[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007071453A - Refrigeration cycle - Google Patents

Refrigeration cycle Download PDF

Info

Publication number
JP2007071453A
JP2007071453A JP2005258966A JP2005258966A JP2007071453A JP 2007071453 A JP2007071453 A JP 2007071453A JP 2005258966 A JP2005258966 A JP 2005258966A JP 2005258966 A JP2005258966 A JP 2005258966A JP 2007071453 A JP2007071453 A JP 2007071453A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
compressor
heat exchanger
liquid refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005258966A
Other languages
Japanese (ja)
Inventor
Toshio Yajima
敏雄 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2005258966A priority Critical patent/JP2007071453A/en
Publication of JP2007071453A publication Critical patent/JP2007071453A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To properly control returning quantity of liquid refrigerant in accordance with a refrigerant inlet temperature of a compressor in a refrigeration cycle applying a carbon dioxide gas as the refrigerant. <P>SOLUTION: The refrigerant inlet temperature Ts of the compressor 11 is detected by a temperature sensor 19, and a controller 20 outputs a prescribed flow rate adjustment signal to a bypass control valve 18 on the basis of the refrigerant inlet temperature Ts to control a flow rate of the liquid refrigerant returned to an internal heat exchanger 13 from an accumulator 16 through a liquid refrigerant returning flow channel 17. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、炭酸ガスなどを冷媒とする冷凍サイクルに関し、詳しくは、アキュームレータに溜まった液冷媒を利用して圧縮機の冷媒出口温度を適正に制御するようにした冷凍サイクルに関する。   The present invention relates to a refrigeration cycle that uses carbon dioxide gas or the like as a refrigerant, and more particularly, to a refrigeration cycle that appropriately controls the refrigerant outlet temperature of a compressor using liquid refrigerant accumulated in an accumulator.

近年、例えば車両用空調装置の冷凍サイクルには、温暖化係数が低い冷媒で炭酸ガスなどの気液臨界温度・圧力以上で利用される冷媒が用いられており、冷媒が外部に漏れた場合にも環境への影響を少なくする対策が採られている。   In recent years, for example, in the refrigeration cycle of a vehicle air conditioner, a refrigerant that has a low global warming potential and is used at a gas-liquid critical temperature or pressure, such as carbon dioxide, has been used. Measures are also taken to reduce the impact on the environment.

このような炭酸ガスを冷媒とする冷凍サイクルにおいて、空冷の放熱器を採用した場合、臨界圧力以上の作動温度になり、且つ放熱器からの冷媒を外気温度から断熱膨張させると、蒸発器の入口側冷媒の乾き度が大きくなる(液冷媒が少なくなる)ため、蒸発器での熱交換効率が下がるという難点がある。そこで、放熱器の出口側冷媒と蒸発器の出口側冷媒との間で熱交換させる内部熱交換器を設け、断熱膨張時の温度を下げるようにしている。これによれば、蒸発器の入口冷媒の乾き度を小さくすることができるため、蒸発器の効率を向上させることができる。   In such a refrigeration cycle using carbon dioxide gas as a refrigerant, when an air-cooled radiator is employed, when the operating temperature is higher than the critical pressure and the refrigerant from the radiator is adiabatically expanded from the outside temperature, the inlet of the evaporator Since the dryness of the side refrigerant increases (liquid refrigerant decreases), there is a problem that the heat exchange efficiency in the evaporator decreases. Therefore, an internal heat exchanger for exchanging heat between the refrigerant on the outlet side of the radiator and the refrigerant on the outlet side of the evaporator is provided to lower the temperature during adiabatic expansion. According to this, since the dryness of the inlet refrigerant of the evaporator can be reduced, the efficiency of the evaporator can be improved.

しかしながら、このような内部熱交換器を設けると蒸発器の出口側における冷媒が過熱されるため、圧縮機の入口側では冷媒の比体積が大きくなり、圧縮機の体積効率が低下するという問題点があった。これを解決するため、アキュームレータの貯留室内の導出管に冷媒戻し穴を設け、この冷媒戻し穴から液冷媒を圧縮機の入口側に戻すことにより、圧縮機から吐出される冷媒の温度を抑えるようにした冷凍サイクル装置が提案されている(特許文献1参照)。
特開2003−90651号公報
However, if such an internal heat exchanger is provided, the refrigerant on the outlet side of the evaporator is overheated, so that the specific volume of the refrigerant is increased on the inlet side of the compressor, and the volume efficiency of the compressor is reduced. was there. In order to solve this, a refrigerant return hole is provided in the outlet pipe in the accumulator storage chamber, and the liquid refrigerant is returned from the refrigerant return hole to the inlet side of the compressor so as to suppress the temperature of the refrigerant discharged from the compressor. A refrigeration cycle apparatus has been proposed (see Patent Document 1).
JP 2003-90651 A

上記特開2003−90651号公報に提案された従来例では、外気温度に応じて液冷媒の液面レベルが上下することにより冷媒戻し穴から液冷媒が戻されるため、外気温度がアキュームレータ内の液冷媒まで伝達するのにタイムラグが生じ、適切な量の液冷媒を戻すことが難しかった。   In the conventional example proposed in the above Japanese Patent Laid-Open No. 2003-90651, the liquid refrigerant is returned from the refrigerant return hole when the liquid level of the liquid refrigerant rises and falls according to the outside air temperature, so the outside air temperature is the liquid in the accumulator. There was a time lag in transferring to the refrigerant, and it was difficult to return an appropriate amount of liquid refrigerant.

この発明の目的は、圧縮機の冷媒入口温度に応じて液冷媒の戻し量を適正に制御することにより、圧縮機の吐出口から吐出される冷媒の温度を適切に制御することができる冷凍サイクルを提供することにある。   An object of the present invention is to appropriately control the temperature of the refrigerant discharged from the discharge port of the compressor by appropriately controlling the return amount of the liquid refrigerant in accordance with the refrigerant inlet temperature of the compressor. Is to provide.

上記課題を解決するため、本発明に係わる冷凍サイクルは、少なくとも、冷媒を圧縮する圧縮機と、この圧縮機で圧縮された冷媒と外気との間で熱交換する放熱器と、この放熱器を通過した冷媒を減圧する減圧手段と、この減圧手段で減圧された冷媒と供給空気との間で熱交換する蒸発器と、前記放熱器を通過した冷媒と前記蒸発器を通過した冷媒との間で熱交換する内部熱交換器と、前記蒸発器を通過した冷媒を気液分離して気相状態の冷媒を前記内部熱交換器に送り出し、液相状態の冷媒(以下、液冷媒)を一時的に貯留する気液分離器とを備えた冷凍サイクルにおいて、前記圧縮機の冷媒入口温度を検出する冷媒入口温度検出手段と、外部から与えられた流量調整信号に応じて前記気液分離器から前記内部熱交換器への液冷媒の戻り流量を調整する流量調整手段と、前記冷媒入口温度検出手段で検出された冷媒入口温度に基づいて前記流量調整手段に対し所定の流量調整信号を出力して、前記気液分離器から前記内部熱交換器に戻される液冷媒の流量を制御する制御手段とを備えることを特徴とする。   In order to solve the above problems, a refrigeration cycle according to the present invention includes at least a compressor that compresses a refrigerant, a radiator that exchanges heat between the refrigerant compressed by the compressor and outside air, and the radiator. A decompression unit that decompresses the refrigerant that has passed, an evaporator that exchanges heat between the refrigerant decompressed by the decompression unit and the supply air, and a refrigerant that has passed through the radiator and a refrigerant that has passed through the evaporator. The internal heat exchanger that exchanges heat with the gas and the refrigerant that has passed through the evaporator are gas-liquid separated, and the gas-phase refrigerant is sent to the internal heat exchanger to temporarily store the liquid-phase refrigerant (hereinafter, liquid refrigerant). A refrigerant inlet temperature detecting means for detecting a refrigerant inlet temperature of the compressor, and the gas-liquid separator according to a flow rate adjustment signal given from the outside. Return flow of liquid refrigerant to the internal heat exchanger And a predetermined flow rate adjusting signal is output to the flow rate adjusting unit based on the refrigerant inlet temperature detected by the refrigerant inlet temperature detecting unit, and the internal heat exchange is performed from the gas-liquid separator. And a control means for controlling the flow rate of the liquid refrigerant returned to the vessel.

上記構成によれば、圧縮機の冷媒入口温度に応じて気液分離器から内部熱交換器への液冷媒の戻し量を制御するようにしたので、液冷媒の戻し量を適正に制御することができる。これによって、液冷媒の戻し量が多く必要な時に、液冷媒の戻し量を多くし、圧縮機から吐出される冷媒の吐出温度を低減させることができる。また、液冷媒の戻しが不要な時に、液冷媒の戻しを行わないようにするので、圧縮機から吐出される冷媒の吐出温度を上昇させることができる。したがって、圧縮機から吐出される冷媒の温度を適正に制御することができる。   According to the above configuration, since the return amount of the liquid refrigerant from the gas-liquid separator to the internal heat exchanger is controlled according to the refrigerant inlet temperature of the compressor, the return amount of the liquid refrigerant is appropriately controlled. Can do. As a result, when a large amount of liquid refrigerant needs to be returned, the amount of liquid refrigerant returned can be increased, and the discharge temperature of the refrigerant discharged from the compressor can be reduced. Further, since the return of the liquid refrigerant is not performed when the return of the liquid refrigerant is unnecessary, the discharge temperature of the refrigerant discharged from the compressor can be increased. Therefore, the temperature of the refrigerant discharged from the compressor can be controlled appropriately.

以下、本発明に係わる冷凍サイクルの実施例を添付の図面を参照しながら説明する。   Embodiments of the refrigeration cycle according to the present invention will be described below with reference to the accompanying drawings.

図1は、実施例1に係わる冷凍サイクルの回路図であり、とくに炭酸ガスを冷媒とする冷凍サイクルの一例を示すものである。   FIG. 1 is a circuit diagram of a refrigeration cycle according to the first embodiment, and particularly shows an example of a refrigeration cycle using carbon dioxide gas as a refrigerant.

本実施例の冷凍サイクル10は、冷媒を圧縮する圧縮機11と、この圧縮機11で圧縮された冷媒を外気により冷却する放熱器12と、この放熱器12で冷却された冷媒を減圧する膨張弁(減圧手段)14と、この膨張弁14で減圧された冷媒を蒸発させる蒸発器15と、放熱器12で冷却された冷媒と圧縮機11へ戻る低圧の冷媒との間で熱交換する内部熱交換器13と、蒸発器15を通過した冷媒を気液分離して気相状態の冷媒のみを圧縮機11へ送るアキュームレータ(気液分離器)16とを備え、蒸発器15を通過した冷媒を圧縮機11へ戻し、圧縮機11により運動エネルギー(圧力)を与えた冷媒をサイクル内に循環させるように構成したものである。   The refrigeration cycle 10 of the present embodiment includes a compressor 11 that compresses a refrigerant, a radiator 12 that cools the refrigerant compressed by the compressor 11 with outside air, and an expansion that depressurizes the refrigerant cooled by the radiator 12. Heat exchange between the valve (decompression unit) 14, the evaporator 15 that evaporates the refrigerant depressurized by the expansion valve 14, and the low-pressure refrigerant returning to the compressor 11 and the refrigerant cooled by the radiator 12 The refrigerant that has passed through the evaporator 15 includes a heat exchanger 13 and an accumulator (gas-liquid separator) 16 that gas-liquid separates the refrigerant that has passed through the evaporator 15 and sends only the refrigerant in the gas phase state to the compressor 11. Is returned to the compressor 11 and the refrigerant to which the kinetic energy (pressure) is given by the compressor 11 is circulated in the cycle.

また、本実施例の冷凍サイクル10では、アキュームレータ16に貯留された液冷媒の一部を内部熱交換器13の入口側に戻すための構成として、液冷媒戻り流路17と、バイパス制御弁18と、温度センサ19と、コントローラ20とを備えている。以下、各部について説明する。   Further, in the refrigeration cycle 10 of this embodiment, as a configuration for returning a part of the liquid refrigerant stored in the accumulator 16 to the inlet side of the internal heat exchanger 13, a liquid refrigerant return flow path 17 and a bypass control valve 18 are used. And a temperature sensor 19 and a controller 20. Hereinafter, each part will be described.

圧縮機11は、図示しないモータまたはエンジンからの駆動力を得て気相状態の炭酸ガスを圧縮して、高温高圧の冷媒として吐出している。   The compressor 11 obtains a driving force from a motor (not shown) or an engine, compresses gas phase carbon dioxide, and discharges it as a high-temperature and high-pressure refrigerant.

放熱器12は、圧縮機11から吐出された高温高圧の冷媒の熱を外気に放熱させることにより、冷媒の温度を外気温近くまで冷却する。この放熱器12には、例えば電動ファン等が駆動されることにより外気が吹き付けられる。そして、この放熱器12内を通る高温高圧の冷媒と、吹き付けられる外気との間で熱交換を行わせることで、高温高圧の冷媒を中温まで冷却している。   The radiator 12 cools the temperature of the refrigerant to near the outside temperature by dissipating the heat of the high-temperature and high-pressure refrigerant discharged from the compressor 11 to the outside air. For example, an electric fan or the like is driven to the radiator 12 to blow outside air. The high-temperature and high-pressure refrigerant is cooled to an intermediate temperature by causing heat exchange between the high-temperature and high-pressure refrigerant passing through the radiator 12 and the outside air to be blown.

内部熱交換器13は、放熱器12で冷却された冷媒と後述する蒸発器15で蒸発した低温低圧の冷媒との間で熱交換させて、放熱器12から膨張弁14へ送られる冷媒をさらに冷却している。   The internal heat exchanger 13 further exchanges heat between the refrigerant cooled by the radiator 12 and the low-temperature and low-pressure refrigerant evaporated by the evaporator 15 described later, and further sends the refrigerant sent from the radiator 12 to the expansion valve 14. It is cooling.

膨張弁14は、内部熱交換器13で冷却された中温高圧の冷媒を減圧(膨張)させて低温低圧のガス状冷媒として蒸発器15に送り出している。   The expansion valve 14 depressurizes (expands) the medium-temperature and high-pressure refrigerant cooled by the internal heat exchanger 13 and sends it to the evaporator 15 as a low-temperature and low-pressure gaseous refrigerant.

蒸発器15は、膨張弁14で減圧された低温低圧の冷媒とブロアファンから供給される空調風との間で熱交換させる熱交換器である。膨張弁14で低温低圧となった冷媒は、蒸発器15を通過する際に空調ダクト内を流れる空調風の熱を奪って気化(蒸発)する。そして、蒸発器15内の冷媒に吸熱された空調風は冷却、除湿されて冷房風となり車室内等に供給される。   The evaporator 15 is a heat exchanger that exchanges heat between the low-temperature and low-pressure refrigerant decompressed by the expansion valve 14 and the conditioned air supplied from the blower fan. The refrigerant that has become low temperature and low pressure by the expansion valve 14 takes the heat of the conditioned air flowing in the air conditioning duct and evaporates (evaporates) when passing through the evaporator 15. The conditioned air absorbed by the refrigerant in the evaporator 15 is cooled and dehumidified to be cooled and supplied to the passenger compartment.

アキュームレータ16は、蒸発器15から吐出された冷媒を気液分離して、気相状態の冷媒(以下、ガス冷媒)を内部熱交換器13へ送り出し、液相状態の冷媒(以下、液冷媒)を一時的に貯留している。ここで、本実施例におけるアキュームレータ16の構成を図2により説明する。   The accumulator 16 gas-liquid separates the refrigerant discharged from the evaporator 15 and sends out a gas-phase refrigerant (hereinafter referred to as a gas refrigerant) to the internal heat exchanger 13, and a liquid-phase refrigerant (hereinafter referred to as a liquid refrigerant). Is temporarily stored. Here, the configuration of the accumulator 16 in this embodiment will be described with reference to FIG.

図2は、アキュームレータ16の内部構成を示す断面図である。アキュームレータ16の内部には貯留槽26が形成され、その上部には蒸発器15から吐出された冷媒を取り込む入口配管21が設置されている。また貯留槽26の内部にはガス冷媒のみを流通させる略U字形の出口配管22が設置されている。この出口配管22の一端はガス冷媒が吸入されるように貯留槽26の上部に開口し、他端は内部熱交換器13への配管につながっている。また、出口配管22の略U字形における曲がり部分には、液冷媒23とともに内部に滞留している潤滑用のオイルを圧縮機11に戻すためのオイルブリード穴24が形成されている。   FIG. 2 is a cross-sectional view showing the internal configuration of the accumulator 16. A storage tank 26 is formed inside the accumulator 16, and an inlet pipe 21 for taking in the refrigerant discharged from the evaporator 15 is installed above the storage tank 26. Further, a substantially U-shaped outlet pipe 22 through which only the gas refrigerant is circulated is installed inside the storage tank 26. One end of the outlet pipe 22 opens to the upper part of the storage tank 26 so that the gas refrigerant is sucked, and the other end is connected to the pipe to the internal heat exchanger 13. Further, an oil bleed hole 24 for returning the lubricating oil staying inside together with the liquid refrigerant 23 to the compressor 11 is formed at a bent portion in the substantially U shape of the outlet pipe 22.

上記構成によれば、蒸発器15から吐出された気液二相の冷媒は入口配管21からアキュームレータ16の貯留槽26に流れ込み、ここで気液分離されてガス冷媒は出口配管22の一端から吸入されて内部熱交換器13に戻される。一方、液冷媒23は貯留槽26の下部に貯留されることになる。   According to the above configuration, the gas-liquid two-phase refrigerant discharged from the evaporator 15 flows from the inlet pipe 21 into the storage tank 26 of the accumulator 16, where it is separated from the gas and liquid and sucked from one end of the outlet pipe 22. And returned to the internal heat exchanger 13. On the other hand, the liquid refrigerant 23 is stored in the lower part of the storage tank 26.

また、本実施例の冷凍サイクル10には、アキュームレータ16に貯留された液冷媒23の一部を内部熱交換器13に戻すための液冷媒戻り流路17が設けられている。この液冷媒戻り流路17の一端は図2に示すように、アキュームレータ16の貯留槽26の下部に接続され、他端は図1に示すように、内部熱交換器13の低圧側の入口配管に接続されている。   Further, the refrigeration cycle 10 of the present embodiment is provided with a liquid refrigerant return channel 17 for returning a part of the liquid refrigerant 23 stored in the accumulator 16 to the internal heat exchanger 13. As shown in FIG. 2, one end of the liquid refrigerant return channel 17 is connected to the lower part of the storage tank 26 of the accumulator 16, and the other end is connected to the low-pressure side inlet pipe of the internal heat exchanger 13 as shown in FIG. It is connected to the.

この液冷媒戻り流路17の途中には、バイパス制御弁(流量調整手段)18が接続されている。バイパス制御弁18は、コントローラ20から送られてくる弁開閉信号(流量調整信号)に応じて内部の弁を開閉することにより、液冷媒戻り流路17を流れる液冷媒の戻り量を調整している。   A bypass control valve (flow rate adjusting means) 18 is connected in the middle of the liquid refrigerant return flow path 17. The bypass control valve 18 adjusts the return amount of the liquid refrigerant flowing through the liquid refrigerant return flow path 17 by opening and closing an internal valve in accordance with a valve opening / closing signal (flow rate adjustment signal) sent from the controller 20. Yes.

図5は、液冷媒戻り流路17を流れる液冷媒を、アキュームレータ16から内部熱交換器13に至る配管27の途中に戻すための構成例を示している。図5に示すように、配管27の途中に絞り部28を設けている。絞り部28の部分では冷媒の流速が上がるため、液冷媒の戻り口における圧力が下がりアキュームレータ16との間に差圧を発生させることができるので、配管27に液冷媒を取り込むことができる。   FIG. 5 shows a configuration example for returning the liquid refrigerant flowing through the liquid refrigerant return flow path 17 to the middle of the pipe 27 extending from the accumulator 16 to the internal heat exchanger 13. As shown in FIG. 5, a throttle portion 28 is provided in the middle of the pipe 27. Since the flow velocity of the refrigerant increases in the throttle portion 28, the pressure at the return port of the liquid refrigerant decreases and a differential pressure can be generated between the accumulator 16 and the liquid refrigerant can be taken into the pipe 27.

なお、絞り部28を設ける位置は内部熱交換器13の入口配管に限定されるものではなく、内部熱交換器13の中間、あるいは出口配管であってもよい。   The position where the throttle portion 28 is provided is not limited to the inlet pipe of the internal heat exchanger 13, and may be the middle of the internal heat exchanger 13 or the outlet pipe.

温度センサ(冷媒入口温度検出手段)19は、圧縮機11の入口側配管に接続され、圧縮機11の冷媒入口温度Tsを検出してコントローラ20に出力している。   The temperature sensor (refrigerant inlet temperature detection means) 19 is connected to the inlet side piping of the compressor 11, detects the refrigerant inlet temperature Ts of the compressor 11, and outputs it to the controller 20.

コントローラ20は、CPU、ROM、RAMなどを含むマイクロコンピュータにより構成され、温度センサ19から定期的(または継続的)に送られてくる冷媒入口温度Tsを取り込むとともに、制御プログラムに基づいて演算処理を実行して、バイパス制御弁18に対し開または閉の弁開閉信号を出力している。   The controller 20 is constituted by a microcomputer including a CPU, a ROM, a RAM, and the like. The controller 20 takes in the refrigerant inlet temperature Ts periodically (or continuously) sent from the temperature sensor 19 and performs arithmetic processing based on the control program. As a result, an open / close valve opening / closing signal is output to the bypass control valve 18.

次に、アキュームレータ16から内部熱交換器13の入口側に適正量の液冷媒を戻すための制御について説明する。図3は、コントローラ20により液冷媒の戻し量を制御するための処理手順を示すフローチャートである。   Next, control for returning an appropriate amount of liquid refrigerant from the accumulator 16 to the inlet side of the internal heat exchanger 13 will be described. FIG. 3 is a flowchart showing a processing procedure for controlling the return amount of the liquid refrigerant by the controller 20.

まずコントローラ20は、温度センサ19が検出した冷媒入口温度Tsを取り込み(ステップS101)、あらかじめ外気温により設定される閾値ts1より大きいかどうかを判断する(ステップS102)。ここで、冷媒入口温度Tsが閾値ts1よりも大きい場合は、バイパス制御弁18を開状態とする弁開閉信号を送る(ステップS103)。この弁開閉信号を受けてバイパス制御弁18が弁を開くと、アキュームレータ16に貯留された液冷媒の一部が液冷媒戻り流路17に流れ込み、内部熱交換器13の入口配管に戻される。   First, the controller 20 takes in the refrigerant inlet temperature Ts detected by the temperature sensor 19 (step S101), and determines whether it is larger than a threshold value ts1 set in advance by the outside air temperature (step S102). Here, when the refrigerant inlet temperature Ts is larger than the threshold value ts1, a valve opening / closing signal for opening the bypass control valve 18 is sent (step S103). When the bypass control valve 18 opens the valve in response to this valve opening / closing signal, a part of the liquid refrigerant stored in the accumulator 16 flows into the liquid refrigerant return flow path 17 and is returned to the inlet pipe of the internal heat exchanger 13.

一方、冷媒入口温度Tsが閾値ts1よりも大きくない場合には、閾値ts1−aが冷媒入口温度Tsよりも大きいかどうかを判断する(ステップS104)。ここで、“a”は内部熱交換器13の入口側に戻した液冷媒が圧縮機11に液冷媒として戻らないように飽和温度以下とならないようにするための設定値である。したがって、検出された冷媒入口温度Tsが閾値ts1−aより小さいときには、飽和温度以下となり液冷媒の蒸発が止まって液状態のまま圧縮機11へ戻ってしまうため、バイパス制御弁18を閉状態とする弁開閉信号を送る(ステップS105)。この弁開閉信号を受けてバイパス制御弁18が弁を閉じると、アキュームレータ16に貯留された液冷媒の液冷媒戻り流路17への流れ込みが遮断される。また、ステップS104において、冷媒入口温度Tsが閾値ts1−aよりも大きいときには、バイパス制御弁18に弁開閉信号を送らず、再びステップS101に戻って処理を継続する。   On the other hand, when the refrigerant inlet temperature Ts is not larger than the threshold value ts1, it is determined whether or not the threshold value ts1-a is larger than the refrigerant inlet temperature Ts (step S104). Here, “a” is a set value for preventing the liquid refrigerant returned to the inlet side of the internal heat exchanger 13 from being below the saturation temperature so that it does not return to the compressor 11 as liquid refrigerant. Therefore, when the detected refrigerant inlet temperature Ts is lower than the threshold value ts1-a, the temperature of the refrigerant becomes equal to or lower than the saturation temperature, and the evaporation of the liquid refrigerant stops and returns to the compressor 11 in the liquid state. A valve opening / closing signal is sent (step S105). When the bypass control valve 18 closes the valve in response to this valve opening / closing signal, the liquid refrigerant stored in the accumulator 16 is blocked from flowing into the liquid refrigerant return flow path 17. In step S104, when the refrigerant inlet temperature Ts is larger than the threshold value ts1-a, the valve opening / closing signal is not sent to the bypass control valve 18, and the process returns to step S101 and continues.

上述したように本実施例によれば、外気温度によって決められる閾値ts1を設定し、圧縮機11の冷媒入口温度Tsに応じてアキュームレータ16から内部熱交換器13への液冷媒の戻し量を制御するようにしたので、外気温度の変化に追従して液冷媒の戻し量を適正に制御することができる。これによって、内部熱交換器13に液冷媒を戻す場合は、圧縮機11の入口側では冷媒の比体積が小さくなり、圧縮機11の体積効率を向上させることができるため、冷凍システムにおける冷媒循環量が多くなり、放熱器12での放熱量を維持することができる。   As described above, according to this embodiment, the threshold value ts1 determined by the outside air temperature is set, and the return amount of the liquid refrigerant from the accumulator 16 to the internal heat exchanger 13 is controlled according to the refrigerant inlet temperature Ts of the compressor 11. Therefore, the return amount of the liquid refrigerant can be appropriately controlled following the change in the outside air temperature. Thereby, when returning the liquid refrigerant to the internal heat exchanger 13, the specific volume of the refrigerant is reduced on the inlet side of the compressor 11 and the volume efficiency of the compressor 11 can be improved, so that the refrigerant circulation in the refrigeration system The amount increases, and the heat dissipation amount in the radiator 12 can be maintained.

また、暖房時には液冷媒の戻し量を冷房時よりも多めにすることで圧縮機11の機械効率を改善して暖房能力を向上させることができる。さらに、冷房時と暖房時における冷媒の比体積の差を小さくすることができるので、圧縮機11の容量が大きくなるのを抑えることができる。   Moreover, the heating efficiency can be improved by improving the mechanical efficiency of the compressor 11 by making the return amount of the liquid refrigerant larger during heating than when cooling. Furthermore, since the difference in the specific volume of the refrigerant during cooling and heating can be reduced, it is possible to suppress an increase in the capacity of the compressor 11.

とくに本実施例では、バイパス制御弁18をシステム外に設置することができるので、液冷媒の戻し量の制御を容易に行うことができる。   In particular, in this embodiment, the bypass control valve 18 can be installed outside the system, so that the return amount of the liquid refrigerant can be easily controlled.

なお、本実施例では、アキュームレータ16に貯留された液冷媒の一部を液冷媒戻り流路17から内部熱交換器13の入口配管に戻す例について示したが、液冷媒の戻し位置は本例に限定されるものではない。例えば、図1に符号Aで示すように、内部熱交換器中間であってもよいし、同じく図1に符号Bで示すように、内部熱交換器の出口側であってもよい。   In the present embodiment, an example is shown in which a part of the liquid refrigerant stored in the accumulator 16 is returned from the liquid refrigerant return flow path 17 to the inlet pipe of the internal heat exchanger 13, but the return position of the liquid refrigerant is in this example. It is not limited to. For example, as shown by the symbol A in FIG. 1, it may be in the middle of the internal heat exchanger, or may be the outlet side of the internal heat exchanger, similarly as shown by the symbol B in FIG.

図4は、実施例2に係わるアキュームレータの内部構成を示す断面図である。図4では、図2(実施例1)と同等部分を同一符号で示している。   FIG. 4 is a cross-sectional view illustrating the internal configuration of the accumulator according to the second embodiment. In FIG. 4, the same parts as those in FIG. 2 (Example 1) are denoted by the same reference numerals.

本実施例のアキュームレータ16Aでは、オイルブリード穴24の近傍に液冷媒用ブリード穴25を形成し、この液冷媒用ブリード穴25から液冷媒の一部を出口配管22に戻すようにしている。このため、実施例1の液冷媒戻り流路17、バイパス制御弁18はシステム構成から除外されている。   In the accumulator 16 </ b> A of this embodiment, a liquid refrigerant bleed hole 25 is formed in the vicinity of the oil bleed hole 24, and a part of the liquid refrigerant is returned from the liquid refrigerant bleed hole 25 to the outlet pipe 22. For this reason, the liquid refrigerant return flow path 17 and the bypass control valve 18 of the first embodiment are excluded from the system configuration.

また、液冷媒用ブリード穴25には図示しない開閉機構が設けられている。この開閉機構は電気信号により外部から開閉を制御することができる電磁弁などで構成され、図1に示したコントローラ20から開閉信号を与えることで制御される。なお、オイルブリード穴24の直径を例えば1mmとすると、液冷媒用ブリード穴25の直径は2〜3mm程度となる。   The liquid refrigerant bleed hole 25 is provided with an opening / closing mechanism (not shown). This opening / closing mechanism is constituted by an electromagnetic valve or the like that can be controlled from the outside by an electric signal, and is controlled by giving an opening / closing signal from the controller 20 shown in FIG. When the diameter of the oil bleed hole 24 is, for example, 1 mm, the diameter of the liquid refrigerant bleed hole 25 is about 2 to 3 mm.

本実施例においても図3の処理手順を適用することにより、コントローラ20から液冷媒用ブリード穴25の前記開閉機構に所定の電気信号を出力して、アキュームレータ16Aから内部熱交換器13の入口側への液冷媒の戻し量を制御することができる。これによって、圧縮機11の入口側では冷媒の比体積が小さくなり、圧縮機11の体積効率を向上させることができるため、冷凍システムにおける冷媒循環量が多くなり、放熱器12での放熱量を維持することができる。   Also in this embodiment, by applying the processing procedure of FIG. 3, a predetermined electrical signal is output from the controller 20 to the opening / closing mechanism of the liquid refrigerant bleed hole 25, and the accumulator 16A is connected to the inlet side of the internal heat exchanger 13. The return amount of the liquid refrigerant to can be controlled. As a result, the specific volume of the refrigerant is reduced on the inlet side of the compressor 11 and the volume efficiency of the compressor 11 can be improved. Therefore, the refrigerant circulation amount in the refrigeration system is increased, and the heat dissipation amount in the radiator 12 is increased. Can be maintained.

また、暖房時には液冷媒の戻し量を冷房時よりも多めにすることで圧縮機11の機械効率を改善して暖房能力を向上させることができる。さらに、冷房時と暖房時における冷媒の比体積の差を小さくすることができるので、圧縮機11の容量が大きくなるのを抑えることができる。   Moreover, the heating efficiency can be improved by improving the mechanical efficiency of the compressor 11 by making the return amount of the liquid refrigerant larger during heating than when cooling. Furthermore, since the difference in the specific volume of the refrigerant during cooling and heating can be reduced, it is possible to suppress an increase in the capacity of the compressor 11.

とくに本実施例では、実施例1のような液冷媒戻り流路17やバイパス制御弁18が不要となるため、システム構成を簡素化することができる。   In particular, in the present embodiment, the liquid refrigerant return flow path 17 and the bypass control valve 18 as in the first embodiment are not required, so that the system configuration can be simplified.

本実施例においては、アキュームレータ内部において出口配管22を略U字形とすることにより、U字形の底の部分で流速が早くなるので液冷媒用ブリード穴25からアキュームレータ16に貯留された液冷媒を出口配管22の流路内に取り込むことができる。これにより液冷媒を内部熱交換器13の入口側に戻すようにしている。   In the present embodiment, the outlet pipe 22 is formed in a substantially U shape inside the accumulator, so that the flow velocity increases at the bottom of the U shape, so that the liquid refrigerant stored in the accumulator 16 is discharged from the liquid refrigerant bleed hole 25 to the outlet. It can be taken into the flow path of the pipe 22. Thereby, the liquid refrigerant is returned to the inlet side of the internal heat exchanger 13.

実施例1に係わる冷凍サイクルの回路図。1 is a circuit diagram of a refrigeration cycle according to Embodiment 1. FIG. 実施例1に係わるアキュームレータの内部構成を示す断面図。FIG. 3 is a cross-sectional view illustrating an internal configuration of the accumulator according to the first embodiment. コントローラにより液冷媒の戻し量を制御するための処理手順を示すフローチャート。The flowchart which shows the process sequence for controlling the return amount of a liquid refrigerant by a controller. 実施例2に係わるアキュームレータの内部構成を示す断面図。FIG. 6 is a cross-sectional view showing an internal configuration of an accumulator according to a second embodiment. 絞り部の構成を示す断面図。Sectional drawing which shows the structure of an aperture_diaphragm | restriction part.

符号の説明Explanation of symbols

10…冷凍サイクル
11…圧縮機
12…放熱器
13…内部熱交換器
14…膨張弁
15…蒸発器
16、16A…アキュームレータ
17…液冷媒戻り流路
18…バイパス制御弁
19…温度センサ
20…コントローラ
21…入口配管
22…出口配管
24…オイルブリード穴
25…液冷媒用ブリード穴
26…貯留槽
28…絞り部
DESCRIPTION OF SYMBOLS 10 ... Refrigeration cycle 11 ... Compressor 12 ... Radiator 13 ... Internal heat exchanger 14 ... Expansion valve 15 ... Evaporator 16, 16A ... Accumulator 17 ... Liquid refrigerant return flow path 18 ... Bypass control valve 19 ... Temperature sensor 20 ... Controller DESCRIPTION OF SYMBOLS 21 ... Inlet piping 22 ... Outlet piping 24 ... Oil bleed hole 25 ... Bleed hole for liquid refrigerants 26 ... Reservoir 28 ... Restriction part

Claims (1)

少なくとも、冷媒を圧縮する圧縮機(11)と、この圧縮機で圧縮された冷媒と外気との間で熱交換する放熱器(12)と、この放熱器を通過した冷媒を減圧する減圧手段(14)と、この減圧手段で減圧された冷媒と供給空気との間で熱交換する蒸発器(15)と、前記放熱器を通過した冷媒と前記蒸発器を通過した冷媒との間で熱交換する内部熱交換器(13)と、前記蒸発器を通過した冷媒を気液分離して気相状態の冷媒を前記内部熱交換器に送り出し、液相状態の冷媒(以下、液冷媒)を一時的に貯留する気液分離器(16)とを備えた冷凍サイクルにおいて、
前記圧縮機の冷媒入口温度を検出する冷媒入口温度検出手段(19)と、
外部から与えられた流量調整信号に応じて前記気液分離器から前記内部熱交換器への液冷媒の戻り流量を調整する流量調整手段(18)と、
前記冷媒入口温度検出手段で検出された冷媒入口温度に基づいて前記流量調整手段に対し所定の流量調整信号を出力して、前記気液分離器から前記内部熱交換器に戻される液冷媒の流量を制御する制御手段(20)と、
を備えることを特徴とする冷凍サイクル。
At least a compressor (11) that compresses the refrigerant, a radiator (12) that exchanges heat between the refrigerant compressed by the compressor and the outside air, and a decompression unit (10) that depressurizes the refrigerant that has passed through the radiator. 14), an evaporator (15) for exchanging heat between the refrigerant decompressed by the decompression means and the supply air, and heat exchange between the refrigerant that has passed through the radiator and the refrigerant that has passed through the evaporator The internal heat exchanger (13) that performs the gas-liquid separation of the refrigerant that has passed through the evaporator and the refrigerant in the gas phase state is sent to the internal heat exchanger, and the refrigerant in the liquid phase state (hereinafter, liquid refrigerant) is temporarily In a refrigeration cycle comprising a gas-liquid separator (16) for storing automatically,
Refrigerant inlet temperature detection means (19) for detecting the refrigerant inlet temperature of the compressor;
A flow rate adjusting means (18) for adjusting a return flow rate of the liquid refrigerant from the gas-liquid separator to the internal heat exchanger according to a flow rate adjustment signal given from the outside;
The flow rate of the liquid refrigerant returned from the gas-liquid separator to the internal heat exchanger by outputting a predetermined flow rate adjustment signal to the flow rate adjustment unit based on the refrigerant inlet temperature detected by the refrigerant inlet temperature detection unit Control means (20) for controlling
A refrigeration cycle comprising:
JP2005258966A 2005-09-07 2005-09-07 Refrigeration cycle Pending JP2007071453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005258966A JP2007071453A (en) 2005-09-07 2005-09-07 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005258966A JP2007071453A (en) 2005-09-07 2005-09-07 Refrigeration cycle

Publications (1)

Publication Number Publication Date
JP2007071453A true JP2007071453A (en) 2007-03-22

Family

ID=37933058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005258966A Pending JP2007071453A (en) 2005-09-07 2005-09-07 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JP2007071453A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102889704A (en) * 2011-07-19 2013-01-23 东普雷股份有限公司 Gas-liquid separated type freezing plant
KR101899836B1 (en) * 2017-12-29 2018-09-18 주식회사 일진이플러스 Heat pump system for evaporating separated liquid using liquid separator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102889704A (en) * 2011-07-19 2013-01-23 东普雷股份有限公司 Gas-liquid separated type freezing plant
KR101899836B1 (en) * 2017-12-29 2018-09-18 주식회사 일진이플러스 Heat pump system for evaporating separated liquid using liquid separator

Similar Documents

Publication Publication Date Title
US11364767B2 (en) Vehicle-mounted temperature controller
US11413931B2 (en) Vehicle-mounted temperature controller
CN103998874B (en) Chiller
JP5799924B2 (en) Refrigeration cycle equipment
JP4408413B2 (en) Refrigeration apparatus and air conditioner using the same
JP2007139269A (en) Supercritical refrigerating cycle
JP2008032336A (en) Two-stage expansion refrigeration apparatus
JP2007163074A (en) Refrigeration cycle
JP2008261513A (en) Refrigerating cycle device
JP2006170500A (en) Air conditioner and its operating method
JP4758705B2 (en) Air conditioner for vehicles
JP4631721B2 (en) Vapor compression refrigeration cycle
JP2007225169A (en) Air conditioning device
JP2008082637A (en) Supercritical refrigerating cycle
JP2018124017A (en) Cooling system
JP4661696B2 (en) Supercritical refrigeration cycle
JP2007191125A (en) Vehicular air-conditioner
JP4232567B2 (en) Refrigeration cycle equipment
JP2007071453A (en) Refrigeration cycle
JP4400533B2 (en) Ejector refrigeration cycle
JP2006308230A (en) Refrigerating cycle control device
JPH09133436A (en) Temperature type expansion valve and air-conditioning device for vehicle using the valve
JP2006145170A (en) Refrigerating cycle
JP6714864B2 (en) Refrigeration cycle equipment
JP2007032895A (en) Supercritical refrigerating cycle device and its control method