[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007019130A - Heat dissipator - Google Patents

Heat dissipator Download PDF

Info

Publication number
JP2007019130A
JP2007019130A JP2005197071A JP2005197071A JP2007019130A JP 2007019130 A JP2007019130 A JP 2007019130A JP 2005197071 A JP2005197071 A JP 2005197071A JP 2005197071 A JP2005197071 A JP 2005197071A JP 2007019130 A JP2007019130 A JP 2007019130A
Authority
JP
Japan
Prior art keywords
heat
insulating layer
graphite sheet
thermal conductivity
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005197071A
Other languages
Japanese (ja)
Inventor
Hideyuki Okamoto
秀之 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005197071A priority Critical patent/JP2007019130A/en
Publication of JP2007019130A publication Critical patent/JP2007019130A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat dissipator which is low in height and excellent in heat dissipating properties. <P>SOLUTION: A graphite sheet 2 has anisotropic thermal conductive properties. It has low thermal conductivity in a thickness direction but has thermal conductivity equal to or above that of metal in an in-plane direction. An insulating layer 4 is formed of material, such as ceramic etc, which is high in both electric insulating properties and thermal conductivity. A device serving as a heating source, such as a semiconductor chip 1 etc, is bonded on the upper surface of the insulating layer 4. The insulating layer 4 absorbs heat released from the semiconductor chip 1 and also function as a conductor of transmitting heat to the graphite sheet 2. The heat transmitted to the graphite sheet 2 from the insulating layer 4 is conducted from the center of the graphite sheet 2 to its peripheral area. The heat conducted to the peripheral area of the graphite sheet 2 is absorbed by a heat sink 3 and dissipated into the air from the surface of the heat sink 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、放熱装置に関し、特に、半導体チップからの発熱を吸収してヒートシンクから放熱する放熱装置に関する。   The present invention relates to a heat dissipation device, and more particularly to a heat dissipation device that absorbs heat generated from a semiconductor chip and dissipates heat from a heat sink.

近年、環境問題に対する配慮から、ハイブリッド自動車や燃料電池自動車のような、駆動源にモータを利用した自動車の開発が進められている。そして、これらのモータを制御するパワーモジュール等の半導体装置には、信頼性及び耐久性の観点から、高い放熱性を有することが求められる。   In recent years, in consideration of environmental problems, development of automobiles using a motor as a drive source, such as hybrid cars and fuel cell cars, has been promoted. And semiconductor devices, such as a power module which controls these motors, are required to have high heat dissipation from the viewpoint of reliability and durability.

従来の半導体装置では、ヒートシンクの上面に熱伝導性の絶縁層を接着し、絶縁層の上面に半導体チップ等の素子を接着することにより、ヒートシンク、絶縁層、及び半導体チップがこの順に縦方向に積層された構造が多く採用されている。かかる構造では、半導体チップからの発熱は、絶縁層内をヒートシンクに向かって下方向に伝達し、ヒートシンクによって吸収・放熱される。かかる構造が多く採用されている理由は、絶縁層に用いられる各種材料(等方性の熱伝導性を有する材料が一般的である)を考慮すると、絶縁層の直下にヒートシンクを配設して、半導体チップからの発熱を真下に向かって伝達させるのが最も効率が良いと考えられていたためである。   In a conventional semiconductor device, a heat conductive insulating layer is bonded to the upper surface of the heat sink, and an element such as a semiconductor chip is bonded to the upper surface of the insulating layer, so that the heat sink, the insulating layer, and the semiconductor chip are vertically arranged in this order. Many stacked structures are used. In such a structure, heat generated from the semiconductor chip is transmitted downward in the insulating layer toward the heat sink, and is absorbed and dissipated by the heat sink. The reason why many such structures are adopted is that, considering various materials used for the insulating layer (generally materials having isotropic thermal conductivity), a heat sink is disposed immediately below the insulating layer. This is because it has been considered that it is most efficient to transmit the heat generated from the semiconductor chip downward.

また、半導体チップからの発熱を効率良くヒートシンクに伝達するための材料の開発も進められており、例えば、厚み方向の熱伝導性は低い一方、面内方向の熱伝導性は金属と同程度又はそれ以上に高い、異方性の熱伝導性を有するグラファイトシートが存在する。   In addition, development of materials for efficiently transmitting heat generated from a semiconductor chip to a heat sink is also underway.For example, while thermal conductivity in the thickness direction is low, thermal conductivity in the in-plane direction is about the same as that of metal or There is a graphite sheet having a higher anisotropic thermal conductivity than that.

しかしながら、ヒートシンク、絶縁層、及び半導体チップが縦方向に積層された従来の半導体装置を自動車に搭載するためには、半導体装置の縦方向の寸法が大きくなるため、このような分厚い立体構造を搭載するためのスペースを自動車内に確保する必要が生じるという問題がある。   However, in order to mount a conventional semiconductor device in which a heat sink, an insulating layer, and a semiconductor chip are stacked in a vertical direction on a car, the vertical dimension of the semiconductor device becomes large, so such a thick three-dimensional structure is mounted. There is a problem that it is necessary to secure a space for this in the automobile.

また、ヒートシンク、絶縁層、及び半導体チップが縦方向に積層された従来の半導体装置において、異方性の熱伝導性を有するグラファイトシートを単純に絶縁層として用いたのでは、以下のような問題が生じる。つまり、グラファイトはある程度の電気伝導性を有するため、絶縁されるべき複数の半導体チップ同士がグラファイトシート及びヒートシンクを介して互いに導通されてしまい、半導体チップの破損や誤動作等の原因になる。加えて、グラファイトシートは厚み方向の熱伝導性が低いため、半導体チップからヒートシンクへの熱伝導の効率が却って悪くなる。   In addition, in a conventional semiconductor device in which a heat sink, an insulating layer, and a semiconductor chip are stacked in the vertical direction, if a graphite sheet having anisotropic thermal conductivity is simply used as an insulating layer, the following problems occur: Occurs. That is, since graphite has a certain degree of electrical conductivity, a plurality of semiconductor chips to be insulated are electrically connected to each other via the graphite sheet and the heat sink, which may cause damage or malfunction of the semiconductor chips. In addition, since the graphite sheet has low thermal conductivity in the thickness direction, the efficiency of heat conduction from the semiconductor chip to the heat sink is worsened.

本発明はかかる問題を解決するために成されたものであり、薄型で、しかも放熱効率の高い放熱装置を得ることを目的とする。   The present invention has been made to solve such problems, and an object of the present invention is to obtain a heat dissipation device that is thin and has high heat dissipation efficiency.

第1の発明に係る放熱装置は、熱伝導性のシート状部材と、シート状部材の中央部における上面上に接着された底面と、吸熱対象である素子が接着される上面とを有する、熱伝導性の絶縁層と、絶縁層の周囲を取り囲んで、シート状部材の周縁部における上面上に接着されたヒートシンクとを備えることを特徴とする。   A heat dissipation device according to a first aspect of the present invention includes a thermally conductive sheet-like member, a bottom surface bonded onto the top surface in the central portion of the sheet-like member, and a top surface to which an element to be endothermic is bonded. It is characterized by comprising a conductive insulating layer and a heat sink that surrounds the insulating layer and is bonded onto the upper surface of the peripheral portion of the sheet-like member.

第2の発明に係る放熱装置は、第1の発明に係る放熱装置において特に、シート状部材は、厚み方向よりも面内方向に高い熱伝導性を有するグラファイトシートであることを特徴とする。   The heat radiating device according to the second invention is characterized in that, in the heat radiating device according to the first invention, the sheet-like member is a graphite sheet having higher thermal conductivity in the in-plane direction than in the thickness direction.

第3の発明に係る放熱装置は、第1の発明に係る放熱装置において特に、シート状部材は、熱良導性の金属箔であることを特徴とする。   The heat radiating device according to the third invention is characterized in that, in the heat radiating device according to the first invention, in particular, the sheet-like member is a heat conductive metal foil.

第1〜第3の発明に係る放熱装置によれば、絶縁層及びヒートシンクはいずれもシート状部材の上面上に接着されている。従って、ヒートシンク上に絶縁層が積層されるタイプの放熱装置と比較すると、縦方向の寸法を小さくすることができ、装置の薄型化を図ることができる。   According to the heat dissipation device according to the first to third inventions, both the insulating layer and the heat sink are bonded on the upper surface of the sheet-like member. Therefore, as compared with a heat dissipation device of a type in which an insulating layer is stacked on a heat sink, the vertical dimension can be reduced, and the device can be thinned.

特に第2の発明に係る放熱装置によれば、グラファイトシートは面内方向に高い熱伝導性を有するため、素子から絶縁層を介してグラファイトシートに伝達された熱を、ヒートシンクに効率的に伝達することができる。   In particular, according to the heat radiating device of the second invention, the graphite sheet has high thermal conductivity in the in-plane direction, so that the heat transferred from the element to the graphite sheet through the insulating layer is efficiently transferred to the heat sink. can do.

特に第3の発明に係る放熱装置によれば、熱良導性の金属箔は厚み方向のみならず面内方向にも高い熱伝導性を有するため、素子から絶縁層を介して金属箔に電圧された熱を、ヒートシンクに効率的に伝達することができる。   In particular, according to the heat dissipation device according to the third aspect of the present invention, since the heat conductive metal foil has high thermal conductivity not only in the thickness direction but also in the in-plane direction, a voltage is applied from the element to the metal foil through the insulating layer. The generated heat can be efficiently transferred to the heat sink.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、異なる図面において同一の符号を付した要素は、同一又は相応する要素を示すものとする。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the element which attached | subjected the same code | symbol in different drawing shall show the same or corresponding element.

図1は、本発明の実施の形態に係る放熱装置を備えた半導体装置の構造を示す上面図である。また、図2は、図1に示したラインII−IIに沿った位置に関する断面構造を示す断面図である。   FIG. 1 is a top view showing a structure of a semiconductor device provided with a heat dissipation device according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing a cross-sectional structure relating to the position along line II-II shown in FIG.

図1,2を参照して、本実施の形態に係る放熱装置は、グラファイトシート2と、グラファイトシート2の中央部(中央及びほぼ中央を含む)の上面上に接着された絶縁層4と、絶縁層4の周囲を取り囲むように、グラファイトシート2の周縁部(周縁及びほぼ周縁を含む)の上面上に接着された環状のヒートシンク3とを備えている。   With reference to FIGS. 1 and 2, the heat dissipating device according to the present embodiment includes a graphite sheet 2, an insulating layer 4 bonded on the upper surface of a central portion (including the center and substantially the center) of the graphite sheet 2, An annular heat sink 3 bonded to the upper surface of the peripheral edge (including the peripheral edge and substantially the peripheral edge) of the graphite sheet 2 is provided so as to surround the periphery of the insulating layer 4.

ヒートシンク3は、銅やアルミニウム等の熱伝導性の高い金属(即ち熱良導性の金属)によって構成されている。放熱効率を高めるべく、ヒートシンク3の表面には冷却フィンが形成されていても良い。あるいは、水冷装置等によってヒートシンク3を冷却する構成としても良い。   The heat sink 3 is made of a metal having high thermal conductivity such as copper or aluminum (that is, a metal having good thermal conductivity). In order to increase the heat dissipation efficiency, cooling fins may be formed on the surface of the heat sink 3. Alternatively, the heat sink 3 may be cooled by a water cooling device or the like.

図2を参照して、グラファイトシート2は、厚み方向(紙面の上下方向)の熱伝導性は低い一方、面内方向(紙面の左右方向)の熱伝導性は金属と同程度又はそれ以上に高い、異方性の熱伝導性を有している。例えば、面内方向の熱伝導性は、アルミニウムの約3倍、銅の約2倍である。   Referring to FIG. 2, the graphite sheet 2 has a low thermal conductivity in the thickness direction (up and down direction of the paper), while the thermal conductivity in the in-plane direction (left and right direction of the paper surface) is equal to or higher than that of the metal. High and anisotropic thermal conductivity. For example, the thermal conductivity in the in-plane direction is about 3 times that of aluminum and about 2 times that of copper.

絶縁層4は、電気絶縁性でしかも熱伝導率の高い材質、例えばセラミック等を用いて構成されている。絶縁層4の上面上には、発熱源となる半導体チップ1等の素子が接着されており、絶縁層4は、半導体チップ1とグラファイトシート2とを互いに電気的に分離する機能を果たす。   The insulating layer 4 is made of a material that is electrically insulating and has high thermal conductivity, such as ceramic. On the upper surface of the insulating layer 4, elements such as the semiconductor chip 1 serving as a heat source are bonded, and the insulating layer 4 functions to electrically separate the semiconductor chip 1 and the graphite sheet 2 from each other.

また、図2中に矢印で示すように、絶縁層4は、半導体チップ1からの発熱を吸収して、グラファイトシート2に伝達する機能をも果たす。絶縁層4からグラファイトシート2に伝達された熱は、グラファイトシート2の中央部から周縁部に向かって伝達される。グラファイトシート2は面内方向に高い熱伝導性を有するため、グラファイトシート2の中央部から周縁部に向けての熱伝導は効率的に行われる。グラファイトシート2の周縁部に伝達された熱は、ヒートシンク3によって吸収され、ヒートシンク3の表面から大気中へ放熱される。   Further, as indicated by an arrow in FIG. 2, the insulating layer 4 also functions to absorb heat generated from the semiconductor chip 1 and transmit it to the graphite sheet 2. The heat transmitted from the insulating layer 4 to the graphite sheet 2 is transmitted from the central portion of the graphite sheet 2 toward the peripheral portion. Since the graphite sheet 2 has a high thermal conductivity in the in-plane direction, the heat conduction from the central part to the peripheral part of the graphite sheet 2 is efficiently performed. The heat transmitted to the peripheral edge of the graphite sheet 2 is absorbed by the heat sink 3 and radiated from the surface of the heat sink 3 to the atmosphere.

図3は、図2に対応させて、本実施の形態に係る放熱装置の他の構造を示す断面図である。図2に示したグラファイトシート2の代わりに、銅やアルミニウム等の熱良導性の金属箔5が配設されている。金属箔5は、等方性の熱伝導性を有する。つまり、厚み方向のみならず面内方向にも高い熱伝導性を有する。そのため、グラファイトシート2と同様に、絶縁層4から金属箔5に伝達された熱は、金属箔5の中央部から周縁部に向かって伝達される。そして、金属箔5の周縁部に伝達された熱は、ヒートシンク3によって吸収され、ヒートシンク3の表面から大気中へ放熱される。   FIG. 3 is a cross-sectional view showing another structure of the heat dissipation device according to the present embodiment, corresponding to FIG. Instead of the graphite sheet 2 shown in FIG. 2, a thermally conductive metal foil 5 such as copper or aluminum is disposed. The metal foil 5 has isotropic thermal conductivity. That is, it has high thermal conductivity not only in the thickness direction but also in the in-plane direction. Therefore, similarly to the graphite sheet 2, the heat transmitted from the insulating layer 4 to the metal foil 5 is transmitted from the central portion of the metal foil 5 toward the peripheral portion. The heat transmitted to the peripheral edge of the metal foil 5 is absorbed by the heat sink 3 and radiated from the surface of the heat sink 3 to the atmosphere.

このように本実施の形態に係る放熱装置によれば、図2,3に示したように、絶縁層4及びヒートシンク3が、いずれもグラファイトシート2又は金属箔5の上面上に接着されている。従って、ヒートシンク、絶縁層、及び半導体チップが縦方向に積層された従来の半導体装置と比較すると、縦方向の寸法を小さくすることができ、装置の薄型化を図ることができる。   As described above, according to the heat dissipation device according to the present embodiment, the insulating layer 4 and the heat sink 3 are both bonded to the upper surface of the graphite sheet 2 or the metal foil 5 as shown in FIGS. . Therefore, as compared with a conventional semiconductor device in which a heat sink, an insulating layer, and a semiconductor chip are stacked in the vertical direction, the size in the vertical direction can be reduced, and the thickness of the device can be reduced.

本発明の実施の形態に係る放熱装置を備えた半導体装置の構造を示す上面図である。It is a top view which shows the structure of the semiconductor device provided with the thermal radiation apparatus which concerns on embodiment of this invention. 図1に示したラインII−IIに沿った位置に関する断面構造を示す断面図である。It is sectional drawing which shows the cross-section regarding the position along line II-II shown in FIG. 図2に対応させて、本発明の実施の形態に係る放熱装置の他の構造を示す断面図である。It is sectional drawing which shows the other structure of the thermal radiation apparatus which concerns on FIG. 2 according to the embodiment of the present invention.

符号の説明Explanation of symbols

1 半導体チップ
2 グラファイトシート
3 ヒートシンク
4 絶縁層
5 金属箔
DESCRIPTION OF SYMBOLS 1 Semiconductor chip 2 Graphite sheet 3 Heat sink 4 Insulating layer 5 Metal foil

Claims (3)

熱伝導性のシート状部材と、
前記シート状部材の中央部における上面上に接着された底面と、吸熱対象である素子が接着される上面とを有する、熱伝導性の絶縁層と、
前記絶縁層の周囲を取り囲んで、前記シート状部材の周縁部における上面上に接着されたヒートシンクと
を備える、放熱装置。
A thermally conductive sheet-like member;
A thermally conductive insulating layer having a bottom surface bonded to the top surface in the central portion of the sheet-like member, and a top surface to which an element that is an object of heat absorption is bonded;
A heat radiating device including a heat sink that surrounds the periphery of the insulating layer and is bonded onto the upper surface of the peripheral edge of the sheet-like member.
前記シート状部材は、厚み方向よりも面内方向に高い熱伝導性を有するグラファイトシートである、請求項1に記載の放熱装置。   The heat dissipation device according to claim 1, wherein the sheet-like member is a graphite sheet having higher thermal conductivity in an in-plane direction than in a thickness direction. 前記シート状部材は、熱良導性の金属箔である、請求項1に記載の放熱装置。   The heat dissipation device according to claim 1, wherein the sheet-like member is a thermally conductive metal foil.
JP2005197071A 2005-07-06 2005-07-06 Heat dissipator Pending JP2007019130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005197071A JP2007019130A (en) 2005-07-06 2005-07-06 Heat dissipator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005197071A JP2007019130A (en) 2005-07-06 2005-07-06 Heat dissipator

Publications (1)

Publication Number Publication Date
JP2007019130A true JP2007019130A (en) 2007-01-25

Family

ID=37756056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005197071A Pending JP2007019130A (en) 2005-07-06 2005-07-06 Heat dissipator

Country Status (1)

Country Link
JP (1) JP2007019130A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847623A (en) * 2009-03-23 2010-09-29 丰田自动车株式会社 Power model
US9110264B2 (en) 2012-12-06 2015-08-18 Fujitsu Optical Components Limited Optical module
WO2015161051A1 (en) * 2014-04-18 2015-10-22 Laird Technologies, Inc. Thermal solutions and methods for dissipating heat from electronic devices using the same side of an anisotropic heat spreader
CN105304592A (en) * 2014-07-24 2016-02-03 株式会社吉帝伟士 Semiconductor package
US9380733B2 (en) 2013-02-20 2016-06-28 Mitsubishi Electric Corporation Cooling device and power module equipped with cooling device
EP2710859B1 (en) * 2011-05-17 2019-09-04 Canon U.S. Life Sciences, Inc. Systems and methods using external heater systems in microfluidic devices
US11367669B2 (en) 2016-11-21 2022-06-21 Rohm Co., Ltd. Power module and fabrication method of the same, graphite plate, and power supply equipment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847623A (en) * 2009-03-23 2010-09-29 丰田自动车株式会社 Power model
US8294272B2 (en) 2009-03-23 2012-10-23 Toyota Jidosha Kabushiki Kaisha Power module
EP2710859B1 (en) * 2011-05-17 2019-09-04 Canon U.S. Life Sciences, Inc. Systems and methods using external heater systems in microfluidic devices
US9110264B2 (en) 2012-12-06 2015-08-18 Fujitsu Optical Components Limited Optical module
US9380733B2 (en) 2013-02-20 2016-06-28 Mitsubishi Electric Corporation Cooling device and power module equipped with cooling device
WO2015161051A1 (en) * 2014-04-18 2015-10-22 Laird Technologies, Inc. Thermal solutions and methods for dissipating heat from electronic devices using the same side of an anisotropic heat spreader
CN105304592A (en) * 2014-07-24 2016-02-03 株式会社吉帝伟士 Semiconductor package
KR20160012913A (en) * 2014-07-24 2016-02-03 가부시키가이샤 제이디바이스 Semiconductor package
JP2016025294A (en) * 2014-07-24 2016-02-08 株式会社ジェイデバイス Semiconductor package
KR102098978B1 (en) * 2014-07-24 2020-04-08 가부시키가이샤 제이디바이스 Semiconductor package
US11367669B2 (en) 2016-11-21 2022-06-21 Rohm Co., Ltd. Power module and fabrication method of the same, graphite plate, and power supply equipment
US12046532B2 (en) 2016-11-21 2024-07-23 Rohm Co., Ltd. Power module and fabrication method of the same, graphite plate, and power supply equipment

Similar Documents

Publication Publication Date Title
JP2011054732A (en) Semiconductor module
JP2012099612A (en) Semiconductor device
JP6707634B2 (en) Semiconductor device
CN108987359B (en) Heat sink and heat sink assembly
CN106549522B (en) motor winding frame structure
JP2007019130A (en) Heat dissipator
JP4402602B2 (en) Capacitor cooling structure and power conversion device
JP2008277442A (en) Heat dissipation board
JP2008206252A (en) Semiconductor power converter
JP2011238643A (en) Power semiconductor module
JP5100165B2 (en) Cooling board
JPH11204703A (en) Semiconductor module
US20230352364A1 (en) Insulating substrate and dual-side cooled power module using the same
JP4968150B2 (en) Semiconductor element cooling device
JP2005116578A (en) Heat dissipation structure
JP2006196593A (en) Semiconductor device and heat sink
JP2005117860A (en) Module for power conversion, power converter, and power converter for electric automobile
JP5098392B2 (en) Semiconductor device
JP2007096191A (en) Semiconductor device, and the same with radiating mechanism
JP2006128260A (en) Semiconductor device and semiconductor device having cooler
JP5170870B2 (en) Cooling system
JP4207672B2 (en) Semiconductor device cooling structure
JP4840276B2 (en) Element cooling structure
JP2010130001A (en) Radiation bed
KR102444136B1 (en) Millimeter wave transceiver with improved heat dissipation