[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007099958A - Method for producing fatty acids - Google Patents

Method for producing fatty acids Download PDF

Info

Publication number
JP2007099958A
JP2007099958A JP2005293277A JP2005293277A JP2007099958A JP 2007099958 A JP2007099958 A JP 2007099958A JP 2005293277 A JP2005293277 A JP 2005293277A JP 2005293277 A JP2005293277 A JP 2005293277A JP 2007099958 A JP2007099958 A JP 2007099958A
Authority
JP
Japan
Prior art keywords
fatty acids
oils
fats
mass
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005293277A
Other languages
Japanese (ja)
Other versions
JP4694938B2 (en
Inventor
Minoru Kase
実 加瀬
Toshiteru Komatsu
利照 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005293277A priority Critical patent/JP4694938B2/en
Application filed by Kao Corp filed Critical Kao Corp
Priority to EP06811713A priority patent/EP1931794B1/en
Priority to DE602006014845T priority patent/DE602006014845D1/en
Priority to KR1020087005502A priority patent/KR101297957B1/en
Priority to US12/067,245 priority patent/US8323934B2/en
Priority to PCT/JP2006/320425 priority patent/WO2007043631A2/en
Priority to CN2006800367033A priority patent/CN101278054B/en
Publication of JP2007099958A publication Critical patent/JP2007099958A/en
Application granted granted Critical
Publication of JP4694938B2 publication Critical patent/JP4694938B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Edible Oils And Fats (AREA)
  • Fats And Perfumes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing fatty acids having a low content of trans-unsaturated fatty acids and monoacyl glycerols in the constituting fatty acids and good external appearance with reduced coloring by hydrolyzing fats and oils. <P>SOLUTION: The method for producing fatty acids by hydrolyzing fats and oils comprises partially hydrolyzing fats and oils by high-temperature, high pressure decomposition, and thereafter hydrolyzing the partial hydrolyzate by enzymolysis. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、油脂を加水分解することによる脂肪酸類の製造方法に関する。   The present invention relates to a method for producing fatty acids by hydrolyzing fats and oils.

脂肪酸類の製造は、油脂を加水分解することにより行われている。油脂を加水分解する方法は、高温高圧分解法と(特許文献1)、酵素分解法(特許文献2)が行われている。前者は、高温及び高圧条件下で行うもので、生産性が高いという利点を有するが、原料に不飽和脂肪酸の多いものを使用すると、条件によってはトランス不飽和脂肪酸を多く生成する場合がある。一方、後者はリパーゼ等の酵素を触媒とし、反応は0〜70℃という低温で行われるため、トランス不飽和脂肪酸を生成することはないが、高温高圧分解法に比べて生産性が低い。   Fatty acids are produced by hydrolyzing fats and oils. As a method for hydrolyzing fats and oils, a high-temperature and high-pressure decomposition method (Patent Document 1) and an enzymatic decomposition method (Patent Document 2) are performed. The former is carried out under high temperature and high pressure conditions, and has the advantage of high productivity. However, if a raw material having a lot of unsaturated fatty acids is used, a large amount of trans unsaturated fatty acids may be produced depending on the conditions. On the other hand, the latter uses an enzyme such as lipase as a catalyst, and the reaction is carried out at a low temperature of 0 to 70 ° C., so that it does not produce a trans-unsaturated fatty acid, but is less productive than the high-temperature high-pressure decomposition method.

また、高温高圧分解法においては、反応当初に分解が開始されるまでの誘導期間が存在するが、当該誘導時間をなくす又は短縮するために、まずグリセリドを1,3位特異性リパーゼを用い、酵素分解法により部分加水分解して部分分解グリセリドを調製し、その後、高温高圧分解法を行うという技術も存在する(特許文献3)。   In the high-temperature and high-pressure decomposition method, there is an induction period until decomposition starts at the beginning of the reaction. In order to eliminate or shorten the induction time, glycerides are first used with a 1,3-specific lipase, There is also a technique in which a partially hydrolyzed glyceride is prepared by partial hydrolysis by an enzymatic decomposition method, and then a high temperature high pressure decomposition method is performed (Patent Document 3).

特開2003−113395号公報JP 2003-113395 A 特開2000−160188号公報JP 2000-160188 A 特表平8−507917号公報Japanese National Patent Publication No. 8-507917

近年、世界的に食用油について、健康面に及ぼす影響が着目されており、トランス不飽和脂肪酸は、飽和脂肪酸、コレステロールとともにLDL(悪玉)コレステロール値を上昇させ、冠状動脈性心臓疾患のリスクを増大させることが、科学的に裏付けられている。アメリカでは、約1300万人が冠状動脈性心臓疾患にかかっており、毎年、50万人以上が冠状動脈性心臓疾患関連で死亡している。このような状況下で、米国では“Nutrition Facts”(栄養表示)に、従来の脂質、飽和脂肪酸、コレステロール表示に加え、2006年1月1日よりトランス不飽和脂肪酸含量の表示を義務化することとなった。また、デンマークでは、2004年より食用油のトランス不飽和脂肪酸濃度を2.0質量%以下とすることを法制化し、EU諸国全体へ波及することは必至である。このように、食用油のトランス不飽和脂肪酸の低減が世界的に望まれている。また、油脂を加水分解して製造した脂肪酸類中のモノアシルグリセロール含量は、乳化抑制の点から低いほうが好ましい。   In recent years, the effects of edible oils on health have attracted attention worldwide, and trans-unsaturated fatty acids, along with saturated fatty acids and cholesterol, increase LDL (bad) cholesterol levels and increase the risk of coronary heart disease. It is scientifically supported that In the United States, approximately 13 million people suffer from coronary heart disease, and more than 500,000 die from coronary heart disease each year. Under these circumstances, in the United States, “Nutrition Facts” (nutritional labeling), in addition to the conventional lipid, saturated fatty acid and cholesterol labeling, will be required to label the content of trans-unsaturated fatty acids from January 1, 2006. It became. In Denmark, it is inevitable that the trans-unsaturated fatty acid concentration of edible oil will be 2.0% by mass or less from 2004, and that it will spread throughout the EU countries. Thus, reduction of the trans unsaturated fatty acid of edible oil is desired worldwide. The monoacylglycerol content in fatty acids produced by hydrolyzing fats and oils is preferably low from the viewpoint of emulsification suppression.

脱臭工程を省略した未精製の原料油脂は、構成脂肪酸中のトランス不飽和脂肪酸含量が1.5質量%以下であり、これを酵素分解法により加水分解を行えば、トランス不飽和脂肪酸の含量が上昇することはない。しかし、原料由来の色がそのまま残るため、得られる脂肪酸類としては外観が悪い。一方、高温高圧分解法のみにより加水分解して得た脂肪酸類は、着色成分が分解されることにより良好な外観になるが、構成脂肪酸中のトランス不飽和脂肪酸含量が高くなる。またモノアシルグリセロール含量も高くなるという課題も明らかとなった。
従って、本発明の目的は、油脂の加水分解により、構成脂肪酸中のトランス不飽和脂肪酸とモノアシルグリセロール含量が低く、かつ色の低減された良好な外観を有する脂肪酸類の製造方法を提供することにある。
Unrefined raw material fat and oil that omits the deodorizing step has a trans-unsaturated fatty acid content in the constituent fatty acid of 1.5% by mass or less. It will not rise. However, since the color derived from the raw material remains as it is, the appearance of the fatty acids obtained is poor. On the other hand, fatty acids obtained by hydrolysis only by the high-temperature and high-pressure decomposition method have a good appearance when the colored components are decomposed, but the content of trans-unsaturated fatty acids in the constituent fatty acids is high. Moreover, the subject that the monoacylglycerol content also became high became clear.
Accordingly, an object of the present invention is to provide a method for producing fatty acids having a good appearance in which the content of trans-unsaturated fatty acids and monoacylglycerols in the constituent fatty acids is low and the color is reduced by hydrolysis of fats and oils. It is in.

そこで、本発明者は、油脂の加水分解反応において、高温高圧分解法と酵素分解法の組合せについて種々検討したところ、まず、油脂を高温高圧分解法により部分的に加水分解し、その後、酵素分解法により加水分解した場合にのみ、構成脂肪酸中のトランス不飽和脂肪酸とモノアシルグリセロール含量が低く、かつ良好な外観を有する脂肪酸類を製造できることを見出した。なお、当該方法と逆の順で行った場合には、モノアシルグリセロールの含量を低減することはできないことも見出した。   Therefore, the present inventor conducted various studies on the combination of the high temperature and high pressure decomposition method and the enzymatic decomposition method in the hydrolysis reaction of fats and oils. First, the fats and oils were partially hydrolyzed by the high temperature and high pressure decomposition method, and then the enzymatic decomposition. It was found that fatty acids having a low content of trans-unsaturated fatty acid and monoacylglycerol in the constituent fatty acids and having a good appearance can be produced only when hydrolyzed by the method. It has also been found that the monoacylglycerol content cannot be reduced when the process is carried out in the reverse order.

すなわち、本発明は、油脂を加水分解することにより脂肪酸類を製造する方法であって、油脂を高温高圧分解法で部分的に加水分解した後、酵素分解法により加水分解する脂肪酸類の製造方法を提供するものである。   That is, the present invention is a method for producing fatty acids by hydrolyzing fats and oils, wherein the fats and oils are partially hydrolyzed by a high-temperature and high-pressure decomposition method, and then hydrolyzed by an enzymatic decomposition method. Is to provide.

本発明によれば、油脂の加水分解により、構成脂肪酸中のトランス不飽和脂肪酸とモノアシルグリセロール含量が低く、かつ良好な外観を有する脂肪酸類を製造することができる。   According to the present invention, fatty acids having a good appearance with a low content of trans-unsaturated fatty acids and monoacylglycerols in constituent fatty acids can be produced by hydrolysis of fats and oils.

本発明における「高温高圧分解法」とは、原料油脂に水を加えて、高温、高圧の条件で反応することにより、脂肪酸類とグリセリンを得る方法をいう。また、本発明における「酵素分解法」とは、原料油脂に水を加えて、リパーゼ等の酵素を触媒として用い、低温の条件で反応することにより、脂肪酸類とグリセリンを得る方法をいう。更に、本発明における「脂肪酸類」とは、脂肪酸のみならず、グリセリン、モノアシルグリセロール、ジアシルグリセロール、トリアシルグリセロールが存在するものも含む。   The “high temperature and high pressure decomposition method” in the present invention refers to a method of obtaining fatty acids and glycerin by adding water to a raw oil and fat and reacting under conditions of high temperature and high pressure. The “enzymatic degradation method” in the present invention refers to a method of obtaining fatty acids and glycerin by adding water to raw oil and fat, using an enzyme such as lipase as a catalyst, and reacting under low temperature conditions. Furthermore, “fatty acids” in the present invention include not only fatty acids but also those in which glycerin, monoacylglycerol, diacylglycerol, and triacylglycerol are present.

本発明において、加水分解の対象となる原料油脂は、植物性油脂、動物性油脂のいずれでもよい。具体的な原料としては、菜種油、ひまわり油、とうもろこし油、大豆油、あまに油、米油、紅花油、綿実油、牛脂、魚油等を挙げることができる。また、これらの油脂を分別、混合したもの、水素添加や、エステル交換反応などにより脂肪酸組成を調整したものも原料として利用できるが、水素添加していないものであることが、原料油脂中の構成脂肪酸中のトランス不飽和脂肪酸含量を低減させる点から好ましい。   In the present invention, the raw oil / fat to be hydrolyzed may be a vegetable oil / animal fat / oil. Specific examples of the raw material include rapeseed oil, sunflower oil, corn oil, soybean oil, linseed oil, rice oil, safflower oil, cottonseed oil, beef tallow, fish oil and the like. In addition, those obtained by separating and mixing these fats and oils, those obtained by adjusting the fatty acid composition by hydrogenation, transesterification, etc. can be used as raw materials. It is preferable from the viewpoint of reducing the content of trans-unsaturated fatty acid in the fatty acid.

本発明の態様において、原料油脂は、それぞれの原料となる植物、又は動物から搾油後、油分以外の固形分をろ過や遠心分離等により除去するのが好ましい。次いで、水、場合によっては更に酸を添加混合した後、遠心分離等によってガム分を分離することにより脱ガムすることが好ましい。また、原料油脂は、アルカリを添加混合した後、水洗し脱水することにより脱酸を行うことが好ましい。更に、原料油脂は、活性白土等の吸着剤と接触させた後、吸着剤をろ過等により分離することにより脱色を行うことが好ましい。これらの処理は、以上の順序で行うことが好ましいが、順序を変更しても良い。また、この他に、原料油脂は、ろう分の除去のために、低温で固形分を分離するウインタリングを行っても良い。更に、原料油脂は、必要に応じて、減圧下で水蒸気と接触させることにより、脱臭を行っても良い。この際、熱履歴を極力低くすることが油脂の構成脂肪酸中のトランス不飽和脂肪酸含量を低減する点から好ましい。脱臭工程の条件については、温度は300℃以下、特に270℃以下にコントロールすることが好ましく、また、時間は10時間以下、特に5時間以下とすることが好ましい。   In the embodiment of the present invention, it is preferable to remove the solid content other than the oil component by filtration, centrifugation, or the like after squeezing the raw material oil from the plant or animal as the respective raw material. Next, it is preferable to degum by separating the gum by centrifugation or the like after adding water and optionally further acid and mixing. Moreover, after adding and mixing an alkali, it is preferable to deoxidize raw material fats by washing with water and dehydrating. Furthermore, it is preferable to decolorize raw material fats and oils by contacting with an adsorbent such as activated clay and then separating the adsorbent by filtration or the like. These processes are preferably performed in the above order, but the order may be changed. In addition to this, the raw oil and fat may be subjected to wintering for separating the solid content at a low temperature in order to remove the wax content. Furthermore, you may deodorize raw material fats and oils by making it contact with water vapor | steam under reduced pressure as needed. At this time, it is preferable to make the heat history as low as possible from the viewpoint of reducing the content of trans-unsaturated fatty acids in the fatty acids constituting the fats and oils. As for the conditions of the deodorizing step, the temperature is preferably controlled to 300 ° C. or less, particularly 270 ° C. or less, and the time is preferably 10 hours or less, particularly 5 hours or less.

本発明においては、原料油脂は、構成脂肪酸中のトランス不飽和脂肪酸含量が1.5質量%以下、更に1質量%以下、特に0.5質量%以下のものを用いることが、加水分解後の脂肪酸類の構成脂肪酸中のトランス不飽和脂肪酸含量を低減させる点から好ましい。例えば、原料油脂は、原料の全部又は一部に、未脱臭油脂を使用するのが、脂肪酸類の構成脂肪酸中のトランス不飽和脂肪酸を低減できるので好ましい。ここで、構成脂肪酸中のトランス不飽和脂肪酸含量は、油脂を2種以上使用する場合は、それらの合計量中の含有量である。   In the present invention, the raw fats and oils have a trans-unsaturated fatty acid content in the constituent fatty acids of 1.5% by mass or less, more preferably 1% by mass or less, particularly 0.5% by mass or less. It is preferable from the viewpoint of reducing the content of trans-unsaturated fatty acids in the constituent fatty acids of the fatty acids. For example, as raw material fats and oils, it is preferable to use undeodorized fats and oils for all or part of the raw materials because trans unsaturated fatty acids in fatty acids constituting fatty acids can be reduced. Here, the trans-unsaturated fatty acid content in the constituent fatty acid is the content in the total amount when two or more fats and oils are used.

高温高圧分解法による加水分解では、原料油脂の構成脂肪酸の不飽和度が高いものほど、加熱によるトランス化が起こり易い。特に、不飽和度が1であるオレイン酸の場合は、加熱によってはほとんどトランス化が起こらず、不飽和度が2以上である脂肪酸、例えばリノール酸やリノレン酸の場合は、トランス化が顕著となる。   In the hydrolysis by the high-temperature and high-pressure decomposition method, the higher the degree of unsaturation of the constituent fatty acids of the raw material fats and oils, the easier it is to convert to heat. In particular, in the case of oleic acid having an unsaturation degree of 1, almost no trans-transformation occurs upon heating, and in the case of fatty acids having an unsaturation degree of 2 or more, such as linoleic acid or linolenic acid, trans-translation is remarkable. Become.

本発明の製造方法で用いる原料油脂は、構成脂肪酸中のトランス不飽和脂肪酸含量が1.5質量%以下、更に0.01〜1質量%、特に0.1〜1質量%であることが、生理効果の点から好ましい。色相Cは20以上、更に35以上であることが、本発明による外観の向上効果が顕著である点から好ましい。
なお、本発明における「構成脂肪酸中のトランス不飽和脂肪酸の含有量」及び「脂肪酸組成」は、日本油化学協会編「基準油脂分析試験法」中の「脂肪酸メチルエステルの調製法(2.4.1.2−1996)」に従って脂肪酸メチルエステルを調製し、得られたサンプルを、American Oil Chemists. Society Official Method Ce 1f-96(GLC法)により測定した値をいう。また、原料油脂又は脂肪酸類の「色相C」は、American Oil Chemists. Society Official Method Ca 13e-92 (Lovibond法) で5.25インチセルにより測定し、次の式(1)で求めた値をいう。
C=10R+Y (1)
(式中、R=Red値、Y=Yellow値)
The raw fat and oil used in the production method of the present invention has a trans-unsaturated fatty acid content in the constituent fatty acid of 1.5% by mass or less, more preferably 0.01 to 1% by mass, and particularly 0.1 to 1% by mass. It is preferable from the viewpoint of physiological effects. The hue C is preferably 20 or more and more preferably 35 or more from the viewpoint that the effect of improving the appearance according to the present invention is remarkable.
The “content of trans-unsaturated fatty acid in the constituent fatty acid” and the “fatty acid composition” in the present invention are the “preparation method of fatty acid methyl ester” (2.4 1.2-1996) ”refers to a value obtained by preparing a fatty acid methyl ester according to American Oil Chemists. Society Official Method Ce 1f-96 (GLC method). The “hue C” of the raw oil or fat or fatty acid is a value obtained by the following equation (1) measured by a 5.25 inch cell according to American Oil Chemists. Society Official Method Ca 13e-92 (Lovibond method). .
C = 10R + Y (1)
(Where R = Red value, Y = Yellow value)

本発明において、油脂の高温高圧分解法による加水分解は、回分式、連続式、又は半連続式で行うことができ、原料油脂と水の装置内への供給は、並流式、向流式どちらでもよく、次の反応条件で行われる。加水分解反応装置に供給される原料油脂及び水は、必要により予め脱気又は脱酸素した原料油脂及び水を用いることが油脂の酸化抑制の点から好ましい。   In the present invention, the hydrolysis of fats and oils by the high-temperature and high-pressure decomposition method can be carried out batchwise, continuously, or semi-continuously, and the supply of raw oils and fats into the apparatus is a cocurrent flow type, countercurrent flow type. Either may be used, and the reaction is performed under the following reaction conditions. As the raw material fat and water to be supplied to the hydrolysis reaction apparatus, it is preferable from the viewpoint of suppressing the oxidation of the fat and oil to use raw material fat and water that have been deaerated or deoxygenated in advance if necessary.

高温高圧分解法による加水分解においては、油脂100質量部に対し、水を10〜250質量部となるように加え、温度200〜270℃、圧力2〜8MPaの条件下で0.1〜6時間かけて加水分解するのが好ましい。脂肪酸類の工業的生産性、脱色、トランス不飽和脂肪酸の生成を抑制する点から、温度は210〜265℃、更に215〜260℃とすることが好ましい。油脂100質量部に対する水の量は、同様の点から、更に15〜150質量部、特に20〜120質量部とすることが好ましい。また、圧力は同様の点から、更に2〜7MPa、特に2.5〜6MPaとすることが好ましい。更に、反応時間は同様の点から、更に0.2〜5時間、特に0.3〜4時間とすることが好ましい。   In the hydrolysis by the high-temperature and high-pressure decomposition method, water is added so as to be 10 to 250 parts by mass with respect to 100 parts by mass of fats and oils, and the temperature is 200 to 270 ° C. and the pressure is 2 to 8 MPa for 0.1 to 6 hours. It is preferable to hydrolyze it over time. The temperature is preferably 210 to 265 ° C, and more preferably 215 to 260 ° C, from the viewpoint of suppressing industrial productivity of fatty acids, decolorization, and generation of trans-unsaturated fatty acids. From the same point, the amount of water relative to 100 parts by mass of the fat is preferably 15 to 150 parts by mass, particularly 20 to 120 parts by mass. Further, from the same point, the pressure is preferably 2 to 7 MPa, particularly preferably 2.5 to 6 MPa. Further, from the same point, the reaction time is further preferably 0.2 to 5 hours, particularly 0.3 to 4 hours.

好ましい反応装置としては、7〜40m3の容量の加水分解反応槽を備えた向流式のColgate−Emery法油脂分解塔(例えばIHI社)を挙げることができる。また、実験室規模の少量分解には市販のオートクレーブ装置(例えば日東高圧(株))を加水分解反応槽として用いてもよい。 As a preferable reaction apparatus, a counter-current Colgate-Emery method oil decomposition tower (for example, IHI) equipped with a hydrolysis reaction tank having a capacity of 7 to 40 m 3 can be exemplified. In addition, a commercially available autoclave apparatus (for example, Nitto High Pressure Co., Ltd.) may be used as a hydrolysis reaction tank for laboratory-scale small-scale decomposition.

油脂の高温、高圧の条件下での加水分解反応は脂肪酸濃度によって管理し、所定の脂肪酸濃度に到達した時点で終了すればよい。なお、本発明における「脂肪酸濃度」は、油脂製品の知識(株式会社 幸書房)に従って、脂肪酸類の酸価及び脂肪酸組成を測定し、次式(2)で求めた値をいう。なお、酸価は、American Oil Chemists. Society Official Method Ca 5a-40により測定する。
脂肪酸濃度(質量%)=x×y/56.1/10 (2)
(x=酸価[mgKOH/g]、y=脂肪酸組成から求めた平均分子量)
The hydrolysis reaction of fats and oils under high temperature and high pressure conditions is controlled by the fatty acid concentration, and may be terminated when a predetermined fatty acid concentration is reached. In addition, the “fatty acid concentration” in the present invention refers to a value obtained by measuring the acid value and fatty acid composition of fatty acids according to the knowledge of fats and oils products (Yukishobo Co., Ltd.) and calculating by the following formula (2). The acid value is measured by American Oil Chemists. Society Official Method Ca 5a-40.
Fatty acid concentration (mass%) = xxy / 56.1 / 10 (2)
(X = acid value [mg KOH / g], y = average molecular weight determined from fatty acid composition)

油脂の高温高圧分解法による部分的な加水分解は、工業的生産性、良好な外観、トランス不飽和脂肪酸及びモノグリセリドの生成を抑制する点から脂肪酸濃度が0.5〜90質量%、更に1.5〜85質量%、特に20〜70質量%となるまで行うことが好ましい。部分的な加水分解の結果、色相Cは35以下、更に1〜30、特に5〜25であることが好ましく、構成脂肪酸中のトランス不飽和脂肪酸含量は0〜1.5質量%、更に0.1〜1.2質量%、特に0.2〜0.7質量%であることが好ましい。更に、モノグリセリドは1〜20質量%、更に1〜15質量%、特に3〜10質量%であることが好ましい。   The partial hydrolysis of fats and oils by the high-temperature high-pressure decomposition method has a fatty acid concentration of 0.5 to 90% by mass from the viewpoint of industrial productivity, good appearance, and suppression of the production of trans-unsaturated fatty acids and monoglycerides. It is preferable to carry out until it becomes 5-85 mass%, especially 20-70 mass%. As a result of partial hydrolysis, the hue C is preferably 35 or less, more preferably 1 to 30, particularly preferably 5 to 25, and the content of trans-unsaturated fatty acids in the constituent fatty acids is 0 to 1.5% by mass, and further preferably It is preferably 1 to 1.2% by mass, particularly preferably 0.2 to 0.7% by mass. Further, the monoglyceride is preferably 1 to 20% by mass, more preferably 1 to 15% by mass, and particularly preferably 3 to 10% by mass.

本発明においては、油脂を高温高圧分解法により部分的な加水分解を行った後に、酵素分解法により加水分解を行うことが必要である。
本発明の態様において、酵素分解法で使用する油脂分解用酵素としては、リパーゼが好ましい。リパーゼは、動物由来、植物由来のものはもとより、微生物由来の市販リパーゼ、更にリパーゼを固定化した固定化酵素を使用することもできる。例えば、油脂分解用酵素は、リゾプス(Rizopus) 属、アスペルギルス(Aspergillus) 属、クロモバクテリウム(Chromobacterium) 属、ムコール(Mucor)属、シュードモナス(Pseudomonas) 属、ジオトリケム(Geotrichum)属、ペニシリウム(Penicillium) 属、キャンディダ(Candida) 属等の微生物起源のリパーゼ及び膵臓リパーゼ等の動物リパーゼが挙げられる。高分解率を得るためには位置特異性のない(ランダム型)のリパーゼが良く、微生物起源ではシュードモナス(Pseudomonas) 属、及びキャンディダ(Candida) 属等が良い。
In the present invention, it is necessary to hydrolyze fats and oils by enzymatic decomposition after partial hydrolysis by high temperature and high pressure decomposition.
In the embodiment of the present invention, lipase is preferable as the fat and oil-decomposing enzyme used in the enzymatic decomposition method. As the lipase, not only animal-derived and plant-derived lipases but also commercially available lipases derived from microorganisms, and also immobilized enzymes on which lipases are immobilized can be used. For example, the enzymes for decomposing fats are Rizopus genus, Aspergillus genus, Chromobacterium genus, Mucor genus, Pseudomonas genus, Geotrichum genus, Penicillium (Penicillium) Examples include lipases originating from microorganisms such as the genus and Candida, and animal lipases such as pancreatic lipase. In order to obtain a high decomposition rate, a lipase having no position specificity (random type) is good, and the genus Pseudomonas, Candida and the like are good.

本発明の態様において、油脂の酵素分解法による加水分解は、酵素を担体に固定化した固定化酵素を用いることが酵素活性を有効利用できる点から好ましい。固定化酵素は、固定化担体にリパーゼが担持されたものを用いることが好ましい。固定化担体としては、セライト、ケイソウ土、カオリナイト、シリカゲル、モレキュラーシーブス、多孔質ガラス、活性炭、炭酸カルシウム、セラミックス等の無機担体、セラミックスパウダー、ポリビニルアルコール、ポリプロピレン、キトサン、イオン交換樹脂、疎水吸着樹脂、キレート樹脂、合成吸着樹脂等の有機高分子等が挙げられるが、保水力の点からイオン交換樹脂が好ましい。また、イオン交換樹脂の中でも、大きな表面積を有することにより多量のリパーゼを吸着できるという点から、多孔質であることが好ましい。   In the embodiment of the present invention, the hydrolysis of fats and oils by the enzymatic degradation method is preferably from the viewpoint that the enzyme activity can be effectively used by using an immobilized enzyme in which the enzyme is immobilized on a carrier. As the immobilized enzyme, it is preferable to use a lipase supported on an immobilized carrier. Immobilization carriers include celite, diatomaceous earth, kaolinite, silica gel, molecular sieves, porous glass, activated carbon, calcium carbonate, ceramics and other inorganic carriers, ceramic powder, polyvinyl alcohol, polypropylene, chitosan, ion exchange resin, hydrophobic adsorption Examples include organic polymers such as resins, chelate resins, and synthetic adsorption resins, and ion exchange resins are preferred from the viewpoint of water retention. Of the ion exchange resins, a porous surface is preferable from the viewpoint that a large amount of lipase can be adsorbed by having a large surface area.

固定化担体として用いる樹脂の粒子径は100〜1000μmが好ましく、特に250〜750μmが好ましい。細孔径は10〜150nmが好ましい。材質としては、フェノールホルムアルデヒド系、ポリスチレン系、アクリルアミド系、ジビニルベンゼン系等が挙げられ、特にフェノールホルムアルデヒド系樹脂(例えば、Rohm and Hass社製Duolite A-568)が好ましい。   The particle diameter of the resin used as the immobilization carrier is preferably 100 to 1000 μm, particularly preferably 250 to 750 μm. The pore diameter is preferably 10 to 150 nm. Examples of the material include phenol formaldehyde, polystyrene, acrylamide, divinylbenzene, and the like, and phenol formaldehyde resin (for example, Duolite A-568 manufactured by Rohm and Hass) is particularly preferable.

酵素を固定化する場合、酵素を担体に直接吸着してもよいが、高活性を発現するような吸着状態にするため、酵素吸着前にあらかじめ担体を脂溶性脂肪酸又はその誘導体で処理して使用してもよい。使用する脂溶性脂肪酸としては、炭素数8〜18の飽和又は不飽和の、直鎖又は分岐鎖の、水酸基が置換していてもよい脂肪酸が挙げられる。具体的には、カプリン酸、ラウリン酸、ミスチリン酸、オレイン酸、リノール酸、α−リノレン酸、リシノール酸、イソステアリン酸等が挙げられる。またその誘導体としては、これらの脂肪酸と一価又は多価アルコールとのエステル、リン脂質、及びこれらのエステルにエチレンオキサイドを付加した誘導体が挙げられる。具体的には、上記脂肪酸のメチルエステル、エチルエステル、モノグリセライド、ジグリセライド、それらのエチレンオキサイド付加体、ポリグリセリンエステル、ソルビタンエステル、ショ糖エステル等が挙げられる。これらの脂溶性脂肪酸又はその誘導体は、2種以上を併用してもよい。   When immobilizing an enzyme, the enzyme may be directly adsorbed on a carrier. However, in order to achieve an adsorption state that expresses high activity, the carrier is treated with a fat-soluble fatty acid or its derivative before the enzyme adsorption. May be. Examples of the fat-soluble fatty acid to be used include saturated or unsaturated, linear or branched fatty acids having 8 to 18 carbon atoms, which may be substituted with a hydroxyl group. Specific examples include capric acid, lauric acid, myristylic acid, oleic acid, linoleic acid, α-linolenic acid, ricinoleic acid, isostearic acid and the like. Examples of the derivatives include esters of these fatty acids with mono- or polyhydric alcohols, phospholipids, and derivatives obtained by adding ethylene oxide to these esters. Specific examples include methyl esters, ethyl esters, monoglycerides, diglycerides, ethylene oxide adducts thereof, polyglycerin esters, sorbitan esters, and sucrose esters of the above fatty acids. Two or more of these fat-soluble fatty acids or derivatives thereof may be used in combination.

これらの脂溶性脂肪酸又はその誘導体と担体の接触法としては、水又は有機溶剤中の担体にこれらを直接加えてもよいが、分散性を良くするため、有機溶剤に脂溶性脂肪酸又はその誘導体を一旦分散、溶解させた後、水に分散させた担体に加えてもよい。この有機溶剤としては、クロロホルム、ヘキサン、エタノール等が挙げられる。脂溶性脂肪酸又はその誘導体の使用量は、担体100質量部に対して1〜500質量部、更に10〜200質量部が好ましい。接触温度は0〜100℃、更に20〜60℃が好ましく、接触時間は5分〜5時間程度が好ましい。この処理を終えた担体は、ろ過して回収するが、乾燥してもよい。乾燥温度は室温〜100℃が好ましく、減圧乾燥を行ってもよい。   As a method for contacting these fat-soluble fatty acids or derivatives thereof with a carrier, these may be added directly to a carrier in water or an organic solvent, but in order to improve dispersibility, a fat-soluble fatty acid or derivative thereof is added to an organic solvent. Once dispersed and dissolved, it may be added to a carrier dispersed in water. Examples of the organic solvent include chloroform, hexane, ethanol, and the like. The amount of the fat-soluble fatty acid or derivative thereof used is preferably 1 to 500 parts by mass, more preferably 10 to 200 parts by mass with respect to 100 parts by mass of the carrier. The contact temperature is preferably 0 to 100 ° C., more preferably 20 to 60 ° C., and the contact time is preferably about 5 minutes to 5 hours. The carrier after this treatment is collected by filtration, but may be dried. The drying temperature is preferably room temperature to 100 ° C., and drying under reduced pressure may be performed.

酵素の固定化を行う温度は、酵素の特性によって決定することができるが、酵素の失活が起きない温度、すなわち0〜60℃、更に5〜40℃が好ましい。また固定化時に使用する酵素溶液のpHは、酵素の変性が起きない範囲であればよく、温度同様酵素の特性によって決定することができるが、pH3〜9が好ましい。このpHを維持するためには緩衝液を使用するが、緩衝液としては、酢酸緩衝液、リン酸緩衝液、トリス塩酸緩衝液等が挙げられる。上記酵素溶液中の酵素濃度は、固定化効率の点から酵素の飽和溶解度以下で、かつ十分な濃度であることが好ましい。また酵素溶液は、必要に応じて不溶部を遠心分離で除去した上澄や、限外濾過等によって精製したものを使用することもできる。また用いる酵素質量はその酵素活性によっても異なるが、担体100質量部に対して5〜1000質量部、更に10〜500質量部が好ましい。   The temperature at which the enzyme is immobilized can be determined depending on the characteristics of the enzyme, but is preferably a temperature at which the enzyme is not deactivated, that is, 0 to 60 ° C., more preferably 5 to 40 ° C. Moreover, the pH of the enzyme solution used at the time of immobilization may be in a range where no denaturation of the enzyme occurs and can be determined by the enzyme characteristics as well as the temperature, but is preferably pH 3-9. In order to maintain this pH, a buffer solution is used. Examples of the buffer solution include an acetate buffer solution, a phosphate buffer solution, and a Tris-HCl buffer solution. The enzyme concentration in the enzyme solution is preferably not more than the saturation solubility of the enzyme and sufficient from the viewpoint of immobilization efficiency. Moreover, the enzyme solution can also use what was refine | purified by the supernatant obtained by removing the insoluble part by centrifugation, ultrafiltration, etc. as needed. Moreover, although the enzyme mass to be used varies depending on the enzyme activity, it is preferably 5 to 1000 parts by mass, more preferably 10 to 500 parts by mass with respect to 100 parts by mass of the carrier.

酵素の固定化後に加水分解反応に適した状態にする点から、酵素溶液から濾過により、固定化酵素を回収し、余分な水分を除去したのち、乾燥することなしに反応基質となる大豆油等の油脂に接触させることが好ましい。接触後の固定化酵素中の水分は、用いる担体の種類によっても異なるが、固定化担体100質量部に対し0.1〜100質量部、更に1〜50質量部、特に5〜50質量部であることが好ましい。このときカラム等の充填容器に封入して、ポンプ等により油脂を循環しても良いし、油脂中に固定化酵素を分散させても良い。接触させる温度は20℃〜60℃が良く、酵素の特性によって選ぶことができる。更に、接触する時間は1時間〜48時間程度で良く、この接触が終わったところで濾過し、固定化酵素を回収することが、工業的生産性の点から好ましい。   Soybean oil that becomes a reaction substrate without drying after recovering the immobilized enzyme by removing it from the enzyme solution by filtration from the point of making it suitable for the hydrolysis reaction after immobilization of the enzyme It is preferable to contact the oil and fat. The water content in the immobilized enzyme after contact varies depending on the type of carrier used, but is 0.1 to 100 parts by weight, more preferably 1 to 50 parts by weight, particularly 5 to 50 parts by weight, based on 100 parts by weight of the immobilized carrier. Preferably there is. At this time, it may be sealed in a packed container such as a column and the oil and fat may be circulated by a pump or the like, or the immobilized enzyme may be dispersed in the oil and fat. The contact temperature is preferably 20 ° C. to 60 ° C., and can be selected according to the characteristics of the enzyme. Furthermore, the contact time may be about 1 hour to 48 hours, and it is preferable from the viewpoint of industrial productivity that the immobilized enzyme is recovered by filtration after the contact is completed.

固定化酵素の加水分解活性は20U/g以上、更に100〜10000U/g、特に500〜5000U/gの範囲であることが好ましい。ここで酵素の1Uは、40℃において、油脂:水=100:25(質量比)の混合液を攪拌混合しながら30分間加水分解をさせたとき、1分間に1μmolの遊離脂肪酸を生成する酵素の分解能を示す。   The hydrolysis activity of the immobilized enzyme is preferably 20 U / g or more, more preferably 100 to 10,000 U / g, and particularly preferably 500 to 5000 U / g. Here, 1 U of the enzyme is an enzyme that produces 1 μmol of free fatty acid per minute when hydrolyzed for 30 minutes at 40 ° C. while stirring and mixing a mixture of oil: water = 100: 25 (mass ratio). Shows the resolution.

本発明において、油脂の酵素分解法による加水分解は、回分式、連続式、又は半連続式で行うことができ、部分的に加水分解した脂肪酸類と水の装置内への供給は、並流式、向流式どちらでもよく、次の反応条件で行われる。加水分解反応装置に供給される部分的に加水分解した脂肪酸類は、予め脱気又は脱酸素を行うことが脂肪酸類の酸化抑制の点から好ましい。   In the present invention, the hydrolytic hydrolysis of fats and oils can be carried out batchwise, continuously, or semi-continuously, and the supply of partially hydrolyzed fatty acids and water into the apparatus is cocurrent. Either the formula or the countercurrent type may be used, and the reaction is carried out under the following reaction conditions. The partially hydrolyzed fatty acids supplied to the hydrolysis reaction apparatus are preferably degassed or deoxygenated in advance from the viewpoint of inhibiting oxidation of the fatty acids.

酵素分解法の反応に用いる固定化酵素量は、酵素の活性を考慮して適宜決定することができるが、分解する脂肪酸類100質量部に対して0.01〜30質量部、更に0.1〜15質量部、特に0.2〜10質量部が好ましい。また水の量は、分解する脂肪酸類の100質量部に対して10〜200質量部、更に20〜100質量部、特に30〜80質量部が好ましい。水は、蒸留水、イオン交換水、水道水、井戸水等いずれのものでも構わない。グリセリン等その他の水溶性成分が混合されていても良い。必要に応じて、酵素の安定性が維持できるようにpH3〜9の緩衝液を用いてもよい。   The amount of immobilized enzyme used for the reaction of the enzymatic decomposition method can be appropriately determined in consideration of the activity of the enzyme, but is 0.01 to 30 parts by mass, and further 0.1 to 100 parts by mass of the fatty acids to be decomposed. ˜15 parts by mass, particularly 0.2 to 10 parts by mass is preferable. The amount of water is preferably 10 to 200 parts by mass, more preferably 20 to 100 parts by mass, and particularly preferably 30 to 80 parts by mass with respect to 100 parts by mass of the fatty acids to be decomposed. The water may be any of distilled water, ion exchange water, tap water, well water and the like. Other water-soluble components such as glycerin may be mixed. If necessary, a buffer solution having a pH of 3 to 9 may be used so that the stability of the enzyme can be maintained.

油脂の酵素分解反応に用いる部分的に加水分解した脂肪酸類は、そのまま用いてもよいが、必要により静置分離、遠心分離等の方法で脂肪酸類と水相を分離して、更に、油相中に分配されたグリセリンは、遠心分離、水洗等により除去して精製してもよい。   The partially hydrolyzed fatty acids used for the enzymatic degradation reaction of fats and oils may be used as they are, but if necessary, the fatty acids and the aqueous phase are separated by a method such as stationary separation and centrifugation, and further the oil phase The glycerin distributed therein may be removed and purified by centrifugation, washing with water or the like.

反応温度は、酵素の活性をより有効に引き出し、分解により生じた遊離脂肪酸が結晶とならない温度である0〜70℃、更に20〜50℃とすることが好ましい。また反応は、空気との接触が出来るだけ回避されるように、不活性ガス存在下で行うことが好ましい。   The reaction temperature is preferably 0 to 70 ° C., more preferably 20 to 50 ° C., which is a temperature at which the activity of the enzyme is more effectively extracted and free fatty acids generated by decomposition do not become crystals. The reaction is preferably carried out in the presence of an inert gas so that contact with air is avoided as much as possible.

加水分解反応は、前記の式(2)で示される脂肪酸濃度によって管理し、所定の脂肪酸濃度に到達した時点で終了すればよい。加水分解反応終了後は、静置分離、遠心分離等の方法により脂肪酸類と水相を分離することが好ましい。更に、油相中に分配されたグリセリンは、遠心分離、水洗等により除去して精製してもよい。   The hydrolysis reaction is controlled by the fatty acid concentration represented by the above formula (2), and may be terminated when a predetermined fatty acid concentration is reached. After completion of the hydrolysis reaction, the fatty acids and the aqueous phase are preferably separated by a method such as stationary separation or centrifugation. Furthermore, the glycerin distributed in the oil phase may be removed and purified by centrifugation, washing with water or the like.

本発明では、上記の如く、油脂の加水分解反応において、油脂100質量部に対して、10〜250質量部の水を加えて、温度200〜270℃、圧力2〜8MPaの条件下で0.1〜6時間かけて部分的に加水分解し、その後、部分的に加水分解した脂肪酸類100質量部に対して、固定化酵素0.01〜30質量部、水10〜200質量部をそれぞれ加え、温度0〜70℃の条件下で加水分解することにより、工業的生産性、良好な外観、トランス不飽和脂肪酸及びモノアシルグリセロール含量の低減された脂肪酸類を得ることができる。   In the present invention, as described above, in the hydrolysis reaction of fats and oils, 10 to 250 parts by weight of water is added to 100 parts by weight of the fats and oils, and the temperature is 0. Hydrolyzed partially for 1 to 6 hours, and then added to 0.01 to 30 parts by weight of immobilized enzyme and 10 to 200 parts by weight of water for 100 parts by weight of partially hydrolyzed fatty acids. By hydrolyzing under conditions of a temperature of 0 to 70 ° C., industrial productivity, good appearance, trans-unsaturated fatty acids and fatty acids with reduced monoacylglycerol content can be obtained.

〔固定化酵素製造法〕
Duolite A−568(Rohm & Hass社製)50gを0.1Nの水酸化ナトリウム水溶液500mL中で、1時間攪拌した。その後、500mLの蒸留水で1時間洗浄し、500mMのリン酸緩衝液(pH7)500mLで、2時間pHの平衡化を行った。その後50mMのリン酸緩衝液(pH7)500mLで2時間ずつ2回、pHの平衡化を行った。この後、濾過を行い担体を回収した後、エタノール250mLでエタノール置換を30分間行った。濾過した後、リシノール酸を50g含むエタノール250mLを加え30分間、リシノール酸を担体に吸着させた。この後濾過し、担体を回収した後、50mMのリン酸緩衝液(pH7)250mLで4回洗浄し、エタノールを除去し、濾過して担体を回収した。その後市販の油脂に作用するリパーゼ(リパーゼAY「アマノ」30G,天野エンザイム社)の10%溶液1000mLと4時間接触させ、固定化を行った。濾過し、固定化酵素を回収して、50mMの酢酸緩衝液(pH7)250mLで洗浄を行い、固定化していない酵素や蛋白を除去した。以上の操作はいずれも20℃で行った。固定化後の酵素液の残存活性と固定化前の酵素液の活性差より固定化率を求めたところ、95%であった。その後、大豆油200gを加え、40℃、2時間攪拌した後、濾過して大豆油と分離し、固定化酵素とした。こうして得られた固定化酵素を、使用前に実際に反応を行う基質である部分的に加水分解した脂肪酸類で洗浄しろ過した。
[Immobilized enzyme production method]
50 g of Duolite A-568 (Rohm & Hass) was stirred in 500 mL of 0.1N aqueous sodium hydroxide for 1 hour. Then, it was washed with 500 mL of distilled water for 1 hour, and the pH was equilibrated with 500 mL of 500 mM phosphate buffer (pH 7) for 2 hours. Thereafter, the pH was equilibrated twice with 500 mL of 50 mM phosphate buffer (pH 7) for 2 hours each. Thereafter, filtration was performed to recover the carrier, followed by ethanol replacement with 250 mL of ethanol for 30 minutes. After filtration, 250 mL of ethanol containing 50 g of ricinoleic acid was added and ricinoleic acid was adsorbed on the carrier for 30 minutes. Thereafter, filtration was performed to recover the carrier, followed by washing with 250 mL of 50 mM phosphate buffer (pH 7) four times, ethanol was removed, and the carrier was recovered by filtration. Thereafter, the mixture was brought into contact with 1000 mL of a 10% solution of lipase (Lipase AY “Amano” 30G, Amano Enzyme Co., Ltd.) acting on commercially available fats and oils for immobilization. After filtration, the immobilized enzyme was recovered and washed with 250 mL of 50 mM acetate buffer (pH 7) to remove non-immobilized enzyme and protein. All the above operations were performed at 20 ° C. The immobilization rate was determined to be 95% from the residual activity of the enzyme solution after immobilization and the activity difference between the enzyme solution before immobilization. Thereafter, 200 g of soybean oil was added and stirred at 40 ° C. for 2 hours, followed by filtration to separate from soybean oil to obtain an immobilized enzyme. The immobilized enzyme thus obtained was washed and filtered with partially hydrolyzed fatty acids, which are substrates for actual reaction before use.

〔原料油脂〕
原料油脂として、表1に示す未脱臭大豆油を用いた。なお、グリセリド組成は、次に示す方法にて測定した。
〔グリセリド組成の測定法〕
ガラス製サンプル瓶に、サンプル10mgとトリメチルシリル化剤(「シリル化剤TH」、関東化学製)0.5mLとを加え、密栓した後、70℃で15分間加熱した。これに蒸留水1.0mL、ヘキサン2.0mLを加えて、混合後、ヘキサン層をガスクロマトグラフィー(GLC)にて測定した。
装置;Hewlett Packard製 6890型
カラム;DB−1HT(J&W Scientific製) 7m
カラム温度;initial=80℃、final=340℃
昇温速度=10℃/分、340℃にて20分間保持
検出器;FID、温度=350℃
注入部;スプリット比=50:1、温度=320℃
サンプル注入量;1μL
キャリアガス;ヘリウム、流量=1.0mL/分
[Raw oil]
As raw material fats and oils, undeodorized soybean oil shown in Table 1 was used. The glyceride composition was measured by the following method.
[Method for measuring glyceride composition]
To a glass sample bottle, 10 mg of a sample and 0.5 mL of a trimethylsilylating agent (“silylating agent TH”, manufactured by Kanto Chemical Co., Inc.) were added, sealed, and then heated at 70 ° C. for 15 minutes. Distilled water (1.0 mL) and hexane (2.0 mL) were added thereto, and after mixing, the hexane layer was measured by gas chromatography (GLC).
Apparatus: Hewlett Packard 6890 type column; DB-1HT (manufactured by J & W Scientific) 7m
Column temperature; initial = 80 ° C., final = 340 ° C.
Temperature rising rate = 10 ° C./min, hold at 340 ° C. for 20 minutes Detector; FID, temperature = 350 ° C.
Injection part; split ratio = 50: 1, temperature = 320 ° C.
Sample injection volume: 1 μL
Carrier gas; helium, flow rate = 1.0 mL / min

〔高温高圧分解法による加水分解〕
油水向流式の高圧熱水型分解装置に、原料油脂を装置の下側から、水を装置の上側からそれぞれ連続的に送液した。送液量は、原料油脂100質量部に対して水50質量部とした。この時、分解塔内の平均滞留時間(hr)(塔容積(m3)/(原料油の流量(m3/hr)+水の流量(m3/hr)))は約4hrであった。装置の中で原料油脂は高圧熱水(5.0MPa、240℃)により加熱された。油水向流式の高圧熱水型分解装置の途中にあるサンプリング口から反応液を適宜採取し、窒素シール、遮光状態で25℃まで冷却した。その後、遠心分離(5,000g,30分)し、水層を除去後、脂肪酸層を温度70℃、真空度400Paで30分間、減圧脱水し、サンプルA〜Eを得た。表2に各脂肪酸類の分析値を示した。
[Hydrolysis by high-temperature and high-pressure decomposition method]
The raw oil and fat were continuously fed from the lower side of the apparatus and water from the upper side of the apparatus to the oil-water countercurrent type high-pressure hydrothermal decomposition apparatus. The liquid feeding amount was 50 parts by mass of water with respect to 100 parts by mass of the raw material fat. At this time, the average residence time (hr) in the decomposition tower (column volume (m 3 ) / (flow rate of raw material oil (m 3 / hr) + flow rate of water (m 3 / hr))) was about 4 hr. . In the apparatus, the raw oil and fat was heated with high-pressure hot water (5.0 MPa, 240 ° C.). The reaction solution was appropriately collected from a sampling port in the middle of the oil-water counter-flow type high-pressure hydrothermal decomposition apparatus, and cooled to 25 ° C. in a nitrogen sealed and light-shielded state. Thereafter, the mixture was centrifuged (5,000 g, 30 minutes), the aqueous layer was removed, and then the fatty acid layer was dehydrated under reduced pressure at a temperature of 70 ° C. and a vacuum degree of 400 Pa for 30 minutes to obtain Samples A to E. Table 2 shows the analytical value of each fatty acid.

〔酵素分解法による加水分解(1)〕
部分的に加水分解した脂肪酸類であるサンプルA〜D、及び表1に示す未脱臭大豆油について、固定化酵素を用いた酵素分解法による加水分解を行った。サンプルA〜D、又は未脱臭大豆油で洗浄した各固定化酵素(加水分解活性2700U/g)5g(乾燥重量)を、300mL容量の四つ口フラスコに秤量した。そこへ、それぞれ対応するサンプルA〜D、又は未脱臭大豆油100gと蒸留水60gを添加し、40℃で、窒素雰囲気下、密閉状態で、攪拌(半月翼φ60mm×H15mm:250r/min)しながら、脂肪酸類の脂肪酸濃度が93質量%以上になるまで反応を行った。反応液を遠心分離(5,000×g,30分)し、水層及び固定化酵素を除去後、脂肪酸層を温度70℃、真空度400Paで30分間、減圧脱水して脂肪酸類(サンプルF〜J)を得た。表3に脂肪酸類の分析値(固定化酵素使用)を示した。ここで、各サンプルは、FについてはAを、GについてはBを、HについてはCを、IについてはDを、Jについては未脱臭大豆油をそれぞれ加水分解したものである。
[Hydrolysis by enzymatic decomposition (1)]
Samples A to D, which are partially hydrolyzed fatty acids, and undeodorized soybean oil shown in Table 1 were hydrolyzed by an enzymatic decomposition method using an immobilized enzyme. Samples A to D or 5 g (dry weight) of each immobilized enzyme (hydrolysis activity 2700 U / g) washed with non-deodorized soybean oil were weighed into a 300 mL four-necked flask. To each of them, corresponding samples A to D or 100 g of undeodorized soybean oil and 60 g of distilled water were added and stirred at 40 ° C. in a nitrogen atmosphere in a sealed state (half moon blade φ60 mm × H15 mm: 250 r / min). However, the reaction was continued until the fatty acid concentration of the fatty acids reached 93% by mass or more. The reaction solution was centrifuged (5,000 × g, 30 minutes), the aqueous layer and the immobilized enzyme were removed, and the fatty acid layer was dehydrated under reduced pressure at a temperature of 70 ° C. and a vacuum degree of 400 Pa for 30 minutes to obtain fatty acids (Sample F). To J). Table 3 shows the analytical values of fatty acids (using immobilized enzyme). Here, each sample is obtained by hydrolyzing A for F, B for G, C for H, D for I, and undeodorized soybean oil for J.

〔酵素分解法による加水分解(2)〕
部分的に加水分解した脂肪酸類であるサンプルA〜D、及び表1に示す未脱臭大豆油について、粉末酵素を用いた酵素分解法による加水分解を行った。300mL容量の四つ口フラスコに、サンプルA〜D、又は未脱臭大豆油100gと蒸留水55gを秤量した。そこへ、リパーゼOF(起源:Candida cylindracea 名糖産業)0.1gを蒸留水5gに溶解後、全量添加し、40℃で、窒素雰囲気下、密閉状態で攪拌(半月翼φ60mm×H15mm:250r/min)しながら、脂肪酸類の脂肪酸濃度が93質量%以上になるまで反応を行った。反応液を遠心分離(5,000×g,30分)し、水層及び粉末リパーゼが存在する中間層を除去後、脂肪酸層を温度70℃、真空度400Paで30分間、減圧脱水して脂肪酸類(サンプルK〜O)を得た。表4に脂肪酸類の分析値(粉末リパーゼ使用)を示した。ここで、各サンプルは、KについてはAを、LについてはBを、MについてはCを、NについてはDを、Oについては未脱臭大豆油をそれぞれ加水分解したものである。
[Hydrolysis by enzymatic degradation method (2)]
Samples A to D, which are partially hydrolyzed fatty acids, and undeodorized soybean oil shown in Table 1 were hydrolyzed by an enzymatic decomposition method using a powder enzyme. Samples A to D or 100 g of non-deodorized soybean oil and 55 g of distilled water were weighed into a 300 mL four-necked flask. Thereto, 0.1 g of lipase OF (origin: Candida cylindracea famous sugar industry) was dissolved in 5 g of distilled water, added in its entirety, and stirred in a sealed state in a nitrogen atmosphere at 40 ° C. (half moon blade φ60 mm × H15 mm: 250 r / min), the reaction was continued until the fatty acid concentration of the fatty acids reached 93% by mass or more. The reaction solution is centrifuged (5,000 × g, 30 minutes), and after removing the aqueous layer and the intermediate layer containing powder lipase, the fatty acid layer is dehydrated under reduced pressure at a temperature of 70 ° C. and a vacuum of 400 Pa for 30 minutes. (Samples K to O) were obtained. Table 4 shows analytical values of fatty acids (use of powder lipase). Here, each sample is obtained by hydrolyzing A for K, B for L, C for M, D for N, and undeodorized soybean oil for O.

表2〜表4より明らかなように、原料油脂を高温、高圧の条件下で部分的に加水分解し、脂肪酸類の脂肪酸濃度を0.5〜90質量%とし、その後、リパーゼにより加水分解すると、より構成脂肪酸中のトランス不飽和脂肪酸含量とモノアシルグリセロール含量が低く、良好な外観の脂肪酸類(サンプルG、H,I,L,M,N)ができることがわかった。
これに対し、原料油脂を高温、高圧の条件下の加水分解反応のみで得た脂肪酸類(サンプルE)は、良好な外観であるが、構成脂肪酸中のトランス不飽和脂肪酸含量とモノアシルグリセロール含量が高いことが分かった。また、原料油脂を、高温、高圧の条件下で部分的に加水分解し、脂肪酸類の脂肪酸濃度を90質量%以上とし、その後、リパーゼにより加水分解して得た脂肪酸類(サンプルF,K)は、良好な外観でモノアシルグリセロール含量は低いが、構成脂肪酸中のトランス不飽和脂肪酸含量が高いことが分かった。
更に、原料油脂を酵素法加水分解反応のみで得た脂肪酸類(サンプルJ,O)は、構成脂肪酸中のトランス不飽和脂肪酸含量とモノアシルグリセロール含量は低いが、外観が損なわれることが分かった。
As is clear from Tables 2 to 4, when the raw fats and oils are partially hydrolyzed under high temperature and high pressure conditions, the fatty acid concentration of fatty acids is 0.5 to 90% by mass, and then hydrolyzed with lipase. Thus, it was found that fatty acids having good appearance (samples G, H, I, L, M, and N) can be obtained with a lower content of trans-unsaturated fatty acid and monoacylglycerol in the constituent fatty acids.
In contrast, fatty acids (sample E) obtained by hydrolysis of raw material fats and oils only by hydrolysis under high temperature and high pressure conditions have a good appearance, but the content of trans-unsaturated fatty acids and monoacylglycerols in the constituent fatty acids It turned out to be expensive. Fatty acids obtained by partially hydrolyzing the raw oil and fat under high temperature and high pressure conditions to make the fatty acid concentration of fatty acids 90% by mass or more and then hydrolyzing with lipase (samples F and K) Was found to have a good appearance and a low monoacylglycerol content, but a high content of trans-unsaturated fatty acids in the constituent fatty acids.
Furthermore, it was found that the fatty acids (samples J and O) obtained from the raw fats and oils only by the enzymatic hydrolysis reaction have low trans-unsaturated fatty acid content and monoacylglycerol content in the constituent fatty acids, but the appearance is impaired. .

Claims (3)

油脂を加水分解することにより脂肪酸類を製造する方法であって、油脂を高温高圧分解法で部分的に加水分解した後、酵素分解法により加水分解する脂肪酸類の製造方法。   A method for producing fatty acids by hydrolyzing fats and oils, wherein the fats and oils are partially hydrolyzed by a high-temperature and high-pressure cracking method and then hydrolyzed by an enzymatic degradation method. 高温高圧分解法による加水分解を、脂肪酸濃度が0.5〜90質量%となるまで行う請求項1記載の脂肪酸類の製造方法。   The method for producing fatty acids according to claim 1, wherein the hydrolysis by the high-temperature and high-pressure decomposition method is performed until the fatty acid concentration becomes 0.5 to 90% by mass. 加水分解反応に供する油脂の構成脂肪酸中のトランス不飽和脂肪酸含量が1.5質量%以下である請求項1又は2に記載の脂肪酸類の製造方法。   The method for producing fatty acids according to claim 1 or 2, wherein the content of trans-unsaturated fatty acids in the constituent fatty acids of the fats and oils subjected to the hydrolysis reaction is 1.5% by mass or less.
JP2005293277A 2005-10-06 2005-10-06 Method for producing fatty acids Expired - Fee Related JP4694938B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005293277A JP4694938B2 (en) 2005-10-06 2005-10-06 Method for producing fatty acids
DE602006014845T DE602006014845D1 (en) 2005-10-06 2006-10-06 TWO-STAGE PROCESS FOR THE PREPARATION OF FATTY ACIDS
KR1020087005502A KR101297957B1 (en) 2005-10-06 2006-10-06 Two-staged process for the preparation of fatty acids from fat or oil comprising one step of enzymatic hydrolysis employing an immobilized lipase and an other step of high temperature and pressure hydrolysis
US12/067,245 US8323934B2 (en) 2005-10-06 2006-10-06 Process for producing fatty acids
EP06811713A EP1931794B1 (en) 2005-10-06 2006-10-06 Two-stage process for producing fatty acids
PCT/JP2006/320425 WO2007043631A2 (en) 2005-10-06 2006-10-06 Two-staged process for the preparation of fatty acids from fat or oil comprising one step of enzymatic hydrolysis employing an immobilized lipase and an other step of high temperature and pressure hydrolysis
CN2006800367033A CN101278054B (en) 2005-10-06 2006-10-06 Method for producing fatty acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005293277A JP4694938B2 (en) 2005-10-06 2005-10-06 Method for producing fatty acids

Publications (2)

Publication Number Publication Date
JP2007099958A true JP2007099958A (en) 2007-04-19
JP4694938B2 JP4694938B2 (en) 2011-06-08

Family

ID=38027207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005293277A Expired - Fee Related JP4694938B2 (en) 2005-10-06 2005-10-06 Method for producing fatty acids

Country Status (1)

Country Link
JP (1) JP4694938B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008253196A (en) * 2007-04-05 2008-10-23 Kao Corp Method for producing fatty acids
CN111004821A (en) * 2019-12-31 2020-04-14 安徽省瑞芬得油脂深加工有限公司 Environment-friendly fatty acid preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023051A1 (en) * 1993-03-30 1994-10-13 Henkel Corporation Improved fat splitting process
JPH11123097A (en) * 1997-08-18 1999-05-11 Kao Corp Production of diglyceride
JP2000160188A (en) * 1998-11-26 2000-06-13 Kao Corp Hydrolysis of oil and fat
EP1008647A2 (en) * 1998-12-07 2000-06-14 Kao Corporation A process for preparing an immobilized enzyme
JP2003113395A (en) * 2001-10-03 2003-04-18 Kao Corp Method of hydrolysis for fat and oil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023051A1 (en) * 1993-03-30 1994-10-13 Henkel Corporation Improved fat splitting process
JPH08507917A (en) * 1993-03-30 1996-08-27 ヘンケル コーポレーション Improved lipolysis method
JPH11123097A (en) * 1997-08-18 1999-05-11 Kao Corp Production of diglyceride
JP2000160188A (en) * 1998-11-26 2000-06-13 Kao Corp Hydrolysis of oil and fat
EP1008647A2 (en) * 1998-12-07 2000-06-14 Kao Corporation A process for preparing an immobilized enzyme
JP2003113395A (en) * 2001-10-03 2003-04-18 Kao Corp Method of hydrolysis for fat and oil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008253196A (en) * 2007-04-05 2008-10-23 Kao Corp Method for producing fatty acids
CN111004821A (en) * 2019-12-31 2020-04-14 安徽省瑞芬得油脂深加工有限公司 Environment-friendly fatty acid preparation method

Also Published As

Publication number Publication date
JP4694938B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP5101206B2 (en) Process for producing fats and oils with high diacylglycerol content
JP7213184B2 (en) Enzymatic enrichment of n-3 fatty acids in the form of glycerides
JP5586914B2 (en) Process for producing fats and oils with high diacylglycerol content
JP5307806B2 (en) Process for producing fats and oils with high diacylglycerol content
JP4694939B2 (en) Method for producing fatty acids
JP2017073980A (en) Method for producing highly unsaturated fatty acid
US8323934B2 (en) Process for producing fatty acids
JP4694938B2 (en) Method for producing fatty acids
JP6645804B2 (en) Manufacturing method of structural fats and oils
JP4849967B2 (en) Method for producing fatty acids
JP2008253196A (en) Method for producing fatty acids
JP3893107B2 (en) Method for producing fatty acid
JP4220957B2 (en) Method for producing immobilized enzyme
JP6990076B2 (en) Method for producing fatty acids
US8173403B2 (en) Process for producing useful substance using immobilized enzyme
JP7092460B2 (en) Manufacturing method of structural fats and oils
JP5527983B2 (en) Process for producing docosahexaenoic acid-rich oil
JP6990019B2 (en) Method for producing fatty acids
JP2019094445A (en) Method for producing linseed oil
JP6859212B2 (en) Method for producing fats and oils containing high diacylglycerol
JP2004041188A (en) Method for manufacturing oil highly containing docosahexaenoic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees