JP2007085182A - Vertical shaft type straight wing windmill having aerodynamic governor mechanism - Google Patents
Vertical shaft type straight wing windmill having aerodynamic governor mechanism Download PDFInfo
- Publication number
- JP2007085182A JP2007085182A JP2005271578A JP2005271578A JP2007085182A JP 2007085182 A JP2007085182 A JP 2007085182A JP 2005271578 A JP2005271578 A JP 2005271578A JP 2005271578 A JP2005271578 A JP 2005271578A JP 2007085182 A JP2007085182 A JP 2007085182A
- Authority
- JP
- Japan
- Prior art keywords
- wind turbine
- blade
- rotation
- movable
- vertical axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
Landscapes
- Wind Motors (AREA)
Abstract
Description
本発明は、可動翼を備える縦軸型直線翼風車に関し、詳しくは、過回転問題および始動性能の低さを改善するために風車の回転を空力的に調速する機構を備える縦軸型直線翼風車に関する。 More specifically, the present invention relates to a vertical axis linear turbine including a mechanism for aerodynamically adjusting the rotation of the wind turbine in order to improve over-rotation problems and low starting performance. It relates to a wing windmill.
一般に、風力発電用の風車は、オランダ型風車に代表されるような、風に対して回転軸が水平になっている水平軸型風車と、風に対して回転軸が垂直になっている垂直軸型風車(即ち縦軸型風車)が知られている。また、縦軸型風車は、サボニウス型に代表される効力型と、直線翼風車(すなわち縦軸型直線翼風車)に代表される揚力型に分類される。 In general, wind turbines for wind power generation include horizontal axis type wind turbines whose rotation axis is horizontal with respect to the wind, as represented by Dutch type wind turbines, and vertical axes whose rotation axis is perpendicular to the wind. An axial wind turbine (that is, a vertical wind turbine) is known. The vertical wind turbine is classified into an effective type represented by a Savonius type and a lift type represented by a straight blade wind turbine (that is, a vertical straight wind turbine).
このうち、縦軸型直線翼風車は、回転始動性が水平軸型風車に比べて劣るものの、ひとたび回転し始めると、風を受けている限り回転トルクを発生し続け、回転が加速度的に上昇する特徴がある。このことから、縦軸型直線翼風車は小型で高い発電能力を得られる発電用風車として有望視されており、今後、始動性の改善により普及が更に広がるものと考えられる。 Of these, the vertical axis straight-blade wind turbine is inferior in rotational startability to the horizontal axis wind turbine, but once it starts rotating, it continues to generate rotational torque as long as it receives wind, and the rotation increases at an accelerated rate. There is a feature to do. For this reason, the vertical-axis type linear blade wind turbine is regarded as promising as a wind turbine for power generation that is small and has high power generation capability, and it is considered that the spread of the vertical axis wind turbine will be further expanded by improving the startability in the future.
しかし、その反面、縦軸型直線翼風車の加速度的な回転上昇は、故障、破壊につながる過回転を招くため、その抑制手段が必要とされている。 However, on the other hand, since the rotational increase of the vertical linear wind turbine is accelerated, it leads to over-rotation that leads to failure and destruction, so that a suppression means is required.
縦軸型直線翼風車の過回転を抑制する手段は、既にいくつか知られており、たとえば、風車の回転軸に摩擦力を加え、機械的に減速、静止する方法や、風車に接続される発電機を制御し、渦電流により減速、静止する方法が実用化されている。
上記の方法は、風を受けて発生する回転トルクに対し、摩擦力や渦電流ブレーキといった制動力を加え、回転を制動力と回転力のつり合いにより抑制する原理である。この原理は、風を受け続けることにより回転トルクが発生し続けた場合、制動力の限界に対して回転力が大きく上回り、回転の抑制ができなくなるおそれがある。このため、極強風時には、風車の回転を停止する措置をとられることがあった。
Several means are already known for suppressing the over-rotation of the vertical axis type straight-blade wind turbine. For example, a method of applying a frictional force to the rotation shaft of the wind turbine to mechanically decelerate and stop, or connected to the wind turbine. A method of controlling a generator and decelerating and stopping by an eddy current has been put into practical use.
The above method is a principle that suppresses rotation by balancing the braking force and the rotational force by applying a braking force such as a frictional force or an eddy current brake to the rotational torque generated by receiving the wind. According to this principle, when the rotational torque continues to be generated by continuing to receive wind, the rotational force greatly exceeds the limit of the braking force, and the rotation may not be suppressed. For this reason, measures have been taken to stop the rotation of the windmill during extreme winds.
また、制動力と回転力のつり合いを利用しない縦軸型直線翼風車の過回転抑制手段として、翼を可動翼とし、可動翼のピッチ角を変更することにより、風により発生する回転トルクを減らす方法が知られている(例えば、特許文献1参照。)。この方法は、制動力を加えないことから、制動力の限界を考慮する必要がないため、強風時の風車の停止、すなわち発電の停止を極力避けることができる利点がある。また、可動翼のピッチ角の変更は、強風時に限らず可能なため、始動時においても回転トルクの制御ができる利点がある。 In addition, as a means for suppressing over-rotation of a vertical-axis linear blade wind turbine that does not use the balance between braking force and rotational force, the rotational torque generated by the wind is reduced by changing the pitch angle of the movable blade as the movable blade. A method is known (for example, refer to Patent Document 1). Since this method does not apply a braking force, there is no need to consider the limit of the braking force, and therefore there is an advantage that it is possible to avoid as much as possible the stop of the windmill in a strong wind, that is, the stop of power generation. Further, since the pitch angle of the movable blade can be changed not only in a strong wind, there is an advantage that the rotational torque can be controlled even at the start.
従来技術において縦軸型直線翼風車の可動翼のピッチ角を変更する手段は、例えば、特許文献1に提案されるように、モーター等、電動機の動力を必要とするものが知られている。これは、ピッチ角を変更するための電動機を、商用電源や電源の補助である蓄電池により作動させる必要があり、商用電源の停電や蓄電池の電圧不足によっては、制御不能となるおそれがある。また、停電となる確率は、強風や暴風雨などの悪天候時が高く、また、天候悪化時にメンテナンスをすることは容易ではない。このため、安全を保ち、管理面を向上する、新たな縦軸型直線翼風車が求められていた。 In the prior art, as a means for changing the pitch angle of the movable blades of the vertical type linear blade wind turbine, for example, as proposed in Patent Document 1, a device that requires the power of an electric motor such as a motor is known. This requires that an electric motor for changing the pitch angle be operated by a commercial power source or a storage battery that is an auxiliary to the power source, and may become uncontrollable due to a power failure of the commercial power source or a shortage of the storage battery voltage. In addition, the probability of a power outage is high during bad weather such as strong winds and storms, and maintenance is not easy when the weather deteriorates. For this reason, there has been a demand for a new vertical axis wind turbine that maintains safety and improves management.
本発明者は、上記課題を実現するために研究した結果、可動翼の角度を風車の回転動作により自律的に制御する技術に到達した。すなわち、本発明の目的は、可動翼のピッチ角を変更して風車の回転を空力的に調速する縦軸型直線翼風車において、モーター等の電動機の動力を用いずにピッチ角を調節し、かつ、回転の状況により、ピッチ角が自律的に制御される縦軸型直線翼風車を提供することにある。 As a result of researches for realizing the above-mentioned problems, the present inventor has arrived at a technique for autonomously controlling the angle of the movable blade by the rotating operation of the windmill. That is, an object of the present invention is to adjust the pitch angle without using the power of an electric motor such as a motor in a vertical axis linear blade wind turbine that aerodynamically adjusts the rotation of the wind turbine by changing the pitch angle of the movable blade. And it is providing the vertical axis | shaft type linear blade wind turbine by which a pitch angle is autonomously controlled by the condition of rotation.
第1の観点では、本発明は、縦軸型直線翼風車において、翼の少なくとも1部分に可動翼を備えることを特徴とする縦軸型直線翼風車を提供する。
上記第1の観点による縦軸型直線翼風車では、図1に示すように、可動翼10が、可動翼軸11を支点に可動である。可動翼10は、風車の回転に応じて可動翼軸11を支点にピッチ角を変更する。また、可動翼は、翼において全ての部分を占めるとは限らず、飛行機のフラップのように部分的なものであってもよい。また、翼の枚数は、図1に示す3枚に限定されるものではなく、かつ、可動翼と可動でない翼が混在する構成であってもよい。
In a first aspect, the present invention provides a vertical axis linear blade wind turbine characterized in that a movable blade is provided in at least a portion of the blade in the vertical axis linear blade wind turbine.
In the vertical axis type linear blade wind turbine according to the first aspect, as shown in FIG. 1, the movable blade 10 is movable with the movable blade shaft 11 as a fulcrum. The movable blade 10 changes the pitch angle with the movable blade shaft 11 as a fulcrum according to the rotation of the windmill. In addition, the movable wing does not necessarily occupy all parts of the wing, and may be a partial one like an airplane flap. Further, the number of blades is not limited to three as shown in FIG. 1, and a configuration in which movable blades and non-movable blades are mixed may be used.
第2の観点では、本発明は、第1の観点による縦軸型直線翼風車において、可動翼が風車の過回転を抑制するピッチ角に作動可能であることを特徴とする縦軸型直線翼風車を提供する。
上記第2の観点による縦軸型直線翼風車では、図1において、回転方向側の可動翼端を前端部、その逆方向の可動翼端を後端部12とすると、図2に示すように、過回転時に可動翼の後端部12が、回転軸中心の接線と平行な方向より回転軸の中心と逆の方向に向く。
In a second aspect, the present invention relates to a vertical axis linear blade according to the first aspect, wherein the movable blade is operable at a pitch angle that suppresses over-rotation of the wind turbine. Provide a windmill.
In the vertical type linear blade wind turbine according to the second aspect, in FIG. 1, when the movable blade tip on the rotational direction side is the front end portion and the movable blade tip in the opposite direction is the rear end portion 12, as shown in FIG. At the time of excessive rotation, the rear end portion 12 of the movable blade is directed in the direction opposite to the center of the rotating shaft from the direction parallel to the tangent to the center of the rotating shaft.
第3の観点では、本発明は、第1〜2のいずれかの観点による縦軸型直線翼風車において、可動翼が風車の始動性を向上するピッチ角に作動可能であることを特徴とする縦軸型直線翼風車を提供する。
上記第3の観点による縦軸型直線翼風車では、図3に示すように、静止または低速回転時に可動翼の後端部12が、回転軸中心の接線と平行な方向より回転軸の中心の方向に向く。
In a third aspect, the present invention is characterized in that, in the vertical linear blade wind turbine according to any one of the first or second aspects, the movable blade is operable at a pitch angle that improves the startability of the wind turbine. A vertical-axis type linear blade wind turbine is provided.
In the vertical type linear blade wind turbine according to the third aspect, as shown in FIG. 3, the rear end portion 12 of the movable blade is at the center of the rotation axis in a direction parallel to the tangential line of the rotation axis during stationary or low speed rotation. Turn to the direction.
第4の観点では、本発明は、第1〜3のいずれかの観点による縦軸型直線翼風車において、可動翼の作動に風車の回転により生じる遠心力を用いることを特徴とする縦軸型直線翼風車を提供する。
上記第4の観点による縦軸型直線翼風車では、この可動翼の作動に、風車の回転により生じる遠心力、例えば、可動翼の後端部12にかかる遠心力を利用することができる。また、可動翼の後端部におもりを内蔵することや、図4に示すように、可動翼の後端部12の翼延長上におもり40を取り付けることにより、可動翼に作用する遠心力を強くすることができる。
In a fourth aspect, the present invention relates to a vertical axis type linear blade wind turbine according to any one of the first to third aspects, wherein a centrifugal force generated by the rotation of the wind turbine is used for the operation of the movable blade. Provide a straight-wing wind turbine.
In the vertical linear wind turbine according to the fourth aspect, the centrifugal force generated by the rotation of the wind turbine, for example, the centrifugal force applied to the rear end portion 12 of the movable blade can be used for the operation of the movable blade. Further, by incorporating a weight at the rear end of the movable wing, or by attaching a weight 40 on the blade extension of the rear end 12 of the movable wing, as shown in FIG. 4, the centrifugal force acting on the movable wing can be reduced. Can be strong.
第5の観点では、本発明は、第1〜4のいずれかの観点による縦軸型直線翼風車において、可動翼の作動に弾性体の復元力が作用する機構を有することを特徴とする縦軸型直線翼風車を提供する。
上記第5の観点による縦軸型直線翼風車では、たとえば、図5に示すように、可動翼の後端部12が回転中心の方向に引っ張られるようにバネ等の弾性体30を設置する。また、弾性体は、風車の回転の始動時に作用する弾性体と、風車の回転が過速度であるときに作用する弾性体を個別に設置することもできる。
In a fifth aspect, the present invention provides a longitudinal linear blade turbine according to any one of the first to fourth aspects, characterized in that it has a mechanism in which the restoring force of the elastic body acts on the operation of the movable blade. An axial straight-wing wind turbine is provided.
In the vertical type linear blade wind turbine according to the fifth aspect, for example, as shown in FIG. 5, an elastic body 30 such as a spring is installed so that the rear end portion 12 of the movable blade is pulled in the direction of the rotation center. In addition, the elastic body can be installed separately from an elastic body that acts at the start of rotation of the windmill and an elastic body that acts when the rotation of the windmill is at an excessive speed.
第6の観点では、本発明は、第1〜5のいずれかの観点による縦軸型直線翼風車において、可動翼のピッチ角が風車の回転動作により自律的に変化する機構を有することを特徴とする縦軸型直線翼風車を提供する。
上記第6の観点による縦軸型直線翼風車では、たとえば、風車の回転により可動翼に生じる遠心力と、弾性体の復元力と、可動翼が受ける風力のつり合いにより、可動翼軸を支点にする可動翼のピッチ角が自律的に決定される。
In a sixth aspect, the present invention is a longitudinal linear blade wind turbine according to any one of the first to fifth aspects, characterized in that it has a mechanism in which the pitch angle of the movable blade changes autonomously by the rotational operation of the wind turbine. A vertical axis type linear blade wind turbine is provided.
In the vertical-axis linear blade wind turbine according to the sixth aspect, for example, the movable blade shaft is used as a fulcrum by the balance between the centrifugal force generated in the movable blade by the rotation of the wind turbine, the restoring force of the elastic body, and the wind force received by the movable blade. The pitch angle of the movable blade is determined autonomously.
第7の観点では、本発明は、第1〜6のいずれかの観点による縦軸型直線翼風車において、複数の可動翼が連動して作動する機構を有することを特徴とする縦軸型直線翼風車を提供する。
上記第7の観点による縦軸型直線翼風車では、例えば、図6に示すように、複数の可動翼端と回転軸に外接するリング21がシャフト22によりリンクされ、複数の可動翼の作動がリング21の回転を介して連動する。
In a seventh aspect, the present invention provides a vertical straight line characterized in that in the vertical straight blade turbine according to any one of the first to sixth aspects, a plurality of movable blades operate in conjunction with each other. Provide wing wind turbines.
In the vertical linear wind turbine according to the seventh aspect, for example, as shown in FIG. 6, a plurality of movable blade ends and rings 21 circumscribing the rotating shaft are linked by a shaft 22, and the operations of the plurality of movable blades are performed. It interlocks via the rotation of the ring 21.
第8の観点では、本発明は、第7の観点による縦軸型直線翼風車において、複数の可動翼が連動して作動する機構が、全ての可動翼を回転軸の中心対称に作動可能であることを特徴とする縦軸型直線翼風車を提供する。
上記第8の観点による縦軸型直線翼風車では、全ての可動翼の角度が、回転軸を中心対称として等しくなるようにリング21と可動翼がリンクされる。
In an eighth aspect, the present invention relates to a vertical linear blade wind turbine according to the seventh aspect, wherein a mechanism in which a plurality of movable blades operate in conjunction with each other can operate all the movable blades symmetrically about the rotation axis. There is provided a vertical axis type straight-blade wind turbine characterized by being.
In the vertical straight-blade wind turbine according to the eighth aspect, the ring 21 and the movable blade are linked so that the angles of all the movable blades are equal with respect to the rotational axis.
第9の観点では、本発明は、第1〜8のいずれかの観点による縦軸型直線翼風車を、発電の動力源に用いることを特徴とする発電装置を提供する。
上記第9の観点による発電装置では、例えば、大規模な水平軸型風車の補助電源や、架線が困難な地域の電源とすることができる。
In a ninth aspect, the present invention provides a power generator characterized by using the vertical straight-blade wind turbine according to any one of the first to eighth aspects as a power source for power generation.
In the power generation device according to the ninth aspect, for example, an auxiliary power source for a large-scale horizontal axis wind turbine or a power source for an area where overhead wiring is difficult can be used.
第10の観点では、本発明は、第1〜8のいずれかの観点による縦軸型直線翼風車を、水汲みの動力源に用いることを特徴とするポンプ装置を提供する。
上記第10の観点によるポンプ装置では、例えば、井戸の水汲みや、田畑の給水に用いることができる。
In a tenth aspect, the present invention provides a pump device characterized by using the vertical straight-blade wind turbine according to any one of the first to eighth aspects as a power source for fetching water.
The pump device according to the tenth aspect can be used for, for example, drawing water from a well or watering a field.
本発明の縦軸型直線翼風車によれば、制御のための電源を必要とせず、過回転を風車自身の機構により自律的に抑制できるため、停電時においても風車を安全に運転することができる。また、自律的な過回転抑制機構は、天候が強風に急変した際に、停止、格納等の人手をたよる作業を必要としないため、人件費からくる風車の運用コストを下げることができる。このため、作業が容易でない山間部、ビルの壁面や鉄塔等の高所への設置が有効である。また、本発明の過回転抑制機構は、摩擦力による機械的な制動ではなく、風車の絶対要素である翼による空力的な機構であるため、構造がシンプルであり、コンパクトにすることができる。このことは製造コストの低下にもつながる。加え、本発明の可動翼の作動は、過回転の抑制に限らず、始動性を向上することができる。 According to the vertical type linear blade wind turbine of the present invention, it is possible to operate the wind turbine safely even in the event of a power failure because it does not require a power source for control and the over rotation can be autonomously suppressed by the mechanism of the wind turbine itself. it can. In addition, since the autonomous over-rotation suppression mechanism does not require manual operations such as stopping and storing when the weather suddenly changes to a strong wind, it can reduce the operating cost of the wind turbine that comes from labor costs. For this reason, installation in high places such as mountainous areas, building walls, steel towers, etc., where work is not easy, is effective. Further, the over-rotation suppressing mechanism of the present invention is not mechanical braking by frictional force but is an aerodynamic mechanism by blades that are absolute elements of a windmill, so that the structure is simple and can be made compact. This also leads to a reduction in manufacturing costs. In addition, the operation of the movable blade of the present invention is not limited to the suppression of over-rotation, but can improve startability.
以下、図面を参照して本発明の実施形態を説明する。なお、これにより本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited thereby.
(第1の実施の形態)
図7に、第1の実施の形態に係る縦軸型直線翼風車の概略図を示す。これは、回転軸20の上部と下部に、円板50を固定し、二枚の円板50で、回転軸に平行に可動翼10を挟み込む形の縦軸型直線翼風車である。この風車は回転軸20に外接する軸受け(図示しない)により回転する。また、円板50には、可動翼軸11を差し込む孔が設けられ、この孔を支点に可動翼10は作動する。可動翼10の作動範囲は、可動翼の後端部(回転方向と逆側の可動翼端)の延長軸13が、円板50に設けるガイド51に内接することにより制限される。なお、可動翼10は、可動翼軸11に対し、後端部の重量が、前端部(回転方向側の可動翼端)に比べ大きいため、回転の際に生じる遠心力は、後端部が遠心方向にはらむ作動となる。図8に、図7の上部からみた概略図を示す。
(First embodiment)
FIG. 7 shows a schematic view of a vertical axis type linear blade wind turbine according to the first embodiment. This is a vertical axis type linear blade wind turbine in which a disk 50 is fixed to an upper part and a lower part of a rotating shaft 20 and a movable blade 10 is sandwiched between two disks 50 in parallel to the rotating shaft. The windmill is rotated by a bearing (not shown) circumscribing the rotating shaft 20. Further, the disc 50 is provided with a hole into which the movable blade shaft 11 is inserted, and the movable blade 10 operates with this hole as a fulcrum. The operating range of the movable blade 10 is limited by the extension shaft 13 of the rear end portion (movable blade end opposite to the rotation direction) of the movable blade being inscribed in the guide 51 provided on the disk 50. In addition, since the movable blade 10 is larger in weight than the front end (movable blade end on the rotation direction side) with respect to the movable blade shaft 11, the centrifugal force generated during the rotation of the movable blade 10 at the rear end is large. It becomes the operation which goes into the centrifugal direction. FIG. 8 shows a schematic view seen from the top of FIG.
(第2の実施の形態)
図9に、第2の実施の形態に係る縦軸型直線翼風車の概略図を示す。これは、第1の実施の形態に係る縦軸型直線翼風車の円板50の上部に、可動翼の作動を自律的に制御する機構を組み込むものである。可動翼軸11と可動翼の後端部の延長軸13を結ぶ形で、作用棒14を固定し、その作用棒14の、可動翼の後端部側端におもり40を固定する。また、回転軸20にリング21を外接し、作用棒14とリング21をシャフト22によりリンクする。それぞれの可動翼に対し、上記リンクを行うことにより、複数の可動翼の作動をリング21の回転を介して連動することができる。
リング21には、一端を円板50上に固定する弾性体31を接続する。弾性体31は縮みの復元力を生じるバネであり、作用棒14がシャフト22を介して内側に引っ張られるように、リング21に復元力を伝達する。リング21は、遠心力の発生していない風車の静止状態で、延長軸13がガイド51の内側方向の限界となる位置にて静止する。この位置で静止することにより、可動翼は風の力を回転力として受けやすい方向となる。
(Second Embodiment)
FIG. 9 is a schematic view of a vertical axis type linear blade wind turbine according to the second embodiment. In this configuration, a mechanism for autonomously controlling the operation of the movable blade is incorporated in the upper part of the disc 50 of the vertical linear blade turbine according to the first embodiment. An action rod 14 is fixed in a form connecting the movable blade shaft 11 and the extension shaft 13 of the rear end portion of the movable blade, and a weight 40 is fixed to the end of the action blade 14 on the rear end side of the movable blade. Further, a ring 21 is circumscribed on the rotary shaft 20, and the action rod 14 and the ring 21 are linked by a shaft 22. By performing the above link for each movable blade, the operations of the plurality of movable blades can be linked through rotation of the ring 21.
An elastic body 31 that fixes one end on the disc 50 is connected to the ring 21. The elastic body 31 is a spring that generates a restoring force for contraction, and transmits the restoring force to the ring 21 so that the action rod 14 is pulled inward via the shaft 22. The ring 21 is stationary at a position where the extension shaft 13 becomes the limit in the inner direction of the guide 51 in a stationary state of the windmill in which centrifugal force is not generated. By stationary at this position, the movable wing is in a direction in which it is easy to receive wind force as rotational force.
風車が風を受けて回転し始めると、おもり40と可動翼に遠心力が生じ、可動翼軸11を支点にして、外側にはらます力となる。この遠心力と弾性体31の縮もうとする復元力との釣り合いにより、可動翼の角度が自律的に決定する。可動翼が外側にはらみ、作用棒14が弾性体32と接している状態図を図10に示す。弾性体32は、伸びの復元力を生じるばねであり、風車の外側方向の端が円板50上に固定される。なお、図9および図10に示す状態が、弾性体32の自然長の状態である。 When the windmill begins to rotate in response to wind, centrifugal force is generated in the weight 40 and the movable blade, and the force is applied to the outside with the movable blade shaft 11 as a fulcrum. The angle of the movable blade is autonomously determined by the balance between the centrifugal force and the restoring force to be contracted by the elastic body 31. FIG. 10 shows a state diagram in which the movable wing is held outward and the action rod 14 is in contact with the elastic body 32. The elastic body 32 is a spring that generates a restoring force of elongation, and the end in the outer direction of the windmill is fixed on the disc 50. The state shown in FIGS. 9 and 10 is the natural length state of the elastic body 32.
図10の状態から更に回転が上昇すると、おもり40と可動翼に生じる遠心力が増大し、弾性体32を縮めながら可動翼を外側にはらます。可動翼が外側にはらむ様子を図11に示す。可動翼は、外側にはらむことにより、風の力を回転力として受けにくい状態となるため、回転上昇が抑えられる。 When the rotation further increases from the state of FIG. 10, the centrifugal force generated in the weight 40 and the movable wing increases, and the movable wing is moved outward while the elastic body 32 is contracted. FIG. 11 shows a state in which the movable wing is caught outward. The movable wings are not easily received as a rotational force by being caught on the outside, so that the increase in rotation is suppressed.
10…可動翼
11…可動翼軸
12…可動翼の後端部
13…可動翼の後端部の延長軸
14…作用棒
20…回転軸
21…リング
22…シャフト
30…弾性体
31…弾性体(始動時用)
32…弾性体(過回転時用)
40…おもり
50…円板
51…ガイド
DESCRIPTION OF SYMBOLS 10 ... Movable wing | blade 11 ... Movable wing axis | shaft 12 ... Rear end part 13 of movable wing | blade ... Extension shaft 14 of rear end part of movable wing | wing ... Action rod 20 ... Rotating shaft 21 ... Ring 22 ... Shaft 30 ... Elastic body 31 ... Elastic body (For start-up)
32 ... Elastic body (for over rotation)
40 ... Weight 50 ... Disc 51 ... Guide
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005271578A JP4982733B2 (en) | 2005-09-20 | 2005-09-20 | Vertical-axis linear blade wind turbine with aerodynamic speed control mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005271578A JP4982733B2 (en) | 2005-09-20 | 2005-09-20 | Vertical-axis linear blade wind turbine with aerodynamic speed control mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007085182A true JP2007085182A (en) | 2007-04-05 |
JP4982733B2 JP4982733B2 (en) | 2012-07-25 |
Family
ID=37972427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005271578A Active JP4982733B2 (en) | 2005-09-20 | 2005-09-20 | Vertical-axis linear blade wind turbine with aerodynamic speed control mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4982733B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010062018A1 (en) * | 2008-11-27 | 2010-06-03 | Snu R & Db Foundation | Vertical axis turbine |
KR100995880B1 (en) * | 2010-03-22 | 2010-11-22 | 손정희 | Wind generator with torque weight balancer |
CN102465830A (en) * | 2010-11-18 | 2012-05-23 | 远景能源(丹麦)有限公司 | Pitch balancing system |
AT511374A1 (en) * | 2011-05-05 | 2012-11-15 | Bauer Emil | WIND POWER MACHINE WITH VERTICAL ROTARY AXLE |
JP2013245564A (en) * | 2012-05-23 | 2013-12-09 | Ritsumeikan | Blade for vertical axial wind turbine and vertical axial wind turbine |
CN105545597A (en) * | 2016-02-23 | 2016-05-04 | 哈尔滨工业大学深圳研究生院 | Passive propeller pitch control device of straight-bladed vertical-axis wind turbine |
TWI558913B (en) * | 2014-01-23 | 2016-11-21 | 陳泰維 | The vertical axis wind turbine blades spin angular adjustment device synchronization |
JP2017003483A (en) * | 2015-06-12 | 2017-01-05 | 日章電機株式会社 | Rotating body, particularly dynamic imbalance measuring method of vertical axis windmill and its measuring device, and dynamic unbalance correction method of vertical axis windmill |
CN110242496A (en) * | 2019-07-26 | 2019-09-17 | 东北大学 | A kind of oscillating-blade guide-type vertical-axis wind turbine |
TWI710707B (en) * | 2019-01-31 | 2020-11-21 | 翁振國 | Impeller for power drive |
JP7492770B2 (en) | 2022-11-08 | 2024-05-30 | 三鷹光器株式会社 | Over-rotation prevention structure for vertical axis wind turbines |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6128767A (en) * | 1984-07-20 | 1986-02-08 | Makoto Yagishita | Expanded blade type windmill |
JPH09280155A (en) * | 1996-04-16 | 1997-10-28 | Matsushita Seiko Co Ltd | Windmill |
JPH11141453A (en) * | 1997-11-10 | 1999-05-25 | Kaoru Nishimura | Wind force device |
JP2004520519A (en) * | 2000-12-04 | 2004-07-08 | アルップ (ピーヴイティー) エルティーディー | Fan assembly |
JP2008309132A (en) * | 2007-06-18 | 2008-12-25 | Yuichi Onishi | Variable blade type wind power conversion mechanism |
-
2005
- 2005-09-20 JP JP2005271578A patent/JP4982733B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6128767A (en) * | 1984-07-20 | 1986-02-08 | Makoto Yagishita | Expanded blade type windmill |
JPH09280155A (en) * | 1996-04-16 | 1997-10-28 | Matsushita Seiko Co Ltd | Windmill |
JPH11141453A (en) * | 1997-11-10 | 1999-05-25 | Kaoru Nishimura | Wind force device |
JP2004520519A (en) * | 2000-12-04 | 2004-07-08 | アルップ (ピーヴイティー) エルティーディー | Fan assembly |
JP2008309132A (en) * | 2007-06-18 | 2008-12-25 | Yuichi Onishi | Variable blade type wind power conversion mechanism |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010062018A1 (en) * | 2008-11-27 | 2010-06-03 | Snu R & Db Foundation | Vertical axis turbine |
KR100995880B1 (en) * | 2010-03-22 | 2010-11-22 | 손정희 | Wind generator with torque weight balancer |
CN102465830B (en) * | 2010-11-18 | 2015-07-22 | 远景能源(江苏)有限公司 | Pitch system balancing for a wind turbine |
CN102465830A (en) * | 2010-11-18 | 2012-05-23 | 远景能源(丹麦)有限公司 | Pitch balancing system |
AT511374A1 (en) * | 2011-05-05 | 2012-11-15 | Bauer Emil | WIND POWER MACHINE WITH VERTICAL ROTARY AXLE |
AT511374B1 (en) * | 2011-05-05 | 2013-01-15 | Bauer Emil | WIND POWER MACHINE WITH VERTICAL ROTARY AXLE |
JP2013245564A (en) * | 2012-05-23 | 2013-12-09 | Ritsumeikan | Blade for vertical axial wind turbine and vertical axial wind turbine |
TWI558913B (en) * | 2014-01-23 | 2016-11-21 | 陳泰維 | The vertical axis wind turbine blades spin angular adjustment device synchronization |
JP2017003483A (en) * | 2015-06-12 | 2017-01-05 | 日章電機株式会社 | Rotating body, particularly dynamic imbalance measuring method of vertical axis windmill and its measuring device, and dynamic unbalance correction method of vertical axis windmill |
CN105545597A (en) * | 2016-02-23 | 2016-05-04 | 哈尔滨工业大学深圳研究生院 | Passive propeller pitch control device of straight-bladed vertical-axis wind turbine |
TWI710707B (en) * | 2019-01-31 | 2020-11-21 | 翁振國 | Impeller for power drive |
CN110242496A (en) * | 2019-07-26 | 2019-09-17 | 东北大学 | A kind of oscillating-blade guide-type vertical-axis wind turbine |
CN110242496B (en) * | 2019-07-26 | 2024-04-02 | 东北大学 | Swing vane type diversion vertical axis wind turbine |
JP7492770B2 (en) | 2022-11-08 | 2024-05-30 | 三鷹光器株式会社 | Over-rotation prevention structure for vertical axis wind turbines |
Also Published As
Publication number | Publication date |
---|---|
JP4982733B2 (en) | 2012-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4468751B2 (en) | Horizontal axis wind turbine and its standby method | |
US7902688B2 (en) | Vertical axis wind turbines | |
JP5694380B2 (en) | Large-scale vertical axis wind power generator and wind power generator | |
US20070231151A1 (en) | Active flow control for wind turbine blades | |
US8303249B2 (en) | Wind turbine and method for optimizing energy production therein | |
WO2007043895A1 (en) | Speed control system for a wind power plant's rotor and an aerodynamic brake | |
EP2764238B1 (en) | Wind turbine having flow-aligned blades | |
JP2005516159A (en) | Combined vortex vertical axis wind turbine | |
US20130108458A1 (en) | Vertical axis wind turbine with soft airfoil sails | |
JP2006046306A (en) | Windmill for wind power generation, and power generator driving method | |
CN101008376A (en) | Looseleaf friction reducing and rotary-wing wind turbine generator sets | |
CN103256181B (en) | Centrifugal speed-regulating tail-folding yaw type wind power generator | |
JP4982733B2 (en) | Vertical-axis linear blade wind turbine with aerodynamic speed control mechanism | |
KR102042259B1 (en) | Wind-Electric Power Generation System and Driving Stop Method Thereof | |
JP2016008556A (en) | Horizontal shaft type wind turbine and standby method | |
EP2686547B1 (en) | Downwind turbine with free yaw system | |
TW201602456A (en) | Downwind type windturbine and method of stopping such windturbine | |
JP5711500B2 (en) | Wind power generator | |
CN101498280A (en) | Method for stopping a wind turbine | |
KR20100035206A (en) | The wind turbine blade pitch automatic control device | |
RU71707U1 (en) | ROTARY WIND ENGINE | |
JP4533991B1 (en) | Small propeller windmill | |
JP4690800B2 (en) | Horizontal axis windmill | |
JP2002349412A (en) | Windmill for wind power generation and its control method | |
KR101242766B1 (en) | wind-driven generator with Apparatus of reducing rotor load and method of reducing rotor load for wind-driven generator with Apparatus of reducing rotor load |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080422 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110208 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110408 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110408 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110927 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120327 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |