[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007007521A - Method for activating chlorine production catalyst and method for producing chlorine - Google Patents

Method for activating chlorine production catalyst and method for producing chlorine Download PDF

Info

Publication number
JP2007007521A
JP2007007521A JP2005189456A JP2005189456A JP2007007521A JP 2007007521 A JP2007007521 A JP 2007007521A JP 2005189456 A JP2005189456 A JP 2005189456A JP 2005189456 A JP2005189456 A JP 2005189456A JP 2007007521 A JP2007007521 A JP 2007007521A
Authority
JP
Japan
Prior art keywords
catalyst
gas
oxygen
chlorine
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005189456A
Other languages
Japanese (ja)
Other versions
JP4367381B2 (en
Inventor
Koji Iwamoto
浩二 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005189456A priority Critical patent/JP4367381B2/en
Publication of JP2007007521A publication Critical patent/JP2007007521A/en
Application granted granted Critical
Publication of JP4367381B2 publication Critical patent/JP4367381B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for activating a chlorine production catalyst to be used in such a reaction that hydrogen chloride is oxidized by oxygen, by which the activity of the activity-deteriorated chlorine production catalyst can be recovered effectively. <P>SOLUTION: The activity-deteriorated chlorine production catalyst is brought into contact with a gas consisting substantially of only oxygen and/or an inert component. The inert component can be selected from steam, nitrogen, argon and helium. A ruthenium catalyst, particularly, a ruthenium oxide-containing catalyst is preferably used as the chlorine production catalyst. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、塩化水素を酸素で酸化する反応に使用される塩素製造用触媒を賦活する方法に関する。また、本発明は、この方法で賦活した触媒を用いて塩化水素を酸素で酸化することにより、塩素を製造する方法にも関係している。   The present invention relates to a method for activating a catalyst for producing chlorine used in a reaction for oxidizing hydrogen chloride with oxygen. The present invention also relates to a method for producing chlorine by oxidizing hydrogen chloride with oxygen using a catalyst activated by this method.

塩化水素を酸素で酸化して塩素を製造する方法としては、Deacon触媒と称される銅触媒を用いる方法が古くから知られている。また、クロム触媒を用いる方法(例えば特許文献1〜4参照)や、ルテニウム触媒を用いる方法(例えば特許文献5〜10参照)なども提案されている。この酸化反応は、通常、触媒が存在する反応器中に、塩化水素及び酸素を供給しながら、100〜500℃程度の反応温度で行われる。   As a method for producing chlorine by oxidizing hydrogen chloride with oxygen, a method using a copper catalyst called a Deacon catalyst has been known for a long time. In addition, a method using a chromium catalyst (for example, see Patent Documents 1 to 4), a method using a ruthenium catalyst (for example, see Patent Documents 5 to 10), and the like have been proposed. This oxidation reaction is usually performed at a reaction temperature of about 100 to 500 ° C. while supplying hydrogen chloride and oxygen into a reactor in which a catalyst is present.

特開昭61−136902号公報JP-A-61-136902 特開昭61−275104号公報JP 61-275104 A 特開昭62−113701号公報JP 62-113701 A 特開昭62−270405号公報JP-A-62-270405 特開平9−67103号公報JP-A-9-67103 特開平10−338502号公報JP 10-338502 A 特開2000−229239号公報JP 2000-229239 A 特開2000−281314号公報JP 2000-281314 A 特開2002−79093号公報JP 2002-79093 A 特開2002−292279号公報JP 2002-292279 A

上記酸化反応では、通常、運転時間の経過につれて、すなわち触媒の使用時間の経過につれて、触媒の活性が徐々に低下していく。また、運転中の操作ミスや機器の不具合などが原因となって、予定外の触媒活性の低下も起こりうる。このように活性が低下した触媒は、賦活処理して再使用できれば、触媒の使用寿命が延びて、コスト的に有利である。そこで、本発明の目的は、活性が低下した塩素製造用触媒の活性を効果的に回復させうる方法を提供することにある。   In the oxidation reaction, usually, the activity of the catalyst gradually decreases as the operation time elapses, that is, as the catalyst usage time elapses. In addition, an unscheduled decrease in catalyst activity may occur due to operational mistakes during operation or equipment malfunctions. If the catalyst whose activity has been reduced in this way can be activated and reused, the useful life of the catalyst is extended, which is advantageous in terms of cost. Accordingly, an object of the present invention is to provide a method capable of effectively recovering the activity of a catalyst for producing chlorine whose activity has been lowered.

本発明者等は鋭意研究を行った結果、活性が低下した塩素製造用触媒を、所定のガスで処理することにより、上記目的をを達成できることを見出し、本発明を完成するに至った。すなわち、本発明は、塩化水素を酸素で酸化する反応に使用される塩素製造用触媒の賦活方法であって、活性が低下した触媒を、実質的に酸素及び/又は不活性成分のみからなるガスと接触させることを特徴とする塩素製造用触媒の賦活方法を提供するものである。   As a result of intensive studies, the present inventors have found that the above object can be achieved by treating a catalyst for chlorine production with reduced activity with a predetermined gas, and have completed the present invention. That is, the present invention relates to a method for activating a catalyst for producing chlorine used in a reaction in which hydrogen chloride is oxidized with oxygen, wherein the catalyst with reduced activity is converted to a gas consisting essentially of oxygen and / or an inert component. It is intended to provide a method for activating a catalyst for producing chlorine, characterized in that it is brought into contact with the catalyst.

また、本発明によれば、上記方法により賦活した触媒の存在下に塩化水素を酸素で酸化することにより、塩素を製造する方法も提供される。   Moreover, according to this invention, the method of manufacturing chlorine by oxidizing hydrogen chloride with oxygen in presence of the catalyst activated by the said method is also provided.

本発明の賦活方法によれば、活性が低下した塩素製造用触媒の活性を効果的に回復させることができ、この方法により触媒を賦活して再使用することにより、コスト的に有利に塩素を製造することができる。   According to the activation method of the present invention, it is possible to effectively recover the activity of a catalyst for chlorine production whose activity has decreased. By activating and reusing the catalyst by this method, chlorine can be advantageously produced in terms of cost. Can be manufactured.

本発明が賦活処理の対象とする触媒は、塩化水素を酸素で酸化して塩素を製造する際に使用される塩素製造用の触媒である。塩素製造用触媒としては、例えば、銅触媒、クロム触媒、ルテニウム触媒などが挙げられる。   The catalyst to be activated by the present invention is a catalyst for producing chlorine that is used when producing chlorine by oxidizing hydrogen chloride with oxygen. Examples of the chlorine production catalyst include a copper catalyst, a chromium catalyst, and a ruthenium catalyst.

銅触媒の好適な例としては、一般にDeacon触媒と称される、塩化銅と塩化カリウムに第三成分として種々の化合物を添加してなる触媒を挙げることができる。クロム触媒の好適な例としては、特許文献1〜4に示される如き、酸化クロムを含有する触媒を挙げることができる。また、ルテニウム触媒の好適な例としては、特許文献5〜10に示される如き、酸化ルテニウムを含有する触媒を挙げることができる。   Preferable examples of the copper catalyst include a catalyst obtained by adding various compounds as a third component to copper chloride and potassium chloride, generally called Deacon catalyst. Preferable examples of the chromium catalyst include catalysts containing chromium oxide as disclosed in Patent Documents 1 to 4. Moreover, as a suitable example of a ruthenium catalyst, the catalyst containing ruthenium oxide as shown in patent documents 5-10 can be mentioned.

中でも、ルテニウム触媒、特に酸化ルテニウムを含有する触媒に対し、本発明の方法は好適に用いられる。酸化ルテニウムを含有する触媒は、例えば、実質的に酸化ルテニウムのみからなるものであってもよいし、酸化ルテニウムが、アルミナ、チタニア、シリカ、ジルコニア、酸化ニオブ、活性炭などの担体に担持されてなる担持酸化ルテニウムであってもよいし、酸化ルテニウムと、アルミナ、チタニア、シリカ、ジルコニア、酸化ニオブなどの他の酸化物とからなる複合酸化物であってもよい。   Especially, the method of this invention is used suitably with respect to the catalyst containing a ruthenium catalyst, especially a ruthenium oxide. The catalyst containing ruthenium oxide, for example, may be substantially composed of only ruthenium oxide, or ruthenium oxide is supported on a support such as alumina, titania, silica, zirconia, niobium oxide, activated carbon or the like. It may be a supported ruthenium oxide or a complex oxide composed of ruthenium oxide and other oxides such as alumina, titania, silica, zirconia, niobium oxide and the like.

上記の如き触媒を用いる塩素の製造は、通常、触媒が充填された固定床反応器又は触媒を流動させた流動床反応器中に、塩化水素及び酸素を供給しながら、気相条件下に連続式で行われる。その際、例えば特開2001−19405号公報に示される如く、塩化水素及び酸素に加えて、水蒸気を供給すると、触媒層の温度分布を平滑化できて有利である。   The production of chlorine using the catalyst as described above is usually carried out continuously under gas phase conditions while supplying hydrogen chloride and oxygen into a fixed bed reactor packed with the catalyst or a fluidized bed reactor in which the catalyst is fluidized. Done in the formula. In this case, for example, as disclosed in JP-A-2001-19405, it is advantageous to supply water vapor in addition to hydrogen chloride and oxygen because the temperature distribution of the catalyst layer can be smoothed.

反応温度は、通常100〜500℃、好ましくは200〜400℃であり、反応圧力は、通常0.1〜5MPa程度である。酸素源としては、空気を使用してもよいし。純酸素を使用してもよい。塩化水素を完全に塩素に酸化するためには、理論上、塩化水素1モルに対し酸素1/4モルが必要であるが、通常、この理論量の0.1〜10倍の酸素が使用される。塩化水素の供給速度は、触媒層の体積あたりのガスの体積供給速度(0℃、1気圧換算)、すなわちGHSVで表して、通常10〜20000h-1程度である。 The reaction temperature is usually 100 to 500 ° C., preferably 200 to 400 ° C., and the reaction pressure is usually about 0.1 to 5 MPa. Air may be used as the oxygen source. Pure oxygen may be used. In order to completely oxidize hydrogen chloride to chlorine, theoretically, 1/4 mole of oxygen is required for 1 mole of hydrogen chloride, but usually 0.1 to 10 times the theoretical amount of oxygen is used. The The supply rate of hydrogen chloride is usually about 10 to 20000 h −1 in terms of the volume supply rate of gas per volume of the catalyst layer (converted to 0 ° C. and 1 atm), that is, GHSV.

塩化水素源として使用できる塩化水素含有ガスとしては、例えば、水素と塩素の反応により生成するガスや、塩酸の加熱により発生するガスの他、塩素化合物の熱分解反応又は燃焼反応、ホスゲンによる有機化合物のカルボニル化反応、塩素による有機化合物の塩素化反応、クロロフルオロアルカンの製造により発生する各種副生ガス、さらには焼却炉から発生する燃焼排ガスなどが挙げられる。   Examples of the hydrogen chloride-containing gas that can be used as a hydrogen chloride source include a gas generated by the reaction of hydrogen and chlorine, a gas generated by heating hydrochloric acid, a pyrolysis reaction or combustion reaction of a chlorine compound, and an organic compound by phosgene. Carbonylation reaction of organic compounds, chlorination reaction of organic compounds with chlorine, various by-product gases generated by the production of chlorofluoroalkane, and combustion exhaust gas generated from an incinerator.

ここで、塩素化合物の熱分解反応としては、例えば、1,2−ジクロロエタンから塩化ビニルが生成する反応、クロロジフルオロメタンからテトラフルオロエチレンが生成する反応などが挙げられ、ホスゲンによる有機化合物のカルボニル化反応としては、例えば、アミンからイソシアネートが生成する反応、ヒドロキシ化合物から炭酸エステルが生成する反応などが挙げられ、塩素による有機化合物の塩素化反応としては、例えば、プロピレンから塩化アリルが生成する反応、エタンから塩化エチルが生成する反応、ベンゼンからクロロベンゼンが生成する反応などが挙げられる。また、クロロフルオロアルカンの製造としては、例えば、四塩化炭素とフッ化水素の反応によるジクロロジフルオロメタンとトリクロロモノフルオロメタンの製造、メタンと塩素とフッ化水素の反応によるジクロロジフルオロメタンとトリクロロモノフルオロメタンの製造などが挙げられる。   Here, examples of the pyrolysis reaction of a chlorine compound include a reaction in which vinyl chloride is produced from 1,2-dichloroethane, a reaction in which tetrafluoroethylene is produced from chlorodifluoromethane, and the carbonylation of an organic compound with phosgene. Examples of the reaction include a reaction in which an isocyanate is generated from an amine, a reaction in which a carbonate ester is generated from a hydroxy compound, and the chlorination reaction of an organic compound with chlorine includes, for example, a reaction in which allyl chloride is generated from propylene, Examples include a reaction in which ethyl chloride is produced from ethane, a reaction in which chlorobenzene is produced from benzene, and the like. Examples of the production of chlorofluoroalkane include dichlorodifluoromethane and trichloromonofluoromethane by the reaction of carbon tetrachloride and hydrogen fluoride, and dichlorodifluoromethane and trichloromonofluoro by the reaction of methane, chlorine and hydrogen fluoride. Examples include methane production.

上記酸化反応では、通常、運転時間の経過につれて、すなわち触媒の使用時間の経過につれて、触媒の活性が徐々に低下していく。また、運転中の操作ミスや機器の不具合などが原因となって、予定外の触媒活性の低下も起こりうる。例えば、反応温度の制御が困難になって、触媒が長時間、高温にさらされたり、酸素の供給が停止して、触媒が酸素不在下に長時間、塩化水素と接触したりすると、触媒の活性が低下することがある。さらに、スタートアップの際に酸素の供給開始が遅れたり、反応を一旦停止する際に塩化水素の供給停止が遅れたりして、触媒が酸素不在下に長時間、塩化水素と接触しても、触媒の活性が低下することがある。そこで、本発明は、このように活性が低下した触媒の活性を回復させるべく、実質的に酸素及び/又は不活性成分のみからなるガスと接触させることにより、賦活処理を行う。   In the oxidation reaction, usually, the activity of the catalyst gradually decreases as the operation time elapses, that is, as the catalyst usage time elapses. In addition, an unscheduled decrease in catalyst activity may occur due to operational mistakes during operation or equipment malfunctions. For example, if the reaction temperature becomes difficult to control and the catalyst is exposed to high temperature for a long time, or the supply of oxygen is stopped and the catalyst is in contact with hydrogen chloride for a long time in the absence of oxygen, Activity may decrease. Furthermore, even if the catalyst is in contact with hydrogen chloride for a long time in the absence of oxygen because the start of oxygen supply is delayed during start-up, or when the reaction is temporarily stopped, the supply stop of hydrogen chloride is delayed. Activity may be reduced. Therefore, in the present invention, the activation treatment is performed by bringing the catalyst into contact with a gas consisting essentially of oxygen and / or an inert component in order to recover the activity of the catalyst whose activity has been reduced in this way.

上記ガスは、実質的に酸素のみからなるものであってもよいし、実質的に不活性成分のみからなるものであってもよいし、実質的に酸素及び不活性成分のみからなるものであってもよい。また、これらのガスを複数種使用して、多段階で賦活処理を行ってもよい。酸素を含有するガスを使用する場合、酸素源としては、純酸素や空気を使用することができ、ガス中の酸素濃度は通常5体積%以上である。また、不活性成分は、触媒に対して実質的に酸化性及び還元性を示さず、また実質的に酸性及び塩基性を示さない中性の成分であり、例えば、水蒸気、窒素、アルゴン、ヘリウムなどが挙げられ、必要に応じてそれらの2種以上を混合して用いることもできる。   The gas may consist essentially of oxygen, may consist essentially of inert components, or may consist essentially of oxygen and inert components. May be. Moreover, you may perform activation process in multiple steps, using multiple types of these gas. When a gas containing oxygen is used, pure oxygen or air can be used as the oxygen source, and the oxygen concentration in the gas is usually 5% by volume or more. Further, the inert component is a neutral component that does not substantially oxidize or reduce the catalyst, and does not substantially exhibit acidity or basicity. For example, water vapor, nitrogen, argon, helium These may be mentioned, and two or more of them may be mixed and used as necessary.

賦活処理時、すなわち活性が低下した触媒を上記ガスと接触させる際の温度は、通常0〜400℃、好ましくは200〜400℃である。この温度が低すぎると、賦活処理に長時間を要し、この温度が高すぎると、触媒成分が揮散し易くなる。また、賦活処理時の圧力は、通常0.1〜3MPa、好ましくは0.1〜1MPaである。賦活処理も、前記酸化反応同様、固定床形式で行ってもよいし、流動床形式で行ってもよい。上記ガスの供給速度は、触媒層の体積あたりのガスの体積供給速度(0℃、1気圧換算)、すなわちGHSVで表して、通常1〜100000h-1程度である。また、賦活処理の時間は、通常1〜24時間程度である。 The temperature at the time of activation treatment, that is, when the catalyst having decreased activity is brought into contact with the gas is usually 0 to 400 ° C, preferably 200 to 400 ° C. If this temperature is too low, it takes a long time for the activation treatment, and if this temperature is too high, the catalyst component tends to volatilize. Moreover, the pressure at the time of an activation process is 0.1-3 Mpa normally, Preferably it is 0.1-1 Mpa. Similarly to the oxidation reaction, the activation treatment may be performed in a fixed bed format or a fluidized bed format. The gas supply rate is usually about 1 to 100000 h −1 in terms of the volume supply rate of gas per volume of the catalyst layer (0 ° C., converted to 1 atm), that is, GHSV. Moreover, the time of an activation process is about 1 to 24 hours normally.

こうして賦活処理された触媒は、前記酸化反応に再使用することができ、このように触媒を賦活、再使用することにより、触媒コストを低減することができ、塩素をコスト的に有利に製造することができる。   The catalyst thus activated can be reused in the oxidation reaction. By activating and reusing the catalyst in this way, the catalyst cost can be reduced and chlorine can be produced advantageously in terms of cost. be able to.

前記酸化反応を固定床形式で行う場合は、触媒が充填された反応器中に塩化水素及び酸素からなる原料ガスを供給しながら酸化反応を行い、運転の継続が困難になる程度に触媒の活性が低下したら、供給するガスを原料ガスから賦活処理用のガスに切り換えて所定時間賦活処理を行い、次いで供給するガスを賦活処理用のガスから原料ガスに切り換えて再度、酸化反応を行い、さらに必要によりこれら賦活処理及び酸化反応を繰り返すという処方が、有利に採用される。また、前記酸化反応を流動床形式で行う場合は、上記固定床形式の場合と同様、供給するガスの切り換えにより酸化反応及び賦活処理を交互に行う処方の他、酸化反応を行いながら、反応器から触媒の一部を連続的又は間歇的に抜き出して、別の容器内で賦活処理した後、反応器に戻すという処方、すなわち、触媒を反応器と賦活処理用の容器の間で循環させる処方が有利に採用される。   When the oxidation reaction is performed in a fixed bed format, the oxidation reaction is performed while supplying a raw material gas consisting of hydrogen chloride and oxygen into a reactor packed with the catalyst, and the catalyst activity is such that it is difficult to continue the operation. Is reduced, the supply gas is switched from the source gas to the activation treatment gas and the activation treatment is performed for a predetermined time, the supply gas is then switched from the activation treatment gas to the source gas, and the oxidation reaction is performed again. A prescription of repeating these activation treatments and oxidation reactions as necessary is advantageously employed. Further, when the oxidation reaction is performed in a fluidized bed format, as in the case of the fixed bed format, in addition to a prescription in which an oxidation reaction and an activation treatment are alternately performed by switching a gas to be supplied, while performing an oxidation reaction, a reactor Part of the catalyst is continuously or intermittently extracted from the catalyst, activated in another container, and then returned to the reactor, that is, the catalyst is circulated between the reactor and the container for activation treatment. Is advantageously employed.

以下に本発明の実施例を示すが、本発明はこれらによって限定されるものではない。例中、ガスの供給速度(ml/min)は、特記ない限り、0℃、1気圧の換算値である。   Examples of the present invention will be shown below, but the present invention is not limited thereto. In the examples, the gas supply rate (ml / min) is a converted value of 0 ° C. and 1 atm unless otherwise specified.

参考例1
(a)触媒の調製
酸化チタン50重量部〔堺化学(株)製のSTR−60R、100%ルチル型〕、α−アルミナ100重量部〔住友化学(株)製のAES−12〕、チタニアゾル13.2重量部〔堺化学(株)製のCSB、チタニア含有量38重量%〕、及びメチルセルロース2重量部〔信越化学(株)製のメトローズ65SH−4000〕を混合し、次いで純水を加えて混練した。この混合物を直径3.0mmφの円柱状に押出し、乾燥した後、長さ4〜6mm程度に破砕した。得られた成型体を空気中、800℃で3時間焼成し、酸化チタンとα−アルミナの混合物からなる担体を得た。この担体に、塩化ルテニウムの水溶液を含浸し、乾燥した後、空気中、250℃で2時間焼成することにより、酸化ルテニウムが2重量%の担持率で上記担体に担持されてなる青灰色の担持酸化ルテニウムを得た。
Reference example 1
(A) Preparation of catalyst 50 parts by weight of titanium oxide [STR-60R manufactured by Sakai Chemical Co., Ltd., 100% rutile type], 100 parts by weight of α-alumina [AES-12 manufactured by Sumitomo Chemical Co., Ltd.], titania sol 13 2 parts by weight (CSB manufactured by Sakai Chemical Co., Ltd., titania content 38% by weight) and 2 parts by weight of methylcellulose [Metroze 65SH-4000 manufactured by Shin-Etsu Chemical Co., Ltd.] were mixed, and then pure water was added. Kneaded. This mixture was extruded into a cylindrical shape having a diameter of 3.0 mmφ, dried, and then crushed to a length of about 4 to 6 mm. The obtained molded body was fired in air at 800 ° C. for 3 hours to obtain a carrier made of a mixture of titanium oxide and α-alumina. This support is impregnated with an aqueous solution of ruthenium chloride, dried, and then calcined in air at 250 ° C. for 2 hours, whereby ruthenium oxide is supported on the support at a loading ratio of 2% by weight. Ruthenium oxide was obtained.

(b)新品触媒の評価
上記(a)で得た未使用の新品触媒1gを、内径13mmのニッケル製反応管に充填し、さらに触媒層のガス入口側に予熱層として、α−アルミナ球〔ニッカトー(株)製のSSA995〕12gを充填した。この中に、窒素ガスを80ml/minの速度で供給しながら、溶融塩〔硝酸カリウム/亜硝酸ナトリウム=1/1(重量比)〕を熱媒体とする塩浴に反応管を浸して、触媒層の温度を281〜282℃に昇温した。次いで、窒素ガスの供給を停止し、塩化水素ガスを80ml/min(0.35mol/h)、及び酸素ガスを40ml/min(0.20mol/h)の速度で供給することにより、触媒層温度282〜283℃で酸化反応を行った。反応開始から1.5時間の時点で、反応管出口のガスを30重量%ヨウ化カリウム水溶液に流通させることによりサンプリングを20分間行い、ヨウ素滴定法により塩素の生成量を測定し、塩素の生成速度(mol/h)を求めた。この塩素の生成速度と上記の塩化水素の供給速度から、下式により塩化水素の転化率を計算し、表1に示した。
(B) Evaluation of new catalyst 1 g of an unused new catalyst obtained in (a) above was filled in a nickel reaction tube having an inner diameter of 13 mm, and α-alumina spheres were used as a preheating layer on the gas inlet side of the catalyst layer. 12 g of SSA995 manufactured by Nikkato Co., Ltd. was charged. In this, while supplying nitrogen gas at a rate of 80 ml / min, the reaction tube was immersed in a salt bath using molten salt [potassium nitrate / sodium nitrite = 1/1 (weight ratio)] as a heat medium, and the catalyst layer Was raised to 281-282 ° C. Next, the supply of nitrogen gas is stopped, and the catalyst layer temperature is supplied by supplying hydrogen chloride gas at a rate of 80 ml / min (0.35 mol / h) and oxygen gas at a rate of 40 ml / min (0.20 mol / h). The oxidation reaction was performed at 282 to 283 ° C. At 1.5 hours from the start of the reaction, sampling was performed for 20 minutes by circulating the gas at the outlet of the reaction tube through a 30 wt% aqueous potassium iodide solution, and the amount of chlorine produced was measured by the iodometric titration method. The rate (mol / h) was determined. The conversion rate of hydrogen chloride was calculated from the chlorine production rate and the above-mentioned hydrogen chloride supply rate by the following formula, and is shown in Table 1.

塩化水素の転化率(%)=〔塩素の生成速度(mol/l)×2÷塩化水素の供給速度(mol/h)〕×100   Hydrogen chloride conversion rate (%) = [chlorine production rate (mol / l) × 2 ÷ hydrogen chloride feed rate (mol / h)] × 100

参考例2
(a)劣化触媒の取得
参考例1(a)で得た未使用の新品触媒1gを、内径13mmのニッケル製反応管に充填し、さらに触媒層のガス入口側に予熱層として、α−アルミナ球〔ニッカトー(株)製のSSA995〕12gを充填した。この中に、窒素ガスを80ml/minの速度で供給しながら、溶融塩〔硝酸カリウム/亜硝酸ナトリウム=1/1(重量比)〕を熱媒体とする塩浴に反応管を浸して、触媒層の温度を253〜254℃に昇温し、反応管入口部をゲージ圧力0.5MPaに昇圧した。次いで、窒素ガスの供給を停止し、塩化水素ガスを80ml/minの速度で供給しながら、触媒層温度253〜254℃で5時間保持した。
Reference example 2
(A) Acquisition of deteriorated catalyst 1 g of an unused new catalyst obtained in Reference Example 1 (a) is filled in a nickel reaction tube having an inner diameter of 13 mm, and α-alumina is used as a preheating layer on the gas inlet side of the catalyst layer. A sphere [SSA995 manufactured by Nikkato Co., Ltd.] 12 g was filled. In this, while supplying nitrogen gas at a rate of 80 ml / min, the reaction tube was immersed in a salt bath using molten salt [potassium nitrate / sodium nitrite = 1/1 (weight ratio)] as a heat medium, and the catalyst layer Was raised to 253 to 254 ° C., and the reaction tube inlet was raised to a gauge pressure of 0.5 MPa. Next, the supply of nitrogen gas was stopped, and the catalyst layer temperature was maintained at 253 to 254 ° C. for 5 hours while supplying hydrogen chloride gas at a rate of 80 ml / min.

(b)劣化触媒の評価
上記(b)に引き続き、触媒層の温度を281〜282℃に昇温し、反応管入口部を常圧に戻した後、塩化水素ガスは80ml/minの速度で供給したままで、酸素ガスを40ml/minの速度で供給することにより、触媒層温度281〜282℃で酸化反応を行った。反応開始から1.5時間の時点で、参考例1(b)と同様に、サンプリングを行って塩素の生成速度を求め、塩化水素の転化率を計算した。結果を表1に示す。
(B) Evaluation of deteriorated catalyst Subsequent to the above (b), the temperature of the catalyst layer was raised to 281 to 282 ° C. and the reaction tube inlet was returned to normal pressure, and then hydrogen chloride gas was fed at a rate of 80 ml / min. While being supplied, oxygen gas was supplied at a rate of 40 ml / min to carry out an oxidation reaction at a catalyst layer temperature of 281 to 282 ° C. At 1.5 hours from the start of the reaction, sampling was performed to determine the chlorine production rate in the same manner as in Reference Example 1 (b), and the conversion rate of hydrogen chloride was calculated. The results are shown in Table 1.

実施例1
(a)劣化触媒の賦活処理
上記参考例2(b)に引き続き、塩化水素ガスの供給を停止し、酸素ガスは40ml/minの速度で供給したままで、触媒層温度281〜282℃で2時間保持した。
Example 1
(A) Activation process of deteriorated catalyst Following the above Reference Example 2 (b), the supply of hydrogen chloride gas was stopped, and oxygen gas was supplied at a rate of 40 ml / min. Held for hours.

(b)賦活触媒の評価
上記(a)に引き続き、酸素ガスは40ml/minの速度で供給したままで、塩化水素ガスを80ml/minの速度で供給することにより、触媒層温度282〜283℃で酸化反応を行った。反応開始から1.5時間の時点で、参考例1(b)と同様に、サンプリングを行って塩素の生成速度を求め、塩化水素の転化率を計算した。結果を表1に示す。
(B) Evaluation of activated catalyst Subsequent to (a) above, the oxygen gas was supplied at a rate of 40 ml / min and hydrogen chloride gas was supplied at a rate of 80 ml / min, whereby the catalyst layer temperature was 282 to 283 ° C. The oxidation reaction was carried out. At 1.5 hours from the start of the reaction, sampling was performed to determine the chlorine production rate in the same manner as in Reference Example 1 (b), and the conversion rate of hydrogen chloride was calculated. The results are shown in Table 1.

参考例3
(a)劣化触媒の取得
参考例1(a)で得た未使用の新品触媒5gを、内径13mmのニッケル製反応管に充填し、さらに触媒層のガス入口側に予熱層として、α−アルミナ球〔ニッカトー(株)製のSSA995〕12gを充填した。この中に、窒素と水蒸気の混合ガス〔窒素/水蒸気=8/1(体積比)〕を18ml/minの速度で供給しながら、溶融塩〔硝酸カリウム/亜硝酸ナトリウム=1/1(重量比)〕を熱媒体とする塩浴に反応管を浸して、触媒層の温度を253〜254℃に昇温し、反応管入口部をゲージ圧力0.5MPaに昇圧した。次いで、上記の窒素と水蒸気の混合ガスに加えて、塩化水素ガスを80ml/minの速度で供給しながら、触媒層温度253〜254℃で5時間保持した。
Reference example 3
(A) Acquisition of deteriorated catalyst 5 g of an unused new catalyst obtained in Reference Example 1 (a) was filled in a nickel reaction tube having an inner diameter of 13 mm, and α-alumina was used as a preheating layer on the gas inlet side of the catalyst layer. A sphere [SSA995 manufactured by Nikkato Co., Ltd.] 12 g was filled. While supplying a mixed gas of nitrogen and water vapor [nitrogen / water vapor = 8/1 (volume ratio)] at a rate of 18 ml / min, molten salt [potassium nitrate / sodium nitrite = 1/1 (weight ratio) ] Was immersed in a salt bath using a heat medium, the temperature of the catalyst layer was raised to 253 to 254 ° C., and the pressure at the inlet of the reaction tube was increased to 0.5 MPa. Next, in addition to the above mixed gas of nitrogen and water vapor, hydrogen chloride gas was supplied at a rate of 80 ml / min, and the catalyst layer temperature was maintained at 253 to 254 ° C. for 5 hours.

こうして劣化させた触媒を反応管から取り出すため、塩化水素ガス及び窒素と水蒸気の混合ガスの供給を停止し、窒素ガス80ml/minを供給しながら、反応管入口部を常圧に戻した後、塩浴から反応管を取り出して、触媒層の温度を室温まで冷却した。次いで、反応管から劣化触媒を抜き出して、空気中、室温で28日間保管した。   In order to take out the catalyst thus deteriorated from the reaction tube, the supply of the hydrogen chloride gas and the mixed gas of nitrogen and water vapor was stopped, and while the nitrogen gas was supplied at 80 ml / min, the reaction tube inlet was returned to normal pressure, The reaction tube was taken out from the salt bath, and the temperature of the catalyst layer was cooled to room temperature. Next, the deteriorated catalyst was extracted from the reaction tube and stored in air at room temperature for 28 days.

なお、上記の劣化触媒の抜き出し操作ないし保管操作は、その雰囲気ガス条件が本発明の規定を満たしており、このため、後で表1に示すように、この参考例3で得た劣化触媒の活性(塩化水素の転化率)が、先の参考例2で得た劣化触媒の活性に比べて高めとなっているが、ここでは、劣化触媒を取得するための一操作として、この参考例3において記載した。   The above-described operation for extracting or storing the deteriorated catalyst has an atmosphere gas condition that satisfies the provisions of the present invention. Therefore, as shown in Table 1 later, the deterioration catalyst obtained in Reference Example 3 is used. The activity (conversion rate of hydrogen chloride) is higher than the activity of the deteriorated catalyst obtained in Reference Example 2 above, but here, as one operation for obtaining the deteriorated catalyst, Reference Example 3 Described in.

(b)劣化触媒の評価
上記(a)で得た劣化触媒1gを、内径13mmのニッケル製反応管に充填し、さらに触媒層のガス入口側に予熱層として、α−アルミナ球〔ニッカトー(株)製のSSA995〕12gを充填した。この中に、窒素ガスを80ml/minの速度で供給しながら、溶融塩〔硝酸カリウム/亜硝酸ナトリウム=1/1(重量比)〕を熱媒体とする塩浴中に反応管を浸して、触媒層の温度を281〜282℃に昇温した。次いで、窒素ガスの供給を停止し、塩化水素ガスを80ml/min(0.35mol/h)、及び酸素ガスを40ml/min(0.20mol/h)の速度で供給することにより、触媒層温度281〜282℃で酸化反応を行った。反応開始から1.5時間の時点で、参考例1(b)と同様に、サンプリングを行って塩素の生成速度を求め、塩化水素の転化率を計算した。結果を表1に示す。
(B) Evaluation of deteriorated catalyst 1 g of the deteriorated catalyst obtained in (a) above was filled in a nickel reaction tube having an inner diameter of 13 mm, and α-alumina sphere [Nikato Co., Ltd. SSA995] 12 g. In this, while supplying nitrogen gas at a rate of 80 ml / min, the reaction tube was immersed in a salt bath using molten salt [potassium nitrate / sodium nitrite = 1/1 (weight ratio)] as a heat medium, The temperature of the layer was raised to 281-282 ° C. Next, the supply of nitrogen gas is stopped, and the catalyst layer temperature is supplied by supplying hydrogen chloride gas at a rate of 80 ml / min (0.35 mol / h) and oxygen gas at a rate of 40 ml / min (0.20 mol / h). The oxidation reaction was performed at 281-282 ° C. At 1.5 hours from the start of the reaction, sampling was performed to determine the chlorine production rate in the same manner as in Reference Example 1 (b), and the conversion rate of hydrogen chloride was calculated. The results are shown in Table 1.

実施例2
(a)劣化触媒の賦活処理
上記参考例3(b)に引き続き、塩化水素ガス及び酸素ガスの供給を停止し、窒素ガスを80ml/minの速度で供給しながら、触媒層温度281〜282℃で1時間保持した。
Example 2
(A) Activation treatment of deteriorated catalyst Subsequent to Reference Example 3 (b) above, the supply of hydrogen chloride gas and oxygen gas is stopped, and the nitrogen gas is supplied at a rate of 80 ml / min, while the catalyst layer temperature is 281 to 282 ° C. Held for 1 hour.

(b)賦活触媒の評価
上記(a)に引き続き、窒素ガスの供給を停止し、塩化水素ガスを80ml/min、及び酸素ガスを40ml/minの速度で供給することにより、触媒層温度282〜283℃で酸化反応を行った。反応開始から1.5時間の時点で、参考例1(b)と同様に、サンプリングを行って塩素の生成速度を求め、塩化水素の転化率を計算した。結果を表1に示す。
(B) Evaluation of activated catalyst Subsequent to the above (a), the supply of nitrogen gas is stopped, hydrogen chloride gas is supplied at a rate of 80 ml / min, and oxygen gas is supplied at a rate of 40 ml / min. The oxidation reaction was performed at 283 ° C. At 1.5 hours from the start of the reaction, sampling was performed to determine the chlorine production rate in the same manner as in Reference Example 1 (b), and the conversion rate of hydrogen chloride was calculated. The results are shown in Table 1.

Figure 2007007521
Figure 2007007521

Claims (7)

塩化水素を酸素で酸化する反応に使用される塩素製造用触媒の賦活方法であって、活性が低下した触媒を、実質的に酸素及び/又は不活性成分のみからなるガスと接触させることを特徴とする塩素製造用触媒の賦活方法。   A method for activating a catalyst for producing chlorine used in a reaction in which hydrogen chloride is oxidized with oxygen, wherein the catalyst with reduced activity is brought into contact with a gas consisting essentially of oxygen and / or an inert component. A method for activating a catalyst for chlorine production. 前記ガスが、実質的に酸素のみからなる請求項1に記載の方法。   The method of claim 1, wherein the gas consists essentially of oxygen. 前記ガスが、実質的に不活性成分のみからなる請求項1に記載の方法。   The method of claim 1, wherein the gas consists essentially of an inert component. 前記ガスが、実質的に酸素及び不活性成分のみからなる請求項1に記載の方法。   The method of claim 1 wherein the gas consists essentially of oxygen and inert components. 不活性成分が、水蒸気、窒素、アルゴン及びヘリウムから選ばれる請求項1、3又は4に記載の方法。   The method according to claim 1, 3 or 4, wherein the inert component is selected from water vapor, nitrogen, argon and helium. 触媒が、酸化ルテニウムを含有する触媒である請求項1〜5のいずれかに記載の方法。   The method according to claim 1, wherein the catalyst is a catalyst containing ruthenium oxide. 請求項1〜6のいずれかに記載の方法により触媒を賦活し、この賦活触媒の存在下に塩化水素を酸素で酸化することを特徴とする塩素の製造方法。
A method for producing chlorine, comprising activating a catalyst by the method according to claim 1 and oxidizing hydrogen chloride with oxygen in the presence of the activating catalyst.
JP2005189456A 2005-06-29 2005-06-29 Method for activating catalyst for producing chlorine and method for producing chlorine Expired - Fee Related JP4367381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005189456A JP4367381B2 (en) 2005-06-29 2005-06-29 Method for activating catalyst for producing chlorine and method for producing chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005189456A JP4367381B2 (en) 2005-06-29 2005-06-29 Method for activating catalyst for producing chlorine and method for producing chlorine

Publications (2)

Publication Number Publication Date
JP2007007521A true JP2007007521A (en) 2007-01-18
JP4367381B2 JP4367381B2 (en) 2009-11-18

Family

ID=37746679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005189456A Expired - Fee Related JP4367381B2 (en) 2005-06-29 2005-06-29 Method for activating catalyst for producing chlorine and method for producing chlorine

Country Status (1)

Country Link
JP (1) JP4367381B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014229A1 (en) 2007-07-23 2009-01-29 Sumitomo Chemical Company, Limited Method for activating catalyst for chlorine production
WO2010076296A1 (en) * 2008-12-30 2010-07-08 Basf Se Method for regenerating a catalyst containing ruthenium oxide for hydrogen chloride oxidation
WO2010149559A1 (en) * 2009-06-24 2010-12-29 Basf Se METHOD FOR PRODUCING CHLORINE FROM HCl
CN102448607A (en) * 2009-05-29 2012-05-09 住友化学株式会社 Method for activating catalyst for chlorine production and method for producing chlorine
JP2020520797A (en) * 2017-05-19 2020-07-16 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Method for regenerating poisoned catalysts containing ruthenium or ruthenium compounds
US11072527B2 (en) 2016-12-02 2021-07-27 Mitsui Chemicals, Inc. Method for producing chlorine by oxidation of hydrogen chloride

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014229A1 (en) 2007-07-23 2009-01-29 Sumitomo Chemical Company, Limited Method for activating catalyst for chlorine production
WO2010076296A1 (en) * 2008-12-30 2010-07-08 Basf Se Method for regenerating a catalyst containing ruthenium oxide for hydrogen chloride oxidation
JP2012513885A (en) * 2008-12-30 2012-06-21 ビーエーエスエフ ソシエタス・ヨーロピア Method for regenerating a ruthenium oxide-containing catalyst for hydrogen chloride oxidation
US9610567B2 (en) 2008-12-30 2017-04-04 Basf Se Process for regenerating a catalyst comprising ruthenium oxide for the oxidation of hydrogen chloride
CN102448607A (en) * 2009-05-29 2012-05-09 住友化学株式会社 Method for activating catalyst for chlorine production and method for producing chlorine
DE112010002611T5 (en) 2009-05-29 2012-08-23 Sumitomo Chemical Company, Limited Method for activating a catalyst for chlorine production and method for producing chlorine
WO2010149559A1 (en) * 2009-06-24 2010-12-29 Basf Se METHOD FOR PRODUCING CHLORINE FROM HCl
US11072527B2 (en) 2016-12-02 2021-07-27 Mitsui Chemicals, Inc. Method for producing chlorine by oxidation of hydrogen chloride
JP2020520797A (en) * 2017-05-19 2020-07-16 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Method for regenerating poisoned catalysts containing ruthenium or ruthenium compounds

Also Published As

Publication number Publication date
JP4367381B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP5169047B2 (en) Chlorine production method
JP4935604B2 (en) Method for producing supported ruthenium oxide
JP4438771B2 (en) Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
JP4367381B2 (en) Method for activating catalyst for producing chlorine and method for producing chlorine
JP4487975B2 (en) Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
CN113164924A (en) Catalyst for hydrogen chloride oxidation reaction for preparing chlorine and preparation method thereof
JP5368883B2 (en) Method for activating catalyst for chlorine production and method for producing chlorine
JP4479716B2 (en) Method for regenerating supported ruthenium and method for producing chlorine
JP4839661B2 (en) Chlorine production method
JP2012161716A (en) Method for producing supported ruthenium oxide, and method for producing chlorine
JP4285179B2 (en) Method for producing a catalyst for chlorine production
JP2010274216A (en) Method of activating catalyst for producing chlorine, and method of producing chlorine
JP4432876B2 (en) Catalyst for chlorine production and method for producing chlorine
JP5249717B2 (en) Method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
JP4507614B2 (en) Chlorine production method
JP2010105858A (en) Method for producing chlorine, and method for oxidizing carbon monoxide and/or unsaturated hydrocarbon
JP2012200700A (en) Method for producing bromine
JP2012161717A (en) Method for producing supported ruthenium oxide, and method for producing chlorine
JP4182739B2 (en) Chlorine production method
JP5365540B2 (en) Method for oxidizing organic compounds
JP2011162382A (en) Method for producing chlorine
JP2012135722A (en) Method for manufacturing carried ruthenium oxide and method for manufacturing chlorine
JP2012091977A (en) Method for producing chlorine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061013

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees