具体的な回路構成図は、図4に示すとおりである。また、図5は、充放電装置の電圧指令の垂下特性の具体例を示している。
[Third Embodiment]
Next, a vehicle drive system according to a third embodiment in which an electric power storage system using EDLC (Electric Double Layer Capacitor) as an energy storage element is used will be described with reference to a block diagram shown in FIG. Moreover, the specific circuit block diagram of the system mounted in each vehicle is as showing in FIG. FIG. 5 shows a specific example of the drooping characteristic of the voltage command of the charging / discharging device.

EDLCとは、電気2重層キャパシタのことであり、固体と液体の異なる2層が接する面は電気を蓄える性質があり、この性質を“電気2重層”現象という。第3実施形態は、この電気2重層現象を動作原理とするキャパシタを適用したものである。この動作原理を有するEDLCは、活性炭と電解液の界面に発生する電気二重層を動作原理としたキャパシタである。固体として活性炭、液体として電解液(奇硫酸水溶液)を用いて、これらの個体および液体を接触させるとその界面にプラス、マイナスの電極が極めて短い距離を隔てて相対的に分布する。このような現象を電気的2重層という。イオン性溶液中に一対の電極を浸して電気分解が起こらない程度の電圧をかけると(電気分解が起こるとキャパシタとして働かなくなる)それぞれの電極の表面にイオンが吸着され、プラスとマイナスの電気が蓄えられる(充電)。外部に電気を放出すると正負のイオンは電極から離れて中和状態に戻る(放電)。   EDLC is an electric double layer capacitor, and the surface where two different layers of solid and liquid are in contact has the property of storing electricity, and this property is called the “electric double layer” phenomenon. In the third embodiment, a capacitor having the electric double layer phenomenon as an operating principle is applied. An EDLC having this operating principle is a capacitor whose operating principle is an electric double layer generated at the interface between activated carbon and electrolyte. When activated carbon is used as a solid and an electrolytic solution (an odd sulfuric acid aqueous solution) is used as a liquid, and these solids and liquid are brought into contact with each other, positive and negative electrodes are relatively distributed at an extremely short distance on the interface. Such a phenomenon is called an electric double layer. When a voltage is applied so that electrolysis does not occur by immersing a pair of electrodes in an ionic solution (it does not work as a capacitor when electrolysis occurs), ions are adsorbed on the surface of each electrode, and positive and negative electricity is generated. Stored (charge). When electricity is discharged to the outside, positive and negative ions leave the electrode and return to a neutral state (discharge).

図3において、第3実施形態に係る車両駆動システムは、図2の第2実施形態の構成に加えて、それぞれの車両3に分散配置されると共に電力伝達手段5に接続された充放電変換装置13と、複数のエネルギー蓄積装置としての複数の電気2重層キャパシタ(以下、EDLCとする)14とを備えている。電力伝達手段5は、それぞれの車両3に設けられた複数の充放電変換装置13を介してそれぞれの車両に設けられた複数のエネルギー蓄積装置としてのEDLC14に接続されており、発電集中管理制御手段8は、複数のエネルギー蓄積装置としてのEDLC14のエネルギー残量の総エネルギー量に基づいて、それぞれの発電手段4の起動および発電電力量の少なくとも一方を制御している。   3, in addition to the configuration of the second embodiment of FIG. 2, the vehicle drive system according to the third embodiment is a charge / discharge conversion device that is distributed in each vehicle 3 and connected to the power transmission means 5. 13 and a plurality of electric double layer capacitors (hereinafter referred to as EDLC) 14 as a plurality of energy storage devices. The power transmission means 5 is connected to EDLCs 14 as a plurality of energy storage devices provided in the respective vehicles via a plurality of charge / discharge conversion devices 13 provided in the respective vehicles 3, and a power generation centralized management control means. 8 controls at least one of the activation of each power generation means 4 and the amount of generated power based on the total energy amount of the remaining energy of the EDLC 14 as a plurality of energy storage devices.

また、複数のエネルギー蓄積装置としてのEDLC14にそれぞれ接続された複数の充放電変換装置13は、電力伝達手段5のそれぞれの車両部分の電圧が一定となるように充放電電力を制御している。さらに、複数のエネルギー蓄積装置としてのEDLC14にそれぞれ接続された充放電変換装置13は、自らの充放電電力の関数となる電圧指令値に電力伝達手段5の電圧が追従するように充放電電力を制御している。図5は、この制御特性の具体例を示しており、図5において、横軸の充放電電力の充放電状況に対して電力伝達手段5の部分の直流電圧指令値は縦軸に示され、EDLC14が略々100%放電しているときの電圧指令値は訳800Vであり、充放電電力0%で充放電が略々拮抗しているときの電圧指令値は750Vであり、略々100充電されたときの電圧指令値は700Vとなるように制御されている。   The plurality of charge / discharge conversion devices 13 respectively connected to the EDLCs 14 serving as a plurality of energy storage devices control the charge / discharge power so that the voltage of each vehicle portion of the power transmission means 5 is constant. Furthermore, the charge / discharge converter 13 connected to each EDLC 14 as a plurality of energy storage devices supplies the charge / discharge power so that the voltage of the power transmission means 5 follows the voltage command value which is a function of its charge / discharge power. I have control. FIG. 5 shows a specific example of this control characteristic. In FIG. 5, the DC voltage command value of the power transmission means 5 is shown on the vertical axis with respect to the charge / discharge status of the charge / discharge power on the horizontal axis. When the EDLC 14 is approximately 100% discharged, the voltage command value is approximately 800V, and when the charge / discharge power is 0%, the voltage command value is approximately 750V, which is approximately 100 charges. When this is done, the voltage command value is controlled to be 700V.

また、複数のエネルギー蓄積装置は、複数の車両3のそれぞれに搭載された電気2重層キャパシタ(EDLC)14であり、このEDLC14の充電作用と放電作用を利用してエネルギー蓄積装置はエネルギーを補充している。さらに、それぞれの車両3は、図4に示すように、電力伝達手段5に並列にそれぞれの構成要素が電気的に接続されており、燃料電池11と駆動モータ用の電力変換装置7が直列に接続され、EDLC14と補助電源15とが従本殿変換装置13を介して直列に接続されている。補助電源15は、電力伝達手段5により伝達された電力を蓄積して駆動電力が不足するときにはその不足電力分を補充するためにそれぞれの車両3に搭載されたものである。燃料電池11と電力変換装置7との間には並列にキャパシタとダイオードが設けられ、一方のダイオードと並列にトランジスタが配置されている。他方のダイオードとトランジスタの接続点と燃料電池11との間には抵抗が生じている。補助電源15とEDLC14との間に設けられた充放電変換装置の構成は、図4に示すように、直列ダイオードとこれに並列のトランジスタ対よりなりトランジスタ対の接続点とEDLC14との間にも抵抗が生じている。   The plurality of energy storage devices are electric double layer capacitors (EDLC) 14 mounted on each of the plurality of vehicles 3, and the energy storage device replenishes energy using the charging and discharging operations of the EDLC 14. ing. Further, as shown in FIG. 4, each vehicle 3 is configured such that each component is electrically connected in parallel to the power transmission means 5, and the fuel cell 11 and the power conversion device 7 for the drive motor are connected in series. The EDLC 14 and the auxiliary power source 15 are connected in series via the subordinate converter 13. The auxiliary power supply 15 is mounted on each vehicle 3 in order to accumulate the power transmitted by the power transmission means 5 and supplement the insufficient power when the drive power is insufficient. A capacitor and a diode are provided in parallel between the fuel cell 11 and the power converter 7, and a transistor is arranged in parallel with one of the diodes. A resistance is generated between the connection point of the other diode and the transistor and the fuel cell 11. As shown in FIG. 4, the structure of the charge / discharge conversion device provided between the auxiliary power supply 15 and the EDLC 14 is composed of a series diode and a transistor pair in parallel therewith, and between the connection point of the transistor pair and the EDLC 14. There is resistance.

以上の構成を有する第3実施形態による車両駆動システムにおいては、それぞれの発電手段4としての燃料電池11に独立に燃料を供給する燃料タンク12の残量を故意にアンバランスにさせることができて、車両基地での燃料供給を全燃料タンクではなく、完全に空になった燃料タンクにのみ補給することや、反対に、各燃料タンクから均等に燃料を消費することにより、車両基地で一斉に燃料供給した場合に最短時間での燃料補給を可能にするなど、燃料補給時の要求に合った燃料消費制御が可能になる。
また、第3実施形態による車両駆動システムにおいては、路線情報データベースに基づいて、例えば下り勾配の多い路線では、発電手段4の起動台数を必要最小限の台数に制限することにより、全発電手段4が発電効率の低い低出力で動作し続けることを避け、起動している発電手段は略その発電手段の最高効率動作点付近で運転し、起動していない発電手段は完全に発電を停止することにより発生損失を最小限に抑えることが可能になる。特に、起動停止に時間のかかる燃料電池11の場合、路線に応じて予め起動する台数を決めておくことは、その特長を生かした有効な運転方法となる。
In the vehicle drive system according to the third embodiment having the above configuration, the remaining amount of the fuel tank 12 that supplies fuel independently to the fuel cells 11 as the respective power generation means 4 can be intentionally unbalanced. , By supplying only fuel tanks that are completely empty instead of all fuel tanks at the depot, and by consuming fuel evenly from each fuel tank, It is possible to perform fuel consumption control that meets the requirements for refueling, such as enabling refueling in the shortest time when fuel is supplied.
Further, in the vehicle drive system according to the third embodiment, based on the route information database, for example, on a route with many downhill slopes, the number of the power generating means 4 is limited to the minimum required number, thereby generating all the power generating means 4. Avoids continuing to operate at a low output with low power generation efficiency, while operating power generation means should be operated approximately near the maximum efficiency operating point of the power generation means, and power generation means that have not been activated should stop power generation completely This makes it possible to minimize the generated loss. In particular, in the case of the fuel cell 11 that takes time to start and stop, determining the number of units to be started in advance according to the route is an effective operation method that takes advantage of the features.

また、第3実施形態では、駆動に必要な電力と、発電手段から発電される総電力の差分がエネルギー蓄積手段としてのEDLC14から出力されることとなり、システム全体の安定性につながる。さらに、第3実施形態では、エネルギー蓄積装置としてのEDLC14に接続された充放電変換装置13が、自らの充放電電力の関数となる電圧指令値に電力伝達手段の電圧が追従するように充放電制御を行うが、特に、放電電力に対する電圧指令値に対して垂下特性を持たせることにより、複数の充放電変換装置が並列に接続されていても、自動的に充放電電力のバランスを図ることが可能になる。   In the third embodiment, the difference between the power required for driving and the total power generated by the power generation means is output from the EDLC 14 as the energy storage means, which leads to the stability of the entire system. Further, in the third embodiment, the charge / discharge conversion device 13 connected to the EDLC 14 as the energy storage device is charged / discharged so that the voltage of the power transmission means follows the voltage command value that is a function of its charge / discharge power. In particular, by providing a drooping characteristic to the voltage command value for discharge power, even when multiple charge / discharge converters are connected in parallel, the charge / discharge power balance is automatically achieved. Is possible.

第1実施形態に係る車両駆動システムの構成を示すブロック図。The block diagram which shows the structure of the vehicle drive system which concerns on 1st Embodiment. 第2実施形態に係る車両駆動システムの構成を示すブロック図。The block diagram which shows the structure of the vehicle drive system which concerns on 2nd Embodiment. 第3実施形態に係る車両駆動システムの構成を示すブロック図。The block diagram which shows the structure of the vehicle drive system which concerns on 3rd Embodiment. 第3実施形態のシステムにおける詳細構成を示すブロック図。The block diagram which shows the detailed structure in the system of 3rd Embodiment. 車両駆動システムの動作を説明する特性図。The characteristic view explaining operation | movement of a vehicle drive system. 従来の車両駆動システムの構成を示すブロック図。The block diagram which shows the structure of the conventional vehicle drive system.

符号の説明Explanation of symbols

1 車両駆動システム
2 列車編成
3 車両
4 発電手段
5 電力伝達手段
6 電動機(電動モータ)
7 電力変換装置
8 発電集中管理制御手段
11 燃料電池
12 燃料タンク
13 充放電変換装置
14 エネルギー蓄積装置(EDLC)
DESCRIPTION OF SYMBOLS 1 Vehicle drive system 2 Train organization 3 Vehicle 4 Electric power generation means 5 Electric power transmission means 6 Electric motor (electric motor)
7 Power Converter 8 Power Generation Centralized Control Unit 11 Fuel Cell 12 Fuel Tank 13 Charge / Discharge Converter 14 Energy Storage Device (EDLC)

Claims (10)

1つの列車編成を構成する複数の車両のそれぞれに分散配置された複数の発電手段と、
前記複数の発電手段からの電力を伝達する電力伝達手段と、
前記電力伝達手段により伝達された電力を、前記列車編成を走行させる駆動用の電動機の駆動電力に変換する電力変換装置と、
前記複数の発電手段の発電を集中的に管理すると共に前記電力伝達手段を介して前記電力変換装置へ伝達される電力量を集中的に制御するために前記複数の車両の何れかに搭載された発電集中管理制御手段と、
を備えることを特徴とする車両駆動システム。
A plurality of power generation means distributed in each of a plurality of vehicles constituting one train organization;
Power transmission means for transmitting power from the plurality of power generation means;
A power conversion device that converts the power transmitted by the power transmission means into drive power of a drive motor for running the train formation;
Mounted on any of the plurality of vehicles to centrally manage the power generation of the plurality of power generation means and centrally control the amount of power transmitted to the power conversion device via the power transmission means Power generation centralized control means,
A vehicle drive system comprising:
前記複数の発電手段は燃料電池を含み、前記複数の車両のそれぞれには前記燃料電池のそれぞれに供給される燃料を充填した燃料タンクが搭載されると共に、前記発電集中管理制御手段は前記複数の発電手段の起動および発電電力量の少なくとも一方の制御指令を出力させていることを特徴とする請求項1に記載の車両駆動システム。   The plurality of power generation means includes a fuel cell, and each of the plurality of vehicles is equipped with a fuel tank filled with fuel supplied to each of the fuel cells, and the power generation centralized management control means includes the plurality of power generation centralized control means. 2. The vehicle drive system according to claim 1, wherein at least one control command for starting the power generation means and the amount of generated power is output. 前記発電集中管理制御手段は、前記複数の発電手段のそれぞれに供給される前記燃料タンクのそれぞれの燃料の残量情報に基づいて、それぞれの発電手段の起動および発電電力量の少なくとも一方を制御することを特徴とする請求項2に記載の車両駆動システム。   The power generation centralized management control means controls at least one of activation of each power generation means and power generation amount based on the remaining fuel amount information of each fuel tank supplied to each of the plurality of power generation means. The vehicle drive system according to claim 2. 前記発電集中管理制御手段は、1つの列車編成全体が必要とする電力量に基づいて各車両に搭載された発電手段の起動台数および発電電力量の少なくとも一方を制御することを特徴とする請求項1に記載の車両駆動システム。   The power generation centralized management control means controls at least one of the number of activated power generation means installed in each vehicle and the amount of generated power based on the amount of power required for one train formation as a whole. The vehicle drive system according to 1. 前記発電集中管理制御手段は、路線情報データベースの情報に基づいて、それぞれの発電手段の起動および発電電力量の少なくとも一方を制御することを特徴とする請求項1に記載の車両駆動システム。   2. The vehicle drive system according to claim 1, wherein the power generation centralized management control unit controls at least one of activation of each power generation unit and power generation amount based on information in a route information database. 前記電力伝達手段は、それぞれの車両に設けられた充放電変換装置を介してそれぞれの車両に設けられた複数のエネルギー蓄積装置に接続されており、前記発電集中管理制御手段は、前記複数のエネルギー蓄積装置のエネルギー残量の総エネルギー量に基づいて、それぞれの発電手段の起動および発電電力量の少なくとも一方を制御することを特徴とする請求項1に記載の車両駆動システム。   The power transmission means is connected to a plurality of energy storage devices provided in each vehicle via a charge / discharge conversion device provided in each vehicle, and the power generation centralized management control means includes the plurality of energy storage devices. 2. The vehicle drive system according to claim 1, wherein at least one of activation of each power generation unit and power generation amount is controlled based on a total energy amount of an energy remaining amount of the storage device. 前記複数のエネルギー蓄積装置に接続された前記充放電変換装置は、前記電力伝達手段のそれぞれの車両部分の電圧が一定となるように充放電電力を制御することを特徴とする請求項6に記載の車両駆動システム。   The charge / discharge converter connected to the plurality of energy storage devices controls charge / discharge power so that a voltage of each vehicle portion of the power transmission means is constant. Vehicle drive system. 前記複数のエネルギー蓄積装置に接続された前記充放電変換装置は、自らの充放電電力の関数となる電圧指令値に前記電力伝達手段の電圧が追従するように充放電電力を制御することを特徴とする請求項6に記載の車両駆動システム。   The charge / discharge converter connected to the plurality of energy storage devices controls charge / discharge power so that the voltage of the power transmission means follows a voltage command value that is a function of its charge / discharge power. The vehicle drive system according to claim 6. 前記複数のエネルギー蓄積装置は、前記複数の車両のそれぞれに搭載された電気2重層キャパシタであり、該電気2重層キャパシタの充電作用と放電作用を利用して前記エネルギー蓄積装置にエネルギーを補充することを特徴とする請求項6に記載の車両駆動システム。   The plurality of energy storage devices are electric double layer capacitors mounted on each of the plurality of vehicles, and the energy storage device is replenished with energy using a charging action and a discharging action of the electric double layer capacitors. The vehicle drive system according to claim 6. 前記電力伝達手段により伝達された電力を蓄積して前記駆動電力が不足するときにその不足電力分を補充する車両用の補助電源をさらに備える請求項6に記載の車両駆動システム。   The vehicle drive system according to claim 6, further comprising an auxiliary power supply for the vehicle that accumulates the electric power transmitted by the electric power transmission means and supplements the insufficient electric power when the electric power is insufficient.
JP2005221207A 2005-07-29 2005-07-29 Vehicle drive system Expired - Fee Related JP4738087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005221207A JP4738087B2 (en) 2005-07-29 2005-07-29 Vehicle drive system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005221207A JP4738087B2 (en) 2005-07-29 2005-07-29 Vehicle drive system

Publications (2)

Publication Number Publication Date
JP2007037369A true JP2007037369A (en) 2007-02-08
JP4738087B2 JP4738087B2 (en) 2011-08-03

Family

ID=37795918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005221207A Expired - Fee Related JP4738087B2 (en) 2005-07-29 2005-07-29 Vehicle drive system

Country Status (1)

Country Link
JP (1) JP4738087B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166730A (en) * 2009-01-16 2010-07-29 Toshiba Corp Electric vehicle power supply system
JP2012050162A (en) * 2010-08-24 2012-03-08 Hitachi Ltd Rail car with onboard electric component for rail car mounted thereon and train of rail cars

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150225000A1 (en) 2012-09-14 2015-08-13 Mitsubishi Electric Corporation Propulsion control device of hybrid vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003111210A (en) * 2001-09-28 2003-04-11 Nippon Sharyo Seizo Kaisha Ltd Driving apparatus for rolling stock
JP2003134604A (en) * 2001-10-19 2003-05-09 Hitachi Ltd Rolling stock
JP2003199203A (en) * 2001-12-25 2003-07-11 Toshiba Corp Protection method for regenerated-energy accumulator and regenerated-energy accumulator
JP2005027447A (en) * 2003-07-03 2005-01-27 Hitachi Ltd Railway vehicle drive system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003111210A (en) * 2001-09-28 2003-04-11 Nippon Sharyo Seizo Kaisha Ltd Driving apparatus for rolling stock
JP2003134604A (en) * 2001-10-19 2003-05-09 Hitachi Ltd Rolling stock
JP2003199203A (en) * 2001-12-25 2003-07-11 Toshiba Corp Protection method for regenerated-energy accumulator and regenerated-energy accumulator
JP2005027447A (en) * 2003-07-03 2005-01-27 Hitachi Ltd Railway vehicle drive system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166730A (en) * 2009-01-16 2010-07-29 Toshiba Corp Electric vehicle power supply system
JP2012050162A (en) * 2010-08-24 2012-03-08 Hitachi Ltd Rail car with onboard electric component for rail car mounted thereon and train of rail cars

Also Published As

Publication number Publication date
JP4738087B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
Hames et al. Analysis of the control strategies for fuel saving in the hydrogen fuel cell vehicles
US6742630B2 (en) Super-capacitor energy storage unit for elevator installations
CN100588568C (en) The vehicle that has the power-supply system of a plurality of power supplys and have this power-supply system
US8836251B2 (en) Drive system and machine
EP0755088A2 (en) Regenerative power system
EP3505385B1 (en) Rail transit braking energy recovery system and hybrid power rail transit
US9102337B2 (en) Flow battery control system for a locomotive
JPWO2008018131A1 (en) Electric vehicle control device
CN103213584A (en) Rail double-power working vehicle
KR102113270B1 (en) Energy Management System for Railway station and Hydrogen Fuel Cell Hybrid Railway Vehicle
CN104859478A (en) Fuel cell locomotive and power system thereof
US20120004800A1 (en) Vehicle and Power Unit For It
US9099699B2 (en) Consist having shared electrolyte tanks
JP4738087B2 (en) Vehicle drive system
KR102355723B1 (en) Energy Control Method of Energy Storage System for Catenary free electric car
CN103129566A (en) Track double-dynamical engineering vehicle
JP2003111210A (en) Driving apparatus for rolling stock
CN207809381U (en) A kind of new energy sky iron system
KR102656116B1 (en) Energy management system for hybrid electric tram driven by multi-set hybrid power source
CN112217190A (en) Hybrid power system for ship and control method thereof
US11529884B2 (en) Vehicle-based microgrid having dynamically addable and removable battery systems
JP2007124802A (en) Vehicle drive system
JP7497662B2 (en) Battery-powered vehicles and transportation systems
Gopakumar et al. Conventional Applications of Supercapacitors
JP2007104773A (en) Railroad vehicle and traffic control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees