[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007084391A - Exhaust gas purifying device for automobile and hydrogen producing catalyst - Google Patents

Exhaust gas purifying device for automobile and hydrogen producing catalyst Download PDF

Info

Publication number
JP2007084391A
JP2007084391A JP2005277034A JP2005277034A JP2007084391A JP 2007084391 A JP2007084391 A JP 2007084391A JP 2005277034 A JP2005277034 A JP 2005277034A JP 2005277034 A JP2005277034 A JP 2005277034A JP 2007084391 A JP2007084391 A JP 2007084391A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen production
oxide
exhaust gas
production catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005277034A
Other languages
Japanese (ja)
Inventor
Toshiaki Nagayama
敏明 長山
Hidehiro Iizuka
秀宏 飯塚
Masayuki Kamikawa
将行 上川
Masahito Kanae
雅人 金枝
Yuichi Kitahara
雄一 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005277034A priority Critical patent/JP2007084391A/en
Publication of JP2007084391A publication Critical patent/JP2007084391A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas purifying device having high NOx purifying performance at a low temperature, particularly at 150 to 250°C, and to provide a hydrogen producing catalyst that improves exhaust gas purifying performance at switching of lean/rich. <P>SOLUTION: The hydrogen producing catalyst is a catalyst for producing hydrogen from carbon monoxide in the exhaust gas of an internal-combustion engine and water, and includes one or more noble metals selected from Pt, Pd and Rh and a cerium oxide or a compound oxide of cerium, wherein the cerium oxide is one that has a ratio of the (111) plane diffraction peak intensity to the background of 4.3 or larger. And the exhaust gas purifying device has an above mentioned hydrogen producing catalyst and a catalyst that has a function for adsorbing or occluding nitrogen oxides. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、特に低温での窒素酸化物(以下NOx)を効率良く浄化する自動車用排ガス浄化装置と、自動車排ガス中で水素を製造する水素製造触媒に関するものである。   The present invention relates to an automobile exhaust gas purification device that efficiently purifies nitrogen oxides (hereinafter referred to as NOx) particularly at low temperatures, and a hydrogen production catalyst that produces hydrogen in automobile exhaust gas.

地球温暖化防止,環境改善を目的に、自動車排ガス中の有害物質であるCO(一酸化炭素),NOx(窒素酸化物),HC(炭化水素)低減、そして温室ガスである二酸化炭素の削減が求められている。自動車排ガスから二酸化炭素を削減するには、燃費を向上させなければならない。そのため、エンジンを希薄燃料雰囲気で運転する必要がある。理論空燃比(A/F=約14.6 )で運転するガソリンエンジンの排ガス浄化には、三元触媒が用いられ、排ガス成分を利用してCO,HCの酸化とNOxの還元を同時に行う。それより希薄な燃料雰囲気になる空気燃料比(以下リーン)で運転するエンジン(リーンバーンエンジン)では、排ガスに三元触媒で利用できる以上の酸素が含まれるため、還元反応が進行しにくく、NOxが浄化しにくい。これらを解決するため、リーン時に排ガス中の
NOxを触媒上に吸着し、一時的に理論空燃比より燃料が過剰な空気燃料比(以下リッチ)にするリーン・リッチ制御を行い、吸着したNOxをリッチガス中のHC,CO,H2 などで還元するリーンNOx触媒が実用化されている。
Reduction of CO (carbon monoxide), NOx (nitrogen oxide) and HC (hydrocarbon), which are harmful substances in automobile exhaust gas, and reduction of carbon dioxide, which is a greenhouse gas, for the purpose of preventing global warming and improving the environment It has been demanded. In order to reduce carbon dioxide from automobile exhaust, fuel efficiency must be improved. Therefore, it is necessary to operate the engine in a lean fuel atmosphere. A three-way catalyst is used for exhaust gas purification of a gasoline engine operating at a theoretical air fuel ratio (A / F = about 14.6), and CO and HC oxidation and NOx reduction are simultaneously performed using exhaust gas components. In an engine (lean burn engine) that operates at an air fuel ratio (hereinafter referred to as lean) that produces a leaner fuel atmosphere, the exhaust gas contains more oxygen than can be used in the three-way catalyst, so the reduction reaction does not proceed easily, and NOx Is difficult to purify. In order to solve these problems, NOx in the exhaust gas is adsorbed on the catalyst during lean, and lean-rich control is performed to temporarily make the air fuel ratio (hereinafter rich) of the fuel excessive from the stoichiometric air-fuel ratio. A lean NOx catalyst that reduces with HC, CO, H 2 or the like in a rich gas has been put into practical use.

ディーゼルエンジンは定常的にリーンで運転するため、排ガスのNOxの浄化が困難である。しかし、ガソリンのリーンバーンエンジンと同様にリーンNOx触媒を使用しリーン・リッチ制御を行うことによりNOxの浄化が可能になる。   Since the diesel engine is constantly operated lean, it is difficult to purify NOx in the exhaust gas. However, as with the lean burn engine of gasoline, NOx purification can be achieved by performing lean rich control using a lean NOx catalyst.

ディーゼルエンジンの排ガス処理に吸着型リーンNOx触媒を適用するに当たっての課題は、排ガス温度である。現状のディーゼルエンジンの排ガス温度は、ガソリンリーンバーンエンジンと比較して100℃程度低い、150から250℃である。そのため、排ガスによって昇温される触媒の温度も100℃程度低くなり、触媒活性が十分でない。特にリーン・リッチ制御を行う際に、リーンからリッチの切替え時は、触媒活性が十分でないため、吸着したNOxの還元が不十分でNOx浄化率の低下が問題となる。   A problem in applying an adsorption type lean NOx catalyst to exhaust gas treatment of a diesel engine is exhaust gas temperature. The exhaust gas temperature of the current diesel engine is 150 to 250 ° C., which is lower by about 100 ° C. than the gasoline lean burn engine. Therefore, the temperature of the catalyst heated by the exhaust gas is also lowered by about 100 ° C., and the catalytic activity is not sufficient. In particular, when performing lean / rich control, the catalytic activity is not sufficient when switching from lean to rich, so that the reduction of the adsorbed NOx is insufficient and the NOx purification rate decreases.

リッチガスにはHC,CO,H2 などの還元成分が含まれている。この還元成分を利用してNOxを還元する方法が提案されている。150℃から250℃の低温での反応性は、COよりH2が高い。そこでCOと排ガス中のH2OからH2を製造し、そのH2でNOxを還元する方法が考えられている(特開2001−300262号公報(特許文献1)等)。水素製造触媒は活性成分を貴金属とし、貴金属は、酸化ジルコニウム(ZrO2 ),酸化マグネシウム(MgO),アルミナ(Al23)−MgO複合酸化物,TiBaO3,スピネルなどに担持して用いられる。COとH2OからH2を製造する反応は、水性ガスシフト反応と呼ばれ(1)式で表される。 The rich gas contains reducing components such as HC, CO, and H 2 . A method for reducing NOx using this reducing component has been proposed. Reactivity at a low temperature of 250 ° C. from 0.99 ° C. has a higher H 2 than CO. Therefore, a method has been considered in which H 2 is produced from CO and H 2 O in exhaust gas, and NOx is reduced with the H 2 (Japanese Patent Laid-Open No. 2001-300262 (Patent Document 1), etc.). The hydrogen production catalyst uses a noble metal as an active component, and the noble metal is supported on zirconium oxide (ZrO 2 ), magnesium oxide (MgO), alumina (Al 2 O 3 ) -MgO composite oxide, TiBaO 3 , spinel, etc. . The reaction for producing H 2 from CO and H 2 O is called a water gas shift reaction and is represented by the formula (1).

CO+H2O→CO2+H2 (1)
水性ガスシフト反応が進行しやすい触媒(以下水素製造触媒)と吸着型リーンNOx触媒を組み合わせることで、低温におけるリッチでのNOxの還元性能を向上させ、リーン・リッチ制御を行ってディーゼルエンジン排ガスを高効率で浄化することが可能になる。
CO + H 2 O → CO 2 + H 2 (1)
A combination of a catalyst that facilitates water gas shift reaction (hereinafter referred to as hydrogen production catalyst) and an adsorption-type lean NOx catalyst improves the reduction performance of rich NOx at low temperatures and performs lean / rich control to increase diesel engine exhaust gas. It becomes possible to purify with efficiency.

特開2001−300262号公報Japanese Patent Laid-Open No. 2001-300262

本発明の課題は、さらに水性ガスシフト反応が進行しやすく、H2 製造能力を向上させた水素製造触媒と、それを用いた浄化性能の高い排ガス浄化装置とを提供することにある。 An object of the present invention is to provide a hydrogen production catalyst in which the water gas shift reaction is more likely to proceed and the H 2 production capacity is improved, and an exhaust gas purification apparatus having high purification performance using the hydrogen production catalyst.

上記課題を解決する本発明の特徴は、Pt,Pd,Rhから選ばれる貴金属を1つ以上含み、一酸化炭素と水とから水素を生成する水素製造触媒であって、酸化セリウムまたはセリウムを含む複合酸化物を担体とすることにある。   A feature of the present invention that solves the above problems is a hydrogen production catalyst that contains one or more precious metals selected from Pt, Pd, and Rh and generates hydrogen from carbon monoxide and water, and includes cerium oxide or cerium. It is to use a composite oxide as a support.

使用した酸化セリウムは、結晶性が高いものであって、具体的にはX線回折パターンが(111)面回折ピーク強度とバックグランドの比が4.3 以上あるものである。また、上記酸化セリウムの担体に、Ti酸化物を添加した担体を用いることが好ましい。酸化セリウムは、Ti酸化物との合計量のうち28%以上含むことが好ましい。   The used cerium oxide has high crystallinity, and specifically, the X-ray diffraction pattern has a (111) plane diffraction peak intensity / background ratio of 4.3 or more. Further, it is preferable to use a carrier obtained by adding a Ti oxide to the cerium oxide carrier. It is preferable that cerium oxide contains 28% or more of the total amount with Ti oxide.

水素製造触媒は、窒素酸化物を吸着又は吸蔵する機能を有する触媒層(NOx浄化触媒)との二層構造になっていることが好ましい。特に、前記NOx浄化触媒を触媒支持材(例えばコージェライトやメタル,ハニカム等)上にコートし、そのNOx触媒層と接して水素製造触媒を配置することが好ましい。   The hydrogen production catalyst preferably has a two-layer structure with a catalyst layer (NOx purification catalyst) having a function of adsorbing or occluding nitrogen oxides. In particular, it is preferable to coat the NOx purification catalyst on a catalyst support material (for example, cordierite, metal, honeycomb, etc.), and place the hydrogen production catalyst in contact with the NOx catalyst layer.

また、ディーゼルエンジン自動車用の排ガス浄化装置であって、上記の水素製造触媒と、リーン条件下でNOxを浄化するNOx浄化触媒とを有するものである。各触媒は混合してもよいが、水素製造触媒の後段にリーンNOx触媒を配置することが浄化性能の点より好ましい。また、水素製造触媒と、リーンNOx触媒とを二層構造とすることが効率の点から好ましい。   Moreover, it is an exhaust gas purification apparatus for diesel engine automobiles, and includes the above-described hydrogen production catalyst and a NOx purification catalyst that purifies NOx under lean conditions. Although the respective catalysts may be mixed, it is preferable from the viewpoint of purification performance that a lean NOx catalyst is disposed after the hydrogen production catalyst. In addition, it is preferable in terms of efficiency that the hydrogen production catalyst and the lean NOx catalyst have a two-layer structure.

上記本発明の水素製造触媒によれば、水素製造能力の高い水素製造触媒を提供可能である。また、リーン・リッチ制御を行うディーゼルエンジンの排ガスの浄化装置に、上記の水素製造触媒とリーンNOx触媒を組み合わせることで、低温におけるリッチでのNOxの還元が効率よく行われる浄化装置が提供できる。また、高NOx浄化性能を実現できるリーン・リッチ制御を行うディーゼルエンジン排ガスの浄化方法を提供できる。   According to the hydrogen production catalyst of the present invention, it is possible to provide a hydrogen production catalyst having a high hydrogen production capacity. Further, by combining the above-described hydrogen production catalyst and lean NOx catalyst with the exhaust gas purification device of a diesel engine that performs lean / rich control, it is possible to provide a purification device that efficiently performs rich NOx reduction at low temperatures. Further, it is possible to provide a diesel engine exhaust gas purification method that performs lean / rich control that can achieve high NOx purification performance.

その結果、低燃費かつ排ガス中の有害物質の少ない自動車を提供可能となる。   As a result, it is possible to provide a vehicle with low fuel consumption and less harmful substances in the exhaust gas.

発明者らはディーゼルエンジンの排ガス処理に適したリーンNOx触媒の開発を行ってきた。リーンNOx触媒の開発評価では、リーン・リッチ制御を模擬したリーンガスとリッチガスを切替えてNOx浄化性能を評価する。耐久試験後のNOx浄化性能は、リーンからリッチに切替わる時に大きく低下する。その原因として、貴金属の劣化が考えられる。   The inventors have developed a lean NOx catalyst suitable for exhaust gas treatment of a diesel engine. In the development evaluation of the lean NOx catalyst, the lean gas and rich gas simulating lean / rich control are switched to evaluate the NOx purification performance. The NOx purification performance after the durability test is greatly reduced when switching from lean to rich. The cause is considered to be deterioration of noble metals.

触媒の活性は温度と共に高まるので、低温での活性は貴金属の劣化の影響を受けやすい。そこで、劣化した貴金属でも十分なNOx浄化性能が得られるように、ガス中のリッチガスに含まれる還元成分を活用して気相中もしくはリーンNOx触媒から脱離するNOxを浄化し貴金属への負担を軽減することとした。そのため、リッチガス中のCOとH2OからH2 を生成する能力の高い水素製造触媒を用いることとした。その結果、耐久試験後のリーンからリッチに切替わる時のNOx浄化性能を改善することができた。 Since the activity of the catalyst increases with temperature, the activity at a low temperature is susceptible to the deterioration of the noble metal. Therefore, in order to obtain sufficient NOx purification performance even with deteriorated noble metals, the reducing components contained in the rich gas in the gas are utilized to purify NOx desorbed in the gas phase or from the lean NOx catalyst, thereby burdening the noble metals. I decided to reduce it. Therefore, a hydrogen production catalyst having a high ability to generate H 2 from CO and H 2 O in the rich gas is used. As a result, it was possible to improve the NOx purification performance when switching from lean to rich after the durability test.

酸化セリウム上での水性シフト反応は式(2)から(4)と報告されている。   The aqueous shift reaction on cerium oxide is reported as equations (2) to (4).

CO+σ=COad (2)
2O+Ce23=2CeO2+H2 (3)
COad+2CeO2=CO2+Ce23+σ (4)
ad:吸着、σ:金属の吸着サイト
2の生成は、(A)COの金属への吸着(式(2))、(B)Ce23へのH2Oの吸着と、CeO2とH2の生成(式(3))、(C)CeO2 による金属上のCOの酸化(式(4))、の順で進行する。
CO + σ = COad (2)
H 2 O + Ce 2 O 3 = 2CeO 2 + H 2 (3)
COad + 2CeO 2 = CO 2 + Ce 2 O 3 + σ (4)
ad: Adsorption, σ: Adsorption site of metal H 2 is generated by (A) adsorption of CO to metal (formula (2)), (B) adsorption of H 2 O on Ce 2 O 3 , and CeO 2 And H 2 (formula (3)), (C) oxidation of CO on the metal with CeO 2 (formula (4)).

本発明では、(111)面のピーク高さとバックグランドの比が高い酸化セリウムを担体にし、Pt,Pd,Rhから選ばれた貴金属を1種以上担持することとした。特に、X線回折パターンにおいて(111)面回折ピーク強度とバックグランドの比が4.3 以上である酸化セリウム、もしくはセリウムを含む酸化物とTi酸化物からなり、酸化セリウムを含む酸化物とTi酸化物に占める酸化セリウムの割合が28%以上である材料を使用した。回折パターンにおいて回折ピークとバックグランドの比が高いことは、結晶性が高いことを示す。式(3),(4)中の酸化セリウムの状態変化は、酸化セリウム中の酸素をPt上でCOと反応させることで継続する。結晶性が高い場合は、この酸化セリウム内の酸素の移動が容易になるため、水素製造能力が高くなっていると思われる。   In the present invention, cerium oxide having a high (111) plane peak height and background ratio is used as a support, and one or more precious metals selected from Pt, Pd, and Rh are supported. In particular, in the X-ray diffraction pattern, the ratio of the (111) plane diffraction peak intensity to the background is 4.3 or more, which is made of cerium oxide, or an oxide containing cerium and Ti oxide, and an oxide containing cerium oxide and Ti. A material in which the ratio of cerium oxide in the oxide was 28% or more was used. A high ratio between the diffraction peak and the background in the diffraction pattern indicates that the crystallinity is high. The state change of cerium oxide in the formulas (3) and (4) is continued by reacting oxygen in cerium oxide with CO on Pt. When the crystallinity is high, the movement of oxygen in the cerium oxide becomes easy, so the hydrogen production capacity seems to be high.

貴金属としては、Pd,Pt,Rhを酸化セリウムに担持した場合に、水素製造能力があることを確認した。これらの貴金属は自動車触媒に使用しても安定である。貴金属の量は、要求される性能,コストに応じ決定される。本発明では、同一貴金属で同一量担持した場合に、より水素製造能力が高い酸化セリウムを組み合わせた。もちろんPd,Pt,Rhを複数あるいはすべてを担持してもかまわない。   As the noble metal, it was confirmed that when Pd, Pt, Rh is supported on cerium oxide, it has hydrogen production capability. These noble metals are stable even when used in automobile catalysts. The amount of precious metal is determined according to the required performance and cost. In the present invention, cerium oxide having a higher hydrogen production capacity when combined with the same amount of the same noble metal is combined. Of course, plural or all of Pd, Pt, and Rh may be supported.

通常、リーンNOx触媒は、高比表面積のアルミナを担体とし、燃焼活性成分である貴金属,NOx吸着材であるアルカリ金属,酸化セリウム等を担持している。高比表面積のアルミナに貴金属を高分散させることで担体の焼結収縮,貴金属の凝集を抑制できる。また、酸化セリウムは、酸素過剰状態ではガス中から酸化セリウム中に酸素を取り込み、酸素不足状態ではガスに酸素を放出することで、ガス組成を平準化し、貴金属上での酸化・還元を助ける。   Usually, a lean NOx catalyst uses alumina having a high specific surface area as a carrier and carries a noble metal as a combustion active component, an alkali metal as a NOx adsorbent, cerium oxide, and the like. Sintering shrinkage of the carrier and aggregation of the noble metal can be suppressed by highly dispersing the noble metal in the alumina having a high specific surface area. In addition, cerium oxide takes oxygen from gas into cerium oxide in an oxygen-excess state and releases oxygen into the gas in an oxygen-deficient state, thereby leveling the gas composition and assisting oxidation / reduction on the noble metal.

請求項2では酸化セリウムを含む酸化物とTi酸化物からなり、酸化セリウムを含む酸化物とTi酸化物に占める酸化セリウムの割合が28%以上である担体にPdt,Pd,Rhから選ばれた貴金属を1種以上担持することとした。同一酸化セリウムでもTiを含むと低温での水素製造能力は向上することを発見した。Ti添加による水素製造能力の向上は、酸化セリウムに他の酸化物を含む場合でも見られ、担体中の酸化セリウムの割合が28%以上の場合に認められた。後述するようにTiO2 担体にPtを担持した触媒では水素製造能力がほとんど見られないことから、Tiにはシフト反応時の酸素の移動を補助する役割があると推測している。酸化セリウムに他の酸化物を含む場合の代表例として
Ce−Zr複合酸化物がある。その他の構成酸化物としてLa,Pr,Mg,Baなどを含んでも構わない。貴金属の量は要求される性能,コストに応じ決定される。本発明では、同一貴金属で同一量担持した場合に、より水素製造能力が高くなる材料組成を記載したもちろんPd,Pt,Rhを複数あるいは、すべてを担持してもかまわない。
In claim 2, the carrier is composed of an oxide containing cerium oxide and a Ti oxide, and a carrier having a ratio of cerium oxide in the oxide containing cerium oxide and Ti oxide of 28% or more is selected from Pdt, Pd, and Rh. It was decided to carry one or more precious metals. It has been found that even if the same cerium oxide contains Ti, the hydrogen production capability at low temperatures is improved. An improvement in hydrogen production capacity by addition of Ti was observed even when other oxides were included in cerium oxide, and was observed when the proportion of cerium oxide in the support was 28% or more. As will be described later, a catalyst in which Pt is supported on a TiO 2 carrier has almost no hydrogen production capability. Therefore, it is presumed that Ti has a role of assisting the movement of oxygen during the shift reaction. A typical example of the case where cerium oxide contains another oxide is a Ce-Zr composite oxide. Other constituent oxides may include La, Pr, Mg, Ba and the like. The amount of precious metal is determined according to the required performance and cost. In the present invention, when the same amount is supported by the same noble metal, a material composition that increases the hydrogen production capability is described. Of course, a plurality or all of Pd, Pt, and Rh may be supported.

請求項3では、水素製造触媒とリーンNOx触媒を組み合わせた触媒について記載した。リーンNOx触媒のNOx浄化性能への水素の効果を、図2に示す。あるリーンNOx触媒に、水素製造触媒をオーバーコートした二層形触媒のCO転化率とNOx浄化率の関係である。試験は200℃でリーンガスを3分、リッチガスを3分流通させたときのリッチの平均NOx浄化率である。CO転化率は、リッチガス中のCOをH2 に転化した割合を示す。図2より、CO転化率が高くなるとNOx浄化率が高くなることがわかる。このように触媒上で製造した水素は、リーンNOx触媒のNOx浄化に寄与し、その効果は
CO転化率が高いほど高くなる。
In Claim 3, the catalyst which combined the hydrogen production catalyst and the lean NOx catalyst was described. FIG. 2 shows the effect of hydrogen on the NOx purification performance of the lean NOx catalyst. This is the relationship between the CO conversion rate and the NOx purification rate of a two-layer catalyst in which a hydrogen production catalyst is overcoated on a certain lean NOx catalyst. The test is a rich average NOx purification rate when lean gas is circulated at 200 ° C. for 3 minutes and rich gas for 3 minutes. CO conversion is the ratio obtained by the conversion of CO in the rich gas to H 2. FIG. 2 shows that the NOx purification rate increases as the CO conversion rate increases. The hydrogen thus produced on the catalyst contributes to NOx purification of the lean NOx catalyst, and the effect becomes higher as the CO conversion rate is higher.

窒素酸化物吸着・吸蔵機能一体化水素製造触媒は、ハニカムにリーンNOx触媒と水素製造触媒を多層に形成、ハニカムにリーンNOx吸着材と水素製造触媒を混合、吸着材を担持したハニカムと燃焼材を担持したハニカムを組み合わせて使うことができる。特にリーンNOx触媒と水素製造触媒の位置は、二層型が好ましく、ガス流路側に水素製造触媒を配置することでリッチガス中のCOを効率的にH2 に転化し、リーンNOx触媒から脱離するNOxを効率よく浄化させることができる。 Nitrogen oxide adsorption / storage integrated hydrogen production catalyst is composed of a lean NOx catalyst and a hydrogen production catalyst in multiple layers in a honeycomb, a lean NOx adsorbent and a hydrogen production catalyst are mixed in a honeycomb, and a honeycomb and combustion material carrying the adsorbent Can be used in combination. In particular, the position of the lean NOx catalyst and the hydrogen production catalyst is preferably a two-layer type. By arranging the hydrogen production catalyst on the gas flow path side, CO in the rich gas is efficiently converted to H 2 and desorbed from the lean NOx catalyst NOx to be purified can be efficiently purified.

前記、高結晶性の酸化セリウムを担体とする、もしくは酸化セリウムが触媒の28モル%以上になる範囲のTiを添加したCe複合酸化物(ZrO2 に限らない)への貴金属の担持方法としては、含浸、及び混練方法を用いることができる。 As a method for supporting a noble metal on a Ce composite oxide (not limited to ZrO 2 ) using the above-mentioned highly crystalline cerium oxide as a support or adding Ti in a range where cerium oxide is 28 mol% or more of the catalyst. , Impregnation and kneading methods can be used.

排ガス浄化触媒の形状は、通常の粒状,押出し成型した柱状,プレス成型したペレット型,蜂の巣状のハニカム型等、いずれも使用することができるが、圧損等の観点からハニカム型が好ましい。   As the shape of the exhaust gas purification catalyst, any of normal granular shape, extruded columnar shape, press-molded pellet shape, honeycomb-shaped honeycomb shape and the like can be used, but the honeycomb type is preferable from the viewpoint of pressure loss and the like.

水素製造触媒と共に使用するリーンNOx触媒は、吸着型,吸蔵型いずれでも構わない。水素製造触媒の水素製造効果はいずれのリーンNOx触媒でも、低温でのNOx浄化性能向上に役立つ。   The lean NOx catalyst used together with the hydrogen production catalyst may be either an adsorption type or an occlusion type. The hydrogen production effect of the hydrogen production catalyst is useful for improving the NOx purification performance at low temperatures in any lean NOx catalyst.

二層型の窒素酸化物吸着・吸蔵機能一体化水素製造触媒の作製例を示す。コージェライトハニカムにリーンNOx触媒層を形成後、水素製造触媒層を形成する。まず、リーン
NOx触媒層の作製方法を示す。アルミナ,アルミナゾル、そして精製水を混合したスラリーをコージェライトハニカムに流し込み、乾燥・焼成を行いアルミナ層を形成した。
Na,Kなどのアルカリ成分を水溶液にし、含浸法でアルミナ層に担持した。酸化セリウムなどのOSC(酸素貯蔵能)を有する酸化物を担持する場合は、硝酸塩など用い水溶液にしてアルミナ層に含浸した。そしてPd,Pt,Rhの貴金属水溶液をアルミナ層に含浸し、リーンNOx触媒層を作製した。また、上述の含浸法の他に、混練法でも作製できる。混練法では、リーンNOx触媒層を形成するアルカリ成分,OSCを有する酸化物、そして貴金属を混合したスラリーを、コージェライトハニカムに流し込み、リーンNOx触媒層を形成する。水素製造触媒は、酸化セリウムにPd,Pt,Rhなどの水溶液を含浸させた後、空気中600℃で焼成して、水素製造触媒粉末を得た。水素製造触媒粉末にシリカゾルと精製水を加えたスラリーを、リーンNOx触媒層を形成したハニカムに流し込み水素製造触媒層を形成した。また、水素製造触媒の担体が酸化セリウムを含む酸化物とTi酸化物の場合は、酸化セリウムを含む酸化物にTiO2 ゾルを含浸し、空気中で
600℃で焼成した後、貴金属を含浸し、焼成して水素製造触媒粉末を得た。その際、
TiO2 ゾルに変えてあらかじめ、TiO2 粉末混合する手法でも良い。
An example of the production of a two-layer hydrogen oxide catalyst with integrated nitrogen oxide adsorption and storage function is shown. After forming a lean NOx catalyst layer on the cordierite honeycomb, a hydrogen production catalyst layer is formed. First, a method for producing a lean NOx catalyst layer will be described. A slurry in which alumina, alumina sol, and purified water were mixed was poured into a cordierite honeycomb and dried and fired to form an alumina layer.
An alkaline component such as Na and K was made into an aqueous solution and supported on the alumina layer by an impregnation method. When supporting an oxide having OSC (oxygen storage ability) such as cerium oxide, the alumina layer was impregnated into an aqueous solution using nitrate or the like. Then, an alumina layer was impregnated with an aqueous noble metal solution of Pd, Pt, and Rh to produce a lean NOx catalyst layer. In addition to the above impregnation method, it can also be produced by a kneading method. In the kneading method, a slurry in which an alkali component forming a lean NOx catalyst layer, an oxide containing OSC, and a noble metal are mixed is poured into a cordierite honeycomb to form a lean NOx catalyst layer. The hydrogen production catalyst was impregnated with cerium oxide with an aqueous solution of Pd, Pt, Rh, etc., and then calcined in air at 600 ° C. to obtain a hydrogen production catalyst powder. A slurry obtained by adding silica sol and purified water to a hydrogen production catalyst powder was poured into a honeycomb having a lean NOx catalyst layer to form a hydrogen production catalyst layer. In the case where the carrier of the hydrogen production catalyst is an oxide containing cerium oxide and a Ti oxide, the oxide containing cerium oxide is impregnated with TiO 2 sol, calcined in air at 600 ° C., and then impregnated with a noble metal. And calcined to obtain a hydrogen production catalyst powder. that time,
Instead of the TiO 2 sol, a method of mixing TiO 2 powder in advance may be used.

図1は自動車用ディーゼルエンジン排ガスの後処理システムの一例である。構成としては、エンジンの排ガス流路に三元触媒または酸化触媒を置く、その後段にススなどを除去するためにディーゼルパティキュレートフィルタ(DPF)を設置し、そのさらに後段に本発明の窒素酸化物吸着・吸蔵機能一体化水素製造触媒を置く。   FIG. 1 shows an example of an aftertreatment system for automobile diesel engine exhaust gas. As a configuration, a three-way catalyst or an oxidation catalyst is placed in the exhaust gas passage of the engine, a diesel particulate filter (DPF) is installed in the subsequent stage to remove soot, and the nitrogen oxide of the present invention is further installed in the subsequent stage. Put hydrogen adsorption catalyst with integrated adsorption and storage function.

本発明の触媒を用いた排ガス浄化方法は、窒素酸化物吸着・吸蔵機能一体化水素製造触媒に排ガスを通し、エンジンから排出されるNOxを浄化させることである。窒素酸化物吸着・吸蔵機能一体化水素製造触媒を通った排ガスは、該排ガス浄化触媒の上流側に配置される三元触媒または酸化触媒、そしてDPFを既に通った排ガスであることを特徴としている。   The exhaust gas purification method using the catalyst of the present invention is to purify NOx discharged from the engine by passing the exhaust gas through the nitrogen oxide adsorption / occlusion function integrated hydrogen production catalyst. The exhaust gas that has passed through the hydrogen production catalyst integrated with the nitrogen oxide adsorption / storage function is characterized by being a three-way catalyst or an oxidation catalyst disposed upstream of the exhaust gas purification catalyst, and an exhaust gas that has already passed through the DPF. .

(実施例)
以下に本発明の実施例を示す。なお、本発明はこの例に限定されるものではない。
(Example)
Examples of the present invention are shown below. Note that the present invention is not limited to this example.

窒素酸化物吸着・吸蔵機能一体化水素製造触媒では、リーンNOx触媒,水素製造触媒の両者の機能が合わさって、NOxを浄化する。リーンNOx性能が同一性能の場合、水素製造触媒の性能が高いほど、NOxの浄化性能が高いといえる。本実施例では、水素製造触媒の性能を比較した。   In the hydrogen production catalyst integrated with the nitrogen oxide adsorption / storage function, the functions of both the lean NOx catalyst and the hydrogen production catalyst are combined to purify NOx. When the lean NOx performance is the same, it can be said that the higher the performance of the hydrogen production catalyst, the higher the NOx purification performance. In this example, the performance of the hydrogen production catalyst was compared.

実施例及び比較例の組成は後述の表2に示す。実施例触媒1は次の手順で作製した。酸化セリウムは、XRDの回折パターンにおいて、(111)面のピーク高さとバックグランドの比が9.5 を得られていた粉末(第一稀元素製)を使用した。酸化セリウム粉末に、ジニトロジアンミンPt水溶液を用いてPt担持し、水素製造触媒粉末を得た。水素製造触媒粉末はハニカムに酸化セリウムを130g/L担持した時にPtが2.7g/L になるように調製した。ハニカムに、Pt担持水素製造触媒粉末をウオッシュコートで酸化セリウムとして130g/L担持した。   The compositions of Examples and Comparative Examples are shown in Table 2 below. Example catalyst 1 was prepared by the following procedure. As the cerium oxide, powder (manufactured by the first rare element) in which the ratio of the peak height of the (111) plane to the background was 9.5 in the XRD diffraction pattern was used. The cerium oxide powder was supported by Pt using a dinitrodiammine Pt aqueous solution to obtain a hydrogen production catalyst powder. The hydrogen production catalyst powder was prepared so that Pt was 2.7 g / L when 130 g / L of cerium oxide was supported on the honeycomb. 130 g / L of Pt-supported hydrogen production catalyst powder as cerium oxide was supported on the honeycomb by wash coating.

実施例触媒2は、酸化セリウム粉末のXRDの回折パターンにおいて、(111)面のピーク高さとバックグランドの比が9.5 を得られていた酸化セリウム(第一稀元素製)を使用した。CeO2 粉末に、TiO2 ゾル水溶液を用いTiを担持した。乾燥,焼成後、酸化セリウム粉末に、ジニトロジアンミンPt水溶液を用いPt担持し水素製造触媒粉末を得た。水素製造触媒粉末はハニカムに酸化セリウムを130g/L担持した時に元素換算のTiが18.5g/L、Ptが2.7g/Lになるように調製した。ハニカムに、
Pt担持水素製造触媒粉末をウオッシュコートで酸化セリウムとして130g/L担持した。
Example catalyst 2 used was cerium oxide (manufactured by 1st rare element) in which the ratio of the peak height of the (111) plane to the background was 9.5 in the XRD diffraction pattern of the cerium oxide powder. Ti was supported on CeO 2 powder using a TiO 2 sol aqueous solution. After drying and calcination, the cerium oxide powder was supported with Pt using a dinitrodiammine Pt aqueous solution to obtain a hydrogen production catalyst powder. The hydrogen production catalyst powder was prepared so that Ti in terms of element was 18.5 g / L and Pt was 2.7 g / L when 130 g / L of cerium oxide was supported on the honeycomb. On the honeycomb,
130 g / L of Pt-supported hydrogen production catalyst powder as cerium oxide was supported by a washcoat.

実施例触媒3は、Ti量を32.7g/L とし実施例触媒2と同様の工程で作製した。実施例触媒4は、Ti量を43.3g/L とし実施例触媒2と同様の工程で作製した。   Example catalyst 3 was produced in the same process as Example catalyst 2 with a Ti content of 32.7 g / L. Example catalyst 4 was produced in the same process as example catalyst 2 with the Ti content of 43.3 g / L.

実施例5は、Ce−Zr複合酸化物は市販品(ローディア製)を使用した。Ce−Zr複合酸化物粉末に、TiO2 ゾル水溶液を用いTiを担持した。乾燥,焼成後、Ce−
Zr複合酸化物粉末に、ジニトロジアンミンPt水溶液を用い、Ptを担持し水素製造触媒粉末を得た。水素製造触媒粉末はハニカムにCe−Zr複合酸化物を130g/L担持した時に元素換算のTiが5.6g/L、Ptが2.7g/Lになるように調製した。ハニカムに、水素製造触媒粉末をウオッシュコートでCe−Zr複合酸化物として130g/L担持した。
In Example 5, a commercially available product (manufactured by Rhodia) was used as the Ce—Zr composite oxide. Ti was supported on the Ce—Zr composite oxide powder using an aqueous TiO 2 sol solution. After drying and firing, Ce-
A dinitrodiammine Pt aqueous solution was used as the Zr composite oxide powder, and Pt was supported to obtain a hydrogen production catalyst powder. The hydrogen production catalyst powder was prepared so that Ti in terms of element was 5.6 g / L and Pt was 2.7 g / L when 130 g / L of Ce-Zr composite oxide was supported on the honeycomb. 130 g / L of a hydrogen production catalyst powder as a Ce—Zr composite oxide was supported on the honeycomb by wash coating.

実施例触媒6は、Ti量を28.0g/Lとし実施例触媒5と同様の工程で作製した。実施例触媒7は、Ti量を100g/Lとし実施例5と同様の工程で作製した。   Example catalyst 6 was produced in the same process as example catalyst 5 with the Ti amount of 28.0 g / L. Example catalyst 7 was produced in the same process as in Example 5 with the Ti amount being 100 g / L.

比較例触媒1は、XRDの回折パターンにおいて、(111)面のピーク高さとバックグランドの比が4.2 の市販の酸化セリウム粉末を使用し、実施例触媒1と同様に作成した。比較例3,4はそれぞれTiO2 ,ZrO2 を担体とした場合である。そして、比較例5はリーンNOx触媒である。 Comparative Example Catalyst 1 was prepared in the same manner as Example Catalyst 1 using a commercially available cerium oxide powder having an XRD diffraction pattern with a (111) plane peak height to background ratio of 4.2. Comparative Examples 3 and 4 are cases where TiO 2 and ZrO 2 were used as carriers, respectively. Comparative Example 5 is a lean NOx catalyst.

各水素製造触媒の水素製造能力(水性ガスシフト反応の反応性)を耐久処理(劣化処理)後に以下の試験で検証・評価した。水素製造触媒評価試験のガス組成を表1に、評価パターンを図3に、評価装置を図4に示す。   The hydrogen production capacity (reactivity of water gas shift reaction) of each hydrogen production catalyst was verified and evaluated in the following tests after endurance treatment (deterioration treatment). The gas composition of the hydrogen production catalyst evaluation test is shown in Table 1, the evaluation pattern is shown in FIG. 3, and the evaluation apparatus is shown in FIG.

Figure 2007084391
Figure 2007084391

評価では、固定床流通式反応管を用いた。触媒(17mm×17mm×長さ21mm)は6mlとした。評価は以下の手順で実施した。
(1)ストイキ昇温(前処理)
表1(a)のストイキガスを流通させ、触媒入口温度で室温から550℃まで20℃/min にて昇温した。100℃からはポンプで送液した水を反応管内に滴下し水蒸気として加えた。SVは30000h-1とした。
(2)シフト反応評価
550℃に到達後、表1(b)の水素製造触媒評価ガスに切替え、降温しながら300℃,250℃,200℃,150℃でそれぞれ5分間保持した。SVは50000h-1とした。触媒出口でガス中の水蒸気を水トラップで除去した後、CO,CO2 分析計(堀場製作所,VIA−510)へ導いた。
In the evaluation, a fixed bed flow type reaction tube was used. The catalyst (17 mm × 17 mm × length 21 mm) was 6 ml. The evaluation was performed according to the following procedure.
(1) Stoichi temperature rise (pretreatment)
The stoichiometric gas shown in Table 1 (a) was circulated, and the temperature was increased from room temperature to 550 ° C. at a catalyst inlet temperature of 20 ° C./min. From 100 ° C., water fed by a pump was dropped into the reaction tube and added as water vapor. The SV was 30000 h −1 .
(2) Shift reaction evaluation After reaching 550 ° C., the hydrogen production catalyst evaluation gas shown in Table 1 (b) was switched to and maintained at 300 ° C., 250 ° C., 200 ° C., and 150 ° C. for 5 minutes while cooling down. The SV was set to 50000h- 1 . After removing water vapor in the gas with a water trap at the catalyst outlet, it was led to a CO, CO 2 analyzer (Horiba, VIA-510).

実施例触媒及び比較例触媒のCO転化率を表2に示す。すべて、700℃×20hの熱処理を実施した。ディーゼル排ガス温度の代表値として200℃で試験した結果である。   Table 2 shows the CO conversion rates of the example catalyst and the comparative example catalyst. All were heat-treated at 700 ° C. for 20 hours. It is the result of having tested at 200 degreeC as a typical value of diesel exhaust gas temperature.

Figure 2007084391
Figure 2007084391

ここで、CO転化率は、ガス中のCOがH2 に転化された割合である。ガスには2%のCOを含むため、例えば、CO転化率1%は、2%COの1%を転化し、0.02% の水素を得たことを示す。TiO2,ZrO2担体を用いると、少なくとも200℃の低温では水性ガスシフト反応はほとんど見られなかった。リーンNOx触媒のCO転化率は0.7%であった。 Here, the CO conversion rate is a ratio of CO in the gas converted to H 2 . Since the gas contains 2% CO, for example, a CO conversion of 1% indicates that 1% of 2% CO has been converted to give 0.02% hydrogen. When a TiO 2 or ZrO 2 support was used, almost no water gas shift reaction was observed at a low temperature of at least 200 ° C. The CO conversion of the lean NOx catalyst was 0.7%.

実施例1と比較例1のCO転化率は、それぞれ、6.2,1.0%であった。比較例1はリーンNOx触媒(比較例5)の0.7% と近い値にとどまった。これらより、XRDの回折パターンにおいて、(111)面のピーク高さとバックグランドの比が高い酸化セリウムを担体とした場合に、CO転化率が高くなる。   The CO conversion rates of Example 1 and Comparative Example 1 were 6.2 and 1.0%, respectively. Comparative Example 1 remained close to 0.7% of the lean NOx catalyst (Comparative Example 5). From these, in the XRD diffraction pattern, when cerium oxide having a high ratio of the (111) plane peak height to the background is used as the carrier, the CO conversion rate becomes high.

実施例2から7の転化率について説明する。酸化セリウムまたは、Ce−Zr複合酸化物にTiを添加するとCO転化率が高くなった。CO転化率は、実施例1では6.2% であるのに対し、酸化セリウム担体にTiを添加した場合の実施例2から4では6.7〜7.6%と、0.5〜1.4%高くなった。また比較例2の1.1% に対し、Ce−Zr複合酸化物にTiを添加した場合は、実施例5から7の1.2〜2.4%となり、0.1〜1.3%高くなった。つまり、触媒中の酸化セリウムの割合が28%以上の場合、Tiを添加することによってCO転化率が高くなる効果が認められた。   The conversion rate of Examples 2 to 7 will be described. When Ti was added to cerium oxide or Ce—Zr composite oxide, the CO conversion increased. The CO conversion rate is 6.2% in Example 1, whereas 6.7 to 7.6% in Examples 2 to 4 when Ti is added to the cerium oxide support, 0.5 to 1.4. % Higher. Moreover, when adding Ti to Ce-Zr composite oxide with respect to 1.1% of Comparative Example 2, it becomes 1.2 to 2.4% of Examples 5 to 7, and 0.1 to 1.3%. It became high. That is, when the ratio of cerium oxide in the catalyst was 28% or more, the effect of increasing the CO conversion rate by adding Ti was recognized.

ディーゼルエンジンを含むリーンバーン車の排ガス浄化用装置に利用できる。   It can be used for exhaust gas purification equipment for lean-burn vehicles including diesel engines.

ディーゼル排ガス処理のシステム図。The system diagram of diesel exhaust gas treatment. 水素製造能力とNOx浄化性能の関係。Relationship between hydrogen production capacity and NOx purification performance. 水素製造触媒の評価パターン。Evaluation pattern of hydrogen production catalyst. 水素製造触媒の評価装置。Evaluation equipment for hydrogen production catalysts.

Claims (5)

内燃機関排ガス中の一酸化炭素と水とから水素を生成する水素製造触媒であって、
前記触媒は、X線回折パターンにおいて(111)面回折ピーク強度とバックグランドの比が4.3 以上である酸化セリウムを担体とし、Pt,Pd,Rhから選ばれる貴金属の少なくともいずれかを含むことを特徴とする水素製造触媒。
A hydrogen production catalyst for producing hydrogen from carbon monoxide and water in an exhaust gas of an internal combustion engine,
The catalyst contains cerium oxide having a ratio of (111) plane diffraction peak intensity to background of 4.3 or more in an X-ray diffraction pattern as a support, and contains at least one of noble metals selected from Pt, Pd, and Rh. A hydrogen production catalyst.
請求項1に記載された水素製造触媒であって、
前記セリウム酸化物を複合酸化物として含有することを特徴とする水素製造触媒。
The hydrogen production catalyst according to claim 1,
A hydrogen production catalyst comprising the cerium oxide as a composite oxide.
請求項1または2に記載された水素製造触媒であって、
前記担体にはTi酸化物が含まれることを特徴とする水素製造触媒。
The hydrogen production catalyst according to claim 1 or 2,
A hydrogen production catalyst, wherein the support contains Ti oxide.
内燃機関排ガス中の一酸化炭素と水とから水素を生成する水素製造触媒であって、
前記触媒は、酸化セリウムを含む酸化物とTi酸化物とを含む担体と、前記担体上に担持されたPt,Pd,Rhの少なくともいずれかの貴金属を有し、
前記酸化セリウムを含む酸化物とTi酸化物の合計量に占める酸化セリウムの割合が
28%以上であることを特徴とする水素製造触媒。
A hydrogen production catalyst for producing hydrogen from carbon monoxide and water in an exhaust gas of an internal combustion engine,
The catalyst has a support containing an oxide containing cerium oxide and a Ti oxide, and a noble metal of at least one of Pt, Pd, and Rh supported on the support,
A hydrogen production catalyst, wherein a ratio of cerium oxide in a total amount of the oxide containing cerium oxide and Ti oxide is 28% or more.
請求項1ないし4のいずれかに記載された水素製造触媒であって、
前記水素製造触媒の排気ガス流路の後流側に窒素酸化物を吸着又は吸蔵する機能を有する窒素酸化物吸着・吸蔵機能触媒が二層構造で付されていることを特徴とする水素製造触媒。

A hydrogen production catalyst according to any one of claims 1 to 4,
A hydrogen production catalyst characterized in that a nitrogen oxide adsorption / occlusion function catalyst having a function of adsorbing or occluding nitrogen oxides is attached to the downstream side of the exhaust gas flow path of the hydrogen production catalyst in a two-layer structure. .

JP2005277034A 2005-09-26 2005-09-26 Exhaust gas purifying device for automobile and hydrogen producing catalyst Abandoned JP2007084391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005277034A JP2007084391A (en) 2005-09-26 2005-09-26 Exhaust gas purifying device for automobile and hydrogen producing catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005277034A JP2007084391A (en) 2005-09-26 2005-09-26 Exhaust gas purifying device for automobile and hydrogen producing catalyst

Publications (1)

Publication Number Publication Date
JP2007084391A true JP2007084391A (en) 2007-04-05

Family

ID=37971771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005277034A Abandoned JP2007084391A (en) 2005-09-26 2005-09-26 Exhaust gas purifying device for automobile and hydrogen producing catalyst

Country Status (1)

Country Link
JP (1) JP2007084391A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240533A (en) * 2009-04-02 2010-10-28 Honda Motor Co Ltd Method of cleaning nitrogen oxide
CN108883398A (en) * 2016-04-13 2018-11-23 丰田自动车株式会社 Exhaust emission control catalyst, exhaust gas-cleaning method and emission control system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240533A (en) * 2009-04-02 2010-10-28 Honda Motor Co Ltd Method of cleaning nitrogen oxide
CN108883398A (en) * 2016-04-13 2018-11-23 丰田自动车株式会社 Exhaust emission control catalyst, exhaust gas-cleaning method and emission control system
CN108883398B (en) * 2016-04-13 2021-10-12 丰田自动车株式会社 Exhaust gas purification catalyst, exhaust gas purification method, and exhaust gas purification system

Similar Documents

Publication Publication Date Title
JP5826285B2 (en) NOx absorption catalyst
JP5386121B2 (en) Exhaust gas purification catalyst device and exhaust gas purification method
JP4092441B2 (en) Exhaust gas purification catalyst
JP5806131B2 (en) NOx storage denitration catalyst
WO2010007826A1 (en) Honeycomb catalyst for purifying exhaust gas discharged from automobile, method for producing the same, and exhaust gas purifying method using the catalyst
JP2007534467A (en) Noble metal catalyst stabilized with iron oxide for removing pollutants from exhaust gas from lean burn engine
CA2978625A1 (en) Lean nox trap with enhanced high and low temperature performance
JP2016508872A (en) Catalyst and method for reducing nitrogen oxides
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JPWO2017203863A1 (en) Three-way catalyst for purification of gasoline engine exhaust gas
JP6348110B2 (en) Catalyst composition
JP2011183317A (en) Exhaust gas cleaning catalyst
JP2006263581A (en) Catalyst for cleaning exhaust-gas
JP2007196146A (en) Catalyst for cleaning exhaust gas
JP2001079402A (en) Exhaust gas cleaning catalyst and its production
JP2006263582A (en) Exhaust-gas cleaning catalyst
JP2010119994A (en) Catalyst for cleaning exhaust
JP2011183319A (en) Catalyst and method for cleaning exhaust gas
JP2002168117A (en) Exhaust emission control system
JP3965793B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP2013072334A (en) Exhaust gas purifying device and exhaust gas purifying catalyst unit
JP2007084391A (en) Exhaust gas purifying device for automobile and hydrogen producing catalyst
JP2003135970A (en) Exhaust gas cleaning catalyst
JP2007152303A (en) Hydrogen-producing catalyst
JP5051009B2 (en) NOx storage reduction catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20100113