[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007023793A - Vibration damper of engine - Google Patents

Vibration damper of engine Download PDF

Info

Publication number
JP2007023793A
JP2007023793A JP2005203072A JP2005203072A JP2007023793A JP 2007023793 A JP2007023793 A JP 2007023793A JP 2005203072 A JP2005203072 A JP 2005203072A JP 2005203072 A JP2005203072 A JP 2005203072A JP 2007023793 A JP2007023793 A JP 2007023793A
Authority
JP
Japan
Prior art keywords
vibration
cylinder
engine
cylinder operation
idle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005203072A
Other languages
Japanese (ja)
Other versions
JP4490880B2 (en
Inventor
Hiroomi Nemoto
浩臣 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005203072A priority Critical patent/JP4490880B2/en
Priority to US11/483,962 priority patent/US7581720B2/en
Publication of JP2007023793A publication Critical patent/JP2007023793A/en
Application granted granted Critical
Publication of JP4490880B2 publication Critical patent/JP4490880B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent an aggravation of the state of vibration in a transitional period between the first cylinder-resting operation and the second cylinder-resting operation, the numbers of resting cylinders of which are different from each other. <P>SOLUTION: In case of changing-over between the L3 cylinder resting operation in which cylinders on one bank of a V-type six-cylinder engine are halted and the V4 cylinder resting operation in which one cylinder on each bank of the engine is halted, the V6 all-cylinder operation in which all the cylinders are operated is interposed between the L3 cylinder resting operation and the V4 cylinder resting operation. As a result, a transitional period exists between the L3 cylinder resting operation and the V6 all-cylinder operation and between the V6 all-cylinder operation and the V4 cylinder resting operation, and a transitional period does not exist between the L3 cylinder resting operation and the V4 cylinder resting operation. Therefore, it is possible to simplify control of an active type vibrationproof supporting device in the transitional period and to prevent the aggravation of the state of vibration in the transit period. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、休止する気筒数が異なる第1気筒休止運転および第2気筒休止運転を切り換え可能なエンジンを能動型防振支持装置を介して車体に支持し、制御手段が能動型防振支持装置のアクチュエータをエンジンの振動状態に応じて制御することでエンジンから車体への振動伝達を抑制するエンジンの防振装置に関する。   According to the present invention, an engine capable of switching between a first cylinder deactivation operation and a second cylinder deactivation operation with different numbers of cylinders to be deactivated is supported on a vehicle body via an active vibration isolation support device, and the control means is an active vibration isolation support device. The present invention relates to an anti-vibration device for an engine that suppresses vibration transmission from the engine to the vehicle body by controlling the actuator according to the vibration state of the engine.

V型6気筒エンジンの片側バンクを休止可能にし、6気筒を全て作動させる全筒運転と3気筒だけを作動させる休筒運転とを切り換え可能なエンジンにおいて、全筒運転および休筒運転の間の遷移期間に、能動型防振支持装置の制御を切り換えるタイミングを適切に設定することで遷移期間の振動を低減するものが、下記特許文献1により公知である。
特開2005−3051号公報
In an engine in which one-side bank of a V-type 6-cylinder engine can be deactivated and can switch between all-cylinder operation in which all the 6 cylinders are operated and idle cylinder operation in which only 3 cylinders are operated. Japanese Patent Application Laid-Open No. 2004-151820 discloses a technique for reducing the vibration during the transition period by appropriately setting the timing for switching the control of the active vibration isolating support device during the transition period.
JP 2005-3051 A

ところでV型6気筒エンジンにおいて、通常の全筒運転(V6全筒運転)に加えて、片側バンクを休止して直列3気筒エンジンとして作動させる休筒運転(L3休筒運転)と、両バンクの各1個の気筒を休止してV型4気筒エンジンとして作動させる休筒運転(V4休筒運転)とを切り換え可能なものがある。   By the way, in the V-type 6-cylinder engine, in addition to the normal all-cylinder operation (V6 all-cylinder operation), the one-side bank is deactivated to operate as an inline 3-cylinder engine (L3 cylinder-cylinder operation) Some cylinders can be switched between a cylinder idle operation (V4 cylinder idle operation) in which each cylinder is deactivated and operated as a V-type four-cylinder engine.

V6全筒運転とL3休筒運転とを切り換える遷移期間には、V6全筒運転における3次振動の周波数と、L3休筒運転における1.5次振動の周波数との比が整数の2になるため、遷移期間の振動波形が比較的に単純になって能動型防振支持装置の制御が複雑になることはない。しかしながら、V4休筒運転とL3休筒運転とを切り換える遷移期間には、後述するようにエンジンの振動波形が複雑になるため、能動型防振支持装置による防振効果を有効に発揮させるのが難しくなる問題がある。   In the transition period for switching between the V6 all cylinder operation and the L3 idle cylinder operation, the ratio of the frequency of the tertiary vibration in the V6 all cylinder operation and the frequency of the 1.5 order vibration in the L3 cylinder idle operation is an integer of 2. Therefore, the vibration waveform in the transition period is relatively simple and the control of the active vibration isolating support device is not complicated. However, since the vibration waveform of the engine becomes complicated as will be described later in the transition period for switching between the V4 idle cylinder operation and the L3 idle cylinder operation, it is effective to effectively exhibit the vibration isolation effect by the active vibration isolation support device. There is a problem that becomes difficult.

本発明は前述の事情に鑑みてなされたもので、休止する気筒数が異なる第1気筒休止運転および第2気筒休止運転の間の遷移期間における振動状態を悪化を回避することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to avoid deterioration of the vibration state in the transition period between the first cylinder deactivation operation and the second cylinder deactivation operation in which the number of cylinders to be deactivated is different.

上記目的を達成するために、請求項1に記載された発明によれば、休止する気筒数が異なる第1気筒休止運転および第2気筒休止運転を切り換え可能なエンジンを能動型防振支持装置を介して車体に支持し、制御手段が能動型防振支持装置のアクチュエータをエンジンの振動状態に応じて制御することでエンジンから車体への振動伝達を抑制するエンジンの防振装置であって、前記制御手段は、第1、第2気筒休止運転の間の遷移期間に、全ての気筒を作動させる全筒運転を介在させることを特徴とするエンジンの防振装置が提案される。   In order to achieve the above object, according to the first aspect of the present invention, an engine capable of switching between a first cylinder deactivation operation and a second cylinder deactivation operation with different numbers of cylinders to be deactivated is provided with an active vibration isolation support device. An anti-vibration device for an engine that suppresses vibration transmission from the engine to the vehicle body by controlling the actuator of the active anti-vibration support device according to the vibration state of the engine. An engine vibration isolator is proposed in which the control means interposes all cylinder operation for operating all cylinders during the transition period between the first and second cylinder deactivation operations.

また請求項2に記載された発明によれば、請求項1の構成に加えて、前記第1気筒休止運転の振動次数および前記第2気筒休止運転の振動次数が整数比にならないときに、前記制御手段は前記全筒運転を介在させることを特徴とするエンジンの防振装置が提案される。   According to the invention described in claim 2, in addition to the configuration of claim 1, when the vibration order of the first cylinder deactivation operation and the vibration order of the second cylinder deactivation operation do not become an integer ratio, An engine vibration isolator is proposed in which the control means interposes the all-cylinder operation.

また請求項3に記載された発明によれば、請求項1または請求項2の構成に加えて、前記全筒運転の期間はエンジンの負荷に関わらずに一定であることを特徴とするエンジンの防振装置が提案される。   According to a third aspect of the invention, in addition to the configuration of the first or second aspect, the all-cylinder operation period is constant regardless of the engine load. A vibration isolator is proposed.

また請求項4に記載された発明によれば、請求項3の構成に加えて、前記全筒運転の期間は1サイクルであることを特徴とするエンジンの防振装置が提案される。   According to a fourth aspect of the present invention, in addition to the configuration of the third aspect, an anti-vibration device for an engine is proposed in which the period of all-cylinder operation is one cycle.

尚、実施例の電子制御ユニットUは本発明の制御手段に対応する。   The electronic control unit U of the embodiment corresponds to the control means of the present invention.

請求項1の構成によれば、休止する気筒数が異なる第1気筒休止運転および第2気筒休止運転の間に全ての気筒を作動させる全筒運転を介在させるので、遷移期間が第1気筒休止運転および全筒運転の間と、全筒運転および第2気筒休止運転の間とになり、第1、第2気筒休止運転の間に遷移期間が介在しなくなる。これにより、遷移期間における能動型防振支持装置の制御を簡素化するとともに、遷移期間における振動状態の悪化を回避することができる。   According to the configuration of the first aspect, since the all cylinder operation for operating all the cylinders is interposed between the first cylinder deactivation operation and the second cylinder deactivation operation in which the number of cylinders to be deactivated is different, the transition period is the first cylinder deactivation. Between the operation and the all cylinder operation and between the all cylinder operation and the second cylinder deactivation operation, there is no transition period between the first and second cylinder deactivation operations. As a result, the control of the active vibration isolating support device during the transition period can be simplified, and deterioration of the vibration state during the transition period can be avoided.

請求項2の構成によれば、第1気筒休止運転の振動次数および第2気筒休止運転の振動次数が整数比にならないときに全筒運転を介在させるので、全筒運転を介在させる必要のないときに無意味な全筒運転の介在を回避することができる。   According to the configuration of the second aspect, since the all cylinder operation is interposed when the vibration order of the first cylinder deactivation operation and the vibration order of the second cylinder deactivation operation do not become an integer ratio, it is not necessary to intervene the all cylinder operation. Sometimes it is possible to avoid meaningless all-cylinder operation.

請求項3の構成によれば、全筒運転の期間をエンジンの負荷に関わらずに一定にしたので、遷移期間における能動型防振支持装置の制御が簡素化される。   According to the configuration of the third aspect, since the period of all cylinder operation is made constant regardless of the engine load, the control of the active vibration isolating support device in the transition period is simplified.

請求項4の構成によれば、全筒運転の期間を1サイクルとしたので、遷移期間における能動型防振支持装置の制御が更に簡素化される。   According to the configuration of the fourth aspect, since the period of all cylinder operation is set to one cycle, the control of the active vibration isolating support device in the transition period is further simplified.

以下、本発明の実施の形態を、添付の図面に示した本発明の実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples of the present invention shown in the accompanying drawings.

図1〜図9は本発明の一実施例を示すもので、図1は能動型防振支持装置の縦断面図、図2は図1の2部拡大図、図3はV型6気筒エンジンの気筒番号および爆発順序を示す図、図4はV6全筒運転時の読取期間、演算期間および制御期間を示す図、図5は能動型防振支持装置の制御手法を説明するフローチャート、図6はL3休筒運転からV6全筒運転への切り換え時の振動状態を示す図、図7はV6全筒運転からL3休筒運転への切り換え時の振動状態を示す図、図8はL3休筒運転からV4休筒運転への切り換え時の振動状態を示す図、図9はV6全筒運転を挟んだL3休筒運転からV4休筒運転への切り換え時の振動状態を示す図である。   1 to 9 show an embodiment of the present invention. FIG. 1 is a longitudinal sectional view of an active vibration isolating support device, FIG. 2 is an enlarged view of part 2 of FIG. 1, and FIG. FIG. 4 is a diagram illustrating a reading period, a calculation period, and a control period during V6 all-cylinder operation, FIG. 5 is a flowchart illustrating a control method of the active vibration isolating support device, and FIG. FIG. 7 is a diagram showing a vibration state at the time of switching from the L3 idle cylinder operation to the V6 all cylinder operation, FIG. 7 is a diagram showing a vibration state at the time of switching from the V6 all cylinder operation to the L3 cylinder idle operation, and FIG. FIG. 9 is a diagram showing a vibration state at the time of switching from the L3 idle cylinder operation to the V4 cylinder idle operation across the V6 all cylinder operation.

図1および図2に示すように、自動車のエンジンを車体フレームに弾性的に支持するために用いられる能動型防振支持装置M(アクティブ・コントロール・マウント)は、軸線Lに関して実質的に軸対称な構造を有するもので、概略円筒状の上部ハウジング11の下端のフランジ部11aと、概略円筒状の下部ハウジング12の上端のフランジ部12aとの間に、上面が開放した概略カップ状のアクチュエータケース13の外周のフランジ部13aと、環状の第1弾性体支持リング14の外周部と、環状の第2弾性体支持リング15の外周部とが重ね合わされてカシメにより結合される。このとき、下部ハウジング12のフランジ部12aとアクチュエータケース13のフランジ部13aとの間に環状の第1フローティングラバー16を介在させ、かつアクチュエータケース13の上部と第2弾性体支持部材15の内面との間に環状の第2フローティングラバー17を介在させることで、アクチュエータケース13は上部ハウジング11および下部ハウジング12に対して相対移動可能にフローティング支持される。   As shown in FIGS. 1 and 2, an active anti-vibration support device M (active control mount) used for elastically supporting an automobile engine on a body frame is substantially axisymmetric with respect to an axis L. A substantially cup-shaped actuator case having an open upper surface between a flange portion 11a at the lower end of the substantially cylindrical upper housing 11 and a flange portion 12a at the upper end of the generally cylindrical lower housing 12. The outer peripheral flange portion 13a, the outer peripheral portion of the annular first elastic body support ring 14, and the outer peripheral portion of the annular second elastic body support ring 15 are overlapped and joined by caulking. At this time, the annular first floating rubber 16 is interposed between the flange portion 12a of the lower housing 12 and the flange portion 13a of the actuator case 13, and the upper portion of the actuator case 13 and the inner surface of the second elastic body support member 15 By interposing the annular second floating rubber 17 therebetween, the actuator case 13 is floatingly supported so as to be movable relative to the upper housing 11 and the lower housing 12.

第1弾性体支持リング14と、軸線L上に配置された第1弾性体支持ボス18とに、厚肉のラバーで形成した第1弾性体19の下端および上端がそれぞれが加硫接着により接合される。第1弾性体支持ボス18の上面にダイヤフラム支持ボス20がボルト21で固定されており、ダイヤフラム支持ボス20に内周部を加硫接着により接合されたダイヤフラム22の外周部が上部ハウジング11に加硫接着により接合される。ダイヤフラム支持ボス20の上面に一体に形成されたエンジン取付部20aがエンジンに固定される。また下部ハウジング12の下端の車体取付部12bが車体フレームに固定される。   The lower end and the upper end of the first elastic body 19 formed of thick rubber are joined to the first elastic body support ring 14 and the first elastic body support boss 18 disposed on the axis L by vulcanization adhesion. Is done. A diaphragm support boss 20 is fixed to the upper surface of the first elastic body support boss 18 with bolts 21, and the outer peripheral portion of the diaphragm 22, which is joined to the diaphragm support boss 20 by vulcanization adhesion, is added to the upper housing 11. Joined by sulfur adhesion. An engine mounting portion 20a integrally formed on the upper surface of the diaphragm support boss 20 is fixed to the engine. A vehicle body attachment portion 12b at the lower end of the lower housing 12 is fixed to the vehicle body frame.

上部ハウジング11の上端のフランジ部11bにストッパ部材23の下端のフランジ部23aがボルト24…およびナット25…で結合されており、ストッパ部材23の上部内面に取り付けたストッパラバー26にダイヤフラム支持ボス20の上面に突設したエンジン取付部20aが当接可能に対向する。能動型防振支持装置Mに大荷重が入力したとき、エンジン取付部20aがストッパラバー26に当接することで、エンジンの過大な変位が抑制される。   A flange portion 23a at the lower end of the stopper member 23 is coupled to the flange portion 11b at the upper end of the upper housing 11 by bolts 24 ... and nuts 25 ..., and a diaphragm support boss 20 is attached to a stopper rubber 26 attached to the upper inner surface of the stopper member 23. The engine mounting portion 20a that protrudes from the upper surface of the upper and lower surfaces faces each other so as to be capable of contacting. When a large load is input to the active vibration isolating support device M, the engine mounting portion 20a abuts against the stopper rubber 26, thereby suppressing excessive displacement of the engine.

第2弾性体支持リング15に膜状のラバーで形成した第2弾性体27の外周部が加硫接着により接合されており、第2弾性体27の中央部に埋め込むように可動部材28が加硫接着により接合される。第2弾性体支持リング15の上面と第1弾性体19の外周部との間に円板状の隔壁部材29が固定されており、隔壁部材29および第1弾性体19により区画された第1液室30と、隔壁部材29および第2弾性体27により区画された第2液室31とが、隔壁部材29の中央に形成した連通孔29aを介して相互に連通する。   The outer peripheral portion of the second elastic body 27 formed of a film-like rubber is joined to the second elastic body support ring 15 by vulcanization adhesion, and the movable member 28 is added so as to be embedded in the central portion of the second elastic body 27. Joined by sulfur adhesion. A disk-shaped partition wall member 29 is fixed between the upper surface of the second elastic body support ring 15 and the outer periphery of the first elastic body 19, and the first partition partitioned by the partition wall member 29 and the first elastic body 19. The liquid chamber 30 and the second liquid chamber 31 partitioned by the partition member 29 and the second elastic body 27 communicate with each other through a communication hole 29 a formed at the center of the partition member 29.

第1弾性体支持リング14と上部ハウジング11との間に環状の連通路32が形成されており、連通路32の一端は連通孔33を介して第1液室30に連通し、連通路32の他端は連通孔34を介して、第1弾性体19およびダイヤフラム22により区画された第3液室35に連通する。   An annular communication path 32 is formed between the first elastic body support ring 14 and the upper housing 11, and one end of the communication path 32 communicates with the first liquid chamber 30 through the communication hole 33. The other end communicates with the third liquid chamber 35 defined by the first elastic body 19 and the diaphragm 22 through the communication hole 34.

次に、前記可動部材28を駆動するアクチュエータ41の構造を説明する。   Next, the structure of the actuator 41 that drives the movable member 28 will be described.

アクチュエータケース13の内部に固定コア42、コイル組立体43およびヨーク44が下から上に順次取り付けられる。コイル組立体43は、円筒状のコイル46と、コイル46の外周を覆うコイルカバー47とで構成される。コイルカバー47には、アクチュエータケース13および下部ハウジング12に形成した開口13b,12cを貫通して外部に延出するコネクタ48が一体に形成される。   The fixed core 42, the coil assembly 43, and the yoke 44 are sequentially attached to the inside of the actuator case 13 from the bottom to the top. The coil assembly 43 includes a cylindrical coil 46 and a coil cover 47 that covers the outer periphery of the coil 46. The coil cover 47 is integrally formed with a connector 48 that extends through the openings 13b and 12c formed in the actuator case 13 and the lower housing 12 and extends to the outside.

コイルカバー47の上面とヨーク44の下面との間にシール部材49が配置され、コイルカバー47の下面とアクチュエータケース13の上面との間にシール部材50が配置される。これらのシール部材49,50によって、アクチュエータケース13および下部ハウジング12に形成した開口13b,12cからアクチュエータ41の内部空間61に水や塵が入り込むのを阻止することができる。   A seal member 49 is disposed between the upper surface of the coil cover 47 and the lower surface of the yoke 44, and a seal member 50 is disposed between the lower surface of the coil cover 47 and the upper surface of the actuator case 13. These seal members 49 and 50 can prevent water and dust from entering the internal space 61 of the actuator 41 from the openings 13 b and 12 c formed in the actuator case 13 and the lower housing 12.

ヨーク44の円筒部44aの内周面に薄肉円筒状の軸受け部材51が上下摺動自在に嵌合しており、この軸受け部材51の上端には径方向内向きに折り曲げられた上部フランジ51aが形成されるとともに、下端には径方向外向きに折り曲げられた下部フランジ51bが形成される。下部フランジ51bとヨーク44の円筒部44aの下端との間にセットばね52が圧縮状態で配置されており、このセットばね52の弾発力で下部フランジ51bを弾性体53を介して固定コア42の上面に押し付けることで、軸受け部材51がヨーク44に支持される。   A thin cylindrical bearing member 51 is slidably fitted to the inner peripheral surface of the cylindrical portion 44a of the yoke 44, and an upper flange 51a bent radially inward is formed at the upper end of the bearing member 51. A lower flange 51b that is bent radially outward is formed at the lower end. A set spring 52 is disposed in a compressed state between the lower flange 51b and the lower end of the cylindrical portion 44a of the yoke 44. The elastic force of the set spring 52 causes the lower flange 51b to be fixed to the fixed core 42 via the elastic body 53. The bearing member 51 is supported by the yoke 44 by being pressed against the upper surface of the yoke 44.

軸受け部材51の内周面に概略円筒状の可動コア54が上下摺動自在に嵌合する。前記可動部材28の中心から下向きに延びるロッド55が可動コア54の中心を緩く貫通し、その下端にナット56が締結される。可動コア54の上面に設けたばね座57と可動部材28の下面との間に圧縮状態のセットばね58が配置されており、このセットばね58の弾発力で可動コア54はナット56に押し付けられて固定される。この状態で、可動コア54の下面と固定コア42の上面とが、円錐状のエアギャップgを介して対向する。ロッド55およびナット56は固定コア42の中心に形成された開口42aに緩く嵌合しており、この開口42aはシール部材59を介してプラグ60で閉塞される。   A substantially cylindrical movable core 54 is fitted to the inner peripheral surface of the bearing member 51 so as to be slidable up and down. A rod 55 extending downward from the center of the movable member 28 penetrates the center of the movable core 54 loosely, and a nut 56 is fastened to the lower end thereof. A set spring 58 in a compressed state is disposed between a spring seat 57 provided on the upper surface of the movable core 54 and the lower surface of the movable member 28, and the movable core 54 is pressed against the nut 56 by the elastic force of the set spring 58. Fixed. In this state, the lower surface of the movable core 54 and the upper surface of the fixed core 42 face each other via the conical air gap g. The rod 55 and the nut 56 are loosely fitted in an opening 42 a formed at the center of the fixed core 42, and the opening 42 a is closed by a plug 60 through a seal member 59.

エンジンのクランクシャフトの回転に伴って出力されるクランクパルスを検出するクランクパルスセンサSaと、各気筒のTDCパルスを検出するTDCパルスセンサSbとが接続された電子制御ユニットUは、能動型防振支持装置Mのアクチュエータ41に対する通電を制御する。本実施例のエンジンでは、クランクパルスはクランクシャフトの1回転につき24回、つまりクランクアングルの15°毎に1回出力され、またTDCパルスはクランクシャフトの2回転につき6回、つまりクランクアングルの120°毎に1回出力される。   An electronic control unit U, to which a crank pulse sensor Sa that detects a crank pulse that is output as the crankshaft of the engine rotates and a TDC pulse sensor Sb that detects a TDC pulse of each cylinder, is connected to an active vibration isolator. The energization of the actuator 41 of the support device M is controlled. In the engine of this embodiment, the crank pulse is output 24 times per crankshaft rotation, that is, once every 15 ° of the crank angle, and the TDC pulse is output 6 times per crankshaft rotation, that is, 120 times the crank angle. Output once per degree.

図3に示すように、エンジンはV型6気筒エンジンであって、第1バンクに♯1気筒、♯2気筒および♯3気筒が配置され、第2バンクに♯4気筒、♯5気筒および♯6気筒が配置される。エンジンは、♯1気筒〜♯6気筒を♯1→♯4→♯2→♯5→♯3→♯6の順序で爆発させる全筒運転(以下、V6全筒運転という)と、第1バンクの♯1気筒、♯2気筒および♯3気筒を休止させる休筒運転(以下、L3休筒運転という)と、第1バンクの♯3気筒および第2バンクの♯4気筒を休止する休筒運転(以下、V4休筒運転という)とを、エンジンの負荷状態に応じて切り換え可能である。L3休筒運転の爆発順序は♯4→♯5→♯6であり、V4休筒運転の爆発順序は♯1→♯4(休筒)→♯2→♯5→♯3(休筒)→♯6である。   As shown in FIG. 3, the engine is a V-type 6-cylinder engine, and # 1 cylinder, # 2 cylinder and # 3 cylinder are arranged in the first bank, and # 4 cylinder, # 5 cylinder and # 3 are arranged in the second bank. Six cylinders are arranged. The engine includes all cylinder operation (hereinafter referred to as V6 all cylinder operation) in which the cylinders # 1 to # 6 are exploded in the order of # 1, # 4, # 2, # 5, # 3, and # 6. Idle cylinder operation (hereinafter referred to as L3 idle cylinder operation), and idle cylinder operation in which the # 3 cylinder in the first bank and the # 4 cylinder in the second bank are deactivated. (Hereinafter referred to as V4 idle cylinder operation) can be switched according to the engine load state. The explosion order in the L3 closed cylinder operation is # 4 → # 5 → # 6, and the explosion order in the V4 closed cylinder operation is # 1 → # 4 (closed cylinder) → # 2 → # 5 → # 3 (closed cylinder) → # 6.

V6全筒運転ではクランクシャフトが2回転する間に♯1気筒〜♯6気筒が等間隔で各1回ずつ爆発するため、エンジンの振動状態は3次振動(クランクシャフトの1回転に3周期の振動)となり、振動の一周期は120°となる。   In the V6 all-cylinder operation, the # 1 cylinder to the # 6 cylinder explode once at equal intervals while the crankshaft rotates twice, so the vibration state of the engine is the third vibration (three cycles per one rotation of the crankshaft). Vibration), and one period of vibration is 120 °.

L3休筒運転ではクランクシャフトが2回転する間に第2バンクの♯4気筒、♯5気筒および♯6気筒が等間隔で各1回ずつ爆発するため、エンジンの振動状態は1.5次振動(クランクシャフトの1回転に1.5周期の振動)となり、振動の一周期は240°となる。   In L3 idle cylinder operation, the # 4 cylinder, # 5 cylinder and # 6 cylinder of the second bank explode once at equal intervals while the crankshaft rotates twice, so the engine vibration state is 1.5th order vibration. (1.5 cycles of vibration per crankshaft rotation), and one cycle of vibration is 240 °.

V4休筒運転ではクランクアングル120°の一つの休筒期間と、クランクアングル120°の二つの爆発期間とが組み合わさって振動の一周期を構成するため、エンジンの振動状態は1次振動(クランクシャフトの1回転に1周期の振動)となり、振動の一周期は360°となる。   In V4 idle cylinder operation, one idle cylinder period with a crank angle of 120 ° and two explosion periods with a crank angle of 120 ° constitute a cycle of vibration, so the engine vibration state is the primary vibration (crank Vibration of one cycle per one rotation of the shaft), and one cycle of vibration is 360 °.

図4に示すように、能動型防振支持装置Mの制御は、ある1周期(読取期間)でエンジンの振動状態を読み取り、次の1周期(演算期間)で能動型防振支持装置Mのアクチュエータ41の制御電流を演算し、次の1周期(制御期間)で前記制御電流を出力して能動型防振支持装置Mのアクチュエータ41を作動させるようになっており、従って今回の一周期の能動型防振支持装置Mの作動は、前々回の一周期の振動状態に基づいて制御されることになる。   As shown in FIG. 4, the control of the active vibration isolating support apparatus M reads the vibration state of the engine in one cycle (reading period), and the active vibration isolation support apparatus M in the next cycle (calculation period). The control current of the actuator 41 is calculated, and the control current is output in the next one cycle (control period) to operate the actuator 41 of the active vibration isolating support device M. The operation of the active vibration isolating support device M is controlled based on the vibration state of one cycle last time.

次に、上記構成を備えた能動型防振支持装置Mの作用について説明する。   Next, the operation of the active vibration isolating support apparatus M having the above configuration will be described.

自動車の走行中に低周波数のエンジンシェイク振動が発生したとき、エンジンからダイヤフラム支持ボス20および第1弾性体支持ボス18を介して入力される荷重で第1弾性体19が変形して第1液室30の容積が変化すると、連通路32を介して接続された第1液室30および第3液室35間で液体が行き来する。第1液室30の容積が拡大・縮小すると、それに応じて第3液室35の容積が縮小・拡大するが、この第3液室35の容積変化はダイヤフラム22の弾性変形により吸収される。このとき、連通路32の形状および寸法、並びに第1弾性体19のばね定数は前記エンジンシェイク振動の周波数領域で低ばね定数および高減衰力を示すように設定されているため、エンジンから車体フレームに伝達される振動を効果的に低減することができる。   When low-frequency engine shake vibration is generated while the vehicle is running, the first elastic body 19 is deformed by a load input from the engine via the diaphragm support boss 20 and the first elastic body support boss 18, and the first liquid When the volume of the chamber 30 changes, the liquid goes back and forth between the first liquid chamber 30 and the third liquid chamber 35 connected via the communication path 32. When the volume of the first liquid chamber 30 is enlarged / reduced, the volume of the third liquid chamber 35 is reduced / expanded accordingly, but the volume change of the third liquid chamber 35 is absorbed by the elastic deformation of the diaphragm 22. At this time, the shape and size of the communication path 32 and the spring constant of the first elastic body 19 are set so as to exhibit a low spring constant and a high damping force in the frequency region of the engine shake vibration. The vibration transmitted to can be effectively reduced.

尚、上記エンジンシェイク振動の周波数領域では、アクチュエータ41は非作動状態に保たれる。   In the frequency region of the engine shake vibration, the actuator 41 is kept in an inoperative state.

前記エンジンシェイク振動よりも周波数の高い振動、即ちエンジンのクランクシャフトの回転に起因するアイドル時の振動や気筒休止時の振動が発生した場合、第1液室30および第3液室35を接続する連通路32内の液体はスティック状態になって防振機能を発揮できなくなるため、アクチュエータ41を駆動して防振機能を発揮させる。   When vibration having a higher frequency than the engine shake vibration, that is, vibration during idling or vibration during cylinder deactivation caused by rotation of the crankshaft of the engine occurs, the first liquid chamber 30 and the third liquid chamber 35 are connected. Since the liquid in the communication path 32 is in a stick state and cannot exhibit the anti-vibration function, the actuator 41 is driven to exhibit the anti-vibration function.

能動型防振支持装置Mのアクチュエータ41を作動させて防振機能を発揮させるべく、電子制御ユニットUはクランクパルスセンサSaおよびTDCパルスセンサSbからの信号に基づいて能動型防振支持装置Mのアクチュエータ41のコイル46に対する通電を制御する。   In order to operate the actuator 41 of the active vibration isolating support device M to exhibit the anti-vibration function, the electronic control unit U determines the active vibration isolation support device M based on the signals from the crank pulse sensor Sa and the TDC pulse sensor Sb. The energization to the coil 46 of the actuator 41 is controlled.

次に、能動型防振支持装置Mの制御を具体的に説明する。   Next, the control of the active vibration isolating support apparatus M will be specifically described.

図5のフローチャートにおいて、先ずステップS1でクランクパルスセンサSaからクランクアングルの15°毎に出力されるクランクパルスを読み込むとともに、TDCパルスセンサSbからクランクアングルの120°毎に出力されるTDCパルスを読み込み、ステップS2で前記読み込んだクランクパルスを基準となるTDCパルスと比較することでクランクパルスの時間間隔を演算する。続くステップS3で前記15°のクランクアングルをクランクパルスの時間間隔で除算することでクランク角速度ωを演算し、ステップS4でクランク角速度ωを時間微分してクランク角加速度dω/dtを演算する。続くステップS5でエンジンのクランクシャフト62回りのトルクTqを、エンジンのクランクシャフト62回りの慣性モーメントをIとして、
Tq=I×dω/dt
により演算する。このトルクTqはクランクシャフトが一定の角速度ωで回転していると仮定すると0になるが、膨張行程ではピストンの加速により角速度ωが増加し、圧縮行程ではピストンの減速により角速度ωが減少してクランク角加速度dω/dtが発生するため、そのクランク角加速度dω/dtに比例したトルクTqが発生することになる。
In the flowchart of FIG. 5, first, in step S1, the crank pulse output from the crank pulse sensor Sa every 15 ° of the crank angle is read, and the TDC pulse output every 120 ° of the crank angle is read from the TDC pulse sensor Sb. In Step S2, the crank pulse time interval is calculated by comparing the read crank pulse with a reference TDC pulse. In the next step S3, the crank angular velocity ω is calculated by dividing the crank angle of 15 ° by the time interval of the crank pulse, and in step S4, the crank angular velocity ω is time differentiated to calculate the crank angular acceleration dω / dt. In the following step S5, the torque Tq around the engine crankshaft 62 is set as I, and the moment of inertia around the engine crankshaft 62 is set as I.
Tq = I × dω / dt
Calculate by This torque Tq is zero assuming that the crankshaft is rotating at a constant angular velocity ω, but in the expansion stroke, the angular velocity ω increases due to acceleration of the piston, and in the compression stroke, the angular velocity ω decreases due to deceleration of the piston. Since crank angular acceleration dω / dt is generated, torque Tq proportional to the crank angular acceleration dω / dt is generated.

続くステップS6で時間的に隣接するトルクの最大値および最小値を判定し、ステップS7でトルクの最大値および最小値の偏差、つまりトルクの変動量としてエンジンを支持する能動型防振支持装置Mの位置における振幅を演算する。そしてステップS8でアクチュエータ41のコイル46に印加する電流のデューティ波形を決定するとともに、前記振幅のボトム位置をTDCパルスと比較することで電流のデューティの出力タイミングを決定する。   In the subsequent step S6, the maximum value and the minimum value of the temporally adjacent torque are determined, and in step S7, the active vibration isolation support device M that supports the engine as a deviation between the maximum value and the minimum value of the torque, that is, the amount of torque fluctuation. The amplitude at the position of is calculated. In step S8, the duty waveform of the current applied to the coil 46 of the actuator 41 is determined, and the output timing of the current duty is determined by comparing the bottom position of the amplitude with the TDC pulse.

その結果、能動型防振支持装置Mは以下のようにして防振機能を発揮する。   As a result, the active vibration-proof support device M exhibits a vibration-proof function as follows.

即ち、エンジンが車体フレームに対して下向きに移動し、第1弾性体19が下向きに変形して第1液室30の容積が減少したとき、それにタイミングを合わせてアクチュエータ41のコイル46を励磁すると、エアギャップgに発生する吸着力で可動コア54が固定コア42に向けて下向きに移動し、可動コア54にロッド55を介して接続された可動部材28に引かれて第2弾性体27が下向きに変形する。その結果、第2液室31の容積が増加するため、エンジンからの荷重で圧縮された第1液室30の液体が隔壁部材29の連通孔29aを通過して第2液室31に流入し、エンジンから車体フレームに伝達される荷重を低減することができる。   That is, when the engine moves downward with respect to the vehicle body frame and the first elastic body 19 is deformed downward and the volume of the first liquid chamber 30 is reduced, the coil 46 of the actuator 41 is excited in accordance with the timing. The movable core 54 moves downward toward the fixed core 42 by the suction force generated in the air gap g, and is pulled by the movable member 28 connected to the movable core 54 via the rod 55, so that the second elastic body 27 is moved. Deforms downward. As a result, since the volume of the second liquid chamber 31 increases, the liquid in the first liquid chamber 30 compressed by the load from the engine passes through the communication hole 29a of the partition wall member 29 and flows into the second liquid chamber 31. The load transmitted from the engine to the vehicle body frame can be reduced.

続いてエンジンが車体フレームに対して上向きに移動し、第1弾性体19が上向きに変形して第1液室30の容積が増加したとき、それにタイミングを合わせてアクチュエータ41のコイル46を消磁すると、エアギャップgに発生する吸着力が消滅して可動コア54が自由に移動できるようになるため、下向きに変形した第2弾性体27が自己の弾性復元力で上向きに復元する。その結果、第2液室31の容積が減少するため、第2液室31の液体が隔壁部材29の連通孔29aを通過して第1液室30に流入し、エンジンが車体フレームに対して上向きに移動するのを許容することができる。   Subsequently, when the engine moves upward with respect to the vehicle body frame and the first elastic body 19 is deformed upward to increase the volume of the first liquid chamber 30, the coil 46 of the actuator 41 is demagnetized in accordance with the timing. Since the attracting force generated in the air gap g disappears and the movable core 54 can move freely, the second elastic body 27 deformed downward is restored upward by its own elastic restoring force. As a result, since the volume of the second liquid chamber 31 decreases, the liquid in the second liquid chamber 31 passes through the communication hole 29a of the partition wall member 29 and flows into the first liquid chamber 30, and the engine is in contact with the vehicle body frame. It can be allowed to move upward.

ところで、L3休筒運転からV6全筒運転に切り換える場合、図6に示すように、切り換え前のL3休筒運転では主次数振動である1.5次振動が発生し、V6全筒運転の主次数振動である3次振動は発生しない。一方、切り換え後のV6全筒運転では主次数振動である3次振動は発生するものの、本来的にV6全筒運転での3次振動は気筒数が多いために小さいことから、この3次振動は特に問題にならない。また切り換え後のV6全筒運転では、L3休筒運転の主次数振動である1.5次振動も発生しない。   By the way, when switching from the L3 idle cylinder operation to the V6 all cylinder operation, as shown in FIG. 6, in the L3 idle cylinder operation before the switching, the 1.5th order vibration, which is the main order vibration, is generated. Third-order vibration that is order vibration does not occur. On the other hand, although the tertiary vibration, which is the main order vibration, occurs in the V6 all-cylinder operation after switching, the tertiary vibration in the V6 all-cylinder operation is inherently small due to the large number of cylinders. Is not a problem. In addition, in the V6 all-cylinder operation after switching, the 1.5th order vibration that is the main order vibration of the L3 idle cylinder operation does not occur.

このように、L3休筒運転からV6全筒運転に切り換える場合には、切り換えによって振動が減少する方向に移行するために特に問題は発生しない。   Thus, when switching from the L3 idle cylinder operation to the V6 all cylinder operation, there is no particular problem because the switching shifts in a direction in which the vibration decreases.

逆に、V6全筒運転からL3休筒運転に切り換える場合、図7に示すように、切り換え前のV6全筒運転では、L3休筒運転の主次数振動である1.5次振動は発生せず、V6全筒運転の主次数振動である3次振動が発生するが、上述したようにこの3次振動は特に問題にならない。一方、切り換え後のL3休筒運転では主次数振動である1.5次振動が発生し、またV6全筒運転の主次数振動である3次振動は発生しない。   Conversely, when switching from the V6 all-cylinder operation to the L3 idle cylinder operation, as shown in FIG. 7, in the V6 all cylinder operation before switching, the 1.5th order vibration that is the main order vibration of the L3 idle cylinder operation is not generated. However, although the tertiary vibration which is the main order vibration of the V6 all-cylinder operation is generated, this tertiary vibration is not particularly problematic as described above. On the other hand, in the L3 idle cylinder operation after switching, the 1.5th order vibration that is the main order vibration is generated, and the third order vibration that is the main order vibration in the V6 all cylinder operation is not generated.

このように、切り換え前のV6全筒運転の振動次数である「3」と、切り換え後のL3休筒運転の振動次数である「1.5」との比が整数の2であるため、V6全筒運転からL3休筒運転への遷移期間に発生する振動の波形が比較的に単純になり、その遷移期間の振動を抑制するための能動型防振支持装置Mの制御も容易である。   Thus, the ratio of “3”, which is the vibration order of the V6 all-cylinder operation before switching, to “1.5”, which is the vibration order of the L3 cylinder-cylinder operation after switching, is an integer of 2. The vibration waveform generated during the transition period from the all-cylinder operation to the L3 idle cylinder operation becomes relatively simple, and the control of the active vibration isolating support device M for suppressing the vibration during the transition period is easy.

しかしながら、L3休筒運転とV4休筒運転とを切り換える場合には、問題が更に複雑になる。   However, the problem is further complicated when switching between the L3 idle cylinder operation and the V4 idle cylinder operation.

図8に示すように、例えばL3休筒運転からV4休筒運転に切り換える場合、V4休筒運転の主次数振動である1次振動が問題となり、この1次振動が大きいものであることから、その2倍次数の2次振動も問題となる。   As shown in FIG. 8, for example, when switching from the L3 idle cylinder operation to the V4 idle cylinder operation, the primary vibration which is the main order vibration of the V4 idle cylinder operation becomes a problem, and this primary vibration is large. The double order secondary vibration is also a problem.

切り換え前のL3休筒運転では主振動次数の1.5次振動が大きくなり、切り換え後のV4休筒運転では主振動次数の1次振動と、その2倍次数の2次振動とが大きくなる。L3休筒運転の振動次数である「1.5」と、V4休筒運転の振動次数である「1」(あるいは「2」)との比は、1.5(あるいは0.75)となって整数にはならない。従って、L3休筒運転からV4休筒運転への遷移期間には、1次振動、1.5次振動および2次振動が重なり合って複雑な波形の振動となり、能動型防振支持装置Mの制御でこの振動を打ち消すのは極めて困難である。   In the L3 idle cylinder operation before switching, the 1.5th order vibration of the main vibration order becomes large, and in the V4 cylinder closed operation after switching, the primary vibration of the main vibration order and the secondary vibration of the double order become large. . The ratio between the vibration order of L3 idle cylinder operation “1.5” and the vibration order of V4 idle cylinder operation “1” (or “2”) is 1.5 (or 0.75). Does not become an integer. Therefore, during the transition period from the L3 idle cylinder operation to the V4 idle cylinder operation, the primary vibration, the 1.5th vibration, and the secondary vibration overlap to form a complex waveform vibration, and the control of the active vibration isolation support device M is performed. It is extremely difficult to cancel this vibration.

そこで本実施例では、図9に示すように、L3休筒運転とV4休筒運転との間に、所定期間のV6全筒運転を介在させている。このように、V6全筒運転を介在させることにより、遷移期間が前半のL3休筒運転およびV6全筒運転の間と、後半のV6全筒運転およびV4休筒運転の間の二つに分離される。V6全筒運転時には、1次振動、1.5次振動、2次振動および3次振動の全てが小さいため、前半のL3休筒運転からV6全筒運転への切り換え時には、それまで発生していた1.5次振動が消滅して全体として振動状態が改善されることで、能動型防振支持装置Mの制御に問題はない。また後半のV6全筒運転からV4休筒運転への切り換え時には、それまで発生していなかった1次振動および2次振動が新たに発生するが、2次振動は1次振動の2倍次数の振動であるため、それらを重ね合わせた振動の波形も単純なものとなり、能動型防振支持装置Mを制御して前記1次振動および2次振動の伝達を抑制するのは容易である。   Therefore, in this embodiment, as shown in FIG. 9, a V6 all-cylinder operation for a predetermined period is interposed between the L3 idle cylinder operation and the V4 idle cylinder operation. In this way, by interposing the V6 all-cylinder operation, the transition period is divided into two parts, that is, between the L3 idle cylinder operation and the V6 all cylinder operation in the first half and between the V6 all cylinder operation and the V4 cylinder idle operation in the latter half. Is done. During V6 all-cylinder operation, all of the primary vibration, 1.5th order vibration, secondary vibration, and tertiary vibration are small, so when switching from the L3 idle cylinder operation in the first half to V6 all cylinder operation, it has occurred up to that point. Since the 1.5th order vibration disappears and the vibration state is improved as a whole, there is no problem in controlling the active vibration isolating support device M. In addition, when switching from the V6 all-cylinder operation in the latter half to the V4 cylinder-cylinder operation, primary vibration and secondary vibration that have not occurred until then are newly generated, but the secondary vibration is twice the order of the primary vibration. Since it is a vibration, the waveform of the vibration obtained by superimposing them is also simple, and it is easy to control the active vibration isolation support device M to suppress the transmission of the primary vibration and the secondary vibration.

V6全筒運転の期間は少なくとも1/2サイクル(クランクアングル360°)が必要であり、1サイクル(クランクアングル720°)以上であることが望ましい。本実施例ではV6全筒運転の期間をエンジンの負荷の大小に関わらずに一定の1サイクルとしており、V6全筒運転の期間を半端な長さにする場合に比べて制御の簡素化を図ることができる。   The period of V6 all-cylinder operation requires at least 1/2 cycle (crank angle 360 °), and is desirably 1 cycle (crank angle 720 °) or more. In this embodiment, the V6 all-cylinder operation period is set to one constant cycle regardless of the engine load, and the control is simplified compared to the case where the V6 all-cylinder operation period is an odd length. be able to.

またL3休筒運転とV4休筒運転との間にV6全筒運転を介在させる制御はエンジン振動が大きい場合、つまりエンジン負荷が大きい場合(例えば、吸気負圧が−200mmHg以上)にのみ行われ、振動が小さいエンジンの低負荷時にはV6全筒運転を介在させずにL3休筒運転からV4休筒運転に直接移行させる。   The control for interposing the V6 all-cylinder operation between the L3 idle cylinder operation and the V4 idle cylinder operation is performed only when the engine vibration is large, that is, when the engine load is large (for example, the intake negative pressure is -200 mmHg or more). When the engine with low vibration is at a low load, the L3 idle cylinder operation is directly shifted to the V4 idle cylinder operation without interposing the V6 all cylinder operation.

以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   Although the embodiments of the present invention have been described above, various design changes can be made without departing from the scope of the present invention.

例えば、実施例ではL3休筒運転からV4休筒運転への切り換え制御について説明したが、本発明はV4休筒運転からL3休筒運転への切り換え制御についても同様に適用することができる。   For example, in the embodiment, the switching control from the L3 idle cylinder operation to the V4 idle cylinder operation has been described, but the present invention can be similarly applied to the switching control from the V4 cylinder idle operation to the L3 cylinder idle operation.

能動型防振支持装置の縦断面図Longitudinal section of active vibration isolator 図1の2部拡大図2 enlarged view of FIG. V型6気筒エンジンの気筒番号および爆発順序を示す図The figure which shows the cylinder number and explosion order of V type 6 cylinder engine V6全筒運転時の読取期間、演算期間および制御期間を示す図The figure which shows the reading period at the time of V6 all cylinder operation, a calculation period, and a control period 能動型防振支持装置の制御手法を説明するフローチャートFlowchart explaining control method of active vibration isolating support device L3休筒運転からV6全筒運転への切り換え時の振動状態を示す図The figure which shows the vibration state at the time of switching from L3 idle cylinder operation to V6 all cylinder operation V6全筒運転からL3休筒運転への切り換え時の振動状態を示す図The figure which shows the vibration state at the time of switching from V6 all cylinder operation to L3 idle cylinder operation L3休筒運転からV4休筒運転への切り換え時の振動状態を示す図The figure which shows the vibration state at the time of switching from L3 idle cylinder operation to V4 idle cylinder operation V6全筒運転を挟んだL3休筒運転からV4休筒運転への切り換え時の振動状態を示す図The figure which shows the vibration state at the time of switching from L3 idle cylinder operation to V4 idle cylinder operation on both sides of V6 all cylinder operation

符号の説明Explanation of symbols

M 能動型防振支持装置
U 電子制御ユニット(制御手段)
41 アクチュエータ
M Active anti-vibration support device U Electronic control unit (control means)
41 Actuator

Claims (4)

休止する気筒数が異なる第1気筒休止運転および第2気筒休止運転を切り換え可能なエンジンを能動型防振支持装置(M)を介して車体に支持し、制御手段(U)が能動型防振支持装置(M)のアクチュエータ(41)をエンジンの振動状態に応じて制御することでエンジンから車体への振動伝達を抑制するエンジンの防振装置であって、
前記制御手段(U)は、第1、第2気筒休止運転の間の遷移期間に、全ての気筒を作動させる全筒運転を介在させることを特徴とするエンジンの防振装置。
An engine capable of switching between the first cylinder deactivation operation and the second cylinder deactivation operation with different numbers of cylinders to be deactivated is supported on the vehicle body via the active vibration isolation support device (M), and the control means (U) is active vibration isolation. An anti-vibration device for an engine that suppresses vibration transmission from the engine to the vehicle body by controlling the actuator (41) of the support device (M) according to the vibration state of the engine,
The vibration control device for an engine is characterized in that the control means (U) interposes all-cylinder operation for operating all cylinders during a transition period between the first and second cylinder deactivation operations.
前記第1気筒休止運転の振動次数および前記第2気筒休止運転の振動次数が整数比にならないときに、前記制御手段(U)は前記全筒運転を介在させることを特徴とする、請求項1に記載のエンジンの防振装置。   The control means (U) interposes the all-cylinder operation when the vibration order of the first cylinder deactivation operation and the vibration order of the second cylinder deactivation operation do not become an integer ratio. 1. An anti-vibration device for an engine according to 1. 前記全筒運転の期間はエンジンの負荷に関わらずに一定であることを特徴とする、請求項1または請求項2に記載のエンジンの防振装置。   The engine vibration isolator according to claim 1 or 2, wherein a period of the all-cylinder operation is constant regardless of an engine load. 前記全筒運転の期間は1サイクルであることを特徴とする、請求項3に記載のエンジンの防振装置。
The vibration isolator for an engine according to claim 3, wherein the period of all cylinder operation is one cycle.
JP2005203072A 2005-07-11 2005-07-12 Vibration isolator for multi-cylinder engine Expired - Fee Related JP4490880B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005203072A JP4490880B2 (en) 2005-07-12 2005-07-12 Vibration isolator for multi-cylinder engine
US11/483,962 US7581720B2 (en) 2005-07-11 2006-07-10 Vibration isolation system and method for engine, and control system and method for active vibration isolation support system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005203072A JP4490880B2 (en) 2005-07-12 2005-07-12 Vibration isolator for multi-cylinder engine

Publications (2)

Publication Number Publication Date
JP2007023793A true JP2007023793A (en) 2007-02-01
JP4490880B2 JP4490880B2 (en) 2010-06-30

Family

ID=37784917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005203072A Expired - Fee Related JP4490880B2 (en) 2005-07-11 2005-07-12 Vibration isolator for multi-cylinder engine

Country Status (1)

Country Link
JP (1) JP4490880B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038967A (en) * 2005-08-05 2007-02-15 Honda Motor Co Ltd Control device for active type vibration-proof support device
JP2009215900A (en) * 2008-03-07 2009-09-24 Toyota Motor Corp Six-cylinder engine
US7831375B2 (en) 2008-04-01 2010-11-09 Toyota Jidosha Kabushiki Kaisha Engine control device and engine control method
US8676470B2 (en) 2008-03-25 2014-03-18 Toyota Jidosha Kabushiki Kaisha Multicylinder engine and method for controlling the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427718A (en) * 1990-05-24 1992-01-30 Toyota Motor Corp Method for controlling number of active cylinders in two cycle internal combustion engine
JPH08284727A (en) * 1995-04-19 1996-10-29 Yamaha Motor Co Ltd Cylinder pause control method and device of internal combustion engine, and internal combustion engine thereof
JP2003027996A (en) * 2001-07-18 2003-01-29 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP2005003051A (en) * 2003-06-10 2005-01-06 Honda Motor Co Ltd Actuator drive control device of active type vibrationproof supporting device
JP2005048729A (en) * 2003-07-31 2005-02-24 Toyota Motor Corp Inter-cylinder phase difference variable device of internal combustion engine and variable cylinder device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427718A (en) * 1990-05-24 1992-01-30 Toyota Motor Corp Method for controlling number of active cylinders in two cycle internal combustion engine
JPH08284727A (en) * 1995-04-19 1996-10-29 Yamaha Motor Co Ltd Cylinder pause control method and device of internal combustion engine, and internal combustion engine thereof
JP2003027996A (en) * 2001-07-18 2003-01-29 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP2005003051A (en) * 2003-06-10 2005-01-06 Honda Motor Co Ltd Actuator drive control device of active type vibrationproof supporting device
JP2005048729A (en) * 2003-07-31 2005-02-24 Toyota Motor Corp Inter-cylinder phase difference variable device of internal combustion engine and variable cylinder device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038967A (en) * 2005-08-05 2007-02-15 Honda Motor Co Ltd Control device for active type vibration-proof support device
JP4657056B2 (en) * 2005-08-05 2011-03-23 本田技研工業株式会社 Control device for active anti-vibration support device
JP2009215900A (en) * 2008-03-07 2009-09-24 Toyota Motor Corp Six-cylinder engine
US8108122B2 (en) 2008-03-07 2012-01-31 Toyota Jidosha Kabushiki Kaisha Six-cylinder engine
US8676470B2 (en) 2008-03-25 2014-03-18 Toyota Jidosha Kabushiki Kaisha Multicylinder engine and method for controlling the same
US7831375B2 (en) 2008-04-01 2010-11-09 Toyota Jidosha Kabushiki Kaisha Engine control device and engine control method

Also Published As

Publication number Publication date
JP4490880B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
JP4176662B2 (en) Vibration control method for hybrid vehicle
US7581720B2 (en) Vibration isolation system and method for engine, and control system and method for active vibration isolation support system
JP4243290B2 (en) Active anti-vibration support device
JP4890384B2 (en) Method for detecting natural frequency of engine and control method for active vibration isolating support device
JP4657056B2 (en) Control device for active anti-vibration support device
JP4806479B2 (en) Control device for active anti-vibration support device
JP4657037B2 (en) Control device for active anti-vibration support device
JP4711912B2 (en) Control device for active anti-vibration support device
JP4490880B2 (en) Vibration isolator for multi-cylinder engine
JP2007107579A (en) Controller for active vibration control supporting device
JP4078321B2 (en) Active anti-vibration support device
JP2005003139A (en) Actuator drive control device of active type vibrationproof supporting device
JP4405448B2 (en) Active anti-vibration support device
JP2007321906A (en) Solenoid actuator and active vibraton isolating support device
JP4648131B2 (en) Active anti-vibration support device
JP2006057753A (en) Active vibration control supporting device
JP2006194271A (en) Active type vibration-proofing support device
JP2005003050A (en) Actuator drive control device of active type vibrationproof supporting device
JP2006057750A (en) Drive controller for actuator
JP4036448B2 (en) Actuator drive controller for active anti-vibration support device
JP2004036435A (en) Control method for preventing vibration of cylinder rest engine
JP2006207633A (en) Active vibration control supporting device
JP2006057752A (en) Active vibration control supporting device
JP2006232108A (en) Method for flexibly mounting engine
JP2006194270A (en) Active type vibration-proofing support device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4490880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees