[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007018771A - プラズマ処理装置及びプラズマ処理方法 - Google Patents

プラズマ処理装置及びプラズマ処理方法 Download PDF

Info

Publication number
JP2007018771A
JP2007018771A JP2005196555A JP2005196555A JP2007018771A JP 2007018771 A JP2007018771 A JP 2007018771A JP 2005196555 A JP2005196555 A JP 2005196555A JP 2005196555 A JP2005196555 A JP 2005196555A JP 2007018771 A JP2007018771 A JP 2007018771A
Authority
JP
Japan
Prior art keywords
waveguide
vacuum
plasma
processing chamber
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005196555A
Other languages
English (en)
Other versions
JP4878782B2 (ja
Inventor
Hideo Sugai
秀郎 菅井
Tetsuya Ide
哲也 井出
Atsushi Sasaki
厚 佐々木
Kazufumi Azuma
東  和文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced LCD Technologies Development Center Co Ltd
Original Assignee
Advanced LCD Technologies Development Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced LCD Technologies Development Center Co Ltd filed Critical Advanced LCD Technologies Development Center Co Ltd
Priority to JP2005196555A priority Critical patent/JP4878782B2/ja
Priority to TW095124058A priority patent/TW200704291A/zh
Priority to PCT/JP2006/313123 priority patent/WO2007004576A1/ja
Publication of JP2007018771A publication Critical patent/JP2007018771A/ja
Priority to US11/969,500 priority patent/US20080105650A1/en
Application granted granted Critical
Publication of JP4878782B2 publication Critical patent/JP4878782B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

【課題】異常放電を防止しつつ均一で高密度な大面積プラズマを生成し、且つマイクロ波入射用の誘電体窓に加わる力学的応力と熱的応力を減少させるプラズマ処理装置及び処理方法の提供。
【解決手段】第1の誘電体部材14は、接続導波管12より伝播された電磁波を透過する機能と、真空導波管13を構成する耐圧機能とを有し、真空導波管13の他端に気密に封止されている。排気システム19は、真空導波管13内の圧力がプラズマ処理を行う処理チャンバ1内の圧力よりも低い圧力に排気する。
【選択図】図1

Description

本発明は、電磁波(マイクロ波)を伝播する導波管を有するプラズマを用いた処理装置及びプラズマを用いた処理方法に関する。
一般に、半導体装置や液晶表示装置等における製造プロセスには、酸化膜や導電体膜の膜堆積工程、アニール処理等の表面改質工程、又はパターン形成等のエッチング工程を実施するためのプラズマ処理が含まれている。プラズマ処理を行う装置としては、平行平板型電極を有する高周波プラズマ処理装置や、電子サイクロトロン共鳴(ECR)装置等が用いられている。さらに近年、デバイス性能の向上に従い、新たなナノスケールの薄膜処理技術の導入に加えて、表示装置に用いられる被処理基板としては、0.5平方メートル程度から数平方メートル程度のスケールとなる大面積処理技術の確立が望まれてきている。
通常の平行平板型プラズマ処理装置は、対向する電極板の面積を大きくするだけで、比較的容易に大面積プラズマが生成できる反面、プロセス雰囲気が高ガス圧で低プラズマ密度であるため、電子温度が高いという問題が生じている。また、ECR装置は、プラズマ励起のために直流磁場を発生する必要があるため、磁場形成の点からも大面積プラズマ生成が困難である。他にも、生成される磁場の影響により、被処理基板上でプラズマが不均一になりやすいという問題がある。
これらの被処理基板の大面積化、プラズマの均一性及び電子温度の高温化等の問題を解決する1つの手法として、近年、無磁場のマイクロ波放電を用いて高密度且つ低電子温度のプラズマを生成する処理装置所謂、表面波プラズマを用いた処理装置が提案されている。
これまでに提案されている表面波プラズマを用いた処理装置は、プラズマ発生源においては、大気圧下の導波管を用いて誘電体窓を通して処理チャンバ側にマイクロ波を入射するように構成されている。この表面波プラズマを用いた技術による大面積化における課題は、導波管内が大気圧である一方、処理チャンバ内が真空状態に減圧されていることにより生じている。つまり、誘電体窓の両側の圧力差による力学的応力が働き、その誘電体窓が大面積になるほど大きくなり、窓が破損する危険性が増すことである。また、プラズマ生成に伴う発熱による熱的応力もさらに加わっている。
従って、その誘電体窓の厚みを厚くすれば破損に対する解決は得られるが、コスト高を招くだけでなく、マイクロ波の透過特性が劣化して、反射波の増大など整合が困難となる場合がある。また、誘電体窓の厚みを増すことにより、プラズマによって生じる熱的応力はさらに増大することとなり、大面積化された窓ほど耐圧性が求められる。
これらの応力による窓材の破壊を避ける方法としては、例えば、特許文献1には、複数の矩形状の導波管が等間隔且つ平行に配設された形の大面積表面波プラズマ処理装置が提案されている。このプラズマ装置は、導波管毎に複数のマイクロ波結合孔が設けられ、それらの結合孔を小さな誘電体窓で真空封止することにより、導波管と処理チャンバとの間の圧力差を小さく保持させている構成である。すなわち、大面積の1枚の窓を用いる代わりに、多数の小面積の窓を設けることにより、薄い窓材でも強度を保てるようにしている。
さらに、特許文献2においては、マイクロ波発信器に連結する導波管に、処理チャンバに設けた主たる真空ポンプとは別の真空ポンプを設けて導波管内を排気し、導波管内で異常放電が起きない程度の圧力(>10torr(1.33×103Pa))に設定し、処理チャンバ内の圧力(数mtorr〜数100mtorr(数Pa〜数10Pa))との差圧を小さくして機械的ストレスを下げる方法が提案されている。この特許文献3において、マイクロ波の入射側の導波管端部に排気口を形成して排気を行う構成である。この排気系体では、導波管と接合した誘電体導波路を真空導波管及び電磁波放射部に用いた一般的ではないプラズマ処理装置に適用される。
特開2002−280196公報 特開平11−026187号公報 マイクロ波プラズマの技術(オーム社):第15頁
前述したように、通常、無磁場のマイクロ波放電を用いて大面積の均一な高密度プラズマを生成し、所望するプラズマ処理を行うプラズマ処理装置は、被処理基板の大面積化や高速処理を実現しようとすると、マイクロ波入射に用いられる誘電体窓に加わる圧力差に起因する力学的応力やプラズマにより発生する熱的応力によって、誘電体窓が破損する危険性が増大する。
これらの問題を解決するものとして、前述した特許公報による技術などいくつかの提案されている。しかし、特許文献1に開示される技術においては、結合孔の数だけ真空を封止するためのシール部材を設ける必要があるため、処理チャンバ内の構造が複雑化し、部品点数の増加により、装置価格が高騰するという欠点がある。さらに、多数の小さな誘電体窓を固着させるために金属支持板を用いた場合には、発生する表面波がその金属表面を伝播しないため、プラズマは多数の誘電体窓上にスポット状に局在することとなり、特にチャンバ内雰囲気が高圧力下ではプラズマが不均一になる場合がある。全面に亘り均一的な大面積プラズマを生成するには、誘電体全面に対して均一にプラズマが接する構造が必要条件となる。
一方、特許文献2に記載される技術においては、第1に、導波管内に処理チャンバのための主たる真空ポンプとは別個に設けられた真空ポンプで排気する構成を有し、第2に、導波管内で異常放電が起きない程度の高圧力(1kWでは1.33×103Pa以上)を保持している。しかし、別個に設けられた真空ポンプは、マイクロ波の入力端側に設けられており、特殊なマイクロ波の伝送及び放射方法(誘電体導波路を利用する装置)でのみ可能な技術である。換言すれば、最も多く用いられている導波管に直結したスロットアンテナを用いたマイクロ波放電方式には適用することができない。また、第2の異常放電防止のための圧力は、マイクロ波パワーと共に高くなるので、10kWでは13.3×103Pa以上となり、大気圧に近づくため、誘電体板の厚さを薄くすることが不可能となる。
尚、スロットアンテナを用いたマイクロ波放電方式に発生する異常放電は、マイクロ電界が最も強いスロットアンテナの近傍の微小空間で発生する。
以上のように、マイクロ波入射用の誘電体窓に加わる力学的応力と熱的応力を解消し、安定に大面積の均一な高密度プラズマを生成する技術としては、これまで提案されたいずれの特許文献に開示される技術を持ってしても十分とはいえない。
そこで本発明は、異常放電を防止しつつ均一で高密度な大面積プラズマを生成し、且つプラズマにより発生するマイクロ波入射用の誘電体窓に加わる力学的応力と熱的応力を減少させるプラズマを用いた処理装置及びプラズマを用いた処理方法を提供することを目的とする。
本発明は上記目的を達成するために、電磁波を発生する電磁波発生源と、一端が前記電磁波発生源と接合し、該電磁波発生源から発射された前記電磁波を取り込み、真空状態に減圧された導波路を伝播させる真空導波管と、前記真空導波管に結合し、伝播される前記電磁波を取り込み、電磁波放射を行うための電磁波放射部と、前記電磁波放射部と密着し、取り込まれた電磁波によりプラズマを発生させる第1の誘電体部材と、前記電磁波放射部と気密に係合され、前記第1の誘電体部材により発生されたプラズマにより、内部に装填された被処理基板に対して所望するプラズマ処理を施す処理チャンバと、を具備し、前記真空導波管内の圧力が前記プラズマ処理を行う際の前記処理チャンバ内の圧力よりも低いプラズマ処理装置を提供する。
さらに本発明は、前記電磁波発生源と前記真空導波管の前記一端との接合箇所に介在し、該電磁波発生源から出射した前記電磁波を通過させて該真空導波管内に導入し、且つ該真空導波管内の気密を保持する第2の誘電体部材と、前記真空導波管の他端に気密に接合し、該真空導波管内を所望する真空度まで減圧する排気システムとを具備する。前記真空導波管内の圧力は、プロセスに必要なマイクロ波パワーによって前記真空導波管内で異常放電が起こってしまう圧力よりも低い圧力である。
また、電磁波を発生する電磁波発生源と、一端が前記電磁波発生源と接合し、前記電磁波を伝播し、真空状態に減圧される真空導波管と、前記真空導波管と気密に係合された処理チャンバとからなるプラズマを用いた処理装置により前記処理チャンバ内に搬入された被処理基板を処理するに際し、前記真空導波管内の圧力前記処理チャンバ内の圧力よりも低い圧力に制御して処理するプラズマを用いた処理方法を提供する。
本発明は、異常放電を防止しつつ均一で高密度な大面積プラズマを生成し、且つプラズマにより発生するマイクロ波入射用の誘電体窓に加わる力学的応力と熱的応力を減少させるプラズマ処理装置及びプラズマ処理方法を提供することができる。
以下、図面を参照して本発明の実施形態について詳細に説明する。
この実施形態は、内部を所定の真空度に保持する導波管を搭載する処理チャンバを有するプラズマを用いた処理装置である。このプラズマを用いた処理装置は、処理チャンバ内と導波管内の気圧差を大気圧との差に比べて減少させて、これらの間に設けられている電磁波(以下、マイクロ波と称する)を入射させるためのスロット板及び誘電体窓へ掛かる応力を減少させる技術である。さらに、このプラズマを用いた処理装置は、導波管内を所定の真空度に保つことにより、プラズマ発生期間における処理チャンバ内及び/又は導波管内に発生する異常放電を防止し、且つ無磁場のマイクロ波放電による均一で高密度な大面積の表面波プラズマを生成する装置である。
このプラズマを用いた処理装置のスロットアンテナ(電磁波放射部:スロット板)を用いたマイクロ波放電方式における異常放電は、マイクロ波電界が最も強いスロットアンテナの近傍の微小空間で発生することが判った。さらに、上記プラズマを用いた処理装置は、最も放電が起こりやすい圧力が存在し、その放電発生圧力から外れた圧力の場合には放電が起きにくく、特に真空に近い低圧力になると異常放電はほとんど発生しないことが判った。即ち、この実施形態は、導波管内を低圧力に保持して、処理チャンバと導波管の圧力差による応力を減少させ且つ、異常放電を防止するものである。この実施形態は、以下の説明において、従来の大気圧で使用される導波管に対して、真空状態で使用される導波管であるため、本実施形態では特に真空導波管と称している。
図1は、第1の実施形態に係るプラズマを用いた処理装置の真空導波管の長手方向(マイクロ波の進行方向)の概念的な断面構成を示して詳細に説明する。図2(a)は、図1におけるプラズマ処理装置を斜め上方向から見た斜め断面構成を示す図、図2(b)は、真空導波管のE面及びH面を示す図である。
このプラズマを用いた処理装置は、大別して、シリコン基板やガラス基板等からなる被処理基板6が搬入される基板ステージ7および処理ガス供給管が設けられる処理チャンバ1と、処理チャンバ1上端部に気密に設けられるリング形状のスペーサ2と、スペーサ2の内側切欠部に嵌装される第1の誘電体部材3と、スペーサ2上に設けられで処理チャンバ1に電磁波例えばマイクロ波を放射するマイクロ波放射システム5とで構成される。
次に、各構成およびその作用について具体的に説明する。
処理チャンバ1の上蓋部には、処理チャンバ1内にマイクロ波を放射するアンテナ(電磁波放射部)として機能するスロット板4が、装置組み上げ時に第1の誘電体部材3に密着するように真空導波管13に設けられている。
処理チャンバ1は、真空容器材料例えばステンレスやアルミニウム等の金属部材を用いて、上面がマイクロ波を導入するために開口する筒状気密容器である。処理チャンバ1には、使用される装置の種別(プラズマCVD装置、又はエッチング装置等)に応じて、内壁面に対して膜剥がれ防止処理や耐腐食処理を施すことが好ましい。処理チャンバ1内には、例えばシリコンウエハやガラス板等の被処理基板6を載置するための基板ステージ7が設けられている。この基板ステージ7は、被処理基板6を吸着し保持するための例えば静電チャック機能又は真空吸引によるチャック機能(共に図示せず)及び、被処理基板6を所望する温度に制御するための加熱/冷却機能(図示せず)を有している。さらに、基板ステージ7は、Z方向に移動可能に構成されている。さらに、処理チャンバ1には、基板ステージ7に被処理基板6を装填及びチャンバ外に排出するための搬送機構(図示せず)やロードロック/アンロードロック機構(図示せず)を備えてもよい。さらに、基板ステージ7は、処理に応じた電位に設定されるように電源(図示せず)例えば接地電位に接続されている。
また、処理チャンバ1の側壁面には、処理チャンバ1内にプロセスガスや置換ガス等を導入するためのガス導入用ポート8が設けられ、例えば、マスフローコントロールバルブ等のガス導入バルブ(図示せず)を介してガス供給源9に接続され、必要に応じて適宜、ガス導入を行う。ガス供給源9には、処理に応じてプロセスガス源やプラズマ発生用ガス源が設けられる。
ガス導入用ポート8は、処理チャンバ1内で基板ステージ7より上方で第1の誘電体部材3間に配置され、処理される被処理基板6上のプロセスガスのガス濃度が均一になるように吹き出すためのガス分散機構(図示せず)に連結している。ガス分散機構としては、例えば、被処理基板6の外周上方に環状に配置されて、被処理基板6の複数箇所に向かう方向に多数のガス噴出孔が設けられたリング配管がある。
または、さらに、第1の誘電体部材3の処理チャンバ1側の面下方に表面波プラズマを発生させるためのガスシャワーヘッド板を設けてもよい。ガスシャワーヘッド板は、例えば第1の誘電体部材3の処理チャンバ1側の面下方に、第1の誘電体部材3と同じ材料で誘電体部材全面を覆うボード形状であり、且つ内部に流路が形成され、被処理基板6側の面全面方向にプラズマ発生用ガスを噴出する多数のガス噴出孔が設けられるガスシャワーヘッド板を第1の誘電体部材3に一体的に取り付けてもよい。この他にも、第1の誘電体部材3自身の内部に網羅するように内部ガス流路を形成し、内部ガス流路上の複数の箇所に、多数のガス噴出口を開口する内部通路構造であってもよい。この他にも種々の構成が考えられる。
表面波プラズマは、第1の誘電体部材3の処理チャンバ1側の面下方に発生する。この表面波プラズマから活性種は、プロセスガスを励起し、被処理基板6を処理する。
マイクロ波放射システム5は、例えば、10MHz〜25GHz程度のマイクロ波(電磁波)を発生させる電磁波源11と、断面が矩形を成す角型筒形状に形成され、マイクロ波を処理チャンバ1内に放射させるために伝播する真空導波管13と、電磁波源11の照射口と真空導波管13の一端(導入開口端13A側)とを接続するための接続導波管12と、接続導波管12と真空導波管13の導入開口端13Aとの間に挿嵌して設けられ、マイクロ波の導入及び真空導波管13内の気密を保持させるための第2の誘電体14と、アンテナ(電磁波放射部)として機能して伝播されてくるマイクロ波を処理チャンバ1内に放射させるスロット板4と、を有している。
このスロット板4は、装置組み上げ時に第1の誘電体部材3と密着する位置で真空導波管13に固着されている。スロット板4には、後述するスロット4aが分散して配列するように設けられ、図2(b)に示すように、X軸方向から見て、真空導波管13のE面(両側面)またはH面(上下面)に各々対応させて設けることで、真空導波管13内を伝播してきた電磁波を効率良く、処理チャンバ1内に導入することができる。本実施形態における真空導波管13は、矩形に限定されるものではなく、円形あるいは環状であってもよい。
また、本実施形態の真空導波管13内には、マイクロ波の通路となる内部に誘電体など何の部材も配置されていないため、誘電損失が無く、大電力の電磁波(マイクロ波)伝播時においても、高効率に電磁波を伝播させることができ、高密度プラズマの形成に有用である。各スロット4aは、配置や開口面積や孔の形状等を適宜、調整することにより、真空導波管13内を伝播してきたマイクロ波を均等に各スロット4aから処理チャンバ1内に放射させて、均一な第1の誘電体部材3上の表面波を生成することができ、面内均一性の高いプラズマを発生することができる。
さらに真空導波管13は、真空導波管13の導入開口端13Aと対向する開口端13Bに気密に設けられる導波管用排気ポート15と、開口端13Bと導波管用排気ポート15の間に挿嵌して設けられ、マイクロ波の遮蔽とガス透過の機能を有する導波管端部材16とを有している。
この真空導波管13の一端側には、導波管終端部材16および排気ポート15を介して排気システム19が接続されている。導波管終端部材16は、例えば真空導波管13を構成する耐圧機能と排気機能および入射した電磁波に対して反射作用を呈する。真空導波管13の他端側には、第1の誘電体部材14を介して接続導波管12が接続されている。
第1の誘電体部材14は、接続導波管12より伝播された電磁波を高効率で透過する機能と、真空導波管13を構成する耐圧機能とを有し、真空導波管13の他端に気密に封止されている。排気システム19は、真空導波管13内の圧力がプラズマ処理を行う際の処理チャンバ1内の圧力よりも低い圧力に排気する。排気システム19は、真空導波管13内の圧力が、例えば処理チャンバ1内の圧力よりも桁違いに低い圧力に排気する。排気システム19は、真空導波管13内の圧力が、処理チャンバ1内の処理中の圧力に対して、少なくとも1.33×10-2Paより低圧に排気することが異常放電を防止するうえで望ましい。
真空導波管13内の圧力を測定するための圧力センサは、第2の誘電体14近傍に設置することが望ましい。処理チャンバ1内の圧力を測定するための圧力センサは、基板ステージ7とスロット板4間の処理チャンバ1内壁面に設置することが望ましい。排気システム19は、処理チャンバ1内に設けられた圧力センサ出力値および真空導波管13内に設けられた圧力センサ出力値を監視し、所定の圧力比になるように制御して排気することができる。所定の圧力差になるように制御して排気する手段としては、真空導波管13内排気用真空ポンプと処理チャンバ1内排気用真空ポンプとを夫々独立に設けてもよい。所定の圧力差になるように制御して排気する他の手段としては、1台又は共通の真空ポンプ系を使用し、処理チャンバ用排気ポート8および導波管用排気ポート15の管径比を選択してもよい。
導波管端部材16には、例えば金属メッシュや、多数のパンチ穴が開口された金属板が適用される。導波管端部材16には、電磁波を遮断するための電磁波の遮断例えば反射と、真空導波管13内を真空にするための排気孔を有する真空封止の両方の機能を持たせることができ、装置構造を簡略化することができる。パンチ穴の径やメッシュの目の大きさは、使用するマイクロ波の波長より小さく装置構成又は排気特性等により適宜設定すればよい。導波管端部材16に設けられる孔の大きさは、例えば、マイクロ波の波長に対して十分小さい径の孔を全面に多数開口する導体板で且つ、マイクロ波に対して、十分な遮断例えば反射板となり、一方ガスを透過させることができる大きさである。
また、導波管端部材16においては、表面を高抵抗材料や誘電損失の大きい材料で被覆することで、電磁波を吸収させることもできる。この場合、真空導波管13内に反射波が生じなくなる為、プラズマの状態変化によるインピーダンスの変化に対しても真空導波管13内に安定してマイクロ波を伝播させることができる。
導波マイクロ波管端部材16の材料においてもプロセスガスに対して耐腐食性を持つ材料又は、表面に耐腐食性コーティングを施したものが好ましい。
さらに、処理チャンバ1の処理チャンバ用排気ポート25からバルブ17を介して、真空導波管13の導波管用排気ポート15からバルブ18を介して夫々排気システム19に接続されている。バルブ17,18は、例えばゲートバルブ及び可変絞りバルブにより構成され、排気量(開口量)が調整可能に構成されている。排気システム19は、CVD装置など処理チャンバ内にある程度のプロセスガスを流すプロセス工程を含む装置の場合には、真空ポンプとして、ターボモリキュラポンプ等の排出型ポンプが好適であり、バルブ操作により処理チャンバ1内及び真空導波管13内を後述する所望真空度まで排気することができる。尚、処理チャンバ1及び真空導波管13の排気をターボモリキュラポンプとバルブの切り換えを用いて行う場合には、ドライポンプ等の粗引きポンプを併用することが好ましい。勿論、処理チャンバ1及び真空導波管13には、それぞれに独立した排気システムを設けてもよい。装置仕様にもよるが、真空導波管13内の真空度として10-3Pa程度をMAXとするのであれば、高性能なドライポンプのみで実現することもできる。尚、導波管用排気ポート15内に液体窒素等で冷却されたトラップ(図示せず)を配置しておけば、処理チャンバ1から漏れ出たプロセスガスや生成物又はダストを吸着して、真空ポンプへの吸い込みやターボファンへの付着を防止することができる。
このような排気システム19は、真空導波管13内に入射されたマイクロ波が導波管端部材16で反射されて、マイクロ波が排気配管に侵入することなく排気し、真空導波管13内を所望する真空度まで減圧することができる。
前述したスペーサ2は、金属材料からなり、処理チャンバ1の上面縁に嵌合する環形状を成し、第1の誘電体部材3を嵌装した状態で処理チャンバ1と第1の誘電体部材3の間に介在するように配置される。本実施形態では、処理チャンバ1とスペーサ2の間及び、スペーサ2と真空導波管13の間は、Oリング10a,10bを用いて、真空保持できるように気密に構成される。この他にも、Oリングは、排気ポートやガス導入ポートにおける配管接続に用いられる。このOリングを用いるのは、構成部位の装脱を想定したものであり、着脱をしない構成部位間については、金属ガスケットを用いてもよい。
本実施形態の第1の誘電体部材3及び第2の誘電体14は、マイクロ波を透過させ、且つ気体(ガス)には不透過の特性を持つ部材により形成されており、例えば、石英又は、アルミナ等が好ましく、またフッ素樹脂を適用することもできる。これらの材料は、被処理基板の種別やプロセス工程に応じて適宜、選択して使用すればよい。尚、図1に示す第1の誘電体部材3においては、1枚の部材として説明しているが、生成されるプラズマの大面積化が図られると、窓(処理チャンバ1の上面開口部分)の開口面積が大きくなり、即ち、窓を塞ぐ第1の誘電体部材3も大面積化する。そこで1枚の部材では強度的にも厚くする必要があるため、図2に示すように適当な幅に切断した部分第1の誘電体部材3aとし、これらの両端がスペーサ2の窓縁の鍔2aに掛架するように隙間無く並べて用いてもよい。第1の誘電体板3の厚さは、誘電体板厚の電磁波に対する影響がなるべく小さくなればよく、例えば、λ/4(この場合、λは誘電体内波長)の厚さ、具体的に石英では板厚を10mm程度が好ましい。第1の誘電体板3の幅については、開口面積に応じて適宜設定すればよい。
図3には、本実施形態における電磁波放射部となるスロット板4を上方向(真空導波管13側)から見た外観構成を示す。
このスロット板4は、金属材料により板状に形成され、真空導波管13内に伝播されるマイクロ波を処理チャンバ1に放射するための孔(貫通穴)からなる複数のスロット4aが、スロット板全面に亘り均一的に開口されている。本実施形態では、図3に示すように、2列で千鳥配置された例を示している。この例では、スロット4aの形状を長方形としているが勿論、これに限定されるものではない。
このスロット板4は、図示しないネジにより真空導波管13側にネジ止め固定されている。処理チャンバ側のスロット板4面を覆うように第1の誘電体部材3を設けることで、真空導波管内を伝播してきたマイクロ波を効率良く、処理チャンバ内に導入することができる。更に、プラズマの電子密度をカットオフ密度より高めることで、第1の誘電体部材3表面に表面波を伝播させることができ、表面波プラズマによる面内均一性の高いプラズマ処理が可能となる。
このように構成されたプラズマ処理装置における真空導波管13の減圧と表面波プラズマ発生について説明する。
まず、本実施形態における処理チャンバ1内の基板ステージ7に被処理基板6を装填する。処理チャンバ1及びマイクロ波放射システム5の真空導波管13を気密にした後、それぞれを排気システムにより排気し、処理チャンバ1内をプロセス工程に基づいた真空度まで排気し、一方、真空導波管13内は少なくとも1×10-4torr(1.33×10-2Pa)程度まで排気し維持する。その後、処理チャンバ1内にガス供給源よりプロセス工程に従うプロセスガスを導入して、予め定めた真空度における雰囲気を設定する。
本実施形態において、この雰囲気における処理チャンバ1内の真空度は、第1の誘電体部材3への応力を減少させるために真空導波管13内の真空度と比較的近いことが好ましい。例えば、プロセス処理時の処理チャンバ1内の真空度が数torr(数100Pa)であった場合に、真空導波管13内の真空度を1.33×10-2Pa程度とする。この雰囲気が設定された後、電磁波源11によりマイクロ波を発生させて真空導波管13に入射する。入射されたマイクロ波は真空導波管13内を伝播し、アンテナとなるスロット板4のスロット4aから処理チャンバ1内に放射される。
この時、マイクロ波が第1の誘電体部材3の全表面において、表面波となってプラズマを発生させる。この表面波プラズマは、大面積で且つ面内均一性が高いプラズマ処理を可能とする。
本実施形態の排気システム19は、マイクロ波のみを遮断して分離した気体を導波管用排気ポート15を通じて真空導波管13内を排気する。このような真空導波管13の端部にマイクロ波の透過を遮断する部材を設け、この部材に連結する排気ポート15に排気システムを繋ぐことで、処理チャンバ1と独立し、排気のコンダクタンスを悪化させることもなくなる。尚、本実施形態の構成は、前述した特許文献3と比較すると、特許文献3のように真空導波管13のマイクロ波入力側(導入開口端13A側)にマイクロ波を導波する排気ポートを設けて排気する構成ではなく、マイクロ波が減衰しているエリアから更にマイクロ波を遮断する機構を通して、真空導波管13内の気体を排気する点が異なっている。特に、真空導波管内の異常放電を防止するために、特許文献3では処理チャンバ内の圧力よりも導波管内の圧力を陽圧例えば高圧力の1.33×103Pa以上に保持させているのに対して、本実施形態では逆に処理チャンバ内の圧力よりも真空導波管13の圧力を負圧例えば1.33×10-2Paに保持させている点でも異なっている。
従って、本実施形態のプラズマを用いた処理装置によれば、真空導波管13内の圧力をプラズマ処理中の処理チャンバ1内の圧力より低く設定することにより、強電界となる真空導波管13内や電磁波放射部での異常放電を防止することができる。さらに、真空導波管13内の圧力がプラズマ処理中の処理チャンバ1内の圧力より低いため、真空導波管13内と処理チャンバとの間の気密性が不十分であっても、真空導波管13から処理チャンバ内に不純物が混入することがない。
そのため、真空導波管13と処理チャンバ1との間の気密性が低くても何ら問題はなく、本実施形態においても、Oリングなどのシール部材による気密保持は簡略化している。勿論、シール部材を介在させて気密性を持たせても、高品質なプラズマ処理が可能である。尚、 真空導波管13と処理チャンバ1との間にシール部材を設けてそれぞれを気密にさせる場合には、スロット板4と第1の誘電体部材3が表面波プラズマの発生により高熱となるため、真空導波管13とスペーサ2との間にプラズマの回り込みを考慮して、耐熱性を持つ例えば、メタルガスケット等により気密にする。
以上のように構成される本実施形態における効果について説明する。
・プラズマ処理装置によれば、真空導波管13内を高真空の圧力(少なくとも1×10-4Torr(1.33×10-2Pa)程度を維持し、プラズマ処理中の処理チャンバ1内の圧力より低くするため、強電界となる真空導波管13内や電磁波放射部での異常放電を防止することができる。この時、真空導波管13内の圧力がプラズマ処理中の処理チャンバ1内の圧力より低いため、真空導波管13内と処理チャンバ1との間の封止が不十分であっても、真空導波管13から処理チャンバ1内に不純物が混入することはない。従って、真空導波管13と処理チャンバ1間の封止部分を簡略化した構造であっても、高品質なプラズマ処理は可能である。
・プラズマ処理装置によれば、真空導波管13内のマイクロ波の入射側に設けた誘電体部材により真空導波管内の気密を保持することで、Oリング等のシール部材による真空封止領域を小さくすることができ、封止構造の簡略化が容易になる。
・真空導波管13末端のマイクロ波の反射側に設けた導波管端部材16が伝播されてくるマイクロ波を反射し、気体を透過させる構造であるため、真空排気のための排気ポートを別途設ける必要が無く排気構造が簡略化され、排気のコンダクタンスを悪化させることもなくなる。
・スロット板4を覆うように第1の誘電体部材14を設けた構造により伝播されてくるマイクロ波を効率良く処理チャンバ1内に導入し、プラズマの電子密度をカットオフ密度より高めることで、第1の誘電体部材14表面に表面波を伝播させて、生成された表面波プラズマによる面内均一性の高いプラズマ処理が可能である。
・真空導波管13は、マイクロ波を伝播する領域に部材が設けられていないため損失が僅かで、大電力においても、高効率にマイクロ波を伝播させて、高密度プラズマを生成するため有用である。
・スロット板4に配置される各スロット4aの位置、大きさ及び形状を調整することにより、真空導波管13を伝播してきたマイクロ波を均等に各スロット4aから放射させて、面内均一性の高い表面波プラズマが生成されるようにマイクロ波を処理チャンバ1内に導入することができる。
・本実施形態のプラズマを用いた処理装置は、例えば、薄膜トランジスタ(TFT)や金属酸化物半導体素子(MOS素子)のような半導体素子、半導体集積回路装置のような半導体装置、或いは、液晶表示装置のような表示装置のTFT回路の製造プロセス等に適用することができる。
次に図5は、本発明の第2の実施形態に係るプラズマを用いた処理装置の概念的な構成を示して詳細に説明する。本実施形態の構成部位において、前述した第1の実施形態における構成部位と同等のものには同じ参照符号を付して詳細な説明は省略する。
前述した第1の実施形態では、プラズマ処理装置には各1つの電磁波源11と真空導波管13等によるマイクロ波放射システムを搭載した例について説明している。実際に、このようなマイクロ波を用いる真空導波管13をプラズマ処理装置に搭載した場合、被処理基板がシリコンウエハ程度の直径(最大300mm程度)を有する比較的小面積のものであれば、各1つの電磁波源11と真空導波管13によるマイクロ波放射システムでも実現できる。しかし、被処理基板が表示面積の大面積化が求められているディスプレスに用いられる。例えば、45インチ(約1m)以上の液晶デバイス基板等であれば、処理チャンバもこれに対応できる大きさを有し、マイクロ波放射システムにおいても対応させなければならない。
そこで、第2の実施形態では、第1の実施形態と同等に構成される電磁波源11a〜11d及び真空導波管13a〜13dの各4台を用いて、各一台を組として、被処理体の面内均一性が高いプラズマ処理が行われる表面波プラズマを生成するように、これらを配置する。つまり、第1の実施形態における長方形の真空導波管を4つ並べて略正方形の表面波プラズマを生成する構成である。本実施形態では、プラズマ発生面を略正方形としているが、勿論、その形状は限定されるものではなく、基板形状又は処理チャンバ形状に合わせて適宜、模ればよい。
本実施形態では、図4に示すように4列に真空導波管13a〜13dを平行に並べ、それぞれの真空導波管13のマイクロ波入力側(導入開口端13A側)に分配用導波管21の出射口を気密に接続し、さらに入射口側には、1つの電磁波源11に接続して構成する。勿論、分配用導波管21を用いずに、それぞれの真空導波管13a〜13dに電磁波源11を設けてもよい。
これらの真空導波管13a〜13dの間の距離やスロット板4の大きさ(各スロットの配置位置)は、経験的又はコンピュータを用いたシミュレーション等により設定する。本実施形態では、スロット4aは図5に示すように配置され、第1の実施形態(図3)のスロット板4の各スロット4aと同等であり、スロット4aを真空導波管のE面またはH面に各々対応させて設けている。
排気システムにおいては、各真空導波管13a〜13dが同時に同じ真空度となるような排気特性が得られるシステムであればよい。特に、排気の際に各真空導波管13a〜13dが異なる真空度となると、それぞれに異なる応力が発生し、さらに処理チャンバ1の真空度に対して著しくバラツキを持った場合には、応力が一番掛かっている箇所に損傷を発生させる虞があるため、均一排気されなければならない。
また、処理チャンバ1と各真空導波管13a〜13dとにおいても同時に同じ様な真空度となるように排気を行う。排気システム19としては、1台の真空ポンプを各真空導波管13a〜13dの排気ポート15にそれぞれにバルブを介して接続する。処理チャンバ用の真空ポンプは、各真空導波管用真空ポンプとは別個のものを設けてもよいし、前述した第1の実施形態と同様に、1台の真空ポンプで処理チャンバ1と各真空導波管13a〜13dの排気を行ってもよい。
このように構成された本実施形態によれば、複数のマイクロ波放射用の真空導波管13を有し、また複数のスロット4aを、真空導波管13のE面またはH面に各々対応させて設けて、真空導波管13内を伝播されるマイクロ波を効率良く、処理チャンバ1内に導入することができる。
本実施形態によれば、処理チャンバ1内において表面波プラズマを発生させて処理を行っている際に、真空導波管13内の圧力を処理チャンバ1内の圧力より負圧で真空に保持させることにより、広い放電圧力範囲と広いマクロ波入射電力の範囲において、異常放電を防止することが可能である。
例えば、導波管1本当たりの2.45GHzのマイクロ波入力6kW、長尺の処理チャンバ1(L1mxW0.3mxH0.3m)内のアルゴン雰囲気内で真空度(プロセス圧力)100mTorr(1.33Pa)の条件で、真空導波管13内の真空度が処理チャンバ1内の圧力より負圧の例えば真空度10-4Torr(1.33×10-2Pa)のときに、強電界となる真空導波管13内や電磁波源11による異常放電を防止することができている。
真空導波管13内の真空度は、処理チャンバ1内の圧力より負圧で、10−4Torr以下が最適である。
また、前述した第1の実施形態と同様に、プラズマ処理中の処理チャンバ1内圧力は、1Paより高いため、真空導波管13内の真空度が1.33×10−2Pa以下であった場合、真空導波管13内と処理チャンバ1との間の真空封止が不十分であっても、真空導波管13内の圧力に比べて処理チャンバ1内が陽圧であるため、真空導波管13内にガスが漏れ出ることはあっても、処理チャンバ1内に不純物が混入することがなく、封止部を簡略化した構造でも、高品質なプラズマを用いた処理が可能になる。
以上のことから本実施形態の効果は、前述した第1の効果に加えて、広く面積を有する被処理基板に対して、異常放電を防止し、且つ無磁場のマイクロ波放電による均一で高密度な大面積の表面波プラズマを生成することが可能なプラズマを用いた処理装置である。
尚、このプラズマを用いた処理装置は、半導体デバイス製造、表示デバイス製造等々に用いられるプラズマCVD等の成膜装置、再結晶化処理や熱反応処理(窒化や酸化)などを行う熱処理装置、ドライエッチングを行うエッチング装置に対して容易に搭載して前述した効果を得ることができる。
上記実施形態では、第1の誘電体部材3の処理チャンバ1内壁面近傍に表面波プラズマを発生させ、この表面波プラズマにより生成された活性粒子によりプロセスガスを励起して、成膜またはエッチングをする1種のリモートプラズマを利用した処理装置の例について説明したが、処理チャンバ1内に入射した電磁波によりプロセスガスを励起して、発生したプラズマにより被処理基板を処理してもよい。
本発明の第1の実施形態に係るプラズマ処理装置の概念的な構成を示す図である。 図2(a)は、図1におけるプラズマ処理装置を斜め上方向から見た斜め断面構成を示す図、図2(b)は、真空導波管のE面及びH面を示す図である。 第1の実施形態におけるスロット板におけるスロットの配置例を示す図である。 本発明の第2の実施形態に係るプラズマ処理装置の概念的な構成を示す図である。 第2の実施形態におけるスロット板におけるスロットの配置例を示す図である。
符号の説明
1…処理チャンバ、2…スペーサ、3…第1の誘電体部材、4…スロット板、5…マイクロ波放射システム、6…被処理基板、7…基板ステージ、8…処理チャンバ用排気ポート8、11…電磁波源、12…接続導波管、13…真空導波管、13a…導入開口端、13b…開口端、14…第2の誘電体、15…導波管用排気ポート、16…導波管端部材、17…バルブ、18…バルブ、19…排気システム。

Claims (9)

  1. 電磁波を発生する電磁波発生源と、
    一端が前記電磁波発生源と接合し、該電磁波発生源から発射された前記電磁波が入射し、真空状態に減圧された導波路を伝播させる真空導波管と、
    前記真空導波管と気密に係合され、前記真空導波管から放射された電磁波により発生したプラズマを用いて処理を施す処理チャンバと、を具備し、
    前記真空導波管内の圧力を前記処理チャンバ内の圧力よりも低い圧力に設定する排気システムを設けてなることを特徴とするプラズマを用いた処理装置。
  2. 前記真空導波管は、前記電磁波発生源側端部にこの電磁波発生源からの電磁波を通過させ気密封止する誘電体隔壁と、他端に前記電磁波を遮断し、ガスを通過させる導波管端部材を設けてなることを特徴とする請求項1に記載のプラズマを用いた処理装置。
  3. 前記真空導波管と前記処理チャンバとの接合面には、前記真空導波管を伝播した電磁波が前記処理チャンバ内に通過し、前記真空導波管内の圧力を前記処理チャンバ内の圧力より低圧に設定できる誘電体部材を気密に設けてなることを特徴とする請求項1に記載のプラズマを用いた処理装置。
  4. 電磁波を遮断し、ガスを通過させる導波管端部材は、電磁波を反射及び吸収の少なくとも一方の機能を有し、前記電磁波の波長以下の孔径を有する孔を有することを特徴とする請求項2に記載のプラズマを用いた処理装置。
  5. 前記電磁波放射部は、導体材料から成り、伝播されている前記電磁波を取り込むための1つ又は複数のスロットが開口されたスロット板を具備し、
    前記第1の誘電体部材が前記スロット板の前記処理チャンバ側の全面を覆い且つ、密着するように一体的に設けられ、取り込まれた前記電磁波により該第1の誘電体部材の表面に表面波プラズマを生成することを特徴とする請求項1に記載のプラズマ処理装置。
  6. 前記スロット板は、前記真空導波管におけるE面またはH面に対応させて設けられていることを特徴とする請求項5に記載のプラズマ処理装置。
  7. 前記真空導波管は、方形、円形あるいは環状を有していることを特徴とする請求項1に記載のプラズマ処理装置。
  8. 前記真空導波管内の圧力は、プロセスに必要なマイクロ波パワーによって前記真空導波管内で異常放電が起こってしまう圧力よりも低い圧力であることを特徴とする請求項1に記載のプラズマ処理装置。
  9. 電磁波を発生する電磁波発生源と、一端が前記電磁波発生源と接合し、前記電磁波を伝播し、真空状態に減圧される真空導波管と、前記真空導波管と気密に係合された処理チャンバとからなるプラズマを用いた処理装置により前記処理チャンバ内に搬入された被処理基板を処理するに際し、
    前記真空導波管内の圧力前記処理チャンバ内の圧力よりも低い圧力に制御して処理することを特徴とするプラズマを用いた処理方法。
JP2005196555A 2005-07-05 2005-07-05 プラズマ処理装置及びプラズマ処理方法 Expired - Fee Related JP4878782B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005196555A JP4878782B2 (ja) 2005-07-05 2005-07-05 プラズマ処理装置及びプラズマ処理方法
TW095124058A TW200704291A (en) 2005-07-05 2006-06-30 Plasma processing apparatus and plasma processing method
PCT/JP2006/313123 WO2007004576A1 (ja) 2005-07-05 2006-06-30 プラズマ処理装置及びプラズマ処理方法
US11/969,500 US20080105650A1 (en) 2005-07-05 2008-01-04 Plasma processing device and plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005196555A JP4878782B2 (ja) 2005-07-05 2005-07-05 プラズマ処理装置及びプラズマ処理方法

Publications (2)

Publication Number Publication Date
JP2007018771A true JP2007018771A (ja) 2007-01-25
JP4878782B2 JP4878782B2 (ja) 2012-02-15

Family

ID=37604441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005196555A Expired - Fee Related JP4878782B2 (ja) 2005-07-05 2005-07-05 プラズマ処理装置及びプラズマ処理方法

Country Status (4)

Country Link
US (1) US20080105650A1 (ja)
JP (1) JP4878782B2 (ja)
TW (1) TW200704291A (ja)
WO (1) WO2007004576A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370768A (zh) * 2011-03-01 2013-10-23 应用材料公司 具有共享泵的真空腔室
US8610353B2 (en) 2010-09-16 2013-12-17 Tokyo Electron Limited Plasma generating apparatus, plasma processing apparatus and plasma processing method
US9625838B2 (en) 2014-11-28 2017-04-18 Canon Kabushiki Kaisha Electrophotographic apparatus, process cartridge, and image forming method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159763A (ja) * 2006-12-22 2008-07-10 Canon Inc プラズマ処理装置
EP2144026B1 (de) * 2008-06-20 2016-04-13 Volker Probst Prozessvorrichtung und verfahren zum prozessieren von gestapelten prozessgütern
JP5444218B2 (ja) * 2008-07-04 2014-03-19 東京エレクトロン株式会社 プラズマ処理装置および誘電体窓の温度調節機構
AU2009319350B2 (en) * 2008-11-28 2015-10-29 Volker Probst Method for producing semiconductor layers and coated substrates treated with elemental selenium and/or sulfur, in particular flat substrates
US8441494B2 (en) * 2009-04-23 2013-05-14 Vmware, Inc. Method and system for copying a framebuffer for transmission to a remote display
US20110079288A1 (en) * 2009-10-01 2011-04-07 Bruker Biospin Corporation Method and apparatus for preventing energy leakage from electrical transmission lines
CN102792427A (zh) * 2010-03-31 2012-11-21 东京毅力科创株式会社 等离子体处理装置用电介质窗、等离子体处理装置和等离子体处理装置用电介质窗的安装方法
TWI427183B (zh) * 2010-11-25 2014-02-21 Ind Tech Res Inst 電漿處理裝置
CN203746815U (zh) 2011-03-01 2014-07-30 应用材料公司 用于处理基板的腔室
US11171008B2 (en) 2011-03-01 2021-11-09 Applied Materials, Inc. Abatement and strip process chamber in a dual load lock configuration
WO2012118897A2 (en) 2011-03-01 2012-09-07 Applied Materials, Inc. Abatement and strip process chamber in a dual loadlock configuration
US20130189838A1 (en) * 2012-01-20 2013-07-25 Makoto Honda Semiconductor manufacturing apparatus and method of manufacturing semiconductor device
WO2013130191A1 (en) 2012-02-29 2013-09-06 Applied Materials, Inc. Abatement and strip process chamber in a load lock configuration
US20200312629A1 (en) * 2019-03-25 2020-10-01 Recarbon, Inc. Controlling exhaust gas pressure of a plasma reactor for plasma stability

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231112A (ja) * 1985-08-02 1987-02-10 Fujitsu Ltd マイクロ波プラズマ反応装置
JPH1126187A (ja) * 1997-06-30 1999-01-29 Sumitomo Metal Ind Ltd プラズマ処理装置及びプラズマ処理方法
JP2000021599A (ja) * 1998-06-30 2000-01-21 Toshiba Corp プラズマ発生装置
WO2003037503A1 (fr) * 2001-10-30 2003-05-08 Setsu Anzai Appareil a micro-ondes generateur de plasma
JP2004235434A (ja) * 2003-01-30 2004-08-19 Rohm Co Ltd プラズマ処理装置
JP2004328004A (ja) * 2004-05-31 2004-11-18 Toshiba Corp プラズマ処理装置
JP2005044793A (ja) * 2003-07-04 2005-02-17 Advanced Lcd Technologies Development Center Co Ltd プラズマ処理装置およびプラズマ処理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859908A (en) * 1986-09-24 1989-08-22 Matsushita Electric Industrial Co., Ltd. Plasma processing apparatus for large area ion irradiation
US4912367A (en) * 1988-04-14 1990-03-27 Hughes Aircraft Company Plasma-assisted high-power microwave generator
US6444037B1 (en) * 1996-11-13 2002-09-03 Applied Materials, Inc. Chamber liner for high temperature processing chamber
JP4441038B2 (ja) * 2000-02-07 2010-03-31 東京エレクトロン株式会社 マイクロ波プラズマ処理装置
JP3870909B2 (ja) * 2003-01-31 2007-01-24 株式会社島津製作所 プラズマ処理装置
TW200532060A (en) * 2004-03-19 2005-10-01 Adv Lcd Tech Dev Ct Co Ltd Plasma treatment apparatus and plasma treatment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231112A (ja) * 1985-08-02 1987-02-10 Fujitsu Ltd マイクロ波プラズマ反応装置
JPH1126187A (ja) * 1997-06-30 1999-01-29 Sumitomo Metal Ind Ltd プラズマ処理装置及びプラズマ処理方法
JP2000021599A (ja) * 1998-06-30 2000-01-21 Toshiba Corp プラズマ発生装置
WO2003037503A1 (fr) * 2001-10-30 2003-05-08 Setsu Anzai Appareil a micro-ondes generateur de plasma
JP2004235434A (ja) * 2003-01-30 2004-08-19 Rohm Co Ltd プラズマ処理装置
JP2005044793A (ja) * 2003-07-04 2005-02-17 Advanced Lcd Technologies Development Center Co Ltd プラズマ処理装置およびプラズマ処理方法
JP2004328004A (ja) * 2004-05-31 2004-11-18 Toshiba Corp プラズマ処理装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8610353B2 (en) 2010-09-16 2013-12-17 Tokyo Electron Limited Plasma generating apparatus, plasma processing apparatus and plasma processing method
KR101348038B1 (ko) * 2010-09-16 2014-01-03 도쿄엘렉트론가부시키가이샤 플라즈마 생성 장치, 플라즈마 처리 장치 및 플라즈마 처리 방법
CN103370768A (zh) * 2011-03-01 2013-10-23 应用材料公司 具有共享泵的真空腔室
JP2014512672A (ja) * 2011-03-01 2014-05-22 アプライド マテリアルズ インコーポレイテッド 共有ポンプを備えた真空チャンバ
KR101847026B1 (ko) * 2011-03-01 2018-04-09 어플라이드 머티어리얼스, 인코포레이티드 공유된 펌프를 갖는 진공 챔버들
US9625838B2 (en) 2014-11-28 2017-04-18 Canon Kabushiki Kaisha Electrophotographic apparatus, process cartridge, and image forming method

Also Published As

Publication number Publication date
JP4878782B2 (ja) 2012-02-15
WO2007004576A1 (ja) 2007-01-11
TW200704291A (en) 2007-01-16
US20080105650A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
WO2007004576A1 (ja) プラズマ処理装置及びプラズマ処理方法
US8974628B2 (en) Plasma treatment device and optical monitor device
KR101258005B1 (ko) 플라즈마 처리 장치
KR101317018B1 (ko) 플라즈마 처리 장치
US7115184B2 (en) Plasma processing device
JP4997842B2 (ja) 処理装置
WO2002080251A1 (fr) Dispositif de traitement au plasma
JPH0963793A (ja) プラズマ処理装置
KR100501777B1 (ko) 플라즈마 처리 장치
WO2013027470A1 (ja) プラズマ処理装置、マイクロ波導入装置及びプラズマ処理方法
JP4597792B2 (ja) 処理ガス供給構造およびプラズマ処理装置
JP2006244891A (ja) マイクロ波プラズマ処理装置
JP5461040B2 (ja) マイクロ波プラズマ処理装置
US7897009B2 (en) Plasma processing apparatus
JP3889280B2 (ja) プラズマ処理装置
WO2002013249A1 (fr) Antenne radiale et appareil de traitement de plasma comportant cette derniere
JP2005044822A (ja) プラズマ処理装置
JP4507113B2 (ja) プラズマ発生装置及びプラズマ処理装置
JP2004319871A (ja) 処理装置、処理方法およびプラズマ処理装置
JP4390604B2 (ja) プラズマ処理装置
JP2001118698A (ja) 表面波励起プラズマの生成方法およびプラズマ発生装置
JP2006253312A (ja) プラズマ処理装置
JP7378317B2 (ja) プラズマ処理装置
JP5876463B2 (ja) プラズマ処理装置
JP3774142B2 (ja) プラズマ発生装置及びプラズマ処理装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees