[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007017164A - Ultrasonic flaw detection method and ultrasonic flaw detection system - Google Patents

Ultrasonic flaw detection method and ultrasonic flaw detection system Download PDF

Info

Publication number
JP2007017164A
JP2007017164A JP2005195834A JP2005195834A JP2007017164A JP 2007017164 A JP2007017164 A JP 2007017164A JP 2005195834 A JP2005195834 A JP 2005195834A JP 2005195834 A JP2005195834 A JP 2005195834A JP 2007017164 A JP2007017164 A JP 2007017164A
Authority
JP
Japan
Prior art keywords
flaw detection
ultrasonic flaw
ultrasonic
sensor
array type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005195834A
Other languages
Japanese (ja)
Inventor
Yutaka Suzuki
豊 鈴木
Masahiro Koike
正浩 小池
Yoshinori Takesute
義則 武捨
Yasushi Shimazaki
裕史 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005195834A priority Critical patent/JP2007017164A/en
Publication of JP2007017164A publication Critical patent/JP2007017164A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2693Rotor or turbine parts

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flaw detection method capable of performing not only flaw detection over a wide area but also the ultrasonic flaw detection of inspection targets having various shapes, and an ultrasonic flaw detection system. <P>SOLUTION: A small-sized array type flaw detection sensor is used to perform ultrasonic flaw detection by converging a longitudinal wave when the incident angle of an ultrasonic wave is -20 to 20° and a transversal wave when the incident angle of an ultrasonic wave is -20° or below or 20° or above using the same sensor. The installation properties of the sensor to a narrow part are enhanced using the small-sized array type flaw detection sensor. Further, since the reflection efficiency of the longitudinal wave is high when the incident angle of the ultrasonic wave is -20 to 20° and the reflection efficiency of the transversal wave is high when the incident angle of the ultrasonic wave is -20° or below or 20° or above, the longitudinal wave and the transversal wave are transmitted and received by the same sensor to enable the ultrasonic flaw detection of the wide area. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アレイ型超音波探傷センサによる超音波探傷方法及び超音波探傷システムに関し、特に、多種の形状を持つ発電プラントのタービン動翼植込み部の検査に好適な超音波探傷方法及び超音波探傷システムに関する。   The present invention relates to an ultrasonic flaw detection method and an ultrasonic flaw detection system using an array type ultrasonic flaw detection sensor, and more particularly to an ultrasonic flaw detection method and an ultrasonic flaw detection suitable for inspecting a turbine rotor blade implantation portion of a power plant having various shapes. About the system.

一般にタービンは、図28に示すように、オス型の植込み部を持つディスク63をローター軸上に設け、メス型の植込み部を持つ動翼62をディスク63にはめ込む構造となっている。動翼を定期的に交換するので、整備性向上のために、このような構造としている。この構造のタービンは回転によって発生する応力のため、植込み部に疲労割れや応力腐食割れが発生する。このため、植込み部を超音波探傷で検査している。   In general, as shown in FIG. 28, the turbine has a structure in which a disk 63 having a male implantation part is provided on the rotor shaft, and a moving blade 62 having a female implantation part is fitted into the disk 63. Since the rotor blades are regularly replaced, this structure is used to improve maintainability. The turbine having this structure is subjected to stress generated by rotation, and fatigue cracks and stress corrosion cracks occur in the implanted portion. For this reason, the implanted part is inspected by ultrasonic flaw detection.

超音波探傷とは、超音波を被検査物に入射させ、欠陥からの反射波を受信することにより異常を検知する手法である。超音波探傷センサには圧電素子を用い、高周波交流電圧を印加することにより、圧電素子の体積を膨張・収縮させて超音波を発振する。また、超音波の受信も圧電素子により行い、反射波の圧力を電圧に変換して受信する。超音波音速は材料ごとに誤差範囲内で一定なので、送信から受信までに要した時間を音速で除することにより、欠陥までの距離を評価する。超音波探傷センサには単一素子型と、アレイ型がある。単一素子型は、1つの超音波素子で超音波を送受信するセンサである。アレイ型は複数の超音波素子を並列配置し、各超音波素子から発振される超音波を重ね合わせることで、音場を形成するセンサである。超音波素子間に発振開始時間差を設けることにより、検査部位の音圧を高くして欠陥の検出確率を向上する。   The ultrasonic flaw detection is a technique for detecting an abnormality by making an ultrasonic wave incident on an inspection object and receiving a reflected wave from the defect. A piezoelectric element is used for the ultrasonic flaw detection sensor, and by applying a high-frequency AC voltage, the volume of the piezoelectric element is expanded and contracted to oscillate ultrasonic waves. Also, ultrasonic waves are received by a piezoelectric element, and the pressure of the reflected wave is converted into a voltage and received. Since the ultrasonic sound velocity is constant within the error range for each material, the distance to the defect is evaluated by dividing the time required from transmission to reception by the sound velocity. The ultrasonic flaw detection sensor includes a single element type and an array type. The single element type is a sensor that transmits and receives ultrasonic waves with one ultrasonic element. The array type is a sensor that forms a sound field by arranging a plurality of ultrasonic elements in parallel and superposing ultrasonic waves oscillated from the ultrasonic elements. By providing the oscillation start time difference between the ultrasonic elements, the sound pressure at the inspection site is increased and the defect detection probability is improved.

タービン動翼植込み部の超音波探傷方法としては、例えば非特許文献1に記載の方法がある。この方法は、図29(a)に示すように、全長が約50mmの中型のアレイ型超音波探傷センサよりなる超音波探傷センサ1を動翼62の植込み部上の直線部分に直接接触させて超音波を送受信するものである。動翼植込み部の形状は多種であり、最短直線長が12mmの部分もあることから、中型の超音波探傷センサでは、センサの設置性が問題となり、全ての形状の動翼を超音波探傷できないという問題がある。また、センサを小型化して、例えば長さ12mm以下の小型の超音波探傷センサにした場合には、超音波の有効入射範囲が狭いため、図29(b)に示すように探傷範囲が限られるという問題がある。   As an ultrasonic flaw detection method for the turbine rotor blade implantation portion, for example, there is a method described in Non-Patent Document 1. In this method, as shown in FIG. 29A, an ultrasonic flaw detection sensor 1 composed of a medium array ultrasonic flaw detection sensor having a total length of about 50 mm is directly brought into contact with a straight line portion on the implanted portion of the moving blade 62. It transmits and receives ultrasonic waves. Since there are various shapes of the moving blade implantation part and there is also a part with the shortest straight line length of 12 mm, in the medium-sized ultrasonic flaw detection sensor, the installation property of the sensor becomes a problem, and it is impossible to ultrasonic flaw detection of all shapes of moving blades There is a problem. Further, when the sensor is miniaturized to be a small ultrasonic flaw detection sensor having a length of, for example, 12 mm or less, the effective incident range of the ultrasonic wave is narrow, so that the flaw detection range is limited as shown in FIG. There is a problem.

「多機能フェーズドアレイ探傷技術の開発」、検査技術2002年8月号(Vol.7,No.7)、37〜44ページ"Development of multi-functional phased array flaw detection technology", Inspection Technology August 2002 (Vol. 7, No. 7), pages 37-44

本発明の目的は、多種の形状を持つ被検査物の超音波探傷に好適な超音波探傷方法及び超音波探傷システムを提供することにある。   An object of the present invention is to provide an ultrasonic flaw detection method and an ultrasonic flaw detection system suitable for ultrasonic flaw detection of an inspection object having various shapes.

本発明は、同一のアレイ型超音波探傷センサを用いて、超音波の入射方向と被入射面の法線とのなす角度が−20〜20°の範囲で縦波を収束させ、−20°以下あるいは20°以上で横波を収束させることを特徴とする超音波探傷方法にある。   The present invention uses the same array-type ultrasonic flaw detection sensor to converge a longitudinal wave within a range of −20 ° to 20 ° between the incident direction of the ultrasonic wave and the normal line of the incident surface, and to −20 °. The ultrasonic flaw detection method is characterized in that the transverse wave is converged below or at 20 ° or more.

また、本発明は、検出ゲイン解析装置、電子走査式超音波探傷装置、長さ12mm以下のアレイ型超音波探傷センサおよびセンサ位置移動機構を具備し、前記アレイ型超音波探傷センサに超音波の入射方向と被入射面の法線とのなす角度が−20〜20°の範囲で縦波を収束させ、−20°以下あるいは20°以上で横波を収束させる機構を備えたことを特徴とする超音波探傷システムにある。   The present invention also includes a detection gain analyzer, an electronic scanning ultrasonic flaw detector, an array type ultrasonic flaw sensor having a length of 12 mm or less, and a sensor position moving mechanism. It is characterized by having a mechanism for converging longitudinal waves in the range of −20 to 20 ° between the incident direction and the normal of the incident surface and converging transverse waves at −20 ° or less or 20 ° or more. In the ultrasonic flaw detection system.

本発明により、広域探傷を行うことが可能になり、多種の形状を持つ被検査物が超音波探傷できるようになった。   According to the present invention, it is possible to perform wide-area flaw detection, and an inspection object having various shapes can be subjected to ultrasonic flaw detection.

既に述べたように、タービン動翼植込み部の超音波探傷を行う場合、動翼の最短長が12mmと短い場合があるため、センサの設置性が問題となる。また、センサを小型化した場合、超音波探傷が可能な範囲が狭くなるという問題がある。これらの問題を解決するために、本発明では小型アレイ型超音波探傷センサを用い、同一のセンサで超音波入射角−20〜20°では縦波、−20°以下あるいは20°以上では横波を収束させることにより超音波探傷を行う。小型アレイ型超音波探傷センサを用いることによりセンサの狭隘部への設置性が向上する。また、超音波入射角−20〜20°では縦波の反射効率が高く、−20°以下あるいは20°以上では横波の反射効率が高いため、同一のセンサで縦波と横波を送受信することにより広域の超音波探傷が可能である。   As already described, when ultrasonic flaw detection is performed on the turbine blade implantation part, the shortest length of the blade may be as short as 12 mm, so that the installation of the sensor becomes a problem. Further, when the sensor is downsized, there is a problem that the range in which ultrasonic flaw detection is possible becomes narrow. In order to solve these problems, the present invention uses a small array type ultrasonic flaw detection sensor, and uses the same sensor to generate a longitudinal wave at an ultrasonic incident angle of -20 to 20 °, and a transverse wave at −20 ° or less or 20 ° or more. Ultrasonic flaw detection is performed by converging. By using a small array type ultrasonic flaw detection sensor, the installation property of the sensor in a narrow portion is improved. Moreover, since the reflection efficiency of the longitudinal wave is high at an ultrasonic incident angle of -20 to 20 °, and the reflection efficiency of the transverse wave is high at −20 ° or less or 20 ° or more, the longitudinal and transverse waves are transmitted and received by the same sensor. Wide-area ultrasonic flaw detection is possible.

本発明において、超音波探傷センサとしては、長さ12mm以下の小型アレイ型超音波探傷センサ、屈曲アレイ型超音波探傷センサ、フレキシブルアレイ型超音波探傷センサのいずれか1つ以上のセンサを用いることが好ましい。これにより、任意の形状の動翼に超音波探傷センサを設置して、広域探傷することが可能になる。   In the present invention, as the ultrasonic flaw detection sensor, at least one of a small array type ultrasonic flaw detection sensor, a bending array type ultrasonic flaw detection sensor, and a flexible array type ultrasonic flaw detection sensor having a length of 12 mm or less is used. Is preferred. As a result, it is possible to perform a wide-area flaw detection by installing an ultrasonic flaw detection sensor on a moving blade having an arbitrary shape.

本発明の第1実施例を図1〜11、図24〜27及び(1)式〜(3)式を使って説明する。   A first embodiment of the present invention will be described with reference to FIGS. 1 to 11, FIGS. 24 to 27 and equations (1) to (3).

図1は第1実施例における超音波探傷装置の構成図で、電子走査式超音波探傷装置2、センサ押さえジグ3、アクチュエータドライバ4、回転メカ5、アーム6、パソコン7、パソコンと超音波探傷装置間の信号線101、パソコンとアクチュエータドライバ間の信号線102、超音波探傷装置とセンサ押さえジグ上に設けた超音波センサ間の信号線103、アクチュエータドライバとセンサ押さえジグ内に設けたアクチュエータ間の信号線105、アクチュエータドライバと回転メカ間の信号線104より構成する。   FIG. 1 is a block diagram of an ultrasonic flaw detector in the first embodiment. An electronic scanning ultrasonic flaw detector 2, a sensor holding jig 3, an actuator driver 4, a rotating mechanism 5, an arm 6, a personal computer 7, a personal computer and ultrasonic flaw detection. Signal line 101 between the devices, signal line 102 between the personal computer and the actuator driver, signal line 103 between the ultrasonic flaw detector and the ultrasonic sensor provided on the sensor holding jig, and between the actuator driver and the actuator provided in the sensor holding jig Signal line 105, and a signal line 104 between the actuator driver and the rotating mechanism.

図2は第1実施例における回転メカの構成図で、センサ押さえジグ3、アーム6、アクチュエータ8、モーター71と駆動輪70とモーターと駆動輪を固定する容器72よりなる回転メカ駆動部9、ベルト10、ローラー11で構成する。ローラー11と回転メカ駆動部9の駆動輪70を挟んでローター軸64にベルト10を巻きつけ、アクチュエータドライバから信号線を介してモーター71に電力を供給し、ベルト10を動かして駆動輪70を回転させることにより超音波探傷センサを動翼62上で回転させる。   FIG. 2 is a configuration diagram of the rotating mechanism in the first embodiment, in which the sensor pressing jig 3, the arm 6, the actuator 8, the motor 71, the driving wheel 70, the rotating mechanism driving unit 9 including the container 72 for fixing the motor and the driving wheel, The belt 10 and the roller 11 are used. The belt 10 is wound around the rotor shaft 64 with the roller 11 and the driving wheel 70 of the rotating mechanism driving unit 9 interposed therebetween, and electric power is supplied from the actuator driver to the motor 71 via the signal line, and the driving wheel 70 is moved by moving the belt 10. By rotating, the ultrasonic flaw detection sensor is rotated on the moving blade 62.

図3は第1実施例におけるセンサ押さえジグ3の構成図で、底面図と側面図を示している。動翼の段数と同じ3個の小型の超音波探傷センサ1、アクチュエータ8を超音波押さえジグ本体上に設置し、アクチュエータとアクチュエータドライバを信号線で結線することで構成する。信号線を介してアクチュエータに電力を供給し、超音波探傷センサを移動させて位置と角度を調整する。   FIG. 3 is a block diagram of the sensor pressing jig 3 in the first embodiment, showing a bottom view and a side view. Three small ultrasonic flaw detection sensors 1 and actuators 8 having the same number of stages as the moving blades are installed on the ultrasonic holding jig body, and the actuator and the actuator driver are connected by signal lines. Electric power is supplied to the actuator via the signal line, and the ultrasonic flaw detection sensor is moved to adjust the position and angle.

図4(a)(b)は第1実施例における超音波探傷センサの動翼への押し付け方法を示した説明図であり、サスペンション機構74とジョイント73を設け、超音波探傷センサ1の端を曲面とすることで、並列配置された動翼の段差を乗り越えられる構成とした。   FIGS. 4A and 4B are explanatory views showing a method of pressing the ultrasonic flaw detection sensor to the moving blade in the first embodiment. A suspension mechanism 74 and a joint 73 are provided, and the end of the ultrasonic flaw detection sensor 1 is attached. By using a curved surface, it is possible to overcome the steps of the moving blades arranged in parallel.

第1実施例における超音波探傷ステップを以下に示す。   The ultrasonic flaw detection step in the first embodiment is shown below.

(第1ステップ)パソコンに動翼形状を入力する。   (First step) Enter the blade shape into the personal computer.

(第2ステップ)図6(a)(b)に示すようにセンサ中心位置と探傷部位を直線で結び、超音波の入射角と伝播距離を計算する。この計算における動翼形状は図6(a)中の(0,0)を原点としたX座標とY座標で2次元表示した。動翼外面の屈曲点及び亀裂頻発箇所の座標を図中に示した。あるセンサ設置位置における計算後、センサを移動させた時の入射角と伝播距離を遂次計算する。図7は超音波入射角の計算例で、曲線Aは1段目の亀裂頻発箇所の入射角、曲線Bは2段目の亀裂頻発箇所の入射角、曲線Cは3段目の亀裂頻発箇所の入射角を表す。図8は超音波伝播距離の計算例で、曲線Dは1段目の亀裂頻発箇所の伝播距離、曲線Eは2段目の亀裂頻発箇所の伝播距離、曲線Fは3段目の亀裂頻発箇所の伝播距離を表す。   (Second Step) As shown in FIGS. 6A and 6B, the sensor center position and the flaw detection site are connected with a straight line, and the incident angle and propagation distance of the ultrasonic wave are calculated. The blade shape in this calculation is two-dimensionally displayed in the X and Y coordinates with the origin at (0, 0) in FIG. The coordinates of the inflection point on the outer surface of the rotor blade and the frequent occurrence of cracks are shown in the figure. After calculation at a certain sensor installation position, the incident angle and propagation distance when the sensor is moved are calculated successively. FIG. 7 is a calculation example of the ultrasonic incident angle, where curve A is the incident angle at the first-stage crack occurrence site, curve B is the incidence angle at the second-stage crack occurrence site, and curve C is the third-stage crack occurrence site. Represents the incident angle. FIG. 8 shows an example of calculating the ultrasonic propagation distance, where curve D is the propagation distance of the first crack occurrence site, curve E is the propagation distance of the second crack occurrence site, and curve F is the third crack occurrence site. Represents the propagation distance of.

(第3ステップ)超音波伝播距離と超音波入射角の計算結果、図24に示した縦波反射強度の入射角依存性、図25に示した横波反射強度の入射角依存性、図26に示した縦波反射強度の超音波伝播距離依存性、図27に示した横波反射強度の超音波伝播距離依存性を用いて、下記(1)式及び(2)式を用いて計算する。   (Third Step) Calculation results of ultrasonic propagation distance and ultrasonic incident angle, incident angle dependence of longitudinal wave reflection intensity shown in FIG. 24, incident angle dependence of transverse wave reflection intensity shown in FIG. 25, FIG. Using the dependence of the longitudinal wave reflection intensity on the ultrasonic propagation distance and the dependence of the transverse wave reflection intensity on the ultrasonic propagation distance shown in FIG. 27, calculation is performed using the following equations (1) and (2).

縦波検出ゲイン=f(θ)+超音波伝播距離×縦波距離減衰率 …(1)
ここで、f(θ)は図24に示した縦波反射強度の入射角依存性、θは縦波入射角を表す。
Longitudinal wave detection gain = f (θ) + ultrasonic wave propagation distance × longitudinal wave distance attenuation factor (1)
Here, f (θ) represents the incident angle dependence of the longitudinal wave reflection intensity shown in FIG. 24, and θ represents the longitudinal wave incident angle.

横波検出ゲイン=g(θ)+超音波伝播距離×横波距離減衰率 …(2)
ここで、g(θ)は図25に示した横波反射強度の入射角依存性、θは横波入射角を表す。
Shear wave detection gain = g (θ) + ultrasonic wave propagation distance × lateral wave distance attenuation factor (2)
Here, g (θ) represents the incident angle dependence of the transverse wave reflection intensity shown in FIG. 25, and θ represents the transverse wave incident angle.

図9に(1)式と(2)式を用いた検出ゲイン(Gain)の計算例を示す。曲線Gは1段目の亀裂頻発箇所の検出ゲイン、曲線Hは2段目の亀裂頻発箇所の検出ゲイン、曲線Iは3段目の亀裂頻発箇所の検出ゲインで、縦波の検出ゲインと横波の検出ゲインのうち値が小さなものをプロットした。   FIG. 9 shows a calculation example of the detection gain (Gain) using the equations (1) and (2). Curve G is the detection gain of the first-stage crack frequent occurrence location, curve H is the detection gain of the second-stage crack frequent occurrence location, curve I is the detection gain of the third-stage crack frequent occurrence location, longitudinal wave detection gain and transverse wave The gains with small values were plotted.

(第4ステップ)センサ位置と超音波モードを決定し、探傷点に超音波を収束させるためのアレイセンサを構成する超音波素子間の超音波発振開始時間差(遅延時間)を解析する。センサ位置は、亀裂頻発箇所の検出ゲインが最小となるように決定する。センサ位置決定に伴い超音波入射角も決定され、入射角に合わせて超音波発振モードを縦波か横波に決定する。図24と図25に示したように、縦波反射効率は20°以下で、横波反射効率は20°以上で大きくなる。そこで、図30に示すように、超音波入射角が20°以下では縦波、20°以上では横波により探傷を行う。   (Fourth Step) The sensor position and the ultrasonic mode are determined, and the ultrasonic oscillation start time difference (delay time) between the ultrasonic elements constituting the array sensor for converging the ultrasonic wave at the flaw detection point is analyzed. The sensor position is determined so that the detection gain of the crack frequent occurrence point is minimized. As the sensor position is determined, the ultrasonic incident angle is also determined, and the ultrasonic oscillation mode is determined to be longitudinal or transverse according to the incident angle. As shown in FIGS. 24 and 25, the longitudinal wave reflection efficiency is greater than 20 °, and the transverse wave reflection efficiency is greater than 20 °. Therefore, as shown in FIG. 30, flaw detection is performed with longitudinal waves when the ultrasonic incident angle is 20 ° or less, and with transverse waves when the angle of incidence is 20 ° or more.

図10は遅延時間計算方法を説明した図で、超音波探傷センサを構成する超音波素子40の遅延時間を調整し、収束点nでの位相を揃えて超音波が強め合うようにする。遅延時間は(3)式で計算される。   FIG. 10 is a diagram for explaining a delay time calculation method, in which the delay time of the ultrasonic element 40 constituting the ultrasonic flaw detection sensor is adjusted so that the ultrasonic waves are intensified by aligning the phases at the convergence point n. The delay time is calculated by equation (3).

遅延時間=超音波素子間の距離差÷超音波音速 …(3)
図11は遅延時間の計算例で、曲線Jは縦波、曲線Kは横波の収束条件の計算例を表す。縦波と横波は音速が異なるので遅延時間に差異が生じる。この遅延時間の差異を利用して射ち分ける。
Delay time = distance difference between ultrasonic elements ÷ ultrasonic speed of sound (3)
FIG. 11 shows a calculation example of the delay time, where the curve J represents a longitudinal wave and the curve K represents a calculation example of a convergence condition of a transverse wave. Since the longitudinal wave and the transverse wave have different sound speeds, a difference occurs in the delay time. Shoot by using the difference in delay time.

(第5ステップ)第4ステップで決定した超音波探傷センサ設置位置の情報を、信号線を介してアクチュエータドライバに指示する。   (Fifth Step) Information on the ultrasonic flaw detection sensor installation position determined in the fourth step is instructed to the actuator driver via a signal line.

(第6ステップ)超音波モード、遅延時間、検出ゲインをパソコンから超音波探傷装置に信号線を介して指令する。   (Sixth Step) Commands the ultrasonic mode, delay time, and detection gain from the personal computer to the ultrasonic flaw detector via the signal line.

(第7ステップ)第5ステップで指示した超音波探傷センサ設置位置の情報に基づき、アクチュエータを動かしてセンサ位置と角度を調整する。   (Seventh step) Based on the information on the ultrasonic flaw detection sensor installation position instructed in the fifth step, the sensor position and angle are adjusted by moving the actuator.

(第8ステップ)アクチュエータドライバから信号線を介して回転メカに電力を供給し、動翼上でセンサを回転させるとともに、超音波探傷する。   (Eighth step) Electric power is supplied from the actuator driver to the rotating mechanism via the signal line, the sensor is rotated on the moving blade, and ultrasonic flaw detection is performed.

(第9ステップ)超音波探傷結果を超音波探傷装置のモニタに表示する。   (9th step) The ultrasonic flaw detection result is displayed on the monitor of the ultrasonic flaw detector.

図5は第1実施例における信号伝達のフロー図で、パソコンのキーボード26あるいは磁気光記録媒体27と磁気記録媒体のうち1つ以上の装置により構成される記録メディア27から動翼形状データを入力する。入力データはI/Oポート25を介してCPU21に伝達される。CPUでは形状データに基づき超音波入射角と伝播距離を計算する。また、ハードディスクドライブ(HDD)22、ランダムアクセスメモリ(RAM)23、リードオンリーメモリー(ROM)24に記録した超音波減衰データに基づき検出ゲインを計算する。計算に基づき検出ゲインが小さくなるよう超音波探傷センサ設置位置を決定し、I/Oポートを介してアクチュエータドライバに伝達する。また、HDD、ROM、RAMのいずれかに記録した超音波音速をデータベースに、遅延時間パターンをCPUで計算し、I/Oポートを介して検出ゲインとともに超音波探傷装置に伝達する。   FIG. 5 is a flowchart of signal transmission in the first embodiment. The blade shape data is input from the keyboard 26 of the personal computer or the recording medium 27 constituted by one or more of the magnetic optical recording medium 27 and the magnetic recording medium. To do. Input data is transmitted to the CPU 21 via the I / O port 25. The CPU calculates the ultrasonic incident angle and propagation distance based on the shape data. Further, the detection gain is calculated based on the ultrasonic attenuation data recorded in the hard disk drive (HDD) 22, random access memory (RAM) 23, and read only memory (ROM) 24. Based on the calculation, the ultrasonic flaw detection sensor installation position is determined so as to reduce the detection gain, and is transmitted to the actuator driver via the I / O port. Further, the ultrasonic sound velocity recorded in any of the HDD, ROM, and RAM is calculated in the database, the delay time pattern is calculated by the CPU, and is transmitted to the ultrasonic flaw detector together with the detection gain via the I / O port.

アクチュエータドライバでは超音波探傷センサ位置の指示値に基づいて、D/Aコンバータ30を介してアクチュエータに駆動電力を供給する。駆動電力供給時の電圧と電流をA/Dコンバータ29とI/Oポートを介してCPUに伝え、実際の駆動量を計算して供給電力を調整する。また、回転メカの回転指示に基づいて、回転メカ駆動部にD/Aコンバータを介して駆動電力を供給する。駆動電力供給時の電圧と電流をA/DコンバータとI/Oポートを介してCPUに伝え、実際の駆動量を評価して供給電力を調整する。駆動速度と供給電力の関係は、HDD、RAM、ROMのいずれか1つ以上の記録媒体に記録しておくことにより、供給電圧値を決定するとともに、実際に供給された電流と電圧から駆動量を逆算する。また、アクチュエータドライバとパソコンのI/Oポートを介してパソコンのCPUに駆動量を伝達し、HDDとRAMのいずれか1つ以上の記録媒体に記録する。   The actuator driver supplies drive power to the actuator via the D / A converter 30 based on the indication value of the ultrasonic flaw detection sensor position. The voltage and current when driving power is supplied are transmitted to the CPU via the A / D converter 29 and the I / O port, and the actual driving amount is calculated to adjust the supplied power. Further, based on the rotation instruction of the rotating mechanism, the driving power is supplied to the rotating mechanism driving unit via the D / A converter. The voltage and current when driving power is supplied are transmitted to the CPU via the A / D converter and the I / O port, and the actual driving amount is evaluated to adjust the supplied power. The relationship between the driving speed and the supplied power is determined by recording on one or more recording media of HDD, RAM, and ROM to determine the supply voltage value, and the drive amount from the actually supplied current and voltage. Is calculated backward. Further, the drive amount is transmitted to the CPU of the personal computer via the actuator driver and the personal computer I / O port, and is recorded on one or more recording media of the HDD and RAM.

超音波探傷装置では、検出ゲインの指示値と遅延時間の指示値をI/Oポートを介してCPUに伝える。CPUでは遅延時間の指示値に基づき、I/Oポート、D/Aコンバータを介して超音波素子に遅延時間差を設けて電圧を印加し、超音波を発振する。また、CPUでは、検出ゲインの指示値に基づいて、超音波探傷センサで受信する反射波の入力電圧のA/DコンバータのゲインをI/Oポートを介して指示する。超音波探傷結果は、I/Oポートを介してCPUに伝達し、RAMあるいはHDDに記録する。この結果は、I/Oポートを介してモニタに表示する。また、超音波探傷装置とパソコンのI/Oポートを介してパソコンのCPUに伝達し、パソコンのRAMあるいはHDDにも記録する。   In the ultrasonic flaw detector, an instruction value for detection gain and an instruction value for delay time are transmitted to the CPU via the I / O port. The CPU oscillates the ultrasonic wave by applying a voltage with a delay time difference to the ultrasonic element via the I / O port and the D / A converter based on the instruction value of the delay time. Further, the CPU instructs the gain of the A / D converter of the input voltage of the reflected wave received by the ultrasonic flaw detection sensor via the I / O port based on the detected gain instruction value. The ultrasonic flaw detection result is transmitted to the CPU via the I / O port and recorded in the RAM or HDD. This result is displayed on the monitor via the I / O port. In addition, the data is transmitted to the CPU of the personal computer via the ultrasonic flaw detector and the I / O port of the personal computer, and recorded in the RAM or HDD of the personal computer.

本実施例は以上説明したように構成されているので、多種の形状の動翼に超音波探傷センサを設置可能である。また、縦波と横波を超音波入射角に応じて使い分けることにより、従来の縦波のみを用いた探傷よりも約2倍の広さの探傷が可能である。   Since the present embodiment is configured as described above, ultrasonic flaw detection sensors can be installed on various shapes of moving blades. Further, by using the longitudinal wave and the transverse wave properly according to the ultrasonic incident angle, it is possible to perform flaw detection about twice as wide as the conventional flaw detection using only the longitudinal wave.

本発明の第2実施例を図12〜17、図24〜27及び(1)式〜(3)式を使って説明する。   A second embodiment of the present invention will be described with reference to FIGS. 12 to 17, FIGS. 24 to 27 and equations (1) to (3).

図12は第2実施例における装置構成図であり、電子走査式超音波探傷装置2、センサ押さえジグ3、回転メカ5、アーム6、回転メカドライバ43、回転メカドライバと回転メカ間の信号線104、電子走査式超音波探傷装置とセンサ押さえジグ上に設けた超音波センサとの信号線103、超音波探傷装置と回転メカドライバ間の信号線106により構成する。   FIG. 12 is an apparatus configuration diagram in the second embodiment. The electronic scanning ultrasonic flaw detector 2, the sensor holding jig 3, the rotating mechanism 5, the arm 6, the rotating mechanism driver 43, and signal lines between the rotating mechanism driver and the rotating mechanism. 104, a signal line 103 between the electronic scanning ultrasonic flaw detector and the ultrasonic sensor provided on the sensor holding jig, and a signal line 106 between the ultrasonic flaw detector and the rotating mechanical driver.

図13は第2実施例における回転メカの構成図で、センサ押さえジグ3、アーム6、モーター71と駆動輪70とそれらを固定する容器からなる回転メカ駆動部9、レール44、手動位置調整機構45、回転メカドライバと回転メカ駆動部の信号線104により構成する。信号線104を介して回転メカドライバ43からモーター71に電力を供給し、レール44を挟んだ駆動輪70を回転させることにより、超音波探傷センサを動翼62上で回転させる。また、オス型の螺旋とセンサ押さえジグ3上に設けたメス型の螺旋を噛み合わせ、手動でオス型の螺旋を回転させることによりセンサ高さを調整する手動位置調整装置45を用いて、動翼62上にセンサ押さえジグ3を移動させる。   FIG. 13 is a configuration diagram of the rotating mechanism in the second embodiment. The sensor pressing jig 3, the arm 6, the motor 71 and the driving wheel 70, and the rotating mechanism driving unit 9 including the container for fixing them, the rail 44, and the manual position adjusting mechanism. 45, comprising a rotating mechanical driver and a signal line 104 of the rotating mechanical drive unit. The ultrasonic flaw detection sensor is rotated on the moving blade 62 by supplying electric power from the rotating mechanical driver 43 to the motor 71 via the signal line 104 and rotating the driving wheel 70 sandwiching the rail 44. Further, a manual position adjusting device 45 that adjusts the sensor height by meshing a male spiral and a female spiral provided on the sensor holding jig 3 and manually rotating the male spiral is used to move the spiral. The sensor holding jig 3 is moved onto the wing 62.

図14は第2実施例におけるセンサ押さえジグ3の構成図で、超音波探傷センサ1、サスペンショ機構74、ジョイント72、超音波探傷装置と超音波センサ間の信号線103により構成する。超音波探傷センサ1はちょうつがい型のジョイント72で屈曲するようにし、動翼の屈曲部と超音波探傷センサの屈曲部を合致させて、設置性を確保する。また第1実施例と同様にサスペンション機構で動翼を超音波探傷センサに押し付けることにより、動翼間の段差をサスペンション機構で吸収し、段差を乗り越えられる構造とする。   FIG. 14 is a configuration diagram of the sensor pressing jig 3 in the second embodiment, which includes an ultrasonic flaw detection sensor 1, a suspension mechanism 74, a joint 72, and a signal line 103 between the ultrasonic flaw detection apparatus and the ultrasonic sensor. The ultrasonic flaw detection sensor 1 is bent by a hinge-type joint 72, and the bent portion of the moving blade and the bent portion of the ultrasonic flaw detection sensor are matched to ensure installation. Further, as in the first embodiment, the suspension mechanism presses the moving blade against the ultrasonic flaw detection sensor so that the step between the moving blades can be absorbed by the suspension mechanism and the step can be overcome.

第2実施例における超音波探傷ステップを示す。   The ultrasonic flaw detection step in 2nd Example is shown.

(第1ステップ)超音波探傷装置に動翼形状を入力する。   (First step) The moving blade shape is input to the ultrasonic flaw detector.

(第2ステップ)図16に示すように各超音波素子と探傷部位を直線で結び、超音波の入射角と伝播距離を計算する。   (Second Step) As shown in FIG. 16, each ultrasonic element and the flaw detection site are connected with a straight line, and the incident angle and propagation distance of the ultrasonic wave are calculated.

(第3ステップ)第1実施例と同様に、超音波伝播距離と超音波入射角の計算結果、図24〜27の超音波減衰データと(1)式と(2)式を用いて検出ゲインを計算する。図17に第2実施例における検出ゲイン計算例を示す。この計算は図6に示した形状の動翼に対して行ったものである。図中の曲線Lは1段目の亀裂頻発箇所、曲線Mは2段目の亀裂頻発箇所、曲線Nは3段目の亀裂頻発箇所の検出ゲインを表す。   (Third Step) Similar to the first embodiment, the detection gain is calculated using the calculation result of the ultrasonic propagation distance and the ultrasonic incident angle, the ultrasonic attenuation data of FIGS. 24 to 27, and the equations (1) and (2). Calculate FIG. 17 shows an example of detection gain calculation in the second embodiment. This calculation was performed for a moving blade having the shape shown in FIG. A curve L in the figure represents a detection gain at a first-stage crack frequent occurrence location, a curve M represents a second-stage crack frequent occurrence location, and a curve N represents a third-stage crack frequent occurrence location.

(第4ステップ)図17の検出ゲインが最小になる超音波素子を中心とし、その前後の12個以内の超音波素子を使用素子として、第1実施例と同様に(3)式を用いて遅延時間を計算する。   (Fourth Step) Using the expression (3) as in the first embodiment, with the ultrasonic element having the minimum detection gain shown in FIG. Calculate the delay time.

(第5ステップ)手動位置調整機構45を動かして超音波探傷センサの屈曲部と動翼の屈曲部が一致するよう超音波探傷センサを移動させる。   (Fifth step) The ultrasonic position sensor 45 is moved by moving the manual position adjusting mechanism 45 so that the bent portion of the ultrasonic flaw detection sensor and the bent portion of the moving blade coincide with each other.

(第6ステップ)アクチュエータドライバから信号線を介して回転メカに電力を供給し、動翼上でセンサを回転させるとともに、超音波探傷する。   (Sixth Step) Electric power is supplied from the actuator driver to the rotating mechanism via the signal line, the sensor is rotated on the moving blade, and ultrasonic flaw detection is performed.

(第7ステップ)超音波探傷結果を超音波探傷装置のモニタに表示する。   (Seventh step) The ultrasonic flaw detection result is displayed on the monitor of the ultrasonic flaw detector.

図15に第2実施例における信号伝達のフロー図を表す。   FIG. 15 is a flowchart of signal transmission in the second embodiment.

超音波探傷装置のキーボードあるいは記録メディアから動翼形状データを入力し、I/Oポートを介してCPUに伝達する。CPUでは形状データとRAMあるいはHDDに記録した図24〜27に示した超音波減衰データに基づき、超音波入射角、超音波伝播距離、検出ゲインを計算して使用する超音波素子を決定し、RAMあるいはHDDに記録した音速データを用いて遅延時間を計算する。遅延時間計算後、超音波探傷を開始する。超音波探傷開始後、超音波探傷装置と回転メカドライバのI/Oポートを介して回転メカドライバのCPUに回転開始の指示を与える。   Rotor blade shape data is input from the keyboard or recording medium of the ultrasonic flaw detector, and transmitted to the CPU via the I / O port. The CPU determines the ultrasonic element to be used by calculating the ultrasonic incident angle, ultrasonic propagation distance, and detection gain based on the shape data and the ultrasonic attenuation data shown in FIGS. The delay time is calculated using sound speed data recorded in the RAM or HDD. After the delay time is calculated, ultrasonic flaw detection is started. After starting the ultrasonic flaw detection, an instruction to start rotation is given to the CPU of the rotating mechanical driver via the ultrasonic flaw detector and the I / O port of the rotating mechanical driver.

回転メカドライバのCPUでは回転開始指示に従い、I/Oポート、D/Aコンバータを介して回転メカに電力を供給する。供給電圧と電流はA/Dコンバータ、I/Oポートを介してCPUに伝達する。CPUではHDD、RAM、ROMに記録した駆動量と供給電力の関係から駆動量を計算し、回転メカドライバと超音波探傷装置のI/Oポートを介して超音波探傷装置のCPUに伝達する。超音波探傷装置のCPUでは、回転メカの回転量と超音波探傷結果をHDDあるいはRAMに記録する。また、超音波探傷結果をI/Oポートを介してモニタに伝達し、画像表示する。   The CPU of the rotating mechanism driver supplies power to the rotating mechanism via the I / O port and the D / A converter in accordance with the rotation start instruction. The supply voltage and current are transmitted to the CPU via the A / D converter and the I / O port. The CPU calculates the drive amount from the relationship between the drive amount recorded in the HDD, RAM, and ROM and the supplied power, and transmits the calculated drive amount to the CPU of the ultrasonic flaw detector via the rotary mechanical driver and the I / O port of the ultrasonic flaw detector. The CPU of the ultrasonic flaw detector records the amount of rotation of the rotating mechanism and the ultrasonic flaw detection result in the HDD or RAM. In addition, the ultrasonic flaw detection result is transmitted to the monitor via the I / O port, and an image is displayed.

本発明は以上説明したように構成されているので、第1実施例と同様に多種の形状の動翼に超音波探傷センサを設置可能である。また、縦波と横波を超音波入射角に応じて使い分けることにより、従来の縦波のみを利用した探傷よりも広域の探傷が可能である。更に、第1実施例に較べて、センサ押さえジグの簡素化が可能である。   Since the present invention is configured as described above, it is possible to install ultrasonic flaw detection sensors on various shapes of moving blades as in the first embodiment. Further, by using the longitudinal wave and the transverse wave properly according to the ultrasonic incident angle, it is possible to perform flaw detection over a wider area than conventional flaw detection using only the longitudinal wave. Furthermore, the sensor pressing jig can be simplified as compared with the first embodiment.

本発明の第3実施例を図18〜27及び(1)式〜(3)式を使って説明する。   A third embodiment of the present invention will be described with reference to FIGS. 18 to 27 and equations (1) to (3).

図18は第3実施例における装置構成図で、電子走査式超音波探傷装置2、センサ押さえジグ3、回転メカ5、アーム6、パソコン7、回転メカドライバ43、ボンベ51、電動減圧弁52、ガス供給配管53、パソコンと超音波探傷装置間の信号線、超音波探傷装置とセンサ押さえジグ上に設置した超音波センサとの信号線101、パソコンと回転メカドライバ間の信号線102、回転メカドライバから回転メカ駆動部に対する信号線104、パソコンから電動減圧弁に対する信号線107により構成する。回転メカは第1実施例あるいは第2実施例のいずれかと同じ構造とする。   FIG. 18 is an apparatus configuration diagram in the third embodiment. An electronic scanning ultrasonic flaw detector 2, a sensor holding jig 3, a rotating mechanism 5, an arm 6, a personal computer 7, a rotating mechanism driver 43, a cylinder 51, an electric pressure reducing valve 52, Gas supply pipe 53, signal line between personal computer and ultrasonic flaw detector, signal line 101 between ultrasonic flaw detector and ultrasonic sensor placed on sensor holding jig, signal line 102 between personal computer and rotary mechanical driver, rotary mechanism A signal line 104 from the driver to the rotating mechanical drive unit and a signal line 107 from the personal computer to the electric pressure reducing valve are configured. The rotating mechanism has the same structure as that of either the first embodiment or the second embodiment.

図19は第3実施例におけるセンサ押さえジグ3の構成図で、屈伸性を有するフレキシブルアレイ型の超音波探傷センサ1、ゴムで構成され屈伸性を有するバルーン54、ガスボンベからバルーンへのガス供給配管53により構成する。   FIG. 19 is a configuration diagram of the sensor holding jig 3 in the third embodiment. The flexible array type ultrasonic flaw detection sensor 1 having flexibility and elasticity, a balloon 54 made of rubber and having elasticity, and a gas supply pipe from the gas cylinder to the balloon. 53.

図20は第3実施例における超音波探傷センサ1の動翼62への押し付け方法を表す図で、ガスを供給してバルーン54の内圧を上昇させ、屈伸性を持つフレキシブル超音波探傷センサを動翼に押し付ける。フレキシブル超音波探傷センサとバルーンは屈伸性を持つため、動翼間の段差に追随して、超音波探傷センサを動翼に設置可能である。   FIG. 20 is a diagram showing a method of pressing the ultrasonic flaw detection sensor 1 against the moving blade 62 in the third embodiment. Gas is supplied to increase the internal pressure of the balloon 54, and the flexible ultrasonic flaw detection sensor having bending and stretching is moved. Press against the wings. Since the flexible ultrasonic flaw detection sensor and the balloon have flexibility, the ultrasonic flaw detection sensor can be installed on the moving blade following the step between the moving blades.

第3実施例における超音波探傷ステップを示す。   The ultrasonic flaw detection step in 3rd Example is shown.

(第1ステップ)パソコンに動翼形状を入力する。   (First step) The blade shape is input to the personal computer.

(第2ステップ)図22に示すように、探傷点から動翼外面に線を引き、測定点ごとの検出ゲインの入射角依存性を計算する。入射角ごとに超音波伝播距離を計算し、第1実施例と同様に図24〜27の超音波減衰データを(1)式と(2)式にあてはめて検出ゲインを計算する。図23に第3実施例における検出ゲイン計算例を示す。この計算は図6に示した形状の動翼に対して行ったものである。図中の曲線Oは1段目の亀裂頻発箇所、曲線Pは2段目の亀裂頻発箇所、曲線Qは3段目の亀裂頻発箇所の検出ゲイン計算結果を表す。   (Second Step) As shown in FIG. 22, a line is drawn from the flaw detection point to the outer surface of the moving blade, and the incident angle dependence of the detection gain at each measurement point is calculated. The ultrasonic propagation distance is calculated for each incident angle, and the detection gain is calculated by applying the ultrasonic attenuation data of FIGS. 24 to 27 to the equations (1) and (2) as in the first embodiment. FIG. 23 shows an example of detection gain calculation in the third embodiment. This calculation was performed for a moving blade having the shape shown in FIG. The curve O in the figure represents the detection gain calculation result of the first-stage crack frequent occurrence location, the curve P represents the second-stage crack frequent occurrence location, and the curve Q represents the third-stage crack frequent occurrence location.

(第3ステップ)各測定点の検出ゲインが一致する入射角を求める。この解析例では、3段目の検出ゲインの最小値が他の段に対して大きく8dBとなるので、1段目、2段目は検出ゲインが8dBとなる角度、それぞれ10°、17°の入射角で超音波探傷を行う。   (Third step) An incident angle at which the detection gains at the respective measurement points coincide is obtained. In this analysis example, since the minimum value of the detection gain at the third stage is 8 dB, which is larger than the other stages, the angles at which the detection gain is 8 dB at the first stage and the second stage are 10 ° and 17 °, respectively. Ultrasonic flaw detection is performed at the incident angle.

(第4ステップ)第3ステップで入射角を決定することで、その入射角を与える超音波素子が決定され、第1実施例と同様に入射角に応じて超音波モードを横波か縦波に決定する。   (Fourth step) By determining the incident angle in the third step, the ultrasonic element that gives the incident angle is determined, and the ultrasonic mode is changed to the transverse wave or the longitudinal wave according to the incident angle as in the first embodiment. decide.

(第5ステップ)第1実施例に示した(3)式を用いて遅延時間を計算する。   (Fifth Step) The delay time is calculated using the equation (3) shown in the first embodiment.

(第6ステップ)超音波モード・遅延時間・検出ゲイン・使用超音波素子をパソコンから超音波探傷装置に指令する。   (Sixth Step) The ultrasonic mode, delay time, detection gain, and ultrasonic element to be used are instructed from the personal computer to the ultrasonic flaw detector.

(第7ステップ)超音波探傷センサを動翼上に移動させ、バルーンを加圧して拡張させて超音波センサを動翼に押し付ける。   (Seventh step) The ultrasonic flaw detection sensor is moved onto the moving blade, the balloon is pressurized and expanded, and the ultrasonic sensor is pressed against the moving blade.

(第8ステップ)アクチュエータドライバから信号線を介して回転メカに電力を供給し、動翼上でセンサを回転させるとともに、超音波探傷を行う。   (Eighth Step) Electric power is supplied from the actuator driver to the rotating mechanism via the signal line, the sensor is rotated on the moving blade, and ultrasonic flaw detection is performed.

(第9ステップ)超音波探傷結果を超音波探傷装置のモニタに表示する。   (9th step) The ultrasonic flaw detection result is displayed on the monitor of the ultrasonic flaw detector.

図21に第3実施例における信号伝達のフロー図を示す。   FIG. 21 is a flowchart of signal transmission in the third embodiment.

パソコンのキーボードあるいは記録メディアから形状データを入力し、I/Oポートを介してCPUに伝達する。CPUでは形状データとRAMあるいはHDDに記録した図24〜27に示した超音波減衰データに基づき、検出ゲインの超音波入射角依存性を計算し、各探傷点における検出ゲインが同一となるように入射角を決定する。この入射角に応じて使用する超音波素子と超音波モードを決定し、RAMあるいはHDDに記録した音速データを用いて遅延時間を計算する。これらの計算で求めた使用超音波素子、検出ゲイン、超音波モードと遅延時間を、パソコンと超音波探傷装置のI/Oポートを介して超音波探傷装置のCPUに伝える。   Shape data is input from a personal computer keyboard or recording media and transmitted to the CPU via the I / O port. The CPU calculates the ultrasonic incident angle dependence of the detection gain based on the shape data and the ultrasonic attenuation data shown in FIGS. 24 to 27 recorded in the RAM or HDD, so that the detection gain at each flaw detection point becomes the same. Determine the angle of incidence. The ultrasonic element to be used and the ultrasonic mode are determined according to the incident angle, and the delay time is calculated using the sound velocity data recorded in the RAM or HDD. The ultrasonic element used, the detection gain, the ultrasonic mode, and the delay time obtained by these calculations are transmitted to the CPU of the ultrasonic flaw detector via the personal computer and the I / O port of the ultrasonic flaw detector.

超音波探傷装置のCPUでは指示された探傷条件に基づき、I/Oポート、DAコンバータを介して超音波探傷センサに電圧を印加する。また、反射波を受信した時の超音波探傷センサの電圧をADコンバータ、I/Oポートを介してCPUに伝え、超音波探傷装置のI/Oポート、パソコンのI/Oポートを介してパソコンのCPUに伝達する。また、CPUでは、検出ゲインの指示値の基づいて、超音波探傷センサで受信する反射波の入力電圧のA/DコンバータのゲインをI/Oポートを介して指示する。超音波探傷結果はI/Oポートを介してCPUに伝え、I/Oポートを介してモニタに表示する。また、超音波探傷結果は超音波探傷装置とパソコンのI/Oポートを介してパソコンのCPUに伝え、HDDあるいはRAMに記録する。   The CPU of the ultrasonic flaw detection apparatus applies a voltage to the ultrasonic flaw detection sensor via the I / O port and the DA converter based on the instructed flaw detection conditions. In addition, the voltage of the ultrasonic flaw detection sensor when the reflected wave is received is transmitted to the CPU via the AD converter and I / O port, and the personal computer is transmitted via the I / O port of the ultrasonic flaw detection device and the I / O port of the personal computer. To the CPU. Further, the CPU instructs the gain of the A / D converter of the input voltage of the reflected wave received by the ultrasonic flaw detection sensor through the I / O port based on the detected gain instruction value. The ultrasonic flaw detection result is transmitted to the CPU via the I / O port and displayed on the monitor via the I / O port. The ultrasonic flaw detection result is transmitted to the CPU of the personal computer via the ultrasonic flaw detector and the I / O port of the personal computer, and recorded in the HDD or RAM.

パソコンのCPUから回転メカ駆動の指令をパソコンのI/Oポートと回転メカドライバのI/Oポートを介してDAコンバータに伝え、回転メカに電力を供給し、動翼上で超音波探傷センサを回転させながら、超音波探傷を行う。回転メカ駆動時の電圧と電流は、ADコンバータ、回転メカドライバとパソコンのI/Oポートを介して、パソコンのCPUに伝え、駆動電圧と電流から駆動量を求める。駆動電圧・電流と駆動量の関係をHDD、ROMあるいはRAMに記録しておき、駆動電流と電圧の値を駆動量に換算してRAMあるいはHDDに記録する。   Rotation mechanism drive command from PC CPU is transmitted to DA converter via PC I / O port and rotation mechanism driver I / O port, power is supplied to rotation mechanism, ultrasonic flaw detection sensor is installed on moving blade Perform ultrasonic testing while rotating. The voltage and current when driving the rotating mechanism are transmitted to the CPU of the personal computer via the AD converter, the rotating mechanical driver and the I / O port of the personal computer, and the driving amount is obtained from the driving voltage and current. The relationship between the drive voltage / current and the drive amount is recorded in the HDD, ROM or RAM, and the drive current and voltage values are converted into the drive amount and recorded in the RAM or HDD.

本実施例は以上説明したように構成されているので、前記した2つの実施例と同様に多種の形状の動翼に超音波探傷センサを設置可能で、縦波と横波を超音波入射角に応じて使い分けることにより、従来の縦波のみを利用した探傷よりも広域の探傷が可能である。また、前記した2つの実施例に較べて、超音波探傷センサの動翼への設置が容易で、超音波探傷条件が広範囲に設定可能である。   Since the present embodiment is configured as described above, an ultrasonic flaw detection sensor can be installed on various types of moving blades as in the above-described two embodiments, and longitudinal waves and transverse waves are converted into ultrasonic incident angles. By using properly according to this, flaw detection over a wider area is possible than conventional flaw detection using only longitudinal waves. Compared with the two embodiments described above, the ultrasonic flaw detection sensor can be easily installed on the moving blade, and the ultrasonic flaw detection conditions can be set in a wide range.

第1実施例における超音波探傷装置の構成図。The block diagram of the ultrasonic flaw detector in 1st Example. 第1実施例における回転メカの構成図。The block diagram of the rotation mechanism in 1st Example. 第1実施例におけるセンサ押さえジグの構成図。The block diagram of the sensor pressing jig in 1st Example. 第1実施例における超音波センサの押付方法を示した説明図。Explanatory drawing which showed the pressing method of the ultrasonic sensor in 1st Example. 第1実施例における信号伝達のフロー図。The flowchart of the signal transmission in 1st Example. 第1実施例における超音波入射角と伝播距離の計算方法を説明するための説明図。Explanatory drawing for demonstrating the calculation method of the ultrasonic incident angle and propagation distance in 1st Example. 第1実施例における超音波入射角の計算例を示した図。The figure which showed the example of calculation of the ultrasonic incident angle in 1st Example. 第1実施例における超音波伝播距離の計算例を示した図。The figure which showed the example of calculation of the ultrasonic propagation distance in 1st Example. 第1実施例における検出ゲインの計算例を示した図。The figure which showed the example of calculation of the detection gain in 1st Example. 遅延時間計算方法を説明するための図。The figure for demonstrating the delay time calculation method. 遅延時間計算例を示した図。The figure which showed the example of delay time calculation. 第2実施例における超音波探傷装置の構成図。The block diagram of the ultrasonic flaw detector in 2nd Example. 第2実施例における回転メカの構成図。The block diagram of the rotation mechanism in 2nd Example. 第2実施例におけるセンサ押さえジグの構成図。The block diagram of the sensor pressing jig in 2nd Example. 第2実施例における信号伝達のフロー図。The flowchart of the signal transmission in 2nd Example. 第2実施例における検出ゲインの計算方法を説明するための図。The figure for demonstrating the calculation method of the detection gain in 2nd Example. 第2実施例における検出ゲインの計算例を示した図。The figure which showed the example of calculation of the detection gain in 2nd Example. 第3実施例における超音波探傷装置の構成図。The block diagram of the ultrasonic flaw detector in 3rd Example. 第3実施例におけるセンサ押さえジグの構成図。The block diagram of the sensor pressing jig in 3rd Example. 第3実施例における超音波センサの押付方法を示した説明図。Explanatory drawing which showed the pressing method of the ultrasonic sensor in 3rd Example. 第3実施例における信号伝達のフロー図。The signal transmission flowchart in 3rd Example. 第3実施例における検出ゲインの計算方法を説明するための図。The figure for demonstrating the calculation method of the detection gain in 3rd Example. 第3実施例における検出ゲインの計算例を示した図。The figure which showed the example of calculation of the detection gain in 3rd Example. 縦波検出強度の入射角依存性を表す図。The figure showing the incident angle dependence of longitudinal wave detection intensity. 横波検出強度の入射角依存性を表す図。The figure showing the incident angle dependence of a shear wave detection intensity | strength. 縦波検出強度の超音波伝播距離依存性を表す図。The figure showing the ultrasonic wave propagation distance dependence of longitudinal wave detection intensity. 横波検出強度の超音波伝播距離依存性を表す図。The figure showing the ultrasonic wave propagation distance dependence of a shear wave detection intensity | strength. タービンの構成図。The block diagram of a turbine. 従来のタービン動翼植込み部の検査方法を示した説明図。Explanatory drawing which showed the inspection method of the conventional turbine rotor blade implantation part. 超音波入射角に応じた使用超音波モードを示した図。The figure which showed the use ultrasonic mode according to an ultrasonic incident angle.

符号の説明Explanation of symbols

1…超音波探傷センサ、2…電子走査式超音波探傷装置、3…センサ押さえジグ、4…アクチュエータドライバ、5…回転メカ、6…アーム、7…パソコン、8…アクチュエータ、9…回転メカ駆動部、10…ベルト、11…ローラー、21…CPU、22…ハードディスクドライブ(HDD)、23…ランダムアクセスメモリ(RAW)、24…リードオンリーメモリー(ROM)、25…I/Oポート、26…キーボード、27…記録メディア、28…モニタ、29…A/Dコンバータ、30…D/Aコンバータ、40…超音波素子、43…回転メカドライバ、44…レール、45…手動位置調整機構、51…ボンベ、52…電動減圧弁、53…ガス供給配管、54…バルーン、62…動翼、63…ディスク、64…ローター軸、70…駆動輪、71…モーター、72…モーターと駆動輪を固定する容器、73…ジョイント、74…サスペンション機構。   DESCRIPTION OF SYMBOLS 1 ... Ultrasonic flaw detection sensor, 2 ... Electronic scanning ultrasonic flaw detector, 3 ... Sensor holding jig, 4 ... Actuator driver, 5 ... Rotation mechanism, 6 ... Arm, 7 ... Personal computer, 8 ... Actuator, 9 ... Rotation mechanism drive , 10 ... belt, 11 ... roller, 21 ... CPU, 22 ... hard disk drive (HDD), 23 ... random access memory (RAW), 24 ... read only memory (ROM), 25 ... I / O port, 26 ... keyboard 27 ... Recording medium, 28 ... Monitor, 29 ... A / D converter, 30 ... D / A converter, 40 ... Ultrasonic element, 43 ... Rotating mechanical driver, 44 ... Rail, 45 ... Manual position adjusting mechanism, 51 ... Cylinder 52 ... Electric pressure reducing valve, 53 ... Gas supply pipe, 54 ... Balloon, 62 ... Rotor blade, 63 ... Disc, 64 ... Rotor shaft, 70 ... A driving wheel, 71 ... motor, a container for fixing a 72 ... motor and drive wheels, 73 ... joint, 74 ... suspension mechanism.

Claims (11)

同一のアレイ型超音波探傷センサを用いて、超音波の入射方向と被入射面の法線とのなす角度が−20〜20°の範囲で縦波を収束させ、−20°以下あるいは20°以上で横波を収束させることを特徴とする超音波探傷方法。   Using the same array-type ultrasonic flaw detection sensor, longitudinal waves are converged in the range where the angle between the incident direction of ultrasonic waves and the normal line of the incident surface is -20 to 20 °, and is -20 ° or less or 20 °. An ultrasonic flaw detection method characterized by converging a transverse wave as described above. 発電プラントのタービン動翼植込み部の検査に使用する請求項1に記載の超音波探傷方法。   The ultrasonic flaw detection method according to claim 1, wherein the ultrasonic flaw detection method is used for inspection of a turbine rotor blade implantation portion of a power plant. 被検査物の検査対象部位に複数個のアレイ型超音波探傷センサを接触させ、それぞれのセンサで超音波の入射方向と被入射面の法線とのなす角度が−20〜20°の範囲の時に縦波を収束させ、それ以外の角度の時に横波を収束させるようにしたことを特徴とする超音波探傷方法。   A plurality of array-type ultrasonic flaw detection sensors are brought into contact with the inspection target portion of the inspection object, and the angle between the incident direction of the ultrasonic waves and the normal line of the incident surface is within a range of −20 to 20 ° with each sensor. An ultrasonic flaw detection method characterized by sometimes converging longitudinal waves and converging transverse waves at other angles. 請求項1〜3のいずれかに記載の方法において、前記アレイ型超音波探傷センサが、ちょうつがいで屈曲するアレイ型超音波探傷センサよりなることを特徴とする超音波探傷方法。   4. The ultrasonic flaw detection method according to claim 1, wherein the array type ultrasonic flaw detection sensor comprises an array type ultrasonic flaw detection sensor that is bent by a hinge. 請求項1〜3のいずれかに記載の方法において、前記アレイ型超音波探傷センサが、フレキシブルアレイ型超音波探傷センサよりなることを特徴とする超音波探傷方法。   4. The ultrasonic flaw detection method according to claim 1, wherein the array type ultrasonic flaw detection sensor comprises a flexible array type flaw detection sensor. 検出ゲイン解析装置、電子走査式超音波探傷装置、長さ12mm以下のアレイ型超音波探傷センサおよびセンサ位置移動機構を具備し、前記アレイ型超音波探傷センサに超音波の入射方向と被入射面の法線とのなす角度が−20〜20°の範囲で縦波を収束させ、−20°以下あるいは20°以上で横波を収束させる機構を備えたことを特徴とする超音波探傷システム。   A detection gain analyzing device, an electronic scanning ultrasonic flaw detector, an array type ultrasonic flaw detection sensor having a length of 12 mm or less, and a sensor position moving mechanism are provided, and the ultrasonic incident direction and the incident surface of the array type ultrasonic flaw detection sensor are provided. An ultrasonic flaw detection system comprising a mechanism for converging longitudinal waves in the range of −20 to 20 ° with respect to the normal line and converging transverse waves at −20 ° or less or 20 ° or more. 請求項6において、前記アレイ型超音波探傷センサを複数個備え、各センサにそれぞれ縦波を収束させる機構と横波を収束させる機構を備えたことを特徴とする超音波探傷システム。   The ultrasonic flaw detection system according to claim 6, comprising a plurality of the array type ultrasonic flaw detection sensors, each of which includes a mechanism for converging longitudinal waves and a mechanism for converging transverse waves. 請求項6又は7において、前記アレイ型超音波探傷センサが、ちょうつがいで屈曲するアレイ型超音波探傷センサよりなることを特徴とする超音波探傷システム。   8. The ultrasonic flaw detection system according to claim 6, wherein the array type ultrasonic flaw detection sensor comprises an array type ultrasonic flaw detection sensor that is bent by a hinge. 請求項6又は7において、前記アレイ型超音波探傷センサがフレキシブルアレイ型超音波探傷センサよりなることを特徴とする超音波探傷システム。   8. The ultrasonic flaw detection system according to claim 6, wherein the array type ultrasonic flaw detection sensor comprises a flexible array type flaw detection sensor. 検出ゲイン解析装置、電子走査式超音波探傷装置、屈曲アレイ型超音波探傷センサおよびセンサ位置移動機構を具備したことを特徴とする超音波探傷システム。   An ultrasonic flaw detection system comprising a detection gain analysis device, an electronic scanning ultrasonic flaw detection device, a bending array type ultrasonic flaw detection sensor, and a sensor position moving mechanism. 検出ゲイン解析装置、電子走査式超音波探傷装置、フレキシブルアレイ型超音波探傷センサおよびセンサ位置移動機構を具備したことを特徴とする超音波探傷システム。   An ultrasonic flaw detection system comprising a detection gain analysis device, an electronic scanning ultrasonic flaw detection device, a flexible array type ultrasonic flaw detection sensor, and a sensor position moving mechanism.
JP2005195834A 2005-07-05 2005-07-05 Ultrasonic flaw detection method and ultrasonic flaw detection system Pending JP2007017164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005195834A JP2007017164A (en) 2005-07-05 2005-07-05 Ultrasonic flaw detection method and ultrasonic flaw detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005195834A JP2007017164A (en) 2005-07-05 2005-07-05 Ultrasonic flaw detection method and ultrasonic flaw detection system

Publications (1)

Publication Number Publication Date
JP2007017164A true JP2007017164A (en) 2007-01-25

Family

ID=37754466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005195834A Pending JP2007017164A (en) 2005-07-05 2005-07-05 Ultrasonic flaw detection method and ultrasonic flaw detection system

Country Status (1)

Country Link
JP (1) JP2007017164A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276465A (en) * 2009-05-28 2010-12-09 Hitachi Engineering & Services Co Ltd Ultrasonic flaw detector and method therefor
CN103808796A (en) * 2012-11-07 2014-05-21 有研亿金新材料股份有限公司 Method used for detecting welding quality of welding carried out in intermediate layer connection manner
JP2014222172A (en) * 2013-05-13 2014-11-27 Jfeスチール株式会社 Inside defect measuring device
JP2020056687A (en) * 2018-10-02 2020-04-09 一般財団法人電力中央研究所 Transverse wave oblique angle flaw detection method and transverse wave/longitudinal wave simultaneous oblique angle flaw detection method by phased array ultrasonic method
CN111474246A (en) * 2020-04-24 2020-07-31 哈尔滨工业大学 Method for controlling hinge array ultrasonic phased array transducer probe

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728366U (en) * 1980-07-22 1982-02-15
JPS593256A (en) * 1982-06-29 1984-01-09 Toshiba Corp Array type probe
JPS5975147A (en) * 1982-10-22 1984-04-27 Hitachi Ltd Ultrasonic inspecting device
JPS59157560A (en) * 1983-02-28 1984-09-06 Hitachi Ltd Electron scanning type ultrasonic flaw detector
JPS61286747A (en) * 1985-06-14 1986-12-17 Hitachi Ltd Three-dimensional probe and three-dimensional imaging apparatus
JPH01158348A (en) * 1987-12-16 1989-06-21 Toshiba Corp Ultrasonic flaw detection apparatus
JPH03170050A (en) * 1989-11-29 1991-07-23 Hitachi Ltd Ultrasonic inspection device
JPH04136755A (en) * 1990-09-28 1992-05-11 Kyushu Electric Power Co Inc Ultrasonic image flaw detection apparatus using array-type ultrasonic probe
JPH04265856A (en) * 1991-02-21 1992-09-22 Hitachi Eng Co Ltd Sector scanning type ultrasonic flaw detector
JPH04274754A (en) * 1991-03-01 1992-09-30 Toshiba Corp Ultrasonic flaw detector for turbine rotor blade base
JPH10253605A (en) * 1997-03-10 1998-09-25 Mitsubishi Heavy Ind Ltd Multi-type ultrasonic probe
JPH11304774A (en) * 1998-04-24 1999-11-05 Hitachi Constr Mach Co Ltd Ultrasonic probe and ultrasonic inspection method using the same
JP2001305111A (en) * 2000-04-20 2001-10-31 Tokimec Inc Ultrasonic rail flaw detector
JP2003337120A (en) * 2003-06-16 2003-11-28 Hitachi Ltd Ultrasonic inspection method for low pressure turbine rotor

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728366U (en) * 1980-07-22 1982-02-15
JPS593256A (en) * 1982-06-29 1984-01-09 Toshiba Corp Array type probe
JPS5975147A (en) * 1982-10-22 1984-04-27 Hitachi Ltd Ultrasonic inspecting device
JPS59157560A (en) * 1983-02-28 1984-09-06 Hitachi Ltd Electron scanning type ultrasonic flaw detector
JPS61286747A (en) * 1985-06-14 1986-12-17 Hitachi Ltd Three-dimensional probe and three-dimensional imaging apparatus
JPH01158348A (en) * 1987-12-16 1989-06-21 Toshiba Corp Ultrasonic flaw detection apparatus
JPH03170050A (en) * 1989-11-29 1991-07-23 Hitachi Ltd Ultrasonic inspection device
JPH04136755A (en) * 1990-09-28 1992-05-11 Kyushu Electric Power Co Inc Ultrasonic image flaw detection apparatus using array-type ultrasonic probe
JPH04265856A (en) * 1991-02-21 1992-09-22 Hitachi Eng Co Ltd Sector scanning type ultrasonic flaw detector
JPH04274754A (en) * 1991-03-01 1992-09-30 Toshiba Corp Ultrasonic flaw detector for turbine rotor blade base
JPH10253605A (en) * 1997-03-10 1998-09-25 Mitsubishi Heavy Ind Ltd Multi-type ultrasonic probe
JPH11304774A (en) * 1998-04-24 1999-11-05 Hitachi Constr Mach Co Ltd Ultrasonic probe and ultrasonic inspection method using the same
JP2001305111A (en) * 2000-04-20 2001-10-31 Tokimec Inc Ultrasonic rail flaw detector
JP2003337120A (en) * 2003-06-16 2003-11-28 Hitachi Ltd Ultrasonic inspection method for low pressure turbine rotor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276465A (en) * 2009-05-28 2010-12-09 Hitachi Engineering & Services Co Ltd Ultrasonic flaw detector and method therefor
CN103808796A (en) * 2012-11-07 2014-05-21 有研亿金新材料股份有限公司 Method used for detecting welding quality of welding carried out in intermediate layer connection manner
CN103808796B (en) * 2012-11-07 2015-11-11 有研亿金新材料股份有限公司 A kind of method detecting the welding quality adopting middle layer connected mode welding
JP2014222172A (en) * 2013-05-13 2014-11-27 Jfeスチール株式会社 Inside defect measuring device
JP2020056687A (en) * 2018-10-02 2020-04-09 一般財団法人電力中央研究所 Transverse wave oblique angle flaw detection method and transverse wave/longitudinal wave simultaneous oblique angle flaw detection method by phased array ultrasonic method
CN111474246A (en) * 2020-04-24 2020-07-31 哈尔滨工业大学 Method for controlling hinge array ultrasonic phased array transducer probe
CN111474246B (en) * 2020-04-24 2021-06-01 哈尔滨工业大学 Method for controlling hinge array ultrasonic phased array transducer probe

Similar Documents

Publication Publication Date Title
Qing et al. An active diagnostic system for structural health monitoring of rocket engines
US8365584B1 (en) Apparatus for inspecting turbomachine components in-situ
Zhao et al. Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring
Rose A baseline and vision of ultrasonic guided wave inspection potential
Zhao et al. Ultrasonic guided wave tomography for ice detection
Yuan et al. Phased array guided wave propagation in curved plates
EP2864768B1 (en) Guided wave thermography methods and systems for inspecting a structure
US7617733B2 (en) Method and apparatus for ultrasound phased array testing of bearing balls
US6736011B2 (en) Inspection of shrunk-on steam turbine disks using advanced ultrasonic techniques
Rose The upcoming revolution in ultrasonic guided waves
KR100943219B1 (en) Inspecting Scanner Using Ultrasonic Wave
JP2008064540A (en) Piping inspection method using guide wave and piping inspection device
JP5531376B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
Thalapil et al. Guided wave based localization and severity assessment of in-plane and out-of-plane fiber waviness in carbon fiber reinforced composites
Le et al. Piezoelectric impedance-based structural health monitoring of wind turbine structures: Current status and future perspectives
CN103977949A (en) Flexible comb-shaped guided wave phased array transducer
JP2007017164A (en) Ultrasonic flaw detection method and ultrasonic flaw detection system
Zhao et al. Probabilistic diagnostic algorithm-based damage detection for plates with non-uniform sections using the improved weight function
JP2009097942A (en) Noncontact-type array probe, and ultrasonic flaw detection apparatus and method using same
Kim et al. Guided wave beamsteering using MFC phased arrays for structural health monitoring: analysis and experiment
JP6298371B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
WO2017007822A1 (en) Method and system for inspecting a rail wheel with phased array probes
US11480548B2 (en) Acoustic inspection device and method of operation
JP2010038820A (en) Ultrasonic inspection device
Wooh et al. Nondestructive characterization of defects using a novel hybrid ultrasonic array sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100628

A131 Notification of reasons for refusal

Effective date: 20100824

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20101022

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20101214

Free format text: JAPANESE INTERMEDIATE CODE: A02