JP2007098240A - Nonionic surfactant-containing water treatment method and treatment apparatus - Google Patents
Nonionic surfactant-containing water treatment method and treatment apparatus Download PDFInfo
- Publication number
- JP2007098240A JP2007098240A JP2005289638A JP2005289638A JP2007098240A JP 2007098240 A JP2007098240 A JP 2007098240A JP 2005289638 A JP2005289638 A JP 2005289638A JP 2005289638 A JP2005289638 A JP 2005289638A JP 2007098240 A JP2007098240 A JP 2007098240A
- Authority
- JP
- Japan
- Prior art keywords
- nonionic surfactant
- water
- treatment
- tower
- containing water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 118
- 239000002736 nonionic surfactant Substances 0.000 title claims abstract description 109
- 238000000034 method Methods 0.000 title claims abstract description 58
- 238000011282 treatment Methods 0.000 title claims abstract description 58
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 81
- 238000001179 sorption measurement Methods 0.000 claims abstract description 34
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 23
- 230000003647 oxidation Effects 0.000 claims abstract description 22
- 238000005342 ion exchange Methods 0.000 claims abstract description 15
- 150000002500 ions Chemical class 0.000 abstract description 39
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 39
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 29
- 239000003456 ion exchange resin Substances 0.000 description 21
- 229920003303 ion-exchange polymer Polymers 0.000 description 21
- -1 glycerin fatty acid ester Chemical class 0.000 description 15
- 238000006864 oxidative decomposition reaction Methods 0.000 description 15
- 239000003957 anion exchange resin Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 12
- 239000003729 cation exchange resin Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 10
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 10
- 239000007800 oxidant agent Substances 0.000 description 10
- 239000002351 wastewater Substances 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000004973 liquid crystal related substance Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000002699 waste material Substances 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 239000003463 adsorbent Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 229910021642 ultra pure water Inorganic materials 0.000 description 5
- 239000012498 ultrapure water Substances 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 150000005215 alkyl ethers Chemical class 0.000 description 4
- 125000005037 alkyl phenyl group Chemical group 0.000 description 4
- 239000003610 charcoal Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 238000001223 reverse osmosis Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 229910017053 inorganic salt Inorganic materials 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- YNJSNEKCXVFDKW-UHFFFAOYSA-N 3-(5-amino-1h-indol-3-yl)-2-azaniumylpropanoate Chemical compound C1=C(N)C=C2C(CC(N)C(O)=O)=CNC2=C1 YNJSNEKCXVFDKW-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 241000047703 Nonion Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 238000005276 aerator Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229940023913 cation exchange resins Drugs 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 1
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 125000003010 ionic group Chemical group 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 238000011328 necessary treatment Methods 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- PFUVRDFDKPNGAV-UHFFFAOYSA-N sodium peroxide Chemical compound [Na+].[Na+].[O-][O-] PFUVRDFDKPNGAV-UHFFFAOYSA-N 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Landscapes
- Water Treatment By Sorption (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
【課題】非イオン性界面活性剤含有水中の相当部分の非イオン性界面活性剤を吸着により除去し、残余の非イオン性界面活性剤を酸化処理により除去することができる効率的かつ経済的な非イオン性界面活性剤含有水の処理方法及び処理装置を提供する。
【解決手段】非イオン性界面活性剤含有水を、イオン交換体に空間速度(SV)20h-1以下で接触させることを特徴とする非イオン性界面活性剤含有水の処理方法、及び、イオン交換体が充填された吸着手段と、酸化手段と、活性炭吸着手段と、イオン交換手段とを順次備えてなることを特徴とする非イオン性界面活性剤含有水の処理装置。
【選択図】図1An efficient and economical method capable of removing a substantial portion of nonionic surfactant in water containing nonionic surfactant by adsorption and removing the remaining nonionic surfactant by oxidation treatment. A treatment method and treatment apparatus for water containing a nonionic surfactant are provided.
A method for treating nonionic surfactant-containing water, wherein the nonionic surfactant-containing water is brought into contact with an ion exchanger at a space velocity (SV) of 20 h -1 or less, and ions An apparatus for treating nonionic surfactant-containing water, comprising an adsorption means filled with an exchanger, an oxidation means, an activated carbon adsorption means, and an ion exchange means in this order.
[Selection] Figure 1
Description
本発明は、非イオン性界面活性剤含有水の処理方法及び処理装置に関する。さらに詳しくは、本発明は、非イオン性界面活性剤含有水中の相当部分の非イオン性界面活性剤を吸着により除去し、残余の非イオン性界面活性剤を酸化処理により除去することができる効率的かつ経済的な非イオン性界面活性剤含有水の処理方法及び処理装置に関する。 The present invention relates to a treatment method and treatment apparatus for water containing a nonionic surfactant. More specifically, the present invention is an efficiency capable of removing a significant portion of nonionic surfactant in water containing nonionic surfactant by adsorption and removing the remaining nonionic surfactant by oxidation treatment. The present invention relates to a method and an apparatus for treating non-ionic surfactant-containing water that is economical and economical.
半導体や液晶などの製造工程においては、イオン状物質、有機物などの不純物を除去した超純水が使用されている。例えば、液晶の製造工程では、液晶の洗浄に多量の超純水が使用されている。しかしながら、水資源保護の立場から、排水中の有機物を除去して水を再利用する必要性が高まっており、大量に水を消費してきた半導体や液晶工場においても水の再利用を求める動きが高まりつつある。液晶の洗浄工程では非イオン性界面活性剤が多量に使用されており、液晶の製造に伴って排出される排水には非イオン性界面活性剤が混入している。そのために、排水を再生して半導体及び液晶の製造工程に再利用するには、排水中に含有されている非イオン性界面活性剤を除去する必要がある。 In manufacturing processes of semiconductors and liquid crystals, ultrapure water from which impurities such as ionic substances and organic substances are removed is used. For example, in the liquid crystal manufacturing process, a large amount of ultrapure water is used for cleaning the liquid crystal. However, from the standpoint of protecting water resources, there is an increasing need to recycle water by removing organic substances in wastewater, and there is a movement to demand water reuse even in semiconductor and liquid crystal factories that have consumed large amounts of water. It is growing. A large amount of nonionic surfactant is used in the liquid crystal cleaning process, and the nonionic surfactant is mixed in the wastewater discharged with the production of the liquid crystal. Therefore, in order to regenerate the wastewater and reuse it in the manufacturing process of semiconductors and liquid crystals, it is necessary to remove the nonionic surfactant contained in the wastewater.
非イオン性界面活性剤含有水について、さまざまな処理方法が検討されている。例えば、非イオン界面活性剤含有廃液から少なくとも非イオン界面活性剤を分離除去する方法として、非イオン界面活性剤含有廃液に水に可溶性の無機塩類を添加して、水性層から遊離する非イオン界面活性剤を除去し、次いで必要に応じて該水性層を多孔性物質で処理する非イオン界面活性剤含有廃液の処理法が提案されている(特許文献1)。しかし、この方法では、廃液1Lあたり50〜300gの無機塩類を添加するので、感光性樹脂を用いて印刷版をつくる際のエッチング廃液のように多量の非イオン性界面活性剤を含有する廃液には適用し得ても、希薄な非イオン性界面活性剤含有水への適用は経済的ではない。また、非イオン性界面活性剤が除去された濃厚な無機塩類水溶液は、河川、湖沼などの淡水域への放流は困難である。 Various treatment methods have been studied for nonionic surfactant-containing water. For example, as a method for separating and removing at least a nonionic surfactant from a nonionic surfactant-containing waste liquid, a water-soluble inorganic salt is added to the nonionic surfactant-containing waste liquid to release it from the aqueous layer. A treatment method for a nonionic surfactant-containing waste liquid in which an activator is removed and then the aqueous layer is treated with a porous material as necessary has been proposed (Patent Document 1). However, in this method, since 50 to 300 g of inorganic salts are added per 1 L of the waste liquid, the waste liquid containing a large amount of nonionic surfactant is used as in the etching waste liquid when making a printing plate using a photosensitive resin. Can be applied, but application to dilute nonionic surfactant-containing water is not economical. In addition, it is difficult to release a concentrated inorganic salt aqueous solution from which nonionic surfactant has been removed to fresh water areas such as rivers and lakes.
活性炭吸着による非イオン性界面活性剤の処理も試みられている。例えば、非イオン性界面活性剤含有排水を逆浸透膜分離装置を用いて処理する際に、逆浸透膜のフラックスの低下とバイオファウリングを防止して長期にわたり安定な処理を行う方法として、排水のpHを9.5以上に調整して逆浸透膜分離装置に通水したのち、酸を添加してpH4〜8に調整し、塩素系殺菌剤を添加して活性炭装置に通水する方法が提案されている(特許文献2)。活性炭による吸着処理は、活性炭の吸着能力が通水量の増加とともに落ちてきて、定期的に活性炭の交換が必要となるという問題があり、このような補助的な手段としてでないと使用しがたい。 Attempts have also been made to treat nonionic surfactants by activated carbon adsorption. For example, when treating non-ionic surfactant-containing wastewater using a reverse osmosis membrane separation device, as a method of performing stable treatment over a long period of time by preventing a decrease in flux of the reverse osmosis membrane and biofouling, After adjusting the pH of the water to 9.5 or higher and passing it through the reverse osmosis membrane separator, the acid is adjusted to pH 4 to 8 by adding acid, and the chlorine-based disinfectant is added to pass through the activated carbon device. It has been proposed (Patent Document 2). The adsorption treatment with activated carbon has a problem that the adsorption capacity of activated carbon decreases with an increase in the amount of water flow, and it is necessary to periodically exchange the activated carbon, and it is difficult to use it as such an auxiliary means.
処理装置の建設コストが低く、維持管理が簡単で、ランニングコストが低い非イオン界面活性剤を含有する排水の処理方法として、活性炭吸着層を用いて排水中の非イオン界面活性剤を吸着除去する方法において、活性炭吸着槽内に微生物を存在させ、該槽内に空気を送る非イオン界面活性剤を含有する排水の処理方法が提案されている(特許文献3)。しかし、水質が変動しやすい排水中において、微生物を安定して育成させることは容易ではない。 As a treatment method for wastewater containing nonionic surfactants, the construction cost of the treatment equipment is low, the maintenance is simple, and the running cost is low. The activated carbon adsorption layer is used to adsorb and remove the nonionic surfactants in the wastewater. In the method, a method for treating waste water containing a nonionic surfactant that causes microorganisms to exist in an activated carbon adsorption tank and sends air into the tank has been proposed (Patent Document 3). However, it is not easy to cultivate microorganisms stably in wastewater whose water quality tends to fluctuate.
近年、排水中の有機物を除去する手段の一つとして、オゾンを利用する方法が多く採用されている。オゾン単独での有機物処理のほかに、各種の促進酸化処理技術を用い、さまざまな方面から研究がなされている。促進酸化処理技術とは、ヒドロキシルラジカル(OH・)を利用した技術である。促進酸化処理技術の中で最も簡便で実用化されている方法には、オゾンと過酸化水素を併用する方法(オゾン/H2O2法)、アルカリ性領域でオゾンを利用する方法(オゾン/アルカリ法)がある。両者の違いは過酸化水素を添加するか否かであり、pHをそれぞれの適正値に調整する点では同じである。その他にオゾンを溶解させたのち、紫外線照射して有機物を分解除去する方法もある。 In recent years, as a means for removing organic substances in waste water, a method using ozone has been widely employed. In addition to organic matter treatment with ozone alone, various accelerated oxidation treatment techniques have been used in various research areas. The accelerated oxidation treatment technique is a technique using hydroxyl radical (OH.). The simplest and most practical methods of the accelerated oxidation treatment technology include a method using ozone and hydrogen peroxide together (ozone / H 2 O 2 method), and a method using ozone in an alkaline region (ozone / alkali). Law). The difference between the two is whether or not hydrogen peroxide is added, and is the same in that the pH is adjusted to an appropriate value. In addition, there is a method of dissolving and removing organic matter by irradiating ultraviolet rays after ozone is dissolved.
水中の有機物とオゾンを反応させるためには、オゾンを水中に溶解させる必要がある。反応槽としては、従来より、散気管を用いてオゾン含有ガスを水中に吹き込み、気泡を分散させることからなる散気管型オゾン接触塔を使用する方法が取られてきた。また、気泡を発生させる他の方法として、回転翼によりガスを導入するエアレーター方式、ベンチュリーを利用したエジェクター方式、サイクロンのように液体を旋回させてその中央よりガスを導入した旋回式微細気泡発生装置などがある。しかし、オゾンを発生させるためのコストが高く、オゾンと非イオン性界面活性剤の反応効率は高くないので、オゾンを用いる促進酸化処理への負荷を軽減し得る非イオン性界面活性剤含有水の処理方法が求められていた。
本発明は、非イオン性界面活性剤含有水中の相当部分の非イオン性界面活性剤を吸着により除去し、残余の非イオン性界面活性剤を酸化処理により除去することができる効率的かつ経済的な非イオン性界面活性剤含有水の処理方法及び処理装置を提供することを目的としてなされたものである。 The present invention is an efficient and economical method capable of removing a substantial portion of nonionic surfactant in water containing nonionic surfactant by adsorption and removing the remaining nonionic surfactant by oxidation treatment. The object of the present invention is to provide a method and apparatus for treating non-ionic surfactant-containing water.
本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、非イオン性界面活性剤含有水を遅い空間速度(SV)でイオン交換体に接触させると、非イオン性界面活性剤の相当部分が吸着除去され、後段の酸化処理への負荷を軽減することができ、また、非イオン性界面活性剤を吸着したイオン交換体は再生が可能であることを見いだし、この知見に基づいて本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventor brought nonionic surfactant-containing water into contact with an ion exchanger at a low space velocity (SV). Based on this finding, it was found that a substantial portion was adsorbed and removed, the burden on the subsequent oxidation treatment could be reduced, and that the ion exchanger adsorbing the nonionic surfactant could be regenerated. The present invention has been completed.
すなわち、本発明は、
(1)非イオン性界面活性剤含有水を、イオン交換体に空間速度(SV)20h-1以下で接触させることを特徴とする非イオン性界面活性剤含有水の処理方法、
(2)非イオン性界面活性剤含有水をイオン交換体に接触させたのち、該含有水を酸化処理し、さらに活性炭吸着処理及びイオン交換処理する(1)記載の非イオン性界面活性剤含有水の処理方法、及び、
(3)イオン交換体が充填された吸着手段と、酸化手段と、活性炭吸着手段と、イオン交換手段とを順次備えてなることを特徴とする非イオン性界面活性剤含有水の処理装置、
を提供するものである。
That is, the present invention
(1) A method for treating nonionic surfactant-containing water, wherein the nonionic surfactant-containing water is brought into contact with the ion exchanger at a space velocity (SV) of 20 h −1 or less,
(2) The nonionic surfactant-containing water according to (1), wherein the nonionic surfactant-containing water is brought into contact with an ion exchanger, and then the contained water is oxidized and further subjected to activated carbon adsorption treatment and ion exchange treatment. Water treatment method and
(3) A nonionic surfactant-containing water treatment apparatus comprising an adsorption means filled with an ion exchanger, an oxidation means, an activated carbon adsorption means, and an ion exchange means in order,
Is to provide.
さらに、本発明の好ましい態様として、
(4)イオン交換体が、Na型若しくはH型強酸性カチオン交換樹脂又はCl型強塩基性アニオン交換樹脂である(1)又は(2)記載の非イオン性界面活性剤含有水の処理方法、及び、
(5)酸化処理が、オゾン及び/又は過酸化水素水の添加である(2)記載の非イオン性界面活性剤含有水の処理方法、
を挙げることができる。
Furthermore, as a preferred embodiment of the present invention,
(4) The method for treating nonionic surfactant-containing water according to (1) or (2), wherein the ion exchanger is a Na-type or H-type strongly acidic cation exchange resin or a Cl-type strongly basic anion exchange resin, as well as,
(5) The method for treating nonionic surfactant-containing water according to (2), wherein the oxidation treatment is addition of ozone and / or hydrogen peroxide water,
Can be mentioned.
本発明の非イオン性界面活性剤含有水の処理方法及び処理装置によれば、本来はイオン交換体とは親和性がないと考えられる非イオン性界面活性剤が、イオン交換体に吸着され、水中に含まれる非イオン性界面活性剤の相当部分を除去することができる。その結果、後段のオゾンなどを用いる酸化処理への負荷を軽減し、オゾンの使用量を節減して、効率的かつ経済的に非イオン性界面活性剤含有水を処理することができる。 According to the nonionic surfactant-containing water treatment method and treatment apparatus of the present invention, a nonionic surfactant that is originally considered to have no affinity with an ion exchanger is adsorbed to the ion exchanger, A substantial part of the nonionic surfactant contained in the water can be removed. As a result, it is possible to reduce the load on the oxidation treatment using ozone in the subsequent stage, reduce the amount of ozone used, and treat the nonionic surfactant-containing water efficiently and economically.
本発明の非イオン性界面活性剤含有水の処理方法においては、非イオン性界面活性剤含有水をイオン交換体に空間速度(SV)20h-1以下で接触させる。非イオン性界面活性剤は、本来はイオン交換体と親和性を有しないと考えられるが、イオン交換体と遅いSVで接触させることにより、水中の非イオン性界面活性剤の相当部分が除去される。非イオン性界面活性剤がイオン交換体により除去される機構は明らかでないが、SVが小さいほど非イオン性界面活性剤の除去率が向上することから、イオン交換反応ではなく物理的吸着によると考えられる。 In the method for treating nonionic surfactant-containing water of the present invention, the nonionic surfactant-containing water is brought into contact with the ion exchanger at a space velocity (SV) of 20 h −1 or less. A nonionic surfactant is considered to have no affinity with an ion exchanger, but by contacting the ion exchanger with a slow SV, a substantial portion of the nonionic surfactant in water is removed. The Although the mechanism by which the nonionic surfactant is removed by the ion exchanger is not clear, the smaller the SV, the better the removal rate of the nonionic surfactant. It is done.
本発明方法において、非イオン性界面活性剤含有水をイオン交換体に接触させる際のSVは、1〜30h-1であることがより好ましく、5〜15h-1であることがさらに好ましい。SVが0.1h-1未満であると、一定量の水を処理するために極めて大きい装置が必要になるおそれがある。SVが20h-1を超えると、非イオン性界面活性剤の除去率が低下するおそれがある。 In the method of the present invention, SV at the time of the non-ionic surfactant-containing water into contact with the ion exchanger is more preferably 1~30H -1, further preferably 5~15h -1. If the SV is less than 0.1 h −1 , a very large device may be required to treat a certain amount of water. If SV exceeds 20 h −1 , the removal rate of the nonionic surfactant may be reduced.
本発明方法により処理し得る非イオン性界面活性剤としては、例えば、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステルなどのエステル型界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテルなどのエーテル型界面活性剤、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレン多価アルコール脂肪酸エステルなどのエステル・エーテル型界面活性剤、脂肪酸アルカノールアミド、アルキルポリグルコシドなどのその他の非イオン性界面活性剤などを挙げることができる。 Examples of the nonionic surfactant that can be treated by the method of the present invention include ester type surfactants such as glycerin fatty acid ester, sorbitan fatty acid ester, and sucrose fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether Ether type surfactants such as polyoxyethylene fatty acid esters and ester / ether type surfactants such as polyoxyethylene polyhydric alcohol fatty acid esters, and other nonionic surfactants such as fatty acid alkanolamides and alkylpolyglucosides Can be mentioned.
本発明方法に用いるイオン交換体のイオン性に特に制限はなく、陽イオン交換体、陰イオン交換体、両性イオン交換体のいずれをも用いることができる。陽イオン交換体も、陰イオン交換体も、非イオン性界面活性剤に対して同様に良好な除去性能を発揮する。本発明方法に用いるイオン交換体の種類に特に制限はなく、例えば、イオン交換樹脂、炭質イオン交換体などの有機イオン交換体、ゼオライト、含水酸化チタン、ヒドロキシアパタイト、モンモリロナイトなどの無機イオン交換体などを挙げることができる。これらの中で、イオン交換樹脂を好適に用いることができる。イオン交換樹脂としては、例えば、強酸性カチオン交換樹脂、弱酸性カチオン交換樹脂、強塩基性アニオン交換樹脂、弱塩基性アニオン交換樹脂、両性イオン交換樹脂、キレート樹脂などを挙げることができる。これらの中で、強酸性カチオン交換樹脂、強塩基性アニオン交換樹脂を好適に用いることができる。イオン交換樹脂は、Na型、H型、Cl型、OH型などのいずれのイオン型においても非イオン性界面活性剤に対する除去性能を有する。イオン交換樹脂としては、ゲル型樹脂、マクロポーラス型樹脂のいずれをも使用することができる。 There is no restriction | limiting in particular in the ionicity of the ion exchanger used for this invention method, Any of a cation exchanger, an anion exchanger, and an amphoteric ion exchanger can be used. Both cation exchangers and anion exchangers exhibit equally good removal performance with respect to nonionic surfactants. There are no particular restrictions on the type of ion exchanger used in the method of the present invention. Examples include organic ion exchangers such as ion exchange resins and carbonaceous ion exchangers, inorganic ion exchangers such as zeolite, hydrous titanium oxide, hydroxyapatite, and montmorillonite. Can be mentioned. Among these, ion exchange resins can be preferably used. Examples of the ion exchange resin include strong acid cation exchange resin, weak acid cation exchange resin, strong basic anion exchange resin, weak basic anion exchange resin, amphoteric ion exchange resin, chelate resin and the like. Among these, strong acidic cation exchange resins and strong basic anion exchange resins can be suitably used. The ion exchange resin has a removal performance for a nonionic surfactant in any ion type such as Na type, H type, Cl type, and OH type. As the ion exchange resin, either a gel type resin or a macroporous type resin can be used.
本発明方法において、非イオン性界面活性剤を吸着したイオン交換体は再生することができる。非イオン性界面活性剤を吸着したカチオン交換樹脂は、塩酸を用いて再生することができ、この場合はH型となっている。Na型のカチオン交換樹脂は、塩酸によって再生したH型カチオン交換樹脂に塩化ナトリウム水溶液を通水することで得ることができる。非イオン性界面活性剤を吸着したアニオン交換樹脂は、水酸化ナトリウム水溶液を用いて再生することができ、この場合にはOH型となっている。Cl型アニオン交換樹脂は、水酸化ナトリウム水溶液によって再生したOH型アニオン交換樹脂に塩化ナトリウム水溶液を通水することで得ることができる。非イオン性界面活性剤を吸着することにより非イオン性界面活性剤に対する除去性能が低下したイオン交換体は、再生により除去性能を回復することができる。 In the method of the present invention, the ion exchanger adsorbing the nonionic surfactant can be regenerated. The cation exchange resin adsorbed with the nonionic surfactant can be regenerated using hydrochloric acid, and in this case, is H-shaped. The Na-type cation exchange resin can be obtained by passing an aqueous sodium chloride solution through an H-type cation exchange resin regenerated with hydrochloric acid. The anion exchange resin that has adsorbed the nonionic surfactant can be regenerated using an aqueous sodium hydroxide solution, and in this case, is an OH type. The Cl-type anion exchange resin can be obtained by passing an aqueous sodium chloride solution through an OH-type anion exchange resin regenerated with an aqueous sodium hydroxide solution. The ion exchanger whose removal performance with respect to the nonionic surfactant is reduced by adsorbing the nonionic surfactant can recover the removal performance by regeneration.
本発明の非イオン性界面活性剤含有水の処理方法においては、非イオン性界面活性剤含有水をイオン交換体に接触させたのち、該含有水を酸化処理し、さらに活性炭吸着処理及びイオン交換処理することが好ましい。非イオン性界面活性剤含有水をイオン交換体に接触させて非イオン性界面活性剤の相当部分を除去したのち、酸化処理し、さらに活性炭吸着処理及びイオン交換処理することにより、残余の非イオン性界面活性剤を効率的に除去することができる。非イオン性界面活性剤含有水をイオン交換体に接触させることなく酸化処理すると、多量の酸化剤が必要であるが、非イオン性界面活性剤含有水をイオン交換体に接触させたのち酸化処理すると、少量の酸化剤を用いて効率的に酸化処理することができる。その機構は明らかではないが、非イオン性界面活性剤含有水をイオン交換体に接触させると、イオン交換体による非イオン性界面活性剤の減少分に相当する酸化剤の減少だけでなく、残余の非イオン性界面活性剤に対する酸化剤の添加量比を低下させても、酸化反応が効率的に進行する。 In the method for treating nonionic surfactant-containing water of the present invention, after bringing the nonionic surfactant-containing water into contact with an ion exchanger, the contained water is oxidized, and further, activated carbon adsorption treatment and ion exchange are performed. It is preferable to process. Nonionic surfactant-containing water is brought into contact with the ion exchanger to remove a substantial portion of the nonionic surfactant, and then oxidized, and further subjected to activated carbon adsorption treatment and ion exchange treatment to obtain residual nonion. The active surfactant can be removed efficiently. If oxidation treatment is performed without bringing nonionic surfactant-containing water into contact with the ion exchanger, a large amount of oxidizing agent is required. However, oxidation treatment is performed after bringing nonionic surfactant-containing water into contact with the ion exchanger. Then, it can oxidize efficiently using a small amount of oxidizing agent. Although the mechanism is not clear, when nonionic surfactant-containing water is brought into contact with the ion exchanger, not only the decrease of the oxidant corresponding to the decrease of the nonionic surfactant by the ion exchanger, but also the residual amount. Even if the ratio of the oxidant added to the nonionic surfactant is reduced, the oxidation reaction proceeds efficiently.
本発明方法において、酸化処理の方法に特に制限はなく、例えば、酸化剤の添加などの化学的方法、電解酸化などの電気化学的方法などを挙げることができる。酸化剤としては、例えば、酸素、オゾンなどの酸素類、過酸化水素、過酸化ナトリウム、過酸化ベンゾイルなどの過酸化物、過酢酸、過安息香酸、ペルオキソ二硫酸カリウムなどのペルオキソ酸又はその塩などを挙げることができる。これらの中で、オゾンと過酸化水素は酸化力が強く、処理水を再利用するときの支障となる副生物が発生しないので、特に好適に使用することができる。オゾンと過酸化水素は、併用することもできる。 In the method of the present invention, the oxidation treatment method is not particularly limited, and examples thereof include a chemical method such as addition of an oxidizing agent, and an electrochemical method such as electrolytic oxidation. Examples of the oxidizing agent include oxygens such as oxygen and ozone, peroxides such as hydrogen peroxide, sodium peroxide, and benzoyl peroxide, peroxo acids such as peracetic acid, perbenzoic acid, and potassium peroxodisulfate, or salts thereof. And so on. Among these, ozone and hydrogen peroxide have strong oxidizing power and do not generate by-products that hinder the reuse of treated water, so that they can be particularly preferably used. Ozone and hydrogen peroxide can be used in combination.
本発明方法において、酸化剤としてオゾンを用いる場合、オゾンの添加量は、非イオン性界面活性剤含有水をイオン交換体に接触させたのち、水中に残存する有機体炭素(TOC)の1〜12重量倍であることが好ましく、1〜5重量倍であることがより好ましい。オゾンの添加量がTOCの1重量倍未満であると、非イオン性界面活性剤が十分に除去されないおそれがある。オゾンの添加量はTOCの12重量倍以下で非イオン性界面活性剤は十分に除去され、通常はTOCの12重量倍を超えるオゾンを添加する必要はない。オゾンの添加方法に特に制限はないが、オゾン発生器で製造されたオゾン−酸素混合ガスを、イオン交換体に接触させた非イオン性界面活性剤含有水に気液接触装置を用いて添加し、オゾンを水中に溶解させることが好ましい。 In the method of the present invention, when ozone is used as the oxidizing agent, the amount of ozone added is 1 to 1 of the organic carbon (TOC) remaining in the water after bringing the nonionic surfactant-containing water into contact with the ion exchanger. It is preferably 12 times by weight, and more preferably 1 to 5 times by weight. If the amount of ozone added is less than 1 weight times the TOC, the nonionic surfactant may not be sufficiently removed. The amount of ozone added is 12 weight times or less of TOC, and the nonionic surfactant is sufficiently removed. Usually, it is not necessary to add ozone exceeding 12 weight times of TOC. Although there is no particular limitation on the method of adding ozone, an ozone-oxygen mixed gas produced by an ozone generator is added to water containing a nonionic surfactant brought into contact with an ion exchanger using a gas-liquid contact device. It is preferable to dissolve ozone in water.
本発明の非イオン性界面活性剤含有水の処理方法においては、酸化処理された被処理水を、さらに活性炭吸着処理することが好ましい。本発明方法に用いる活性炭の種類に特に制限はなく、ガス賦活炭、薬品賦活炭のいずれをも用いることができる。本発明方法に用いる活性炭の形状に特に制限はなく、粒状炭、粉末炭のいずれをも用いることができる。粒状炭は、活性炭塔に充填し、固定層又は流動層として被処理水と接触させることができる。粉末炭は、撹拌混合槽において被処理水と接触させることができる。被処理水を活性炭吸着処理することにより、水と二酸化炭素まで酸化分解されなかった非イオン性界面活性剤の分解中間体や未分解の非イオン性界面活性剤などを吸着除去するとともに、被処理水中に残存する酸化剤を分解して、後段のイオン交換処理に用いるイオン交換樹脂の劣化を防ぐことができる。 In the method for treating nonionic surfactant-containing water of the present invention, it is preferable that the water to be treated subjected to oxidation treatment is further subjected to activated carbon adsorption treatment. There is no restriction | limiting in particular in the kind of activated carbon used for this invention method, Any of gas activated charcoal and chemical activated charcoal can be used. There is no restriction | limiting in particular in the shape of the activated carbon used for this invention method, Any of granular charcoal and powdered charcoal can be used. The granular charcoal can be packed in an activated carbon tower and brought into contact with water to be treated as a fixed bed or a fluidized bed. The powdered charcoal can be brought into contact with the water to be treated in the stirring and mixing tank. By treating the water to be treated with activated charcoal, adsorption and removal of decomposition intermediates of nonionic surfactants and undegraded nonionic surfactants that were not oxidatively decomposed into water and carbon dioxide were also treated. By decomposing the oxidizing agent remaining in the water, it is possible to prevent deterioration of the ion exchange resin used in the subsequent ion exchange treatment.
本発明の非イオン性界面活性剤含有水の処理方法においては、活性炭吸着処理された被処理水を、さらにイオン交換処理することが好ましい。酸化処理され、さらに活性炭吸着処理された被処理水にも、なお少量の有機性物質が残存する。酸化処理により非イオン性界面活性剤にはカルボキシル基などのイオン性基が生成する場合が多いので、イオン交換処理により残存する有機性物質を除去することができる。被処理水のイオン交換処理には、カチオン交換樹脂塔とアニオン交換樹脂塔、混床式イオン交換樹脂塔又はアニオン交換樹脂塔を用いることが好ましい。 In the method for treating nonionic surfactant-containing water of the present invention, it is preferable that the water to be treated subjected to the activated carbon adsorption treatment is further subjected to an ion exchange treatment. A small amount of organic substance still remains in the water to be treated that has been oxidized and further subjected to activated carbon adsorption treatment. In many cases, an ionic group such as a carboxyl group is generated in the nonionic surfactant by the oxidation treatment, so that the remaining organic substance can be removed by the ion exchange treatment. For the ion exchange treatment of the water to be treated, it is preferable to use a cation exchange resin tower and an anion exchange resin tower, a mixed bed type ion exchange resin tower or an anion exchange resin tower.
本発明の非イオン性界面活性剤含有水の処理装置は、イオン交換体が充填された吸着手段と、酸化手段と、活性炭吸着手段と、イオン交換手段とを順次備えてなる。図1は、本発明装置の一態様の工程系統図である。タンク1に貯留された非イオン性界面活性剤含有水が、ポンプ2により吸着剤充填塔3に送られ、イオン交換体と接触処理される。吸着剤充填塔から流出する被処理水は、酸化分解塔4へ送られる。酸化分解塔では、塔底からオゾン−酸素混合ガスが送られ、被処理水が酸化処理される。酸化分解塔から流出する排ガスは、排ガス処理器5で残存するオゾンが分解され、大気中へ放出される。酸化分解塔から流出する被処理水は、活性炭塔6へ送られ、被処理水中の有機性物質が活性炭に吸着されるとともに、水中に溶存するオゾンが分解される。活性炭塔から流出する被処理水は、イオン交換樹脂塔7へ送られて、水中のイオン性を有する有機性物質が除去される。イオン交換樹脂塔から排出される非イオン性界面活性剤が除去された処理水は、さらに必要な処理を施して再利用することができる。
The apparatus for treating nonionic surfactant-containing water of the present invention comprises an adsorption means filled with an ion exchanger, an oxidation means, an activated carbon adsorption means, and an ion exchange means in this order. FIG. 1 is a process flow diagram of one aspect of the apparatus of the present invention. The nonionic surfactant-containing water stored in the tank 1 is sent to the adsorbent packed tower 3 by the
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
なお、実施例及び比較例において、有機体炭素(TOC)濃度は、JIS K 0102 22.2「燃焼酸化−赤外線式TOC自動計測法」にしたがって測定した。
実施例1
ポリオキシエチレンアルキルフェニルエーテルとポリオキシエチレンアルキルエーテルとの等量混合物を超純水に溶解して、有機体炭素(TOC)濃度20.0mgC/Lの非イオン性界面活性剤含有水を調製した。
カラムにNa型強酸性カチオン交換樹脂[ダウケミカル社、EX−CG]20mLを充填し、非イオン性界面活性剤含有水を400mL/h、200mL/h又は100mL/hの速度で通水し、流出液のTOC濃度を測定した。流出液のTOC濃度は、それぞれ19.6mgC/L、18.7mgC/L及び14.4mgC/Lであり、TOC除去率は、それぞれ2.0%、6.5%及び28%であった。
カラムにH型強酸性カチオン交換樹脂[ダウケミカル社、EX−CG]20mLを充填し、非イオン性界面活性剤含有水を600mL/h又は200mL/hの速度で通水し、流出液のTOC濃度を測定した。流出液のTOC濃度は、それぞれ20.0mgC/及び17.4mgC/Lであり、TOC除去率は、それぞれ0%及び13%であった。
カラムにCl型強塩基性アニオン交換樹脂[ダウケミカル社、EX−AG]20mLを充填し、非イオン性界面活性剤含有水を400mL/h、200mL/h又は100mL/hの速度で通水し、流出液のTOC濃度を測定した。流出液のTOC濃度は、それぞれ17.0mgC/L、16.0mgC/L及び10.6mgC/Lであり、TOC除去率は、それぞれ15%、20%及び47%であった。
実施例1の結果を、第1表に示す。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In Examples and Comparative Examples, the organic carbon (TOC) concentration was measured according to JIS K 0102 22.2 “combustion oxidation-infrared TOC automatic measurement method”.
Example 1
Equivalent mixture of polyoxyethylene alkyl phenyl ether and polyoxyethylene alkyl ether was dissolved in ultrapure water to prepare water containing nonionic surfactant having organic carbon (TOC) concentration of 20.0 mgC / L. .
The column was filled with 20 mL of Na-type strongly acidic cation exchange resin [Dow Chemical Co., EX-CG], and water containing nonionic surfactant was passed at a rate of 400 mL / h, 200 mL / h, or 100 mL / h. The TOC concentration of the effluent was measured. The TOC concentrations of the effluent were 19.6 mgC / L, 18.7 mgC / L and 14.4 mgC / L, respectively, and the TOC removal rates were 2.0%, 6.5% and 28%, respectively.
The column was filled with 20 mL of H-type strongly acidic cation exchange resin [Dow Chemical Co., EX-CG], and water containing nonionic surfactant was passed at a rate of 600 mL / h or 200 mL / h, and the TOC of the effluent Concentration was measured. The TOC concentrations of the effluent were 20.0 mgC / and 17.4 mgC / L, respectively, and the TOC removal rates were 0% and 13%, respectively.
The column is filled with 20 mL of Cl-type strongly basic anion exchange resin [Dow Chemical Co., EX-AG], and water containing nonionic surfactant is passed at a rate of 400 mL / h, 200 mL / h or 100 mL / h. The TOC concentration of the effluent was measured. The TOC concentrations of the effluent were 17.0 mgC / L, 16.0 mgC / L and 10.6 mgC / L, respectively, and the TOC removal rates were 15%, 20% and 47%, respectively.
The results of Example 1 are shown in Table 1.
第1表に見られるように、TOC除去率はSVの低下とともに上昇する。イオン交換の律速段階は、イオン交換体内部における対イオンの相互拡散又はイオン交換体表面を覆う境膜における対イオンの相互拡散なので、TOC除去率のSV依存性が大きいことは、イオン交換反応ではなく、物理的な吸着現象により非イオン性界面活性剤が除去されることを示唆している。
実施例2
ポリオキシエチレンアルキルフェニルエーテルとポリオキシエチレンアルキルエーテルとの等量混合物を超純水に溶解して、有機体炭素(TOC)濃度20.0mgC/Lの非イオン性界面活性剤含有水を調製した。
カラムにH型強酸性カチオン交換樹脂[ダウケミカル社、EX−CG]20mLを充填し、非イオン性界面活性剤含有水をSV10h-1で通水し、TOC除去率が15%に低下したものに2モル/Lの塩酸250mLをSV30h-1で通液して樹脂を再生し、さらに純水1,000mLを通水してカラム内の塩酸を押し出した。
上記の非イオン性界面活性剤含有水をふたたびSV10h-1で通水し、TOC除去率を調べたところ、25%に回復していた。
実施例3
ポリオキシエチレンアルキルフェニルエーテルとポリオキシエチレンアルキルエーテルとの等量混合物を超純水に溶解して、有機体炭素(TOC)濃度20.0mgC/Lの非イオン性界面活性剤含有水を調製した。図1に示すタンク、吸着剤充填塔、酸化分解塔、活性炭塔及びイオン交換樹脂塔をこの順に連結した装置を用いて、イオン交換樹脂による吸着、オゾンによる酸化分解、活性炭吸着、イオン交換により処理した。
吸着剤充填塔には、H型強酸性イオン交換樹脂[ダウケミカル社、EX−CG]7.7mLとCl型強塩基性アニオン交換樹脂[ダウケミカル社、EX−AG]12.3mLの混合樹脂を充填した。酸化分解塔には、容積50mLであり、ラシヒリングを充填し、塔底よりオゾン15重量%、酸素85重量%のオゾン−酸素混合ガスを供給した。活性炭塔には、粒状活性炭[クラレケミカル(株)、WG−160]20mLを充填した。イオン交換樹脂塔には、OH型強塩基性アニオン交換樹脂[ダウケミカル社、EX−AG]20mLを充填した。
非イオン性界面活性剤含有水を、吸着塔に200mL/hの速度で通水した。吸着塔から流出する被処理水のTOC濃度は、14.0mgC/Lであった。吸着塔から流出する被処理水を、酸化分解塔に200mL/hの速度で通水し、オゾン14.7mg/hを供給するために、塔底からオゾン−酸素混合ガスを供給した。酸化分解塔から流出する被処理水のTOC濃度は、12.6mgC/Lであった。酸化分解塔から流出する被処理水を、400mL/hの速度で活性炭塔に通水した。活性炭塔から流出する被処理水のTOC濃度は、6.0mgC/Lであった。活性炭塔から流出する被処理水を、通水速度400mL/hの速度でイオン交換樹脂塔に通水した。イオン交換樹脂塔から流出する処理水のTOC濃度は2.0mgC/Lであり、全処理工程のTOC除去率は90%であった。
As seen in Table 1, the TOC removal rate increases with decreasing SV. The rate-determining step of ion exchange is the mutual diffusion of counter ions inside the ion exchanger or the mutual diffusion of counter ions in the film covering the surface of the ion exchanger. Therefore, the SV dependence of the TOC removal rate is large in the ion exchange reaction. This suggests that the nonionic surfactant is removed by the physical adsorption phenomenon.
Example 2
Equivalent mixture of polyoxyethylene alkyl phenyl ether and polyoxyethylene alkyl ether was dissolved in ultrapure water to prepare water containing nonionic surfactant having organic carbon (TOC) concentration of 20.0 mgC / L. .
The column was filled with 20 mL of H-type strongly acidic cation exchange resin [Dow Chemical Co., EX-CG] and non-ionic surfactant-containing water was passed through with SV10h −1 and the TOC removal rate was reduced to 15%. Then, 250 mL of 2 mol / L hydrochloric acid was passed through SV30h -1 to regenerate the resin, and 1,000 mL of pure water was passed through to push out hydrochloric acid in the column.
When the nonionic surfactant-containing water was again passed through SV10h −1 and the TOC removal rate was examined, it was recovered to 25%.
Example 3
Equivalent mixture of polyoxyethylene alkyl phenyl ether and polyoxyethylene alkyl ether was dissolved in ultrapure water to prepare water containing nonionic surfactant having organic carbon (TOC) concentration of 20.0 mgC / L. . Using an apparatus in which the tank, adsorbent packed tower, oxidative decomposition tower, activated carbon tower, and ion exchange resin tower shown in FIG. 1 are connected in this order, treatment is performed by ion exchange resin adsorption, ozone oxidative decomposition, activated carbon adsorption, and ion exchange. did.
The adsorbent packed tower has a mixed resin of 7.7 mL of H-type strongly acidic ion exchange resin [Dow Chemical Co., EX-CG] and 12.3 mL of Cl-type strongly basic anion exchange resin [Dow Chemical Co., EX-AG]. Filled. The oxidative decomposition tower had a volume of 50 mL, was filled with Raschig rings, and an ozone-oxygen mixed gas of 15 wt% ozone and 85 wt% oxygen was supplied from the bottom of the tower. The activated carbon tower was filled with 20 mL of granular activated carbon [Kuraray Chemical Co., Ltd., WG-160]. The ion exchange resin tower was filled with 20 mL of OH type strongly basic anion exchange resin [Dow Chemical Co., EX-AG].
Nonionic surfactant-containing water was passed through the adsorption tower at a rate of 200 mL / h. The TOC concentration of the treated water flowing out from the adsorption tower was 14.0 mgC / L. The treated water flowing out from the adsorption tower was passed through the oxidative decomposition tower at a rate of 200 mL / h, and an ozone-oxygen mixed gas was supplied from the bottom of the tower to supply ozone 14.7 mg / h. The TOC concentration of the treated water flowing out from the oxidative decomposition tower was 12.6 mgC / L. The treated water flowing out from the oxidative decomposition tower was passed through the activated carbon tower at a rate of 400 mL / h. The TOC concentration of the treated water flowing out from the activated carbon tower was 6.0 mgC / L. The treated water flowing out from the activated carbon tower was passed through the ion exchange resin tower at a water flow rate of 400 mL / h. The TOC concentration of the treated water flowing out from the ion exchange resin tower was 2.0 mgC / L, and the TOC removal rate in all treatment steps was 90%.
比較例1
非イオン性界面活性剤含有水を吸着塔へ通水せず、酸化分解塔への通水から処理を開始した以外は、実施例3と同様に操作した。
実施例3と同じ非イオン性界面活性剤含有水を、酸化分解塔に200mL/hの速度で通水し、オゾン24.0mg/hを供給するために、塔底からオゾン−酸素混合ガスを供給した。酸化分解塔から流出する被処理水のTOC濃度は、18.0mgC/Lであった。酸化分解塔から流出する被処理水を、400mL/hの速度で活性炭塔に通水した。活性炭塔から流出する被処理水のTOC濃度は、9.0mgC/Lであった。活性炭塔から流出する被処理水を、通水速度400mL/hの速度でイオン交換樹脂塔に通水した。イオン交換樹脂塔から流出する処理水のTOC濃度は7.0mgC/Lであり、全処理工程のTOC除去率は65%であった。
比較例2
酸化分解塔の塔底に供給するオゾンの量を、48.0mg/h、80.0mg/h、160.0mg/h又は400.0mg/hとした以外は、比較例1と同様に操作した。イオン交換樹脂塔から流出する処理水のTOC濃度は、それぞれ7.0mgC/L、5.0mgC/L、4.0mgC/L及び2.0mgC/Lであり、全処理工程のTOC除去率は、それぞれ65%、75%、80%及び90%であった。
実施例3と比較例1の結果を第2表に、比較例1〜2の結果を第3表に示す。
Comparative Example 1
The same operation as in Example 3 was performed, except that the nonionic surfactant-containing water was not passed through the adsorption tower and the treatment was started from the passage through the oxidative decomposition tower.
In order to supply the same nonionic surfactant-containing water as in Example 3 to the oxidative decomposition tower at a rate of 200 mL / h and supply ozone 24.0 mg / h, an ozone-oxygen mixed gas was supplied from the bottom of the tower. Supplied. The TOC concentration of treated water flowing out from the oxidative decomposition tower was 18.0 mgC / L. The treated water flowing out from the oxidative decomposition tower was passed through the activated carbon tower at a rate of 400 mL / h. The TOC concentration of the treated water flowing out from the activated carbon tower was 9.0 mgC / L. The treated water flowing out from the activated carbon tower was passed through the ion exchange resin tower at a water flow rate of 400 mL / h. The TOC concentration of the treated water flowing out from the ion exchange resin tower was 7.0 mgC / L, and the TOC removal rate in all treatment steps was 65%.
Comparative Example 2
The same operation as in Comparative Example 1 was conducted except that the amount of ozone supplied to the bottom of the oxidative decomposition tower was 48.0 mg / h, 80.0 mg / h, 160.0 mg / h, or 40.0 mg / h. . The TOC concentration of the treated water flowing out from the ion exchange resin tower is 7.0 mgC / L, 5.0 mgC / L, 4.0 mgC / L and 2.0 mgC / L, respectively. They were 65%, 75%, 80% and 90%, respectively.
The results of Example 3 and Comparative Example 1 are shown in Table 2, and the results of Comparative Examples 1 and 2 are shown in Table 3.
第2表に見られるように、イオン交換樹脂を充填した吸着塔で非イオン性界面活性剤含有水のTOCの30%を除去した実施例3では、少ないオゾンの供給量で処理水のTOC除去率が90%に達している。これに対して、吸着塔に通水しなかった比較例1では、実施例3の1.6倍量のオゾンを供給しているにもかかわらず、TOC除去率は65%にしかならない。第3表に見られるように、吸着塔に通水することなくTOC除去率90%を得るためには、極めて大量のオゾンが必要である。 As can be seen from Table 2, in Example 3 where 30% of the TOC of water containing nonionic surfactant was removed by an adsorption tower packed with an ion exchange resin, the TOC removal of treated water was performed with a small supply of ozone. The rate has reached 90%. On the other hand, in Comparative Example 1 in which water did not pass through the adsorption tower, the TOC removal rate was only 65% despite supplying 1.6 times the amount of ozone as in Example 3. As can be seen in Table 3, a very large amount of ozone is required to obtain a TOC removal rate of 90% without passing water through the adsorption tower.
本発明の非イオン性界面活性剤含有水の処理方法及び処理装置によれば、本来はイオン交換体とは親和性がないと考えられる非イオン性界面活性剤が、イオン交換体に吸着され、水中に含まれる非イオン性界面活性剤の相当部分を除去することができる。その結果、後段のオゾンなどの酸化剤を用いる酸化処理への負荷を軽減し、酸化剤の使用量を節減して、効率的かつ経済的に非イオン性界面活性剤含有水を処理することができる。本発明方法は、半導体用シリコン基板、液晶用ガラス基板などの電子材料を製造する工程で多量に発生する非イオン性界面活性剤含有水の処理に適用し、処理水を回収して再利用し、用水の原単位を低減することができる。 According to the nonionic surfactant-containing water treatment method and treatment apparatus of the present invention, a nonionic surfactant that is originally considered to have no affinity with an ion exchanger is adsorbed to the ion exchanger, A substantial part of the nonionic surfactant contained in the water can be removed. As a result, it is possible to efficiently and economically treat nonionic surfactant-containing water by reducing the burden on the oxidation treatment using an oxidizing agent such as ozone in the subsequent stage, reducing the amount of the oxidizing agent used. it can. The method of the present invention is applied to the treatment of nonionic surfactant-containing water generated in large quantities in the process of producing electronic materials such as silicon substrates for semiconductors and glass substrates for liquid crystals, and the treated water is recovered and reused. The basic unit of water can be reduced.
1 タンク
2 ポンプ
3 吸着剤充填塔
4 酸化分解塔
5 排ガス処理器
6 活性炭塔
7 イオン交換樹脂塔
DESCRIPTION OF SYMBOLS 1
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005289638A JP2007098240A (en) | 2005-10-03 | 2005-10-03 | Nonionic surfactant-containing water treatment method and treatment apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005289638A JP2007098240A (en) | 2005-10-03 | 2005-10-03 | Nonionic surfactant-containing water treatment method and treatment apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007098240A true JP2007098240A (en) | 2007-04-19 |
JP2007098240A5 JP2007098240A5 (en) | 2008-11-13 |
Family
ID=38025705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005289638A Pending JP2007098240A (en) | 2005-10-03 | 2005-10-03 | Nonionic surfactant-containing water treatment method and treatment apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007098240A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015152173A1 (en) * | 2014-03-31 | 2015-10-08 | 旭硝子株式会社 | Recovery method for anionic fluorine-containing emulsifier |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06142649A (en) * | 1992-11-10 | 1994-05-24 | Tama Kagaku Kogyo Kk | Treatment of organic quaternary ammonium hydroxide-containing waste liquid |
JPH078809A (en) * | 1993-06-27 | 1995-01-13 | Kao Corp | Wastewater treatment agent and wastewater treatment method |
JPH07204591A (en) * | 1994-01-24 | 1995-08-08 | Arakawa Chem Ind Co Ltd | Cleaning system |
JPH1099853A (en) * | 1996-09-27 | 1998-04-21 | Kurita Water Ind Ltd | Treatment system for water containing tetraalkylammonium hydroxide |
JPH10202296A (en) * | 1996-11-21 | 1998-08-04 | Japan Organo Co Ltd | Ultrapure water producer |
JPH1157752A (en) * | 1997-08-19 | 1999-03-02 | Japan Organo Co Ltd | Controlling method and device of toc component removal |
JP2000061453A (en) * | 1998-08-25 | 2000-02-29 | Nomura Micro Sci Co Ltd | Treatment of water and apparatus therefor |
JP2007000746A (en) * | 2005-06-22 | 2007-01-11 | Daikin Ind Ltd | Method for producing nonionic surfactant aqueous composition |
-
2005
- 2005-10-03 JP JP2005289638A patent/JP2007098240A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06142649A (en) * | 1992-11-10 | 1994-05-24 | Tama Kagaku Kogyo Kk | Treatment of organic quaternary ammonium hydroxide-containing waste liquid |
JPH078809A (en) * | 1993-06-27 | 1995-01-13 | Kao Corp | Wastewater treatment agent and wastewater treatment method |
JPH07204591A (en) * | 1994-01-24 | 1995-08-08 | Arakawa Chem Ind Co Ltd | Cleaning system |
JPH1099853A (en) * | 1996-09-27 | 1998-04-21 | Kurita Water Ind Ltd | Treatment system for water containing tetraalkylammonium hydroxide |
JPH10202296A (en) * | 1996-11-21 | 1998-08-04 | Japan Organo Co Ltd | Ultrapure water producer |
JPH1157752A (en) * | 1997-08-19 | 1999-03-02 | Japan Organo Co Ltd | Controlling method and device of toc component removal |
JP2000061453A (en) * | 1998-08-25 | 2000-02-29 | Nomura Micro Sci Co Ltd | Treatment of water and apparatus therefor |
JP2007000746A (en) * | 2005-06-22 | 2007-01-11 | Daikin Ind Ltd | Method for producing nonionic surfactant aqueous composition |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015152173A1 (en) * | 2014-03-31 | 2015-10-08 | 旭硝子株式会社 | Recovery method for anionic fluorine-containing emulsifier |
CN106132525A (en) * | 2014-03-31 | 2016-11-16 | 旭硝子株式会社 | The recovery method of anionic fluorine-containing emulsifier |
JPWO2015152173A1 (en) * | 2014-03-31 | 2017-04-13 | 旭硝子株式会社 | Method for recovering anionic fluorine-containing emulsifier |
US9790163B2 (en) | 2014-03-31 | 2017-10-17 | Asahi Glass Company, Limited | Method for recovering anionic fluorinated emulsifier |
EP3127602A4 (en) * | 2014-03-31 | 2017-11-15 | Asahi Glass Company, Limited | Recovery method for anionic fluorine-containing emulsifier |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2677468B2 (en) | Method and apparatus for producing pure water | |
JP2007509740A (en) | Apparatus and method for purifying aqueous effluents by oxidation and membrane filtration | |
JPWO2002094719A1 (en) | Method and apparatus for treating nitrogen compound-containing water | |
WO2000064568A1 (en) | Apparatus for producing water containing dissolved ozone | |
JP5211518B2 (en) | Organic substance removing method and apparatus | |
CN103551044B (en) | Method for cleaning polluted membrane by using singlet oxygen produced from peroxymonosulfate under induction of inorganic solid peroxide | |
JP3603701B2 (en) | Method and apparatus for treating peracetic acid-containing wastewater | |
JP4447212B2 (en) | Ultrapure water production method and ultrapure water production apparatus | |
JPH1199394A (en) | Method for removing organic matter in water | |
US10493423B2 (en) | Purification treatment method of liquid containing harmful substance, and purification treatment device of liquid containing harmful substance for carrying out said method | |
JP5678436B2 (en) | Ultrapure water production method and apparatus | |
JP2007098240A (en) | Nonionic surfactant-containing water treatment method and treatment apparatus | |
JP2012035196A (en) | Treatment method for acetic-acid containing wastewater and apparatus | |
JP2008173617A (en) | Water treatment apparatus and water treatment method | |
JP2000308815A (en) | Ozone dissolved water production equipment | |
JP2010069413A (en) | Organic waste water treatment method | |
JP3992996B2 (en) | Wastewater treatment method and apparatus | |
JP7616489B1 (en) | Water treatment device and water treatment method | |
JP2003126873A (en) | Pure water production equipment | |
JP4760120B2 (en) | Apparatus and method for treating water containing hardly biodegradable organic matter | |
JP2006281041A (en) | Organic substance-containing water treatment apparatus and operation method thereof | |
JP3528287B2 (en) | Pure water production method | |
JP5142462B2 (en) | Water purification device and water purification method | |
WO2021250745A1 (en) | Ozone water production apparatus, water treatment apparatus, and ozone water production method | |
JPH11197674A (en) | Treatment of peroxide-containing waste water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081001 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081001 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100610 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100618 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100803 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100824 |