[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007027261A - Power module - Google Patents

Power module Download PDF

Info

Publication number
JP2007027261A
JP2007027261A JP2005204463A JP2005204463A JP2007027261A JP 2007027261 A JP2007027261 A JP 2007027261A JP 2005204463 A JP2005204463 A JP 2005204463A JP 2005204463 A JP2005204463 A JP 2005204463A JP 2007027261 A JP2007027261 A JP 2007027261A
Authority
JP
Japan
Prior art keywords
ceramic substrate
wiring
power module
semiconductor element
power semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005204463A
Other languages
Japanese (ja)
Inventor
Kazuhiro Tada
和弘 多田
Tetsushi Tanda
哲史 反田
Kei Yamamoto
圭 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005204463A priority Critical patent/JP2007027261A/en
Publication of JP2007027261A publication Critical patent/JP2007027261A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a transfer molded power module exhibiting excellent heat dissipation properties in which cracking and detachment are prevented. <P>SOLUTION: In the transfer molded power module where one power semiconductor element 2 is mounted on each of a plurality of wiring ceramic substrates 1, the wiring ceramic substrate 1 is obtained by forming a wiring layer 1b on a ceramic substrate 1a. A bonding member 3a is bonded to the ceramic substrate 1a of the wiring ceramic substrate 1, a bonding member 3b is bonded to the wiring layer 1b, and a bonding member 3c is bonded to the wiring layer 1b and other wiring ceramic substrate 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、放熱特性に優れたパワーモジュール、特にトランスファーモールド型のパワーモジュールに関するものである。   The present invention relates to a power module excellent in heat dissipation characteristics, particularly to a transfer mold type power module.

パワーモジュールにおいては、電気的な絶縁を確保しながら、パワー半導体素子から発生する熱をいかに放熱するかが重要である。
従来のパワーモジュールとしては、導電体板を設けたセラミック基板を放熱板上に取り付け、上記導電体板に半導体チップ(パワー半導体素子)を搭載し、上記セラミック基板における導電体板の周囲端部に、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂等の固体絶縁物を配置し、上記セラミック基板を囲うように上記放熱板上にケースを設け、このケース内にシリコーンゲルを封止樹脂として充填したものがある(例えば、特許文献1参照)。
In a power module, it is important how to dissipate heat generated from a power semiconductor element while ensuring electrical insulation.
As a conventional power module, a ceramic substrate provided with a conductor plate is mounted on a heat radiating plate, a semiconductor chip (power semiconductor element) is mounted on the conductor plate, and the periphery of the conductor plate in the ceramic substrate is mounted. There is a case in which a solid insulator such as an epoxy resin, a phenol resin, or a polyimide resin is disposed, a case is provided on the heat sink so as to surround the ceramic substrate, and silicone gel is filled as a sealing resin in the case (For example, refer to Patent Document 1).

特開2002−76197号公報(第1頁)JP 2002-76197 A (first page)

上記従来のパワーモジュールは、放熱特性に優れているがコストが高く、封止樹脂として用いたシリコーンゲルは柔軟性があるが、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂等の硬い絶縁物を封止樹脂として用いたものに比べて破壊電圧が低い。
一方、上記硬い絶縁物を封止樹脂とし、セラミック基板を用いて、量産性に優れたトランスファーモールドによりパワーモジュールを製造する方法が用いられるが、この方法では、上記封止樹脂と配線セラミック基板とでは線膨張係数が大きく異なるため、製造工程中または使用中において、封止樹脂とセラミック基板の間に応力が発生し、上記封止樹脂の配線セラミック基板との界面における剥離やセラミック基板の割れが発生するという課題がある。
The above conventional power module is excellent in heat dissipation characteristics but high in cost, and the silicone gel used as a sealing resin is flexible, but a hard insulator such as an epoxy resin, a phenol resin, or a polyimide resin is used as the sealing resin. The breakdown voltage is lower than that used in the above.
On the other hand, a method of manufacturing a power module by transfer molding excellent in mass productivity using a hard insulating material as a sealing resin and a ceramic substrate is used. In this method, the sealing resin and a wiring ceramic substrate are used. Since the linear expansion coefficient differs greatly, stress is generated between the sealing resin and the ceramic substrate during the manufacturing process or during use, and peeling at the interface between the sealing resin and the wiring ceramic substrate or cracking of the ceramic substrate occurs. There is a problem that occurs.

本発明は、かかる課題を解決するためになされたものであり、放熱性に優れ、クラックや剥離が防止された、トランスファーモールド型のパワーモジュールを得ることを目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to obtain a transfer mold type power module that has excellent heat dissipation and prevents cracking and peeling.

本発明に係るパワーモジュールは、セラミック基板に配線層が形成されてなる複数の配線セラミック基板と、少なくとも一つの上記配線層に搭載されたパワー半導体素子と、上記複数の配線セラミック基板および上記パワー半導体素子をモールドする封止樹脂と、上記複数の配線セラミック基板に接合された接合部材とを備えたものである。   A power module according to the present invention includes a plurality of wiring ceramic substrates each having a wiring layer formed on a ceramic substrate, a power semiconductor element mounted on at least one of the wiring layers, the plurality of wiring ceramic substrates, and the power semiconductor. A sealing resin for molding the element and a bonding member bonded to the plurality of wiring ceramic substrates are provided.

本発明によれば、配線セラミック基板を複数個用いることにより、セラミック基板のクラックや封止樹脂の剥離が防止された、トランスファーモールド型のパワーモジュールを得ることができるという効果がある。   According to the present invention, by using a plurality of wiring ceramic substrates, there is an effect that a transfer mold type power module in which cracking of the ceramic substrate and peeling of the sealing resin are prevented can be obtained.

実施の形態1.
図1は、本発明の実施の形態1おける、トランスファーモールド用の封止樹脂6を透視したパワーモジュールの概略構成を示す上面図であり、図2(a)、(b)は、各々図1のa−a線における断面図と、b−b線における断面図である。
本実施の形態のパワーモジュールは、4個の配線セラミック基板1にそれぞれ各1個のパワー半導体素子2が搭載されたもので、上記配線セラミック基板1はセラミック基板1aに配線層1bが形成されたものからなり、上記配線セラミック基板1の配線層1bに各1個のパワー半導体素子2がダイボンド剤4により搭載されている。また、接合部材3aが上記配線セラミック基板1のセラミック基板1aに、接合部材3bが配線層1bに接合され、接合部材3cが配線層1bに接合されるとともに別の配線セラミック基板1に架設されている。また、パワー半導体素子2の上面とリード3x間およびパワー半導体素子2の上面と接合部材3b間は、ワイヤ5により接続され、封止樹脂6で封止されたトランスファーモールド型のものである。なお、本実施の形態に係わる上記接合部材3a〜3cは、製造工程において有効となるもので、詳細は下記に示す。
また、図1に示すように、本実施の形態のパワーモジュールは、上記配線セラミック基板1における、パワー半導体素子2の搭載面の反対面を露出させてモールドされているので高い放熱性を維持することができる。
Embodiment 1 FIG.
FIG. 1 is a top view showing a schematic configuration of a power module seen through a transfer molding sealing resin 6 in Embodiment 1 of the present invention, and FIGS. They are sectional drawing in the aa line, and sectional drawing in the bb line.
In the power module of the present embodiment, one power semiconductor element 2 is mounted on each of four wiring ceramic substrates 1, and the wiring ceramic substrate 1 has a wiring layer 1b formed on a ceramic substrate 1a. Each power semiconductor element 2 is mounted on the wiring layer 1 b of the wiring ceramic substrate 1 by a die bond agent 4. Further, the bonding member 3a is bonded to the ceramic substrate 1a of the wiring ceramic substrate 1, the bonding member 3b is bonded to the wiring layer 1b, and the bonding member 3c is bonded to the wiring layer 1b and is installed on another wiring ceramic substrate 1. Yes. The upper surface of the power semiconductor element 2 and the leads 3x and the upper surface of the power semiconductor element 2 and the bonding member 3b are connected by a wire 5 and are of a transfer mold type sealed with a sealing resin 6. In addition, the said joining members 3a-3c concerning this Embodiment become effective in a manufacturing process, and a detail is shown below.
Further, as shown in FIG. 1, the power module of the present embodiment is molded by exposing the surface opposite to the mounting surface of the power semiconductor element 2 in the wiring ceramic substrate 1, so that high heat dissipation is maintained. be able to.

図3(a)〜(e)は、本実施の形態における、トランスファーモールドによるパワーモジュールの製造方法の概略を示す工程図である。
まず、図3(a)に示すように、半田をダイボンド剤4として、パワー半導体素子2を配線セラミック基板1の配線層1bの所定位置に固定する。上記のように、ダイボンド剤4として半田を用いる場合は、上記配線層1bの表面にニッケルメッキが施されているのが好ましいが、ダイボンド剤4として導電性樹脂を用いたり、ダイボンド剤4として半田を用いて還元雰囲気下で固定する場合は必ずしも必要ではない。
また、図3(b)に示すリードフレーム3を用意する。つまり、リードフレーム3は、トランスファーモールドにおいて固定部材となるフレーム30と、一方が上記フレーム30に接合したリード3a、3b、3c、3xとからなる。また、上記リード3a、3b、3cは各々配線セラミック基板1に接合するように設けられ、本実施の形態に係わる接合部材となるものである。
なお、リードフレーム3の材質は特に限定されるものではないが、導電性に優れるとともに安価であることから、銅およびその合金が好ましく、半田とのぬれ性改善や酸化防止の面から、表面にニッケル等によるメッキを施していてもよい。
3A to 3E are process diagrams showing an outline of a method of manufacturing a power module by transfer molding in the present embodiment.
First, as shown in FIG. 3A, the power semiconductor element 2 is fixed at a predetermined position on the wiring layer 1 b of the wiring ceramic substrate 1 by using solder as the die bond agent 4. As described above, when solder is used as the die bond agent 4, it is preferable that the surface of the wiring layer 1 b is nickel-plated, but a conductive resin is used as the die bond agent 4, or solder is used as the die bond agent 4. It is not always necessary to fix in a reducing atmosphere using
Also, a lead frame 3 shown in FIG. 3B is prepared. That is, the lead frame 3 includes a frame 30 that is a fixing member in the transfer mold, and leads 3 a, 3 b, 3 c, and 3 x that are joined to the frame 30. The leads 3a, 3b, and 3c are provided so as to be joined to the wiring ceramic substrate 1 and serve as joining members according to the present embodiment.
The material of the lead frame 3 is not particularly limited, but copper and its alloys are preferable because they are excellent in conductivity and are inexpensive, and on the surface from the viewpoint of improving wettability with solder and preventing oxidation. It may be plated with nickel or the like.

次に、図3(c)に示すように、上記リードフレーム3の接合部材(リード)3a、3b、3cの先端部に、パワー半導体素子2を搭載した複数の配線セラミック基板1を載置し、接合部材3a、3b、3cを各配線セラミック基板1に接合することにより、配線セラミック基板1をフレーム30に固定する。接合部材3cは配線セラミック基板1間に架設され、複数の配線セラミック基板1を効率良くフレーム30に安定に固定することができる。
なお、上記接合部材3a、3b、3cと配線セラミック基板1の配線層1bとの接合は、半田接合、溶接または超音波接合などにより行われ、配線セラミック基板1のセラミック基板1aとの接合は接着剤により行う。
また、パワー半導体素子の上面とリード3x間は、通常アルミワイヤ5を用いてワイヤボンドで接続するが、電流量を多く流す必要があれば金属板を用いることができる。
Next, as shown in FIG. 3 (c), a plurality of wiring ceramic substrates 1 on which the power semiconductor elements 2 are mounted are placed on the distal ends of the joining members (leads) 3a, 3b, 3c of the lead frame 3. The wiring ceramic substrate 1 is fixed to the frame 30 by bonding the bonding members 3 a, 3 b, 3 c to the respective wiring ceramic substrates 1. The joining member 3c is installed between the wiring ceramic substrates 1 and can fix the plurality of wiring ceramic substrates 1 to the frame 30 efficiently and stably.
The bonding members 3a, 3b, and 3c and the wiring layer 1b of the wiring ceramic substrate 1 are bonded by solder bonding, welding, or ultrasonic bonding, and the bonding of the wiring ceramic substrate 1 to the ceramic substrate 1a is bonded. This is done with the agent.
Further, the upper surface of the power semiconductor element and the lead 3x are usually connected by wire bonding using an aluminum wire 5, but a metal plate can be used if it is necessary to flow a large amount of current.

次に、図3(d)に示すように、図では金型を省略しているが、複数の配線セラミック基板1を固定したリードフレーム3を、約180℃に設定した金型内に設置し、例えばエポキシ樹脂に無機フィラーを充填した封止樹脂6を注入して硬化させ、量産性に優れているトランスファーモールドにより成型する。
その後、図3(e)に示すように、フレーム30を切断除去して本実施の形態のパワーモジュールを得る。
上記のように、本実施の形態においては、接合部材3a、3b、3cにより、複数の配線セラミック基板1がフレーム30に安定に固定されるので、量産性に優れたトランスファモールドにより信頼性よくパワーモジュールを製造することができる。
Next, as shown in FIG. 3 (d), although the mold is omitted in the figure, the lead frame 3 to which a plurality of wiring ceramic substrates 1 are fixed is placed in a mold set at about 180 ° C. For example, the sealing resin 6 filled with an inorganic filler in an epoxy resin is injected and cured, and then molded by a transfer mold having excellent mass productivity.
Thereafter, as shown in FIG. 3 (e), the frame 30 is cut and removed to obtain the power module of the present embodiment.
As described above, in the present embodiment, since the plurality of wiring ceramic substrates 1 are stably fixed to the frame 30 by the joining members 3a, 3b, and 3c, power can be reliably supplied by a transfer mold having excellent mass productivity. Modules can be manufactured.

なお、上記パワーモジュールの製造工程中や使用中における、封止樹脂6の配線セラミック基板1との界面における剥離やセラミック基板1aの割れは、配線セラミック基板1が小さい程、より正確にはセラミック基板1a面の最長の対角線長さが短い程発生し難くなる。
つまり、上記封止樹脂6と配線セラミック基板1との界面においては、トランスファーモールド時に封止樹脂6が反応によって収縮するために発生する硬化収縮応力と、封止樹脂6と配線セラミック基板1の線膨張率の違いにより、成形時の温度と使用時の温度の差に基づいて発生する熱応力との合算の応力(合算応力)が発生する。
上記合算応力は配線セラミック基板1の中央部からの距離が長くなる程大きくなり、上記剥離または割れが生じやすくなるので、本実施の形態のパワーモジュールでは、配線セラミック基板1を複数個として一個当たりの配線セラミック基板1を小さくし、上記各配線セラミック基板1の中央部からの距離を短く、つまり、セラミック基板1a面の最長の対角線長さを短くすることにより、相対的に上記合算応力を小さくして、上記剥離または割れを防止しようとするものである。
Note that peeling of the sealing resin 6 at the interface with the wiring ceramic substrate 1 and cracking of the ceramic substrate 1a during the manufacturing process and use of the power module described above are more accurate as the wiring ceramic substrate 1 is smaller. As the longest diagonal length of the 1a surface is shorter, it is less likely to occur.
That is, at the interface between the sealing resin 6 and the wiring ceramic substrate 1, the curing shrinkage stress generated because the sealing resin 6 contracts by reaction during transfer molding, and the line between the sealing resin 6 and the wiring ceramic substrate 1. Due to the difference in expansion coefficient, a combined stress (summed stress) of the thermal stress generated based on the difference between the temperature during molding and the temperature during use is generated.
The total stress increases as the distance from the center of the wiring ceramic substrate 1 increases, and the peeling or cracking is likely to occur. Therefore, in the power module of the present embodiment, a plurality of wiring ceramic substrates 1 are used per one. By reducing the wiring ceramic substrate 1 and reducing the distance from the central portion of each wiring ceramic substrate 1, that is, by shortening the longest diagonal length of the ceramic substrate 1a surface, the total stress is relatively reduced. Thus, the above peeling or cracking is to be prevented.

表1は、実施の形態1−1〜3および比較例1、2のパワーモジュールにおける、四角形のセラミック基板1aの二辺のサイズと最長の対角線長さ、パワー半導体素子2の個数、並びに評価結果を示したものである。
なお、パワーモジュールの評価は、上記パワーモジュールの製造工程終了直後、並びに上記パワーモジュールに、「−40℃での30分間保持と125℃での30分間保持」を1サイクルとして、300サイクルおよび1000サイクルのヒートサイクル試験を実施し、封止樹脂6の配線セラミック基板1との界面における剥離(表中に剥離と記載)またはセラミック基板1aのクラック(表中、割れと記載)が生じたパワーモジュールの割合を不良率として示すことにより行った。
また、300サイクルは民生用や一般産業用などで要求される信頼性レベル、1000サイクルは自動車用などで要求される高信頼性レベルである。
Table 1 shows the sizes of the two sides of the rectangular ceramic substrate 1a, the longest diagonal length, the number of power semiconductor elements 2, and the evaluation results in the power modules of Embodiments 1-1 to 1-3 and Comparative Examples 1 and 2. Is shown.
The power module is evaluated immediately after the manufacturing process of the power module is completed, and in the power module, 300 cycles and 1000 cycles with “holding at −40 ° C. for 30 minutes and holding at 125 ° C. for 30 minutes” as one cycle. A power module in which a heat cycle test of the cycle was performed and peeling (described as peeling in the table) or cracking (described as cracking) in the ceramic substrate 1a occurred at the interface between the sealing resin 6 and the wiring ceramic substrate 1 This was done by showing the ratio of as a defective rate.
Further, 300 cycles is a reliability level required for consumer use and general industrial use, and 1000 cycles is a high reliability level required for automobile use.

つまり、封止樹脂6として、線膨張係数が10×10−6/℃、曲げ弾性率が20GPa、ガラス転移温度が160℃、硬化収縮率が約0.2%の樹脂を用い、配線セラミック基板1として、アルミナ(Al)からなり厚さが0.635mmで表1に示す各大きさの四角形のセラミック基板1aに、0.2mm厚の銅層を設けたものを用い、パワー半導体素子として、表1に示す個数のIGBT(Insulated Gate Bipolar Transistor)またはダイオードを搭載して製造したパワーモジュールの上記不良率を検出した。
表1に示すように、配線セラミック基板1として、16×48(mm)のセラミック基板1aを用い、12個のパワー半導体素子を搭載したパワーモジュール(比較例1)では製造直後で不良率が100%であったのに対して、上記比較例1で用いたセラミック基板1aを3分割した大きさに相当するセラミック基板1aを3個用い、上記各配線セラミック基板1に各4個のパワー半導体素子を搭載したパワーモジュール(実施の形態1−1)、および2分割した大きさに相当するセラミック基板1aを2個用い、上記各配線セラミック基板1に各6個のパワー半導体素子を搭載したパワーモジュール(実施の形態1−2)では、上記1000サイクルのヒートサイクル試験においても割れは生じていない。また、配線セラミック基板1として、38×38(mm)の大きさのセラミック基板1aを用い、4個のパワー半導体素子を搭載したパワーモジュール(比較例2)では300サイクル後の不良率が100%であったのに対して、上記比較例2で用いたセラミック基板1aを4分割した大きさに相当するセラミック基板1aを4個用い、上記各配線セラミック基板1に各1個のパワー半導体素子を搭載したパワーモジュール(実施の形態1−3)では1000サイクルのヒートサイクル試験においても割れは生じていない。
以上のことから、配線セラミック基板1を複数個用いることにより、配線セラミック基板1と封止樹脂6との界面に発生する応力を低減することで、配線セラミック基板1の割れや界面での剥離を防止でき、ヒートサイクル信頼性が向上することが示される。
なお、上記のように、本実施の形態における配線セラミック基板1は、セラミック基板1aに配線層1bとして0.2〜0.3mmの銅層を直接接合したものが用いられるが、上記セラミック基板1aと配線層1bとは強固に接合されて1つのバイメタルとして作用し、また、セラミック基板1aが配線層1bより厚く、配線セラミック基板1の端部はセラミック基板1aが露出し、上記端部で剥離が発生して界面全域に広がり易いことから、封止樹脂6と配線セラミック基板1との線膨張率の違いによる熱応力に対しては、セラミック基板1aの大きさ、つまりセラミック基板1a面の対角線長さが大きく影響する。
That is, as the sealing resin 6, a resin having a linear expansion coefficient of 10 × 10 −6 / ° C., a flexural modulus of 20 GPa, a glass transition temperature of 160 ° C., and a curing shrinkage of about 0.2% is used. 1, a power semiconductor using a ceramic substrate 1a made of alumina (Al 2 O 3 ) and having a thickness of 0.635 mm and a square ceramic substrate 1a of each size shown in Table 1 provided with a 0.2 mm thick copper layer. The defective rate of the power module manufactured by mounting the number of IGBTs (Insulated Gate Bipolar Transistors) or diodes shown in Table 1 as elements was detected.
As shown in Table 1, in the power module (Comparative Example 1) in which a ceramic substrate 1a of 16 × 48 (mm) is used as the wiring ceramic substrate 1 and 12 power semiconductor elements are mounted, the defect rate is 100 immediately after manufacture. %, The three ceramic substrates 1a corresponding to the size obtained by dividing the ceramic substrate 1a used in the comparative example 1 into three parts are used, and four power semiconductor elements are provided on each wiring ceramic substrate 1. The power module (Embodiment 1-1) on which the power is mounted, and the power module in which the two ceramic substrates 1a corresponding to the size divided into two are used and each of the power ceramic elements 1 is mounted on each wiring ceramic substrate 1 In (Embodiment 1-2), no cracks have occurred even in the 1000-cycle heat cycle test. In addition, in the power module (Comparative Example 2) in which a ceramic substrate 1a having a size of 38 × 38 (mm) is used as the wiring ceramic substrate 1 and four power semiconductor elements are mounted, the defect rate after 300 cycles is 100%. On the other hand, four ceramic substrates 1a corresponding to the size obtained by dividing the ceramic substrate 1a used in the comparative example 2 into four parts are used, and one power semiconductor element is provided on each wiring ceramic substrate 1. In the mounted power module (Embodiment 1-3), no cracks occurred even in the 1000-cycle heat cycle test.
From the above, by using a plurality of wiring ceramic substrates 1, the stress generated at the interface between the wiring ceramic substrate 1 and the sealing resin 6 is reduced, so that the wiring ceramic substrate 1 can be cracked or peeled off at the interface. It can be prevented and the heat cycle reliability is improved.
As described above, the wiring ceramic substrate 1 in the present embodiment is obtained by directly bonding a 0.2 to 0.3 mm copper layer as the wiring layer 1b to the ceramic substrate 1a. And the wiring layer 1b are firmly bonded and act as one bimetal, and the ceramic substrate 1a is thicker than the wiring layer 1b, and the ceramic substrate 1a is exposed at the end of the wiring ceramic substrate 1 and peeled off at the end. Is generated and easily spreads over the entire interface. Therefore, the size of the ceramic substrate 1a, that is, the diagonal line of the surface of the ceramic substrate 1a is against the thermal stress due to the difference in the linear expansion coefficient between the sealing resin 6 and the wiring ceramic substrate 1. Length greatly affects.

Figure 2007027261
Figure 2007027261

表2は、実施の形態1−4〜8と比較例3〜5のパワーモジュールにおける、四角形のセラミック基板1aの二辺のサイズと最長の対角線長さ、パワー半導体素子2の個数、並びに評価結果を示す。また、不良率は、上記と同様にしてパワーモジュールを製造して得たものである。   Table 2 shows the size and the longest diagonal length of the square ceramic substrate 1a, the number of power semiconductor elements 2, and the evaluation results in the power modules of Embodiments 1-4 to 8 and Comparative Examples 3 to 5. Indicates. The defect rate is obtained by manufacturing a power module in the same manner as described above.

Figure 2007027261
Figure 2007027261

表1、表2に示すように、比較例1〜比較例5では製造工程後にすでに不良が発生しているのに対して、実施の形態1−1〜8(セラミック基板1a面の最長の対角線長さが41mm以下)では、上記300サイクルのヒートサイクル試験においても不良が見られず、実施の形態1−1〜6(セラミック基板1a面の最長の対角線長さが34mm以下)では、上記1000サイクルのヒートサイクル試験においても不良が見られないことから、セラミック基板1a面の最長の対角線長さは41mm以下が好ましく、34mm以下が特に好ましいことがわかる。なお、本実施の形態に係わるセラミック基板1aは、搭載されるパワー半導体素子を越える大きさであるのが好ましいが、上記接合部材との接合安定のためには上記パワー半導体素子の大きさの1.2倍以上であるのがより好ましい。   As shown in Tables 1 and 2, in Comparative Examples 1 to 5, defects were already generated after the manufacturing process, whereas Embodiments 1-1 to 8 (the longest diagonal line of the ceramic substrate 1a surface) When the length is 41 mm or less, no defect is observed in the 300-cycle heat cycle test. In Embodiments 1-1 to 6 (the longest diagonal length of the ceramic substrate 1a surface is 34 mm or less), 1000 Since no defect is observed in the heat cycle test of the cycle, it can be seen that the longest diagonal length of the surface of the ceramic substrate 1a is preferably 41 mm or less, and particularly preferably 34 mm or less. The ceramic substrate 1a according to the present embodiment preferably has a size that exceeds the power semiconductor element to be mounted. However, in order to stabilize the bonding with the bonding member, the ceramic substrate 1a has a size 1 of the power semiconductor element. More preferably, it is 2 times or more.

本実施の形態に係わる配線セラミック基板1におけるセラミック基板1aとしては、絶縁性で熱伝導性が良好なアルミナ(Al)(熱伝導率:20〜40W/mK,線膨張係数:約7×10−6/℃)、信頼性やコストの面から好ましい窒化アルミ(AlN)(熱伝導率70〜200W/mK,線膨張係数:約4×10−6/℃)、強度が強い窒化ケイ素(Si)(熱伝導率30〜80W/mK,線膨張係数:約3×10−6/℃)のセラミック基板用いられ、封止樹脂6としてはエポキシ樹脂に溶融シリカを80重量%以上充填したもので、線膨張係数が8〜12×10−6/℃のものが用いられる。
また、本実施の形態に係わるセラミック基板1aの厚さは0.2〜1.0mmであるのが好ましく、セラミック基板1aの厚さが0.2mm未満では絶縁性や強度が低下する可能性があり、1.0mmを越えると放熱性が悪くなる。
なお、本実施の形態に係わる配線セラミック基板1におけるセラミック基板1aとして、0.2〜1.0mm厚のアルミナ(Al)、窒化アルミ(AlN)または窒化ケイ素(Si)のセラミック基板を用いた場合も、本実施の形態と同様の結果が得られた。
As the ceramic substrate 1a in the wiring ceramic substrate 1 according to the present embodiment, alumina (Al 2 O 3 ) having good insulation and thermal conductivity (thermal conductivity: 20 to 40 W / mK, linear expansion coefficient: about 7 × 10 −6 / ° C.) Aluminum nitride (AlN) preferred from the viewpoint of reliability and cost (thermal conductivity 70 to 200 W / mK, linear expansion coefficient: about 4 × 10 −6 / ° C.), strong silicon nitride A ceramic substrate of (Si 3 N 4 ) (thermal conductivity 30 to 80 W / mK, linear expansion coefficient: about 3 × 10 −6 / ° C.) is used. As the sealing resin 6, 80 wt% of fused silica is used as an epoxy resin. What is filled above and has a linear expansion coefficient of 8 to 12 × 10 −6 / ° C. is used.
Moreover, it is preferable that the thickness of the ceramic substrate 1a according to the present embodiment is 0.2 to 1.0 mm, and if the thickness of the ceramic substrate 1a is less than 0.2 mm, there is a possibility that the insulation and the strength are lowered. Yes, if it exceeds 1.0 mm, the heat dissipation becomes worse.
The ceramic substrate 1a in the wiring ceramic substrate 1 according to the present embodiment is made of alumina (Al 2 O 3 ), aluminum nitride (AlN), or silicon nitride (Si 3 N 4 ) having a thickness of 0.2 to 1.0 mm. Even when a ceramic substrate was used, the same result as in the present embodiment was obtained.

実施の形態2.
図4は、本発明の実施の形態2における、封止樹脂6を透視したパワーモジュールの概略構成を示す上面図、図5は図4のB−B線における断面図、図6は本実施の形態における、配線セラミック基板1のパワー半導体素子2の搭載面の反対面から見たパワーモジュールの概略構成を示す下面図である。
本実施の形態のパワーモジュールは、2個の配線セラミック基板1に各々2個のパワー半導体素子2が搭載され、接合部材3d、3e、3fと接合され、配線セラミック基板1のパワー半導体素子2の搭載面の反対面に銅層等の金属層1cが設けられ、また、図5に示すように、配線セラミック基板1のパワー半導体素子2の搭載面の反対面に、外周端領域1dを除いて内側に銅層等の金属層1cが設けられ、封止樹脂6が上記金属層1cが設けられていない外周端領域1dに連続して設けられている他は実施の形態1と同様である。本実施の形態のパワーモジュールは、配線セラミック基板1のパワー半導体素子の搭載面の反対面に金属層1cと封止樹脂6を設けることにより、高い放熱性を維持するとともに、セラミック基板1aを保護することができる。
Embodiment 2. FIG.
4 is a top view showing a schematic configuration of the power module seen through the sealing resin 6 in Embodiment 2 of the present invention, FIG. 5 is a sectional view taken along line BB in FIG. 4, and FIG. It is a bottom view which shows schematic structure of the power module seen from the surface opposite to the mounting surface of the power semiconductor element 2 of the wiring ceramic substrate 1 in a form.
In the power module of the present embodiment, two power semiconductor elements 2 are mounted on two wiring ceramic substrates 1 and bonded to bonding members 3d, 3e, and 3f. A metal layer 1c such as a copper layer is provided on the opposite surface of the mounting surface, and as shown in FIG. 5, except for the outer peripheral end region 1d on the surface opposite to the mounting surface of the power semiconductor element 2 of the wiring ceramic substrate 1. A metal layer 1c such as a copper layer is provided on the inner side, and the sealing resin 6 is provided continuously to the outer peripheral end region 1d where the metal layer 1c is not provided, and is the same as in the first embodiment. The power module according to the present embodiment maintains high heat dissipation and protects the ceramic substrate 1a by providing the metal layer 1c and the sealing resin 6 on the opposite surface of the wiring ceramic substrate 1 to the power semiconductor element mounting surface. can do.

実施の形態3.
図7は、本発明の実施の形態3における、封止樹脂6を透視したパワーモジュールの概略構成を示す上面図、図8は図7のC−C線における断面図である。
本実施の形態のパワーモジュールは、実施の形態1において、パワー半導体素子2が搭載された部分以外の配線セラミック基板1上に、応力緩和層7を設けている他は実施の形態1と同様である。本実施の形態において、エポキシ樹脂を封止樹脂6として用いると、上記応力緩和層7として、シリコーン樹脂やポリイミド樹脂等を用いることにより、セラミック基板1aと封止樹脂6との間に発生する応力を緩和することができる。なお、上記応力緩和層7は、パワー半導体素子2の上面を被覆せず、配線セラミック基板1の全面を被覆することが好ましく、厚さが0.03〜0.20mmであると効果的に応力を緩和することができる。
Embodiment 3 FIG.
7 is a top view showing a schematic configuration of a power module seen through the sealing resin 6 in Embodiment 3 of the present invention, and FIG. 8 is a cross-sectional view taken along the line CC in FIG.
The power module of the present embodiment is the same as that of the first embodiment except that the stress relaxation layer 7 is provided on the wiring ceramic substrate 1 other than the portion where the power semiconductor element 2 is mounted in the first embodiment. is there. In the present embodiment, when an epoxy resin is used as the sealing resin 6, a stress generated between the ceramic substrate 1 a and the sealing resin 6 by using a silicone resin or a polyimide resin as the stress relaxation layer 7. Can be relaxed. The stress relaxation layer 7 preferably covers the entire surface of the wiring ceramic substrate 1 without covering the upper surface of the power semiconductor element 2, and effectively has a thickness of 0.03 to 0.20 mm. Can be relaxed.

なお、上記実施の形態1〜実施の形態3においては、配線セラミック基板1に搭載された半導体素子が全てパワー半導体素子2である場合を示したが、パワー半導体素子2の一部が駆動半導体素子等、他の半導体素子で置換されていても、上記実施の形態と同様の効果を得ることができる。   In the first to third embodiments, the case where all the semiconductor elements mounted on the wiring ceramic substrate 1 are the power semiconductor elements 2 is shown. However, a part of the power semiconductor elements 2 is a driving semiconductor element. Even if it is replaced with another semiconductor element, the same effect as the above embodiment can be obtained.

本発明の実施の形態1における、パワーモジュールの概略構成を示す上面図と断面図である。It is the upper side figure and sectional drawing which show schematic structure of the power module in Embodiment 1 of this invention. 図1のa−a線における断面図と、b−b線における断面図である。It is sectional drawing in the aa line of FIG. 1, and sectional drawing in the bb line. 本発明の実施の形態1における、パワーモジュールの製造方法の概略を示す工程図である。It is process drawing which shows the outline of the manufacturing method of the power module in Embodiment 1 of this invention. 本発明の実施の形態2における、パワーモジュールの概略構成を示す上面図である。It is a top view which shows schematic structure of the power module in Embodiment 2 of this invention. 図4のB−B線における断面図である。It is sectional drawing in the BB line of FIG. 本発明の実施の形態2における、パワーモジュールの概略構成を示す下面図である。It is a bottom view which shows schematic structure of the power module in Embodiment 2 of this invention. 本発明の実施の形態3における、パワーモジュールの概略構成を示す上面図である。It is a top view which shows schematic structure of the power module in Embodiment 3 of this invention. 図7のC−C線における断面図である。It is sectional drawing in the CC line of FIG.

符号の説明Explanation of symbols

1 配線セラミック基板1、1a セラミック基板、1b 配線層、1c 金属層、1d 外周端領域、2 パワー半導体素子、3a、3b、3c、3d、3e、3f 接合部材(リード)、3x リード、6 封止樹脂。



1 Wiring ceramic substrate 1, 1a Ceramic substrate, 1b Wiring layer, 1c Metal layer, 1d Outer edge region, 2 Power semiconductor element, 3a, 3b, 3c, 3d, 3e, 3f Bonding member (lead), 3x lead, 6 sealed Stop resin.



Claims (5)

セラミック基板に配線層が形成されてなる複数の配線セラミック基板と、少なくとも一つの上記配線層に搭載されたパワー半導体素子と、上記複数の配線セラミック基板および上記パワー半導体素子をモールドする封止樹脂と、上記複数の配線セラミック基板に接合された接合部材とを備えたことを特徴とするパワーモジュール。 A plurality of wiring ceramic substrates in which a wiring layer is formed on a ceramic substrate; a power semiconductor element mounted on at least one of the wiring layers; a sealing resin for molding the plurality of wiring ceramic substrates and the power semiconductor element; A power module comprising: a joining member joined to the plurality of wiring ceramic substrates. 接合部材がリードであることを特徴とする請求項1に記載のパワーモジュール。 The power module according to claim 1, wherein the joining member is a lead. 接合部材が配線セラミック基板間に架設されていることを特徴とする請求項1に記載のパワーモジュール。 The power module according to claim 1, wherein the joining member is provided between the wiring ceramic substrates. セラミック基板のパワー半導体素子搭載面の大きさが、上記パワー半導体素子の大きさを越え、セラミック基板面の最長の対角線長さが41mm以下であることを特徴とする請求項1〜請求項3のいずれかに記載のパワーモジュール。 4. The size of the power semiconductor element mounting surface of the ceramic substrate exceeds the size of the power semiconductor element, and the longest diagonal length of the ceramic substrate surface is 41 mm or less. A power module according to any one of the above. 配線セラミック基板には半導体素子が搭載され、上記半導体素子の少なくとも一つがパワー半導体素子であり、上記半導体素子の搭載面の反対面に、外周端領域の少なくとも一部を除いて金属層が設けられ、封止樹脂は、上記反対面の金属層が設けられていない領域に連続して設けられていることを特徴とする請求項1に記載のパワーモジュール。





A semiconductor element is mounted on the wiring ceramic substrate, at least one of the semiconductor elements is a power semiconductor element, and a metal layer is provided on a surface opposite to the mounting surface of the semiconductor element except for at least a part of the outer peripheral end region. The power module according to claim 1, wherein the sealing resin is continuously provided in a region where the metal layer on the opposite surface is not provided.





JP2005204463A 2005-07-13 2005-07-13 Power module Pending JP2007027261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005204463A JP2007027261A (en) 2005-07-13 2005-07-13 Power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005204463A JP2007027261A (en) 2005-07-13 2005-07-13 Power module

Publications (1)

Publication Number Publication Date
JP2007027261A true JP2007027261A (en) 2007-02-01

Family

ID=37787672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005204463A Pending JP2007027261A (en) 2005-07-13 2005-07-13 Power module

Country Status (1)

Country Link
JP (1) JP2007027261A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288564A (en) * 2007-03-28 2008-11-27 Ixys Semiconductor Gmbh Power semiconductor module and arrangement of printed circuit board, and power semiconductor module
JP2013042135A (en) * 2011-08-16 2013-02-28 General Electric Co <Ge> Power overlay structure with leadframe connections
JP2014090136A (en) * 2012-10-31 2014-05-15 Sanken Electric Co Ltd Semiconductor device and manufacturing method of the same
KR20170026557A (en) 2014-07-04 2017-03-08 미쓰비시 마테리알 가부시키가이샤 Substrate unit for power modules, and power module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179152A (en) * 1990-11-08 1992-06-25 Fujitsu Ltd Integrated circuit device
JPH09129822A (en) * 1995-10-26 1997-05-16 Mitsubishi Electric Corp Semiconductor device
JP2003031765A (en) * 2001-07-17 2003-01-31 Hitachi Ltd Power module and inverter
JP2004111560A (en) * 2002-09-17 2004-04-08 Toshiba Corp Semiconductor device and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179152A (en) * 1990-11-08 1992-06-25 Fujitsu Ltd Integrated circuit device
JPH09129822A (en) * 1995-10-26 1997-05-16 Mitsubishi Electric Corp Semiconductor device
JP2003031765A (en) * 2001-07-17 2003-01-31 Hitachi Ltd Power module and inverter
JP2004111560A (en) * 2002-09-17 2004-04-08 Toshiba Corp Semiconductor device and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288564A (en) * 2007-03-28 2008-11-27 Ixys Semiconductor Gmbh Power semiconductor module and arrangement of printed circuit board, and power semiconductor module
JP2013042135A (en) * 2011-08-16 2013-02-28 General Electric Co <Ge> Power overlay structure with leadframe connections
JP2014090136A (en) * 2012-10-31 2014-05-15 Sanken Electric Co Ltd Semiconductor device and manufacturing method of the same
KR20170026557A (en) 2014-07-04 2017-03-08 미쓰비시 마테리알 가부시키가이샤 Substrate unit for power modules, and power module
US9837363B2 (en) 2014-07-04 2017-12-05 Mitsubishi Materials Corporation Power-module substrate unit and power module

Similar Documents

Publication Publication Date Title
JP6300633B2 (en) Power module
US10283432B2 (en) Molded package with chip carrier comprising brazed electrically conductive layers
US10510640B2 (en) Semiconductor device and method for manufacturing semiconductor device
US8569890B2 (en) Power semiconductor device module
JP5602077B2 (en) Semiconductor device
JP5472498B2 (en) Power module manufacturing method
US20150008570A1 (en) Semiconductor device
JP6336138B2 (en) Semiconductor device
JP6676079B2 (en) Semiconductor device and manufacturing method thereof
JP2016018866A (en) Power module
JP2011216564A (en) Power module and method of manufacturing the same
JP6308780B2 (en) Power module
JP2006013080A (en) Semiconductor module and manufacturing method thereof
JP6305176B2 (en) Semiconductor device and manufacturing method
JP3972821B2 (en) Power semiconductor device
JP6360035B2 (en) Semiconductor device
JP6303776B2 (en) Semiconductor device
JP2012209470A (en) Semiconductor device, semiconductor device module, and manufacturing method of the semiconductor device
JP2015170785A (en) Insulation substrate and electric power semiconductor device
JP2007012831A (en) Power semiconductor device
JP5258825B2 (en) Power semiconductor device and manufacturing method thereof
JP2016143846A (en) Semiconductor device
JP2007027261A (en) Power module
JP2017135144A (en) Semiconductor module
JP7157783B2 (en) Semiconductor module manufacturing method and semiconductor module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101214