[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007003079A - Laser guide device for missile - Google Patents

Laser guide device for missile Download PDF

Info

Publication number
JP2007003079A
JP2007003079A JP2005183044A JP2005183044A JP2007003079A JP 2007003079 A JP2007003079 A JP 2007003079A JP 2005183044 A JP2005183044 A JP 2005183044A JP 2005183044 A JP2005183044 A JP 2005183044A JP 2007003079 A JP2007003079 A JP 2007003079A
Authority
JP
Japan
Prior art keywords
light
signal
laser
circuit
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005183044A
Other languages
Japanese (ja)
Inventor
Hideki Yasui
英己 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Aerospace Co Ltd
Original Assignee
IHI Aerospace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Aerospace Co Ltd filed Critical IHI Aerospace Co Ltd
Priority to JP2005183044A priority Critical patent/JP2007003079A/en
Publication of JP2007003079A publication Critical patent/JP2007003079A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem in a conventional laser guide device for a missile that it easily senses jamming by sunlight or the like. <P>SOLUTION: This device for guiding a missile F by receiving reflection light LR of laser beam LT irradiated to a target T, comprises a light transmitting means 1 for transmitting the laser beam LT in a pulsed state on the basis of a prescribed base time, and a light receiving means 2 for receiving detected light LR at the missile F. The operation of the light receiving means 2 is controlled on the basis of the common base time with the light transmitting means 1, and the light receiving means 2 intermittently detects a signal of the reflection light LR corresponding to a transmission timing of the laser beam of the light transmitting means 1. The pulsed transmission timing of the laser beam LT and the intermittent signal detection timing of the reflection light LR are synchronized, so that the laser guide device hardly receives jamming, and its guiding function can be improved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主として、レーザ光を用いてセミアクティブ方式で飛翔体の誘導制御を行うのに用いられる飛翔体のレーザ誘導装置に関するものである。   The present invention mainly relates to a flying object laser guiding apparatus used for performing guidance control of a flying object in a semi-active manner using laser light.

セミアクティブ方式のレーザ誘導装置は、例えば図3に示すように、レーザ照射機Aから目標Tに向けてレーザ光LTをパルス状に照射し、飛翔体Fに搭載した光受信手段101で目標Tからの反射光LRを受信して、反射光LRの判定信号に基づいて飛翔体Fを目標Tに向けて誘導制御するものである。   For example, as shown in FIG. 3, the semi-active type laser guidance device irradiates laser light LT in a pulse shape from a laser irradiator A toward a target T, and the target T is received by the light receiving means 101 mounted on the flying object F. The reflected light LR is received, and the flying object F is guided and controlled toward the target T based on the determination signal of the reflected light LR.

光受信手段101は、受信した反射光LRの信号強度によって信号検知の有無を判定し得るもので、反射光LRを受信する受信回路102と、受信回路102の受信信号を増幅するアンプ103と、アンプ103を経た受信信号を閾値判定して反射光LRの判定信号を得る判定回路104を備えており、判定回路104で得た判定信号に基づいて飛翔体Fから目標Tまでの距離を判断することができる。
「ミサイル工学事典」原書房、1990年12月10日、p.61,408,440,441
The optical receiving means 101 can determine the presence or absence of signal detection based on the signal intensity of the received reflected light LR. The receiving circuit 102 receives the reflected light LR, the amplifier 103 amplifies the received signal of the receiving circuit 102, A determination circuit 104 that obtains a determination signal of the reflected light LR by determining the threshold value of the received signal that has passed through the amplifier 103 is provided, and the distance from the flying object F to the target T is determined based on the determination signal obtained by the determination circuit 104. be able to.
“Missile Engineering Encyclopedia” Hara Shobo, December 10, 1990, p. 61,408,440,441

しかしながら、上記したような飛翔体のレーザ誘導装置にあっては、光受信手段が、常に受信を行うとともに受信した信号強度によって信号検知の有無を判定することから、太陽光や様々な反射光によるジャミングに感応し易いという問題点があり、このような問題点を解決することが課題であった。   However, in the flying body laser guidance device as described above, the light receiving means always performs reception and determines the presence or absence of signal detection based on the received signal intensity. There is a problem that it is easy to be sensitive to jamming, and it has been a problem to solve such a problem.

本発明は、上記従来の課題に着目して成されたもので、レーザ光の送信タイミングと、レーザ光の散乱光又は反射光である被検出光の信号検出のタイミングとを同期化することにより、ジャミングを受け難いものにして、誘導機能の向上を実現することができる飛翔体のレーザ誘導装置を提供することを目的としている。   The present invention has been made paying attention to the above-described conventional problems, and by synchronizing the transmission timing of laser light and the timing of signal detection of detected light that is scattered light or reflected light of laser light. It is an object of the present invention to provide a flying body laser guidance device that is less susceptible to jamming and that can improve the guidance function.

本発明の飛翔体のレーザ誘導装置は、目標に照射したレーザ光の散乱光又は反射光である被検出光を受信して飛翔体を誘導する装置であって、所定の基準時間に基づいてレーザ光をパルス状に送信する光送信手段と、飛翔体において被検出光を受信する光受信手段を備えており、光受信手段が、光送信手段と共通の基準時間に基づいて動作制御されると共に、光送信手段のレーザ光の送信タイミングに対応して被検出光の信号検出を間欠的に行う手段である構成としており、上記構成をもって従来の課題を解決するための手段としている。   The flying object laser guiding apparatus of the present invention is an apparatus for guiding a flying object by receiving light to be detected which is scattered light or reflected light of a laser beam irradiated on a target, and is based on a predetermined reference time. An optical transmission means for transmitting light in pulses, and an optical reception means for receiving detected light in the flying object, and the optical reception means is controlled in operation based on a reference time common to the optical transmission means The light transmitting means is configured to intermittently detect the signal of the detected light in response to the transmission timing of the laser light, and the structure described above serves as means for solving the conventional problems.

また、本発明の飛翔体のレーザ誘導装置は、より望ましい実施形態として、光受信手段が、被検出光を受信する光受信回路と、基準時間に基づいてゲート信号を間欠的に生成するゲート回路と、ゲート回路のゲート信号が発生している間に取得した光受信回路の受信信号を積分し且つその積分値を閾値判定して被検出光の判定信号を得る信号処理回路を備えていることを特徴とし、さらに、光送信手段が、不規則的なパターンでレーザ光を送信する手段であり、光受信手段が、光送信手段の送信パターンと同一パターンで被検出光の信号検出を行う手段であることを特徴とし、さらに、光送信手段及び光受信手段が、人工衛星の送信信号を基準時間として用いるための電波受信回路を備えていることを特徴としている。   Further, in the flying body laser guiding device of the present invention, as a more desirable embodiment, the optical receiving means receives the detected light, and the gate circuit intermittently generates the gate signal based on the reference time. And a signal processing circuit that integrates the received signal of the optical receiver circuit acquired while the gate signal of the gate circuit is generated, and obtains a determination signal of the detected light by determining the threshold value of the integrated value. The optical transmission means is means for transmitting laser light in an irregular pattern, and the optical reception means is means for detecting the signal of the detected light in the same pattern as the transmission pattern of the optical transmission means. Further, the optical transmission means and the optical reception means include a radio wave reception circuit for using the transmission signal of the artificial satellite as a reference time.

本発明の飛翔体のレーザ誘導装置によれば、共通の基準時間に基づいて、光送信手段によるレーザ光のパルス状の送信タイミングと、光受信手段による被検出光の間欠的な信号検出のタイミングとを同期化することで、被検出光の信号検出が容易に且つ確実に行われると同時に、信号処理において被検出光以外の受信光を大幅に排除することができ、太陽光や様々な反射光によるジャミングを受け難いものとなり、誘導機能の向上を実現することができる。また、光受信手段は、受信タイミングが明確となり、上記の如くジャミングも受け難いので、高感度なものを用いることが可能になる。   According to the flying body laser guidance apparatus of the present invention, based on the common reference time, the pulsed transmission timing of the laser light by the light transmitting means and the intermittent signal detection timing of the detected light by the light receiving means The signal detection of the detected light can be easily and reliably performed, and at the same time, the received light other than the detected light can be largely eliminated in the signal processing, and sunlight and various reflections It becomes difficult to be jammed by light, and an improvement in guidance function can be realized. In addition, since the optical receiving means has a clear reception timing and is not easily jammed as described above, it is possible to use a highly sensitive one.

さらに、本発明の飛翔体のレーザ誘導装置によれば、光受信回路、ゲート回路及び信号処理回路を備えた光受信手段を採用したことで、上述の効果が得られるほか、信号処理回路に信号積分型のアンプを用いることが可能となり、これによりSN比を向上させてより高精度の信号処理を実現する。   Furthermore, according to the flying body laser guidance apparatus of the present invention, the above-described effect can be obtained by adopting the optical receiving means including the optical receiving circuit, the gate circuit, and the signal processing circuit, and the signal processing circuit can receive a signal. An integration type amplifier can be used, thereby improving the signal-to-noise ratio and realizing more accurate signal processing.

さらに、本発明の飛翔体のレーザ誘導装置によれば、レーザ光の送信タイミングと被検出光の信号検出のタイミングとを不規則的なパターンで同期化することで、例えばレーザ光の送信タイミングが複雑なものとなり、秘匿性の向上を実現することができる。   Furthermore, according to the flying body laser guidance device of the present invention, the laser light transmission timing and the detection light signal detection timing are synchronized with an irregular pattern, for example, so that the laser light transmission timing is It becomes complicated and can improve confidentiality.

さらに、本発明の飛翔体のレーザ誘導装置によれば、人工衛星の送信信号を基準時間として用いることで、どの地域でも使用可能になると共に、誘導制御のさらなる高精度化に貢献し得るものとなる。   Furthermore, according to the flying body laser guidance device of the present invention, the satellite transmission signal can be used as a reference time so that it can be used in any region and can contribute to higher accuracy of guidance control. Become.

図1は、本発明に係わる飛翔体のレーザ誘導装置の一実施例を説明する図である。この実施例では、目標に向けて照射したレーザ光の反射光を被検出光として用いるセミアクティブ方式のレーザ誘導装置を説明する。   FIG. 1 is a view for explaining an embodiment of a flying body laser guiding apparatus according to the present invention. In this embodiment, a description will be given of a semi-active laser guidance device that uses reflected light of laser light emitted toward a target as light to be detected.

図1(a)に示す飛翔体のレーザ誘導装置は、レーザ照射機Aの光送信手段1から目標Tに向けてパルス状のレーザ光LTを照射し、飛翔体Fに搭載した光受信手段2で目標Tからの反射光LRを受信して、反射光LRの判定信号に基づいて飛翔体Fを目標Tに向けて誘導制御する。   The flying object laser guiding apparatus shown in FIG. 1A irradiates a pulsed laser beam LT toward the target T from the light transmitting means 1 of the laser irradiator A, and receives the light receiving means 2 mounted on the flying object F. Then, the reflected light LR from the target T is received, and the flying object F is guided and controlled toward the target T based on the determination signal of the reflected light LR.

光送信手段1は、所定の基準時間に基づいてレーザ光LTをパルス状に送信するものであって、GPS衛星等の人工衛星が規則的に発する送信信号を基準時間として用いるようになっており、送信信号を受信する電波受信回路(例えばGPSクロック)11と、電波受信回路11に連動する同期クロック12と、同期クロック12からの指令によりレーザ光LTを送信するレーザ発振器13を備えている。   The optical transmission means 1 transmits the laser light LT in a pulse shape based on a predetermined reference time, and uses a transmission signal regularly generated by an artificial satellite such as a GPS satellite as the reference time. A radio wave receiving circuit (for example, GPS clock) 11 for receiving a transmission signal, a synchronous clock 12 linked to the radio wave receiving circuit 11, and a laser oscillator 13 for transmitting the laser light LT in response to a command from the synchronous clock 12 are provided.

他方、光受信手段2は、光送信手段1と共通の基準時間に基づいて動作制御され、光送信手段1のレーザ光LTの送信タイミングに対応して反射光LRの信号検出を間欠的に行うものであって、光送信手段1と同様に、電波受信回路21及び同期クロック22を備えると共に、光センサを用いて反射光LRを受信する光受信回路23と、同期クロック22を経た基準信号に基づいてゲート信号を間欠的に生成するゲート回路24と、反射光LRの受信信号とゲート信号を入力する信号処理回路25を備えている。   On the other hand, the optical receiver 2 is controlled in operation based on a reference time common to the optical transmitter 1, and intermittently detects the signal of the reflected light LR in accordance with the transmission timing of the laser light LT of the optical transmitter 1. Similar to the optical transmitter 1, the radio receiver 21 and the synchronous clock 22 are provided, the optical receiver 23 for receiving the reflected light LR using an optical sensor, and the reference signal that has passed through the synchronous clock 22 Based on this, a gate circuit 24 that intermittently generates a gate signal and a signal processing circuit 25 that receives the received signal of the reflected light LR and the gate signal are provided.

信号処理回路25は、ゲート回路24のゲート信号が発生している間に取得した光受信回路23の受信信号を積分するアンプ26と、その積分値を閾値判定して被検出光の判定信号を得る判定回路27を備えており、アンプ26に信号積分型のアンプを用いることでSN比を向上させ、より高精度の信号処理を可能にしている。   The signal processing circuit 25 integrates the received signal of the optical receiving circuit 23 acquired while the gate signal of the gate circuit 24 is being generated, and a threshold value of the integrated value to determine the detection signal of the detected light. The determination circuit 27 is provided, and the S / N ratio is improved by using a signal integration type amplifier for the amplifier 26, thereby enabling more accurate signal processing.

なお、光送信手段1のレーザ発振器13には、例えばYAGレーザが用いられ、レーザ発信源のほか、送信用の光学系などが含まれている。また、光受信手段2の光受信回路23には、受信用の光学系及び光センサや、光信号を電気信号に変換する電子回路などが含まれている。   For example, a YAG laser is used for the laser oscillator 13 of the optical transmission means 1 and includes a transmission optical system in addition to a laser transmission source. The optical receiver circuit 23 of the optical receiver 2 includes a receiving optical system and optical sensor, and an electronic circuit that converts an optical signal into an electrical signal.

次に、図1(b)に示す各信号のタイムチャートを用いて、上記構成を備えたレーザ誘導装置の動作を説明する。   Next, the operation of the laser guidance device having the above configuration will be described using a time chart of each signal shown in FIG.

レーザ照射機Aの光送信手段1及び飛翔体Fの光受信手段2は、人工衛星からの規則的な送信信号を夫々の電波受信回路11,21で受信して、これを共通の基準時間とし、その基準時間に基づいて夫々の動作を行うこととなる。なお、図1(b)では、縦の点線群が基準時間を示し、縦の各点線が一定時間毎の基準時を示す。   The light transmitting means 1 of the laser irradiator A and the light receiving means 2 of the flying object F receive regular transmission signals from the artificial satellites by the respective radio wave receiving circuits 11 and 21, and use this as a common reference time. Each operation is performed based on the reference time. In FIG. 1B, a vertical dotted line group indicates a reference time, and each vertical dotted line indicates a reference time at regular intervals.

光送信手段1は、レーザ発振器13から目標Tに向けてレーザ光LTをパルス状に送信する。このとき、レーザ光LTの送信信号S1は、基準時間に基づいて一定間隔であっても良いが、図示例の場合では、初回の基準時から経過時間t1を経た時点で送信を行った後、次の基準時から経過時間t2を経た時点で送信を行い、その後は、二つの経過時間t1,t2を交互に繰り返す送信パターンになっている。   The optical transmission unit 1 transmits the laser light LT in a pulse shape from the laser oscillator 13 toward the target T. At this time, the transmission signal S1 of the laser beam LT may be at regular intervals based on the reference time. However, in the illustrated example, after transmission is performed at the time when the elapsed time t1 has elapsed from the initial reference time, Transmission is performed when the elapsed time t2 has passed from the next reference time, and thereafter, the transmission pattern is such that the two elapsed times t1 and t2 are alternately repeated.

光受信手段2は、目標Tに向けて飛翔している飛翔体Fにおいて、光受信回路23で目標Tからの反射光LRを受信して、これを受信信号S2に変換すると共に、ゲート回路24では、光送信手段1と共通の基準時間に基づいてゲート信号S3を間欠的に生成している。このゲート信号S3は、一定の間隔又は送信信号S1の送信タイミングに対応した間隔で生成されるが、いずれの場合でも反射光LRの受信信号S2の受信タイミングが含まれるように一定の幅(時間)を有している。   In the flying object F flying toward the target T, the light receiving means 2 receives the reflected light LR from the target T in the light receiving circuit 23 and converts it into a received signal S2, and also the gate circuit 24. Then, the gate signal S3 is generated intermittently based on the reference time common to the optical transmission means 1. The gate signal S3 is generated at a constant interval or at an interval corresponding to the transmission timing of the transmission signal S1, but in either case, the gate signal S3 has a constant width (time) so that the reception timing of the reception signal S2 of the reflected light LR is included. )have.

ここで、光受信回路23は、目標Tからの反射光LRだけでなく、太陽光などの光を受信することもある。つまり、図1(b)には反射光LRの受信信号S2のみを示しているが、実際の受信信号S2には経時的に反射光LR以外の信号が含まれる場合がある。   Here, the light receiving circuit 23 may receive not only the reflected light LR from the target T but also light such as sunlight. That is, FIG. 1B shows only the received signal S2 of the reflected light LR, but the actual received signal S2 may include signals other than the reflected light LR over time.

これに対して、当該レーザ誘導装置では、光送信手段1と光受信手段2を共通の基準時間に基づいて動作制御し、光受信手段2において上述したゲート信号S3を間欠的に生成しているので、ゲート信号S3が生じている間には必ず目標Tからの反射光LRの受信信号S2が入力されていることになり、換言すれば、目標Tからの反射光LRの受信タイミングに対応してゲート信号S3を間欠的に生成していることになる。   On the other hand, in the laser guidance device, the operation of the optical transmission unit 1 and the optical reception unit 2 is controlled based on a common reference time, and the above-described gate signal S3 is generated intermittently in the optical reception unit 2. Therefore, the reception signal S2 of the reflected light LR from the target T is always input while the gate signal S3 is generated. In other words, it corresponds to the reception timing of the reflected light LR from the target T. Thus, the gate signal S3 is generated intermittently.

そこで、光受信手段2では、信号処理回路25のアンプ26において、受信信号S2とゲート信号S3を入力すると共に、ゲート信号S3が生じている間に取得した反射光LRの受信信号S2を積分(積分信号S4)し、さらに、判定回路27において、受信信号S2の積分値を閾値判定することにより、反射光LRの判定信号S5を得る。   Therefore, in the optical receiver 2, the received signal S2 and the gate signal S3 are input to the amplifier 26 of the signal processing circuit 25, and the received signal S2 of the reflected light LR acquired while the gate signal S3 is generated is integrated ( Then, the determination circuit 27 obtains a determination signal S5 of the reflected light LR by determining a threshold value of the integrated value of the reception signal S2 in the determination circuit 27.

このように、レーザ誘導装置は、共通の基準時間に基づいて、光送信手段1によるレーザ光LTのパルス状の送信タイミングと、光受信手段2による反射光LRの間欠的な信号検出タイミングとを同期化しているので、反射光LRの信号検出が容易で且つ確実なものとなる。   As described above, the laser guidance device determines the pulse-like transmission timing of the laser beam LT by the optical transmission unit 1 and the intermittent signal detection timing of the reflected light LR by the optical reception unit 2 based on the common reference time. Since it is synchronized, the signal detection of the reflected light LR is easy and reliable.

そして、とくに信号処理においては、送信信号S1、受信信号S2及びゲート信号S3がきわめて短時間のパルスであると共に、ゲート信号S3が生じている間に取得した受信信号S2のみを信号処理するので、ゲート信号S3が生じている間に反射光LR以外の強力な光を受信してこれを信号処理する確率は非常に低く、これにより反射光LR以外の光を大幅に排除することができ、太陽光などによるジャミングを受け難いものとなる。   In particular, in the signal processing, the transmission signal S1, the reception signal S2, and the gate signal S3 are pulses for a very short time, and only the reception signal S2 acquired while the gate signal S3 is generated is signal-processed. The probability of receiving powerful light other than the reflected light LR and processing it during the generation of the gate signal S3 is very low, so that light other than the reflected light LR can be largely eliminated, It becomes difficult to be jammed by light.

さらに、判定回路27で得た判定信号S5は、飛翔体Fから目標Tまでの距離測定に用いることができる。すなわち、判定信号S5は、光送信手段1の送信信号S1に対して、レーザ照射機Aから目標Tを経て飛翔体Fに至る距離に相当する分だけ時間的に遅れたものとなり、しかも、光送信手段1の送信信号S1が基準時に対して経過時間t1,t2を有するものであるから、これと同様に基準時に対して経過時間T1,T2を有する。   Furthermore, the determination signal S5 obtained by the determination circuit 27 can be used for measuring the distance from the flying object F to the target T. That is, the determination signal S5 is delayed with respect to the transmission signal S1 of the optical transmission means 1 by a time corresponding to the distance from the laser irradiator A to the flying object F via the target T, and Since the transmission signal S1 of the transmission means 1 has the elapsed times t1 and t2 with respect to the reference time, it similarly has the elapsed times T1 and T2 with respect to the reference time.

そこで、予め、光送信手段1及び光受信手段2に、基準時に対する送信信号S1の初回の経過時間t1を設定し、光送信手段1において、目標Tに向けてレーザ光LTを送信するとともにその反射光LRを受信して、送信と受信の時間差及び光速Cに基づいて目標Tまでの距離Roを測定し、さらに、送信信号S1の経過時間t1,t2が、t2=t1+Ro/Cとなるように設定する。これにより、送信信号S1の経過時間t1,t2は、その時間差にレーザ照射機Aから目標Tまでの距離Roの情報を含むものとなる。   Therefore, the first elapsed time t1 of the transmission signal S1 with respect to the reference time is set in advance in the optical transmission unit 1 and the optical reception unit 2, and the optical transmission unit 1 transmits the laser beam LT toward the target T and The reflected light LR is received, the distance Ro to the target T is measured based on the time difference between transmission and reception and the speed of light C, and the elapsed times t1 and t2 of the transmission signal S1 are t2 = t1 + Ro / C. Set to. Thereby, the elapsed times t1 and t2 of the transmission signal S1 include information on the distance Ro from the laser irradiator A to the target T in the time difference.

一方、飛翔体Fの光受信手段2においては、判定信号S5の経過時間T1,T2の差が送信信号S1の経過時間t1,t2の差と同じであるから、その時間差(T2−T1=Ro/C)によってレーザ照射機Aから目標Tまでの距離Roを判断することができる。   On the other hand, in the light receiving means 2 of the flying object F, the difference between the elapsed times T1 and T2 of the determination signal S5 is the same as the difference between the elapsed times t1 and t2 of the transmission signal S1, so that time difference (T2−T1 = Ro / C) makes it possible to determine the distance Ro from the laser irradiator A to the target T.

また、光受信手段2は、光送信手段1と共通の基準時間に基づいて動作制御され、予め設定された送信信号S1の経過時間t1と判定信号S5の経過時間T1との差、及び光速Cに基づいて、レーザ照射機Aから目標Tを経て飛翔体Fに至る距離(Ro+R)を判断し得るので、送信信号S1の経過時間t1、判定信号S5の経過時間T1、レーザ照射機Aから目標Tまでの距離Ro及び光速Cの関係(T1−t1−Ro/C=R/C)に基づいて、目標Tから飛翔体Fまでの距離Rを判断することができる。   The optical receiving means 2 is controlled in operation based on a common reference time with the optical transmitting means 1, and the difference between the preset elapsed time t1 of the transmission signal S1 and the elapsed time T1 of the determination signal S5, and the speed of light C Therefore, the distance (Ro + R) from the laser irradiator A through the target T to the flying object F can be determined. Therefore, the elapsed time t1 of the transmission signal S1, the elapsed time T1 of the determination signal S5, and the target from the laser irradiator A The distance R from the target T to the flying object F can be determined based on the relationship between the distance Ro to T and the speed of light C (T1-t1-Ro / C = R / C).

さらに、判定信号S5に基づいて飛翔体Fから目標Tまでの距離測定を行う別の方法として、送信信号S1の経過時間t1,t2をt2=t1−2Ro/Cと設定することもできる。この場合にあっても、予め、光送信手段1及び光受信手段2に、送信信号S1の経過時間t1を設定し、光送信手段1において、レーザ照射機Aから目標Tまでの距離Roを測定する。   Furthermore, as another method for measuring the distance from the flying object F to the target T based on the determination signal S5, the elapsed times t1 and t2 of the transmission signal S1 can be set as t2 = t1-2Ro / C. Even in this case, the elapsed time t1 of the transmission signal S1 is set in advance in the optical transmitter 1 and the optical receiver 2, and the distance Ro from the laser irradiator A to the target T is measured in the optical transmitter 1. To do.

一方、飛翔体Fの光受信手段2では、判定信号S5の経過時間T1,T2の差が送信信号S1の経過時間t1,t2の差と同じであり、また、判定信号S5の経過時間T1,T2の和(T1+T2)が、予め設定した送信信号S1の初回の経過時間t1と、次の経過時間t2(=t1−2Ro/C)と、送信信号S1の初回の経過時間t1と判定信号S5の初回の経過時間T1の差〔T1−t1(=Ro/C+R/C)〕と、送信信号S1の次の経過時間t2と判定信号S5の次の経過時間T2の差〔T2−t2(=Ro/C+R/C)〕の和であるから、以下の式3〜5によって目標Tから飛翔体Fまでの距離Rを求めることができ、より利用しやすいものとなる。
T1+T2=2t1−2Ro/C+2Ro/C+2R/C …式1
T1+T2=2t1+2R/C …式2
∴R/C=〔(T1+T2)/2−t1〕 …式3
On the other hand, in the light receiving means 2 of the flying object F, the difference between the elapsed times T1 and T2 of the determination signal S5 is the same as the difference between the elapsed times t1 and t2 of the transmission signal S1, and the elapsed time T1 of the determination signal S5. The sum (T1 + T2) of T2 is the initial elapsed time t1 of the transmission signal S1, the next elapsed time t2 (= t1-2Ro / C), the initial elapsed time t1 of the transmission signal S1, and the determination signal S5. The difference between the first elapsed time T1 [T1-t1 (= Ro / C + R / C)] and the difference between the next elapsed time t2 of the transmission signal S1 and the next elapsed time T2 of the determination signal S5 [T2-t2 (= Ro / C + R / C)], the distance R from the target T to the flying object F can be obtained by the following formulas 3 to 5, which makes it easier to use.
T1 + T2 = 2t1-2Ro / C + 2Ro / C + 2R / C Formula 1
T1 + T2 = 2t1 + 2R / C Equation 2
∴R / C = [(T1 + T2) / 2−t1] Equation 3

図2は、本発明に係わる飛翔体のレーザ誘導装置の他の実施例を説明する図である。なお、先の実施例と同一の構成部位は、同一符号を付して詳細な説明を省略する。   FIG. 2 is a view for explaining another embodiment of the flying body laser guiding apparatus according to the present invention. The same components as those in the previous embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図示のレーザ誘導装置は、先の実施例では飛翔体Fに光受信手段2の全構成を搭載していたのに対して、飛翔体Fが母機(あるいはランチャー)Mに発射可能に装着してあり、母機Mに、光受信手段2を構成する電波受信回路(例えばGPSクロック)21を備えると共に、飛翔体Fに、光受信手段2を構成する光受信回路23と、ゲート回路24と、アンプ26及び判定回路27から成る信号処理回路25を備え、さらに、先の実施例の同期クロック(22)に代えて発振回路32を備えている。   In the illustrated embodiment, the laser guiding apparatus is mounted on the flying object F so that the flying object F can be launched on the mother machine (or launcher) M, whereas the flying object F has the entire structure of the light receiving means 2 mounted thereon. Yes, the mother machine M is provided with a radio wave receiving circuit (for example, GPS clock) 21 that constitutes the light receiving means 2, and the flying object F is provided with the light receiving circuit 23 that constitutes the light receiving means 2, a gate circuit 24, and an amplifier. 26 and a determination circuit 27, and an oscillation circuit 32 in place of the synchronous clock (22) of the previous embodiment.

この場合、飛翔体Fの運用時間が短時間(例えば数十秒)であれば、発振回路32は、高精度の水晶発振器(例えば、OCXO:Oven Controlled Xtal Oscillator)を内蔵したものを用いることができ、母機Mと飛翔体Fを分離可能に接続するコネクタ50を介して電波受信回路21に接続してあり、母機Mから飛翔体Fを発射する前に初期化される。   In this case, if the operating time of the flying object F is short (for example, several tens of seconds), the oscillation circuit 32 may use a built-in high-accuracy crystal oscillator (for example, OCXO: Oven Controlled Xtal Oscillator). The main body M and the flying object F are connected to the radio wave receiving circuit 21 via a connector 50 that detachably connects, and is initialized before the flying object F is fired from the mother machine M.

上記実施例の場合には、光受信手段2を母機M側と飛翔体F側に分けたことで、飛翔体F側の構造を簡素化することができ、また、母機Mに複数の飛翔体Fを搭載している場合には、各飛翔体Fに対して共通の電波受信回路21を用いることができる。   In the case of the above-described embodiment, the structure of the flying object F side can be simplified by dividing the light receiving means 2 into the mother machine M side and the flying object F side. When F is mounted, a common radio wave receiving circuit 21 can be used for each flying object F.

さらに、上記実施例の場合、光送信手段1は、先の実施例と同様に地上等に設置するレーザ照射機(仮想線で示す)Aに備えても良いし、図中に仮想線で示すように母機Mに搭載しても良い。光送信手段1を母機Mに搭載した構成にすれば、光送信手段1の電波受信回路(11)と光受信手段2の電波受信回路11を共通のものにすることができ、構造のさらなる簡素化を実現することができる。   Further, in the case of the above embodiment, the optical transmission means 1 may be provided in a laser irradiator (shown by a virtual line) A installed on the ground or the like as in the previous embodiment, or shown by a virtual line in the figure. As such, it may be mounted on the mother machine M. If the optical transmission means 1 is mounted on the mother machine M, the radio wave reception circuit (11) of the optical transmission means 1 and the radio wave reception circuit 11 of the optical reception means 2 can be made common, and the structure is further simplified. Can be realized.

なお、上記各実施例のレーザ誘導装置は、例えば所定の地上局からの送信信号を基準時間として用いることも可能であるが、人工衛星の送信信号を共通の基準時間として用いることで、どの地域でも使用することが可能となる。   The laser guidance device of each of the above embodiments can use, for example, a transmission signal from a predetermined ground station as a reference time, but by using a transmission signal of an artificial satellite as a common reference time, But it can be used.

さらに、上記各実施例では、光送信手段1が、二つの経過時間t1,t2を設定してレーザ光LTを送信するものとしたが、経過時間の設定数をより多くすることで不規則的な送信パターンを形成すると共に、光受信手段2において、光送信手段1の送信パターンと同一のパターンで反射光LRの信号検出を行う構成、すなわちレーザ光LTの送信タイミングと反射光LRの信号検出のタイミングとを不規則的なパターンで同期させる構成とすれば、パターンの複雑化に伴って秘匿性がより一層高められる。   Further, in each of the above-described embodiments, the optical transmission unit 1 sets the two elapsed times t1 and t2 and transmits the laser light LT. However, the optical transmission unit 1 is irregular by increasing the set number of elapsed times. Of the reflected light LR with the same pattern as the transmission pattern of the optical transmission means 1, that is, the transmission timing of the laser light LT and the signal detection of the reflected light LR. If the timing is synchronized with an irregular pattern, the secrecy can be further enhanced as the pattern becomes more complicated.

さらに、上記実施例では、目標Tに向けて送信したレーザ光LTの反射光LRを受信して誘導制御を行う場合を例示したが、当該レーザ誘導装置は、例えば、目標Tに向けて送信したレーザ光の散乱光を被検出光として受信するビームライダー方式の誘導制御にも適用することが可能である。   Further, in the above-described embodiment, the case where the reflected light LR of the laser beam LT transmitted toward the target T is received and guidance control is performed is illustrated. However, the laser guidance device transmits the target T, for example, The present invention can also be applied to beam lidar type guidance control that receives scattered light of laser light as detected light.

本発明に係わる飛翔体のレーザ誘導装置の一実施例を示す説明図(a)及び各信号を説明するタイムチャート(b)である。It is explanatory drawing (a) which shows one Example of the laser guidance apparatus of the flying body concerning this invention, and the time chart (b) explaining each signal. 本発明に係わる飛翔体のレーザ誘導装置の他の実施例を示す説明図である。It is explanatory drawing which shows the other Example of the laser guidance apparatus of the flying body concerning this invention. 従来の飛翔体のレーザ光誘導装置を示す説明図(a)及び各信号を説明するタイムチャート(b)である。It is explanatory drawing (a) which shows the conventional laser light guidance apparatus of a flying body, and the time chart (b) explaining each signal.

符号の説明Explanation of symbols

F 飛翔体
LR 反射光(被検出光)
LT レーザ光
T 目標
1 光送信手段
2 光受信手段
23 光受信回路
24 ゲート回路
25 信号処理回路
11 21 電波受信回路
F Flying object LR Reflected light (detected light)
LT Laser light T Target 1 Optical transmission means 2 Optical reception means 23 Optical reception circuit 24 Gate circuit 25 Signal processing circuit 11 21 Radio wave reception circuit

Claims (4)

目標に照射したレーザ光の散乱光又は反射光である被検出光を受信して飛翔体を誘導するための装置であって、所定の基準時間に基づいてレーザ光をパルス状に送信する光送信手段と、飛翔体において被検出光を受信する光受信手段を備え、光受信手段が、光送信手段と共通の基準時間に基づいて動作制御され且つ光送信手段のレーザ光の送信タイミングに対応して被検出光の信号検出を間欠的に行う手段であることを特徴とする飛翔体のレーザ誘導装置。   An apparatus for receiving detected light that is scattered light or reflected light of a laser beam irradiated on a target and guiding a flying object, and transmitting the laser beam in a pulse shape based on a predetermined reference time And a light receiving means for receiving the detected light in the flying object, the light receiving means being controlled in operation based on a reference time common to the light transmitting means and corresponding to the laser light transmission timing of the light transmitting means. A flying body laser guiding device characterized in that it is means for intermittently detecting the signal of the detected light. 光受信手段が、被検出光を受信する光受信回路と、基準時間に基づいてゲート信号を間欠的に生成するゲート回路と、ゲート回路のゲート信号が発生している間に取得した光受信回路の受信信号を積分し且つその積分値を閾値判定して被検出光の判定信号を得る信号処理回路を備えていることを特徴とする請求項1に記載の飛翔体のレーザ誘導装置。   An optical receiver that receives the detected light, a gate circuit that intermittently generates a gate signal based on a reference time, and an optical receiver circuit that is acquired while the gate signal of the gate circuit is generated 2. The flying body laser guiding apparatus according to claim 1, further comprising: a signal processing circuit that integrates the received signal and obtains a determination signal of the detected light by determining a threshold value of the integrated value. 光送信手段が、不規則的なパターンでレーザ光を送信する手段であり、光受信手段が、光送信手段の送信パターンと同一パターンで被検出光の信号検出を行う手段であることを特徴とする請求項1又は2に記載の被翔体のレーザ誘導装置。   The light transmitting means is means for transmitting laser light in an irregular pattern, and the light receiving means is means for performing signal detection of detected light in the same pattern as the transmission pattern of the light transmitting means. The laser guidance device for a projectile according to claim 1 or 2. 光送信手段及び光受信手段が、人工衛星の送信信号を基準時間として用いるための電波受信回路を備えていることを特徴とする請求項1〜3のいずれかに記載の飛翔体のレーザ誘導装置。   4. The flying body laser guiding apparatus according to claim 1, wherein the light transmitting means and the light receiving means include a radio wave receiving circuit for using a transmission signal of the artificial satellite as a reference time. .
JP2005183044A 2005-06-23 2005-06-23 Laser guide device for missile Pending JP2007003079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005183044A JP2007003079A (en) 2005-06-23 2005-06-23 Laser guide device for missile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005183044A JP2007003079A (en) 2005-06-23 2005-06-23 Laser guide device for missile

Publications (1)

Publication Number Publication Date
JP2007003079A true JP2007003079A (en) 2007-01-11

Family

ID=37688883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005183044A Pending JP2007003079A (en) 2005-06-23 2005-06-23 Laser guide device for missile

Country Status (1)

Country Link
JP (1) JP2007003079A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292113A (en) * 2007-05-28 2008-12-04 Toshiba Corp Semiactive guidance device
JP2009162632A (en) * 2008-01-08 2009-07-23 Ihi Aerospace Co Ltd Laser semiactive guidance method
JP2010007892A (en) * 2008-06-24 2010-01-14 Toshiba Corp Multispectral laser guidance system and method
WO2010080189A3 (en) * 2008-12-03 2010-09-10 Raytheon Company Absolute time encoded semi-active laser designation
JP2013156011A (en) * 2013-02-28 2013-08-15 Ihi Aerospace Co Ltd Laser semi-active guidance method
EP2843355A1 (en) * 2013-08-28 2015-03-04 Rosemount Aerospace Inc. Semi-active laser seeker synchronization
WO2018008388A1 (en) * 2016-07-04 2018-01-11 ソニーセミコンダクタソリューションズ株式会社 Information processing device and information processing method
WO2019211680A1 (en) * 2018-05-03 2019-11-07 King Abdullah University Of Science And Technology Controlling a vehicle using a remotely located laser and an on-board camera

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533264A (en) * 1976-06-30 1978-01-12 Toshiba Corp Laser pulse transmission/reception system
JP2004257724A (en) * 2003-02-07 2004-09-16 Komatsu Ltd Bullet guidance device and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533264A (en) * 1976-06-30 1978-01-12 Toshiba Corp Laser pulse transmission/reception system
JP2004257724A (en) * 2003-02-07 2004-09-16 Komatsu Ltd Bullet guidance device and method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292113A (en) * 2007-05-28 2008-12-04 Toshiba Corp Semiactive guidance device
JP2009162632A (en) * 2008-01-08 2009-07-23 Ihi Aerospace Co Ltd Laser semiactive guidance method
JP2010007892A (en) * 2008-06-24 2010-01-14 Toshiba Corp Multispectral laser guidance system and method
WO2010080189A3 (en) * 2008-12-03 2010-09-10 Raytheon Company Absolute time encoded semi-active laser designation
JP2013156011A (en) * 2013-02-28 2013-08-15 Ihi Aerospace Co Ltd Laser semi-active guidance method
US9435613B2 (en) 2013-08-28 2016-09-06 Rosemount Aerospace Inc. Semi-active laser seeker synchronization
EP2843355A1 (en) * 2013-08-28 2015-03-04 Rosemount Aerospace Inc. Semi-active laser seeker synchronization
WO2018008388A1 (en) * 2016-07-04 2018-01-11 ソニーセミコンダクタソリューションズ株式会社 Information processing device and information processing method
JPWO2018008388A1 (en) * 2016-07-04 2019-04-18 ソニーセミコンダクタソリューションズ株式会社 INFORMATION PROCESSING APPARATUS AND INFORMATION PROCESSING METHOD
US11061413B2 (en) 2016-07-04 2021-07-13 Sony Semiconductor Solutions Corporation Information processing apparatus and information processing method
JP7016796B2 (en) 2016-07-04 2022-02-07 ソニーセミコンダクタソリューションズ株式会社 Information processing equipment and information processing method
WO2019211680A1 (en) * 2018-05-03 2019-11-07 King Abdullah University Of Science And Technology Controlling a vehicle using a remotely located laser and an on-board camera
US11036217B2 (en) 2018-05-03 2021-06-15 King Abdullah University Of Science And Technology Controlling a vehicle using a remotely located laser and an on-board camera

Similar Documents

Publication Publication Date Title
JP5686342B2 (en) Laser radar device and laser synthetic aperture radar device
EP3090498B1 (en) Method and apparatus for synchronizing clocks underwater using light and sound
EP2041600B1 (en) A method and radar system for coherent detection of moving objects
US7710547B2 (en) Coherent optical range finder
AU7953201A (en) Method and device for measuring distances
KR20140102452A (en) Apparatus for laser range finder and method for estimating laser range
WO2006109298A3 (en) An optical screen, systems and methods for producing and operating same
JP2005181193A (en) Pulse-wave radar apparatus
JP2009222445A (en) Ultrasonic distance sensor system, and ultrasonic distance sensor using the same
JP2007003079A (en) Laser guide device for missile
RU2015118338A (en) LARGE-SCALE TARGETS WITH LONG RANGE OF ACTION
JP2008122137A (en) Radar device
JPH06242240A (en) Distance measuring apparatus
JP2010127839A (en) Laser radar device
EP2913690B1 (en) Positioning system and method
JP2008224356A (en) Flying object guide device
US9739876B2 (en) Methods and apparatus to determine relative positioning between moving platforms
JP7379551B2 (en) Radar device, transponder reflected wave detection method, and positioning method
RU2538195C1 (en) Method of recognising pulse interference source signals (versions) and system therefor (versions)
JP2009276248A (en) Laser radar device
JP3818204B2 (en) Radar equipment
JPS6254189A (en) On-vehicle random modulation radar equipment
JP4741937B2 (en) Distance measuring system and distance measuring method
JP3747838B2 (en) Guidance device
JP2006125947A (en) Radar system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110708