[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007071174A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2007071174A
JP2007071174A JP2005261894A JP2005261894A JP2007071174A JP 2007071174 A JP2007071174 A JP 2007071174A JP 2005261894 A JP2005261894 A JP 2005261894A JP 2005261894 A JP2005261894 A JP 2005261894A JP 2007071174 A JP2007071174 A JP 2007071174A
Authority
JP
Japan
Prior art keywords
misfire
valve
internal combustion
combustion engine
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005261894A
Other languages
English (en)
Inventor
Naohide Fuwa
直秀 不破
Yasunori Matsuo
保宣 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005261894A priority Critical patent/JP2007071174A/ja
Priority to US11/508,184 priority patent/US20070056565A1/en
Priority to DE102006000453A priority patent/DE102006000453A1/de
Publication of JP2007071174A publication Critical patent/JP2007071174A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0063Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L1/185Overhead end-pivot rocking arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/20Adjusting or compensating clearance
    • F01L1/22Adjusting or compensating clearance automatically, e.g. mechanically
    • F01L1/24Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically
    • F01L1/2405Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically by means of a hydraulic adjusting device located between the cylinder head and rocker arm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/26Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of two or more valves operated simultaneously by same transmitting-gear; peculiar to machines or engines with more than two lift-valves per cylinder
    • F01L1/267Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of two or more valves operated simultaneously by same transmitting-gear; peculiar to machines or engines with more than two lift-valves per cylinder with means for varying the timing or the lift of the valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2305/00Valve arrangements comprising rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/11Fault detection, diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】可変動弁機構20と燃料噴射弁4とを備える内燃機関1の制御装置100において、バルブリフト機構40の万一の故障によって吸気バルブ7が閉弁した状態で不動になることが原因で失火が発生しても、例えばポート噴射タイプの場合に吸気ポート2b内に燃料を溜まりにくくし、また、筒内噴射タイプの場合には燃焼室2aから排気ポート2cへ未燃の燃料が排出される現象を防止する。
【解決手段】各気筒での失火発生を検出する失火検出手段(S2)と、失火検出に伴いバルブリフト機構40の故障によって吸気バルブ7が開かなくなる開弁不良の有無を調べる原因推定手段(S3)と、原因推定手段が開弁不良有と判定したときに次吸入行程から内燃機関1の停止の有無に関係なくバルブリフト機構40の故障が解消されるまでの期間について前記失火気筒に対応する燃料噴射弁4を非駆動とするフューエルカットを行う失火対処手段(S1,S5)とを備える。
【選択図】図11

Description

本発明は、カムと吸気バルブとの間に配置されるバルブリフト機構で前記吸気バルブの作動特性を変更可能とする可変動弁機構と、各気筒に個別に燃料を噴射する燃料噴射弁とを備える内燃機関の制御装置に係り、特に失火発生に伴う対処技術に関する。
従来から、例えば自動車用の内燃機関において、運転領域に応じて吸気バルブや排気バルブのバルブの作動特性(例えばバルブのリフト量や作用角)を変更可能とする可変動弁機構を備えるものが考えられている(例えば特許文献1参照。)。
この可変動弁機構は、シリンダヘッドにカムと平行に固定されるロッカシャフトと、このロッカシャフトに内装されるコントロールシャフトと、ロッカシャフト上に設けられて吸気や排気バルブからなるバルブの最大リフト量を変更するバルブリフト機構とを備えて構成されている。
バルブリフト機構は、ロッカシャフトに軸方向および周方向に相対変位可能に外嵌されてコントロールシャフトと連動して移動可能なスライダギアと、このスライダギアに外装されてカムにより駆動される入力部(カム被打部材)と、スライダギアに入力部と隣り合わせに外装されてバルブをリフトさせる揺動カム(バルブ打部材)とを備えて構成されている。
スライダギアは、入力部と噛合する入力側ヘリカルスプラインと、揺動カムと噛合する出力側ヘリカルスプラインとが形成されている。入力部の外周所定位置には、カムが外接されるローラを回動自在に支持するためのフォーク(例えば本願発明の実施形態で例示している図5の41cR,41cL参照)が設けられている。
動作としては、コントロールシャフトを適宜のアクチュエータで軸方向に変位させると、このコントロールシャフトと共にスライダギアが軸方向に変位しながら入力部に対して円周方向に変位することによって、揺動カムが入力部に対して円周方向に相対変位することになり、揺動カムによるバルブの最大リフト量が調整される。
ところで、バルブリフト機構の各部分については、当然ながら、必要以上に十分な強度や耐荷重性を確保するように設計されているが、万一にも、前記フォークが破損するようなことがあると、カムが回転しても入力部が不動となるので、バルブを開閉できなくなる。
このバルブを仮に吸気バルブとする場合では、吸気バルブが閉弁したままの状態で不動となってしまうために、吸気ポートに燃料噴射弁から供給される燃料が溜まって、吸入行程において燃焼室に混合気が供給されなくなることが懸念される。その場合、燃焼行程においても当該燃焼室で混合気を着火燃焼させることができなくなって、失火が発生することになる。
このような万一の事態に対し、フェールセーフを図る意味で、何らかの対策を施すのが好ましい。
一般的に、上述したような可変動弁機構を備えていない内燃機関では、燃料噴射弁の詰まりや、点火プラグのくすぶりや、燃焼室の圧縮不良等のような解消可能な不具合によっ
て失火が発生することがあるので、そのような原因による失火発生を内燃機関の回転数変動によって検出する技術が考えられている(例えば特許文献2参照。)。
また、上述したような可変動弁機構を備えていない内燃機関において、失火発生を検出する毎に、失火気筒に対する燃料噴射を停止させるようにした技術も考えられている(例えば特許文献3参照。)。
特開2001−263015号公報 特開平5−18311号公報 特開2001−20792号公報
上記特許文献2,3に係る従来例では、失火原因について、燃料噴射弁の詰まりや、点火プラグのくすぶりや、燃焼室の圧縮不良等といった解消可能な不具合が大半であるために、燃焼行程毎に失火発生の有無を判定し、失火発生が検出された場合に失火が解消されるまで燃料噴射を停止させるものの、失火発生が検出されなくなれば次吸入行程において通常の燃料噴射に復帰可能とするようになっている。
ところが、上記特許文献1に係る従来例のような可変動弁機構を備える内燃機関において、失火原因としてバルブリフト機構の万一の故障等といった解消不可能な不具合を想定する場合には、このような特許文献1に係る従来例に対し上記特許文献2,3に係る従来例での失火発生時の対策を適用したとしても、対策が不十分であると言える。
というのは、万一にもバルブリフト機構が故障して吸気バルブが閉弁した状態で不動になったときには次吸入行程においても吸気バルブを開弁させることが不可能であるために、もし仮に燃焼行程において何らかの原因で失火発生を検出できずに次吸入行程において通常の燃料噴射制御に復帰してしまうと、ポート噴射タイプの内燃機関の場合には、吸気ポート内への燃料噴射を再度行うために、吸気ポート内に燃料が溜まり続けることになり、好ましくないと言える。ところで、筒内噴射タイプの内燃機関の場合には、燃焼室内への空気導入が遮断されるために、失火が発生し、燃焼室から排気ポートへ未燃の燃料が排出されてしまうことになる。このような点に改良の余地がある。
本発明は、可変動弁機構と燃料噴射弁とを備える内燃機関の制御装置において、可変動弁機構に用いるバルブリフト機構の万一の故障によって吸気バルブが閉弁した状態で不動になることが原因で失火が発生したときに、ポート噴射タイプの場合には吸気ポート内に燃料を溜まりにくくし、また、筒内噴射タイプの場合には燃焼室から排気ポートへ未燃の燃料が排出される現象を防止できるようにすることを目的としている。
本発明は、カムと吸気バルブとの間に配置されるバルブリフト機構で前記吸気バルブの作動特性を変更可能とする可変動弁機構と、各気筒に個別に燃料を供給する燃料噴射弁とを備える内燃機関の制御装置であって、前記各気筒での失火発生を検出する失火検出手段と、前記失火検出に伴いバルブリフト機構の故障によって吸気バルブが開かなくなる開弁不良の有無を調べる原因推定手段と、原因推定手段が開弁不良有と判定したときに次吸入行程から内燃機関の停止の有無に関係なく当該バルブリフト機構の故障が解消されるまでの期間について前記失火気筒に対応する燃料噴射弁を非駆動とするフューエルカットを行う失火対処手段とを備えることを特徴としている。
この構成によれば、可変動弁機構に用いるバルブリフト機構の万一の故障によって吸気バルブが閉弁した状態で不動になることが原因で失火が発生すると、バルブリフト機構が
交換または修復されて失火が解消されるまでフューエルカットを継続して行うようにしている。
これにより、バルブリフト機構が故障している期間、燃料噴射が行われないので、ポート噴射タイプの場合は吸気ポート内に燃料が溜まり続けるといった2次的な弊害の発生を回避することができ、また、筒内噴射タイプの場合は燃焼室から排気ポートへ不燃の燃料が排出されるといった2次的な弊害の発生を回避することができる。
好ましくは、上記内燃機関の制御装置において、前記失火対処手段は、さらに前記原因推定手段が開弁不良無しと判定したときに次吸入行程から失火が解消されるまで前記失火気筒に対応する燃料噴射弁を非駆動とするフューエルカットを行う構成とすることができる。
この構成によれば、バルブリフト機構の故障ではなく解消可能な失火が一時的に発生した場合には失火が解消されるまでフューエルカットを行うようにしている。これにより、失火期間において燃料噴射が停止されて燃焼室の温度上昇を促せるから、早期の失火解消が可能となる。しかも、失火解消後には通常の燃料噴射制御に復帰することが可能になっているから、失火解消以降は内燃機関の正常動作を確保できるようになる。
好ましくは、上記内燃機関の制御装置において、失火発生を報知するための報知手段をさらに備え、前記失火対処手段は、フューエルカットを行ったときに前記報知手段による報知動作を行わせる構成とすることができる。
この構成によれば、失火発生を車両使用者または点検整備者に対して報知することが可能になる。これにより、早期段階での内燃機関の点検整備を行うことが可能になり、内燃機関を正常な状態に維持するうえで有利となる。
好ましくは、上記内燃機関の制御装置において、前記失火検出手段は、内燃機関の回転数の変動量が所定の閾値以上であるとする条件、排気温度が所定の閾値以下であるとする条件、ならびに吸気脈動が所定の閾値以下であるとする条件のうちの少なくともいずれか一つを満たすときに失火発生を検出する構成とすることができる。
ここでは失火検出手段を特定しており、この特定事項によれば、内燃機関に通常装備される既存のセンサの出力を流用でき、余分な設備コストの上昇を抑制できる。
好ましくは、上記内燃機関の制御装置において、前記原因推定手段は、吸気バルブの開閉変位量を検出するリフトセンサの出力を用いる構成とすることができる。
ここでは原因推定手段を特定しており、この特定事項によれば、吸気バルブのリフトの有無を直接的に検出することが可能になるから、簡易かつ正確にバルブリフト機構の故障を認識可能となる。
本発明は、カムと吸気バルブとの間に配置されるバルブリフト機構で前記吸気バルブの作動特性を変更可能とする可変動弁機構と、各気筒に個別に燃料を供給する燃料噴射弁とを備える内燃機関の制御装置であって、前記各気筒での失火発生を検出する失火検出手段と、失火検出に伴い次吸入行程から内燃機関の停止までの期間について前記失火気筒に対応する燃料噴射弁を非駆動とするフューエルカットを行う失火対処手段とを備えることを特徴としている。
この構成では、失火発生を検出した後、失火発生の原因に関係なく、内燃機関の停止ま
では失火が解消されても解消されなくてもフューエルカットを行うようになる。換言すれば、内燃機関が停止すると、フューエルカットが解除されて次のトリップでは新たに失火発生の有無を調べるようになる。なお、トリップとは、内燃機関の起動から停止までの期間のことである。これにより、当該トリップにて失火発生が検出されなければ通常の燃料噴射制御に復帰させることが可能になる。
しかしながら、失火発生の原因について、バルブリフト機構の万一の故障等といった解消不可能な不具合のようにバルブリフト機構が交換または修復されるまで失火が継続する場合だと、失火検出以降、フューエルカットを行い、さらに次のトリップでも再度失火発生を検出してフューエルカットを継続するようになる。これにより、ポート噴射タイプの場合は吸気ポートに燃料が多量に溜まるといった2次的な弊害の発生を回避するうえで有利となり、また、筒内噴射タイプの場合は燃焼室から排気ポートへ不燃の燃料が排出されるといった2次的な弊害の発生を回避するうえで有利となり、好ましい。
好ましくは、上記内燃機関の制御装置において、前記失火対処手段は、失火発生を検出したトリップの次トリップから所定回のトリップを経過するまでの各トリップで失火発生を検出した場合にフューエルカットを継続して通常の燃料噴射制御への復帰を禁止する構成とすることができる。
この構成によれば、要するに、バルブリフト機構の万一の故障等といった解消不可能な不具合によって失火が発生した後、バルブリフト機構が交換または修復されずに失火が解消されない場合には、それ以降フューエルカットを継続して通常の燃料噴射制御に復帰できなくなる。これにより、バルブリフト機構が交換または修復されなくても、ポート噴射タイプや筒内噴射タイプにおける各2次的な弊害の発生を回避するうえで有利となる。
本発明によれば、可変動弁機構に用いるバルブリフト機構の万一の故障によって吸気バルブが閉弁した状態で不動になることが原因で失火が発生しても、ポート噴射タイプの場合は吸気ポートに燃料が溜まるといった2次的な弊害の発生を回避するうえで有利となり、また、筒内噴射タイプの場合は燃焼室から排気ポートへ不燃の燃料が排出されるといった2次的な弊害の発生を回避するうえで有利となる。また、本発明によれば、一時的な失火が発生した場合には失火が解消されるまでフューエルカットを行い、失火が解消されると通常の燃料噴射制御に復帰させることが可能になる。
以下、本発明の実施形態について図面に基づき詳細に説明する。図1から図14に本発明の一実施形態を示している。
図1には、自動車等の車両に搭載される内燃機関(エンジンという)の概略構成を示している。ここでのエンジン1は4気筒や6気筒等の多気筒型ガソリンエンジンとされるが、説明の都合上、図1にはエンジンの1気筒のみを示している。
図1に示すエンジン1は、シリンダヘッド2の燃焼室2aに、吸気通路3を経て吸入した空気と、シリンダヘッド2の吸気ポート2bに燃料噴射弁4から噴射した燃料とを所定の割合で導入し、燃焼室2aに導入された混合気を点火プラグ5で点火して燃焼させて、燃焼後の排気ガスを排気ポート2cから排気通路6へ排出させるようになっている。
シリンダヘッド2には、吸気ポート2bを開閉する吸気バルブ7と、排気ポート2cを開閉する排気バルブ8とがそれぞれ配置されている。
吸気通路3の上流集合部には、エアクリーナ(図示省略)を介して吸入する空気量を調整する電子制御式のスロットルバルブ9、吸入空気量に応じた電気信号を出力するエアフローメータ61、吸気温センサ62(エアフローメータ61に内蔵)が配置されている。スロットルバルブ9はスロットルモータ9aによって駆動される。スロットルバルブ9の開度はスロットルポジションセンサ63によって検出される。
燃料噴射弁4には、燃料タンクから燃料ポンプ(いずれも図示せず)によって所定圧力の燃料が供給される。点火プラグ5の点火タイミングはイグナイタ10によって調整される。エンジン1には、エンジン冷却水の温度を検出する水温センサ64が配置されている。
排気通路6には、排気ガス中の粒子状物質(PM:Paticulate Matter)や未燃焼ガス
を低減する触媒コンバータ11、排気ガス中の酸素濃度を検出するO2センサ65が設け
られている。
ピストン12は、コネクティングロッド13を介してクランクシャフト14に連結されている。クランクシャフト14は、フライホイールダンパ15を介してトランスミッション(図示せず)に連結される。
クランクシャフト14には、シグナルロータ16が取り付けられており、このシグナルロータ16の側方近傍にはクランクポジションセンサ66が配置されている。クランクポジションセンサ66は、例えば電磁ピックアップであって、クランクシャフト14が回転する際にシグナルロータ16の外周面に設けられる複数の突起(歯)16a・・に対応するパルス状の信号(出力パルス)を発生する。
吸気バルブ7及び排気バルブ8は、クランクシャフト14の回転が伝達される吸気カムシャフト17及び排気カムシャフト18の各回転によって開閉駆動される。また、吸気カムシャフト17の近傍には、気筒判別用のカムポジションセンサ67が配置されている。
カムポジションセンサ67は、例えば電磁ピックアップであって、図示はしないが、吸気カムシャフト17に一体的に設けられたロータ外周面の1個の突起(歯)に対向するように配置されており、吸気カムシャフト17が回転する際にパルス状の信号を出力する。なお、吸気カムシャフト17は、クランクシャフト14の1/2の回転速度で回転するので、クランクシャフト14が720°回転するごとにカムポジションセンサ67が1つのパルス状の信号(出力パルス)を発生する。
以上のエンジン1の運転状態は、制御装置100によって制御される。この制御装置100は、図2に示すように、一般的に公知のECU(Electronic Control Unit)からな
り、双方向性バス107によって相互に接続されたCPU101とROM102とRAM103とバックアップRAM104と外部入力回路105と外部出力回路106とを備えている。
CPU101には、ROM102に記憶された各種制御プログラムやマップに基づいて演算処理を実行する。
ROM102には、各種のプログラムが記憶されているが、少なくとも、各吸気バルブ7の開閉動作を制御するためのバルブタイミング制御や、燃焼室2aの空燃比を制御するための空燃比制御や、燃焼室2aでの失火を検出するとともに失火検出時の対処を行う失火制御等を実行するためのプログラムを有している。
RAM103は、CPU101での演算結果や各センサから入力されたデータ等を一時的に記憶するメモリである。バックアップRAM104は、各種の保存すべきデータを記憶する不揮発性のメモリである。
外部入力回路105には、イグニッションスイッチ60、エアフローメータ61、吸気温センサ62、スロットルポジションセンサ63、水温センサ64、O2センサ65、ク
ランクポジションセンサ66、カムポジションセンサ67、リフトセンサ68等が接続されている。
外部出力回路106には、燃料噴射弁4、点火プラグ5のイグナイタ10、スロットルバルブ9のスロットルモータ9a、及び、失火異常を警告するためのエンジンチェックランプ19等が接続されている。
この実施形態では、失火制御に特徴があるが、その説明に先立ち、この失火制御の対象となる構成を説明する。
上述したエンジン1は、吸気バルブ7の作動特性を変更可能とするための可変動弁機構20をさらに備えているので、その構成を図3から図10に示して説明する。
なお、排気バルブ8についても同様に可変動弁機構を用いて駆動する構成にできるが、本発明の特徴に直接的に関係していないので、ここでの説明を割愛する。以下の説明では、図3に示すように、可変動弁機構20を直列4気筒型DOHCエンジンに適用した例を挙げている。
可変動弁機構20は、吸気バルブ7のバルブリフト量や作用角を連続的に変更可能とするもので、吸気カムシャフト17の吸気カム17aとローラロッカーアーム24との間に配設されている。なお、ローラロッカーアーム24は、一端がラッシュアジャスタ25に支持され、他端は吸気バルブ7上端のタペット7aに当接されている。
この可変動弁機構20は、ロッカシャフト31、コントロールシャフト32、アクチュエータ33、およびバルブリフト機構40を備えている。
ロッカシャフト31は、シリンダヘッド2に一定間隔ごとに設けられた多数の隔壁21に軸方向ならびに円周方向に不動となるように取り付けられており、吸気カムシャフト17と平行つまり気筒配列方向(図5矢印F,R方向)に沿って配置されている。
コントロールシャフト32は、ロッカシャフト31内に軸方向変位可能に挿入されており、アクチュエータ33によって軸方向に進退駆動される。
バルブリフト機構40は、気筒数と同数設けられており、ロッカシャフト31に対し各気筒と対応するように外装されている。このバルブリフト機構40は、カム被打部材としての入力アーム41、バルブ打部材としての出力アーム42、およびスライダギア43を備えている。
入力アーム41は、円筒形のハウジング41aを有し、その内周面には、スライダギア43の入力側ヘリカルスプライン43aに噛み合うヘリカルスプライン41bが形成されている。また、ハウジング41aの外周には、径方向外向きへ突出する一対のフォーク41cL,41cRが設けられていて、この一対のフォーク41cL,41cRの間にロッカシャフト31と平行な支軸41dを介してローラ41eが回転自在に支持されている。
出力アーム42は、円筒形のハウジング42aを有し、その内周面には、スライダギア43の出力側ヘリカルスプライン43bに噛み合うヘリカルスプライン42bが形成されている。また、ハウジング42aの外周には、径方向外向きへ突出するノーズ42cが設けられている。このノーズ42cは、側面視で略三角形状に形成され、その一辺が凹状に湾曲するカム面42dとなされている。
スライダギア43は、ロッカシャフト31上にコントロールシャフト32と連動して軸方向に移動可能に外装されていて、その外径側に入力アーム41と二つの出力アーム42とが外装されている。このスライダギア43は、中心に貫通孔43cを有する円筒形状に形成されており、その外周における軸方向中間には、入力アーム41のヘリカルスプライン41bに噛み合う入力側ヘリカルスプライン43aが、また、外周における軸方向両側には、出力アーム42のヘリカルスプライン42bに噛み合う出力側ヘリカルスプライン43bが形成されている。出力側ヘリカルスプライン43bは、入力側ヘリカルスプライン43aに対して外径が小さく形成されている。入力側ヘリカルスプライン43aと出力側ヘリカルスプライン43bとは、歯すじの傾斜方向が反対となるように形成されている。
そして、入力アーム41のローラ41eは、シリンダヘッド2に圧縮状態で配設されたロストモーションスプリングと呼ばれるバネ26によって、常に吸気カム17aへ押しつけられるように付勢されている。出力アーム42のハウジング42aのベース円部分、またはノーズ42cのカム面42dのいずれかに、吸気バルブ7のバルブスプリング7bによってローラロッカーアーム24のローラ24aが圧接されている。このような関係により、吸気カム17aの回転によって入力アーム41が揺動され、この入力アーム41と一体的に揺動する出力アーム42によって、ローラロッカーアーム24を介して吸気バルブ7がリフトされるようになっている。
ここで、スライダギア43について、ロッカシャフト31およびコントロールシャフト32との結合形態について説明する。
スライダギア43において入力側ヘリカルスプライン43aと一方の出力側ヘリカルスプライン43bとの間には、円周方向に沿うとともに径方向内外に貫通する長孔43dが設けられている。また、ロッカシャフト31においてスライダギア43の長孔43dと対応する箇所には、軸方向へ沿うとともに径方向内外に貫通する長孔31aが形成されている。このロッカシャフト31の長孔31aに対応するコントロールシャフト32の箇所には、挿通孔32aが形成されている。
そして、ロッカシャフト31をスライダギア43の貫通孔43cへ挿入し、スライダギア43の長孔43dとロッカシャフト31の長孔31aとが交差した箇所に、係止ピン44を挿入し、この係止ピン44の一端を、コントロールシャフト32内に挿入したコントロールシャフト32の挿通孔32aに固定する。
このように組み付けられたスライダギア43は次のように動作する。
(a)係止ピン44は、ロッカシャフト31の長孔31aに沿って移動することができる。このため、コントロールシャフト32を軸方向に移動させると、スライダギア43がコントロールシャフト32と連動して軸方向に移動する。
(b)係止ピン44がスライダギア43の長孔43dへ挿入されているので、入力アーム41に吸気カムシャフト17のトルクが伝達されると、スライダギア43がロッカシャフト31の周りを揺動する。
このように、スライダギア43は、コントロールシャフト32上における軸方向の位置
が固定される一方で、ロッカシャフト31上において軸方向へ移動することが可能となっている。また、スライダギア43は、ロッカシャフト31(コントロールシャフト32)を支点として、揺動することが可能となっている。
このようなバルブリフト機構40において、コントロールシャフト32とともにスライダギア43を軸方向に移動させて、スライダギア43と入力アーム41および出力アーム42との軸方向における相対位置を変更することにより、入力アーム41と出力アーム42とに互いに逆方向のねじり力が付与されることになる。これにより、入力アーム41と出力アーム42とが相対回転し、入力アーム41(ローラ41e)と出力アーム42(ノーズ42c)との相対位相差が変更されるようになる。
なお、上記可変動弁機構20においては、共通する1本のコントロールシャフト32に気筒毎のスライダギア43・・・がそれぞれ固定されているので、コントロールシャフト32の軸方向移動にともなって全気筒の吸気バルブ7のリフト量が同時に変更されるようになっている。
次に、動作を説明する。
図9(a)に示すように、吸気カム17aのベース円部分が入力アーム41のローラ41eに当接しているとき、ローラロッカーアーム24のローラ24aは、出力アーム42のハウジング42aのベース円部分と当接した状態にある。このため、吸気バルブ7はリフト量が「0」の状態(エンジン1の吸気ポート2bを閉じた状態)に維持される。
そして、吸気カムシャフト17の時計方向の回転に伴い、入力アーム41のローラ41eが吸気カム17aのリフト部分を通じて押し下げられると、入力アーム41がロッカシャフト31に対して、図9(a)の反時計回り方向(矢符A方向)に回動する。また、これにともなって、出力アーム42およびスライダギア43が一体となって回動する。
これにより、出力アーム42のノーズ42cに形成されたカム面42dが、ローラロッカーアーム24のローラ24aに当接し、カム面42dの押圧によってローラ24aが押し下げられる。
図9(b)に示すように、ローラロッカーアーム24のローラ24aがカム面42dにより押圧されているとき、ローラロッカーアーム24がラッシュアジャスタ25との当接部を中心として揺動し、吸気バルブ7が開弁される。
コントロールシャフト32がアクチュエータ33から離れる方向(図5における矢符F方向)に最大限まで移動した状態では、ロッカシャフト31の軸心回りにおける入力アーム41のローラ41eと、出力アーム42のノーズ42cとの相対位相差が最大となる。
これにより、吸気カム17aがローラ41eを最大限に押し下げたとき、ローラロッカーアーム24のローラ24aの変位差が最も大きくなり、吸気バルブ7は最大のバルブリフト量および作用角で開閉される。
図10(a)に示すように、吸気カム17aのベース円部分が入力アーム41のローラ41eに当接しているときには、出力アーム42とローラ24aとの当接位置は、カム面42dから最大限まで離れた位置にある。そして、吸気カムシャフト17の回転によって、入力アーム41のローラ41eが吸気カム17aのリフト部分により押し下げられると、入力アーム41と出力アーム42とが一体となって回動する。
ただし、この場合、出力アーム42とローラ24aとの当接位置は、カム面42dから最大限離れているので、カム面42dによるローラロッカーアーム24のローラ24aの押し下げが開始されるまでの出力アーム42の回転量が、図9に示した作動状態に比べて大きくなる。また、吸気カム17aのリフト部分を通じて入力アーム41のローラ41eが押し下げられた際、ローラ24aと当接するカム面42dの範囲が、ノーズ42cの基端側の一部のみに縮小される。このため、吸気カム17aのリフト部分によるローラ41eの押し下げに応じたローラロッカーアーム24の揺動量は小さくなる。
図10(b)に示すように、ローラロッカーアーム24の揺動量が小さいことにより、吸気バルブ7は、より小さいバルブリフト量にて開弁されるようになる。
また、コントロールシャフト32がアクチュエータ33に近づく方向(図5における矢符R方向)に最大限まで移動した状態では、ロッカシャフト31の軸心回りにおけるローラ41eとノーズ42cとの相対位相差が最小となる。
これにより、吸気カム17aがローラ41eを最大限に押し下げたときのローラ24aの変位量は最も小さくなり、吸気バルブ7が最小のバルブリフト量および作用角で開閉されるようになる。
ここで、本発明に係る制御装置100による失火制御について図11から図14を参照して説明する。
まず、制御装置100によるエンジン1の基本的な動作としては、イグニッションスイッチ60により始動操作されると、始動時の混合比にて燃料噴射弁4を介して燃焼室2a内に燃料を噴射させると共に、イグナイタ10を介して点火プラグ5を点火させて爆発燃焼を開始させる。この後、クランクポジションセンサ66等を介してエンジン1の始動を検出すると、主としてアクセルポジションセンサ(図示省略)およびクランクポジションセンサ66からの出力データに基づいて、燃料噴射弁4からの燃料噴射量ならびに噴射時期を決定し、燃料噴射弁4を制御する。また、各センサからの出力に基づいて、可変動弁機構20を介して吸気バルブ7の作用角、リフト量等を制御して、運転領域に適した作動特性にて吸気バルブ7を作動させる。
ところで、上述したようにエンジン1を起動させた後、燃焼行程で失火が発生することがある。
この失火の発生原因については、例えば燃料噴射弁4の詰まりや、点火プラグ5のくすぶりや、燃焼室2aの圧縮不良等のような解消可能な不具合が挙げられるとともに、上述した可変動弁機構20におけるバルブリフト機構40の故障のような解消不可能な不具合が挙げられる。
ここでのバルブリフト機構40の故障とは、例えば図5に示したフォーク41cR,41cLが破損して吸気カム17aによって入力アーム41が揺動しなくなる現象のこととする。通常は、このような故障が発生しないように、バルブリフト機構40の各部分は必要以上に十分な強度や耐荷重性を確保するように設計されている。
本発明での失火制御は、要するに、上述したいずれの原因に対しても有効な対策を施すように工夫しているので、この対策について以下で説明する。
第1に、上述したような解消可能な不具合が原因で失火発生した場合には、次吸入行程から失火が解消されるまで失火気筒に対応する燃料噴射を停止する、短期的なフューエル
カットを行う。
第2に、上述したような解消不可能な不具合が原因で失火発生した場合には、次吸入行程からエンジン1の停止の有無に関係なくバルブリフト機構40の故障が解消されるまでの期間について失火気筒に対応する燃料噴射を継続的に停止する、長期的なフューエルカットを行う。
具体的に、まず、図4に示すように、吸気バルブ7のリフト量を検出するためのリフトセンサ68を備えている場合、上記バルブリフト機構40の故障を直接的に検出することができる。
このリフトセンサ68を備える場合についての失火制御ルーチンを、図11のフローチャートに示して説明する。この失火制御ルーチンは、エンジン1が燃焼行程に入る毎にエントリーされる。
ステップS1において、バルブリフト機構40の故障フラグF1が「0」であるか否かを判定する。ここでは、バックアップRAM104のダイアグノーシス履歴を調べることにより、現在、バルブリフト機構40が故障しているか否かを把握する。
なお、ダイアグノーシス履歴の故障フラグF1は、過去にバルブリフト機構40の故障が発生してフューエルカットを行うと「1」となるが、バルブリフト機構40が交換または修復されていれば「0」になる。なお、ダイアグノーシス履歴は、外部からの操作によりリセットされる。
ここで、故障フラグF1が「0」である場合つまりバルブリフト機構40が故障していない場合または過去にバルブリフト機構40が故障したとしても既に交換または修復されている場合には、上記ステップS1で肯定判定して続くステップS2に移行する。
しかし、故障フラグF1が「1」である場合には上記ステップS1で否定判定して下記ステップS5にジャンプする。
続くステップS2において、気筒毎に失火発生の有無を判定する。この失火の検出は、エンジン1の回転数NEの変動量が所定の閾値以上であるとする条件、排気温度が所定の閾値以下であるとする条件、ならびに吸気脈動が所定の閾値以下であるとする条件のうちの少なくともいずれか一つを満たしているか否かを調べることにより行える。
例えばクランクポジションセンサ66及びカムポジションセンサ67の出力等に基づいて、エンジン1の各気筒の爆発行程中においてクランクシャフト14が一定クランク角度を回転するのに要する経過時間T1(第1気筒)、T2(第2気筒)、T3(第3気筒)、T4(第4気筒)を順次演算するとともに、それら経過時間の偏差つまり各気筒の回転変動量ΔNE1〜ΔNE4を順次演算する。
この演算により求めた各気筒の回転変動量ΔNE1〜ΔNE4のいずれか一つまたは複数が所定の閾値を超えたときに失火が発生していると判定する。失火が発生していると判定したときには、クランクポジションセンサ66及びカムポジションセンサ67の出力及び回転変動量ΔNE1〜ΔNE4の演算結果などに基づいて、失火気筒を特定する。
仮に、失火が発生していなければ、上記ステップS2で否定判定して下記ステップS6にジャンプするが、失火が発生していれば、上記ステップS2で肯定判定してステップS3〜S5において失火原因を推定して原因に応じた対処を行う。
つまり、ステップS3では、失火原因がバルブリフト機構40の故障であるか否かをリフトセンサ68の出力に基づいて判定する。
というのは、リフトセンサ68の出力が「0」あるいは所定の閾値以下の場合、バルブリフト機構40のフォーク41cR,41cLが破損して吸気カム17aによって入力アーム41が揺動しなくなるといった解消不可能な不具合が発生していると推定できる。この場合には、上記ステップS3で肯定判定してステップS4において、バルブリフト機構40の故障フラグF1を「1」とし、ステップS5に移行する。
しかし、バルブリフト機構40が正常に動作している場合つまり例えば燃料噴射弁4の詰まりや、点火プラグ5のくすぶりや、燃焼室2aの圧縮不良等のような解消可能な不具合が失火の発生原因である場合には、上記ステップS3で否定判定して、ステップS5に移行する。
ステップS5では、次吸入行程において上記ステップS2で検出した失火気筒に対するフューエルカットつまり失火気筒に対応する燃料噴射弁4による燃料噴射を停止させるよう非駆動とすることを指示したうえで、エンジンチェックランプ19を点灯し、さらに失火有履歴フラグF2を「1」とする。
ステップS6では、イグニッションスイッチ60がオフされたか否かを判定し、オフされていなければ否定判定して上記ステップS1に戻って上記処理を繰り返すが、オフされていれば肯定判定して続くステップS7〜S11に示す失火の解消状況を調べるとともに状況に応じて対処する処理へ移行する。
ここで、ステップS7では、失火有履歴フラグF2が「1」であるか否かを判定することにより、前トリップにおいて失火が1回でも発生したか否かを調べている。
失火有履歴フラグF2が「0」であれば、上記ステップS7で否定判定してステップS8で失火無トリップの積算カウンタCをインクリメントするが、失火有履歴フラグF2が「1」であれば、上記ステップS7で肯定判定してステップS9で失火無トリップの積算カウンタCの値を「0」にリセットする。
この後、ステップS10において、失火無トリップの積算カウンタの値Cが所定数(例えば3)以上であるか否かを判定することにより、所定回(例えば3回)のトリップに跨って連続して失火が発生していないか否かを調べる。
このステップS10で肯定判定した場合には失火が解消されたものとしてステップS11においてエンジンチェックランプ19を消灯させるとともに、失火無トリップの積算カウンタCの値を「0」にリセットしてこのルーチンを抜ける。しかし、上記ステップS10で否定判定した場合には上記ステップS11をジャンプしてこのルーチンを抜ける。
このような失火制御において、失火原因別に、例えば図12および図13に示すタイミングチャートを用いて説明する。
第1の状況として、上述したような一時的な失火の場合とする。図12のタイミングチャートにおいて、(a)に示す第1のトリップTR1におけるタイミングt1にて失火が発生すると、(b)に示すように失火発生が検出され、(c)に示すようにフューエルカットを実行するとともに、(d)に示すようにエンジンチェックランプ19を点灯する。
このとき、(e)に示すようにバルブリフト機構40の故障が検出されずに、所定時間の後、(a)に示す第1のトリップTR1におけるタイミングt2で失火が解消されたとすると、(b)に示すように失火無と判定され、(c)に示すようにフューエルカットをキャンセルする。
但し、エンジンチェックランプ19の点灯は継続されるが、第1のトリップTR1の終了後において、第2〜第4のトリップTR2〜TR4のすべてにおいて失火発生が検出されなければ、エンジンチェックランプ19を消灯する。
第2の状況として、上述したようなバルブリフト機構40の故障の場合とする。図13のタイミングチャートにおいて、(a)に示す第1のトリップTR1におけるタイミングt1にて失火が発生すると、(b)に示すように失火発生が検出され、(c)に示すようにフューエルカットを実行するとともに、(d)に示すようにエンジンチェックランプ19を点灯する。
このとき、(e)に示すように第1のトリップTR1におけるタイミングt1にてバルブリフト機構40の故障が検出された場合には、バルブリフト機構40の交換または修復が行われるまでの期間について(c)に示すようにフューエルカットを継続する。
しかし、(a)に示すように第2のトリップTR2と第3のトリップTR3との間のエンジン停止期間におけるタイミングt3でバルブリフト機構40の交換または修復がされると、(a)に示す第3のトリップTR3における開始時点t4から失火が発生しない限りつまり(b)に示すように失火無と判定されれば、(c)に示すようにフューエルカットをキャンセルする。
但し、エンジンチェックランプ19の点灯は継続されるが、第2のトリップTR2の終了後において、第3〜第5のトリップTR3〜TR5のすべてにおいて失火発生が検出されなければ、エンジンチェックランプ19を消灯する。
以上説明したように、本実施形態によれば、可変動弁機構20に用いるバルブリフト機構40の万一の故障によって吸気バルブ7が閉弁した状態で不動になることが原因で失火が発生すると、バルブリフト機構40が交換または修復されて失火が解消されるまでフューエルカットを継続して行うようにしている。これにより、バルブリフト機構40が故障している期間、燃料噴射が行われないので、吸気ポート2b内に燃料が溜まり続けるといった2次的な弊害の発生を回避することができる。
また、バルブリフト機構40の故障ではなく解消可能な失火が一時的に発生した場合には失火が解消されるまでフューエルカットを行うようにしている。これにより、失火期間において燃料噴射が停止されて燃焼室2aの温度上昇を促せるから、早期の失火解消が可能となる。しかも、失火解消後には通常の燃料噴射制御に復帰することが可能になっているから、失火解消以降はエンジン1の正常動作を確保できるようになる。
さらに、失火が発生したときに、エンジンチェックランプ19を点灯することにより、失火発生を車両使用者または点検整備者に対して報知するようにしているから、早期段階でのエンジン1の点検整備を行うことが可能になる等、エンジン1を正常な状態に維持するうえで有利となる。
ところで、上述したようにリフトセンサ68を用いてバルブリフト機構40の故障を直接的に検出するようにしている場合には、失火の発生原因を推定することができて、その原因に応じた対策を施すことができる。
しかしながら、リフトセンサ68を備えていない場合には、バルブリフト機構40の故障を直接的に検出することができないので、下記するような失火制御を行うのが好ましい。
要するに、失火発生を検出すると、現在のトリップが終了するまでの間、フューエルカットを継続するようにし、次のトリップの開始時にはフューエルカットをキャンセルして通常の燃料噴射制御に復帰できるようにしている。但し、所定回(例えば3回)のトリップに跨って連続して失火が発生した場合には、それ以降はフューエルカットのキャンセルを禁止して通常の燃料噴射制御に復帰できないようにしている。
このようにすれば、失火発生の原因が、解消可能な不具合である場合のことを想定して、不具合解消にかかわらず次のトリップで通常の燃料噴射制御に復帰可能にしているから、次のトリップで不具合が解消されていた場合にエンジン1の正常な燃焼動作が可能になる。しかも、失火発生の原因が、解消不可能な不具合である場合のことも想定して、失火が所定以上長引いた場合に通常の燃料噴射制御に復帰させないようにして吸気ポート2bに燃料が多量に溜まるといった2次的な弊害の発生を防止するようにしている。
具体的に、このような失火制御について図14に示すフローチャートを参照して説明する。
ステップS21において、フューエルカット継続フラグF3が「0」であるか否かを判定することにより、フューエルカットを継続する必要があるか否かを調べている。
なお、フューエルカット継続フラグF3は、過去にバルブリフト機構40の故障のような解消不可能な不具合が原因で失火発生した場合に「1」となるが、過去に失火が発生していないかあるいは解消可能な不具合が原因で失火が発生したような場合に「0」となる。
ここで、フューエルカット継続フラグF3が「1」である場合には上記ステップS21で否定判定して下記ステップS23にジャンプする。
しかし、フューエルカット継続フラグF3が「0」である場合には上記ステップS21で肯定判定して続くステップS22に移行する。
続くステップS22において、気筒毎に失火発生の有無を判定する。この失火の検出は、図11に示すステップS2の処理と基本的に同様であるので、ここでの説明を割愛する。
仮に、失火が発生していなければ、上記ステップS22で否定判定して下記ステップS24にジャンプするが、失火が発生していれば、上記ステップS22で肯定判定してステップS23に移行する。
ステップS23では、次吸入行程において上記ステップS22で検出した失火気筒に対するフューエルカットつまり失火気筒に対応する燃料噴射弁4による燃料噴射を停止させるよう非駆動とすることを指示したうえで、エンジンチェックランプ19を点灯し、さらに失火有履歴フラグF2を「1」とする。
ステップS24では、イグニッションスイッチ60がオフされたか否かを判定し、オフされていなければ否定判定して上記ステップS21に戻って上記処理を繰り返すが、オフ
されていれば肯定判定して続くステップS25〜S32に示す失火の解消状況を調べるとともに状況に応じて対処する処理へ移行する。
ここで、ステップS25では、失火有履歴フラグF2が「1」であるか否かを判定することにより、前トリップにおいて失火が1回でも発生したか否かを調べている。
失火有履歴フラグF2が「0」であれば、上記ステップS25で否定判定してステップS26で失火無トリップの積算カウンタCをインクリメントするとともに、失火有トリップの積算カウンタKの値を「0」にリセットする。
しかし、失火有履歴フラグF2が「1」であれば、上記ステップS25で肯定判定してステップS27で失火無トリップの積算カウンタCの値を「0」にリセットするとともに、失火有トリップの積算カウンタKの値をインクリメントする。
この後、ステップS28において、失火無トリップの積算カウンタの値Cが所定数(例えば3)以上であるか否かを判定することにより、所定数(例えば3回)のトリップに跨って連続して失火が発生していないか否かを調べる。
このステップS28で肯定判定した場合には失火が回復したものとしてステップS29においてエンジンチェックランプ19を消灯させるとともに、失火無トリップの積算カウンタCの値を「0」にリセットしてこのルーチンを抜ける。
しかし、上記ステップS28で否定判定した場合にはステップS30において、失火有トリップの積算カウンタKの値が所定数(例えば「3」)以上であるか否かを判定することにより、所定回(例えば3回)のトリップに跨って連続して失火が発生しているか否かを調べる。
ここで、上記ステップS30で肯定判定した場合には失火発生の原因が解消不可能な不具合であると推定し、ステップS31においてフューエルカット継続フラグF3を「1」にしてから、このルーチンを抜ける。
しかし、上記ステップS30で否定判定した場合には失火発生の原因が解消可能な不具合であると推定し、ステップS32においてフューエルカット継続フラグF3を「0」にしてから、このルーチンを抜ける。
以上説明したように、リフトセンサ68を備えていない場合であっても、失火発生を検出した後、失火解消可能な場合と失火解消不可能な場合とで反応は遅いもののいずれにも対処できるようになっている。
なお、本発明の他の実施形態を説明する。
(1)上記実施形態では、吸気ポート2bへ燃料を噴射させるポート噴射タイプのエンジン1を例に挙げたが、例えば燃焼室2a内に燃料を直接噴射させる筒内噴射タイプのエンジンにも本発明の制御装置100を使用することが可能である。
このような筒内噴射タイプのエンジンの場合には、仮にバルブリフト機構40の故障により吸気バルブ7が閉弁したままになる等、解消不可能な不具合が発生すると、燃焼室2a内への空気導入が遮断されるために失火が発生するものの、燃焼室2aへの燃料供給も停止するから、燃焼室2a内から排気ポート2cへ未燃の燃料が排出するといった2次的な弊害の発生を防止できるようになる。
(2)上記実施形態では、吸気バルブ7側にのみ可変動弁機構20を設置しているが、排気バルブ8側に可変動弁機構20を設置した構成のエンジンにも本発明の制御装置100を適用することが可能である。
(3)上記実施形態では、1気筒あたり2つの吸気バルブ7を用いた構成のエンジン1を例に挙げたが、吸気バルブ7の使用数は特に限定されない。
(4)上記実施形態では、失火発生を検出したときにエンジンチェックランプ19を点灯させるようにしているが、報知の形態は限定されず、例えばブザー等の音やメーターパネル内に文字情報を表示するといった形態でもよい。
本発明の制御装置を適用するエンジンの一実施形態を示す概略構成図である。 図1の制御装置の構成を示すブロック図である。 図1に示すエンジンの吸気バルブに関する可変動弁機構を模式的に示す平面図である。 図3の(4)−(4)線断面の矢視図である。 図3の可変動弁機構の斜視図である。 図5のバルブリフト機構の分解斜視図である。 図5のバルブリフト機構のスライダギアとロッカシャフトとの関係を示す分解斜視図である。 図5のバルブリフト機構の上半分を破断して示す斜視図である。 図3の入力アームと出力アームとの相対位相差を最大にした場合の動作説明に用いる側面図で、(a)は閉弁状態、(b)は開弁状態を示している。 図3の入力アームと出力アームとの相対位相差を最小にした場合の動作説明に用いる側面図で、(a)は閉弁状態、(b)は開弁状態を示している。 図1の制御装置が実行する失火制御を説明するためのフローチャートである。 図11の一時的な失火発生時の失火制御に関するタイミングチャートである。 図11のバルブリフト機構故障による失火発生時の失火制御に関するタイミングチャートである。 本発明に係る制御装置における他の失火制御を説明するためのフローチャートである。
符号の説明
1 エンジン
2a 燃焼室
2b 吸気ポート
4 燃料噴射弁
7 吸気バルブ
14 クランクシャフト
17 吸気カムシャフト
5 点火プラグ
20 可変動弁機構
40 バルブリフト機構
41 入力アーム
42 出力アーム
43 スライダギア
41cR 入力アームのフォーク
41cL 入力アームのフォーク
66 クランクポジションセンサ
67 カムポジションセンサ
68 リフトセンサ
100 制御装置

Claims (7)

  1. カムと吸気バルブとの間に配置されるバルブリフト機構で前記吸気バルブの作動特性を変更可能とする可変動弁機構と、各気筒に個別に燃料を供給する燃料噴射弁とを備える内燃機関の制御装置であって、
    前記各気筒での失火発生を検出する失火検出手段と、
    前記失火検出に伴いバルブリフト機構の故障によって吸気バルブが開かなくなる開弁不良の有無を調べる原因推定手段と、
    原因推定手段が開弁不良有と判定したときに次吸入行程から内燃機関の停止の有無に関係なく当該バルブリフト機構の故障が解消されるまでの期間について前記失火気筒に対応する燃料噴射弁を非駆動とするフューエルカットを行う失火対処手段とを備えることを特徴とする内燃機関の制御装置。
  2. 請求項1において、前記失火対処手段は、さらに前記原因推定手段が開弁不良無しと判定したときに次吸入行程から失火が解消されるまで前記失火気筒に対応する燃料噴射弁を非駆動とするフューエルカットを行うことを特徴とする内燃機関の制御装置。
  3. 請求項1または2において、失火発生を報知するための報知手段をさらに備え、前記失火対処手段は、フューエルカットを行ったときに前記報知手段による報知動作を行わせることを特徴とする内燃機関の制御装置。
  4. 請求項1から3のいずれかにおいて、前記失火検出手段は、内燃機関の回転数の変動量が所定の閾値以上であるとする条件、排気温度が所定の閾値以下であるとする条件、ならびに吸気脈動が所定の閾値以下であるとする条件のうちの少なくともいずれか一つを満たすときに失火発生を検出することを特徴とする内燃機関の制御装置。
  5. 請求項1から4のいずれかにおいて、前記原因推定手段は、吸気バルブの開閉変位量を検出するリフトセンサの出力を用いることを特徴とする内燃機関の制御装置。
  6. カムと吸気バルブとの間に配置されるバルブリフト機構で前記吸気バルブの作動特性を変更可能とする可変動弁機構と、各気筒に個別に燃料を供給する燃料噴射弁とを備える内燃機関の制御装置であって、
    前記各気筒での失火発生を検出する失火検出手段と、
    失火検出に伴い次吸入行程から内燃機関の停止までの期間について前記失火気筒に対応する燃料噴射弁を非駆動とするフューエルカットを行う失火対処手段とを備えることを特徴とする内燃機関の制御装置。
  7. 請求項6において、前記失火対処手段は、失火発生を検出したトリップの次トリップから所定回のトリップを経過するまでの各トリップで失火発生を検出した場合にフューエルカットを継続して通常の燃料噴射制御への復帰を禁止することを特徴とする内燃機関の制御装置。
JP2005261894A 2005-09-09 2005-09-09 内燃機関の制御装置 Pending JP2007071174A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005261894A JP2007071174A (ja) 2005-09-09 2005-09-09 内燃機関の制御装置
US11/508,184 US20070056565A1 (en) 2005-09-09 2006-08-23 Control apparatus and control method for internal combustion engine
DE102006000453A DE102006000453A1 (de) 2005-09-09 2006-09-08 Steuervorrichtung und Steuerverfahren für eine Brennkraftmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005261894A JP2007071174A (ja) 2005-09-09 2005-09-09 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2007071174A true JP2007071174A (ja) 2007-03-22

Family

ID=37852842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005261894A Pending JP2007071174A (ja) 2005-09-09 2005-09-09 内燃機関の制御装置

Country Status (3)

Country Link
US (1) US20070056565A1 (ja)
JP (1) JP2007071174A (ja)
DE (1) DE102006000453A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102061957A (zh) * 2009-11-12 2011-05-18 铃木株式会社 用于内燃机的可变阀操作系统
JP2019196757A (ja) * 2018-05-11 2019-11-14 三菱重工エンジン&ターボチャージャ株式会社 制御装置、発電設備、制御方法、及びプログラム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4353130B2 (ja) * 2005-04-20 2009-10-28 トヨタ自動車株式会社 内燃機関の失火検出装置
EP2148068A1 (en) * 2008-05-26 2010-01-27 Toyota Jidosha Kabushiki Kaisha Starter for internal-combustion engine
US20120055822A1 (en) * 2008-06-27 2012-03-08 Howard Bullock Mobile device holster
US8312710B2 (en) * 2009-01-09 2012-11-20 Ford Global Technologies, Llc Cold-start reliability and reducing hydrocarbon emissions in a gasoline direct injection engine
US20130276756A1 (en) * 2012-04-18 2013-10-24 Ford Global Technologies, Llc Reducing intake manifold pressure during cranking
US9133775B2 (en) * 2012-08-21 2015-09-15 Brian E. Betz Valvetrain fault indication systems and methods using engine misfire
JP2016035252A (ja) * 2014-08-04 2016-03-17 トヨタ自動車株式会社 内燃機関の動弁装置
JP2018096208A (ja) * 2016-12-08 2018-06-21 トヨタ自動車株式会社 内燃機関の制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3514621A (en) * 1967-02-13 1970-05-26 Power Syst & Controls Solid state cranking module
JP3867461B2 (ja) * 1999-12-02 2007-01-10 日産自動車株式会社 電磁駆動弁のフェイルセーフ制御装置
JP3706335B2 (ja) * 2001-12-12 2005-10-12 本田技研工業株式会社 内燃機関の故障判定装置
JP4019980B2 (ja) * 2003-03-05 2007-12-12 トヨタ自動車株式会社 吸排気バルブの駆動装置
US6999868B2 (en) * 2003-12-10 2006-02-14 Caterpillar Inc. Diagnostic test for variable valve mechanism
JP4424178B2 (ja) * 2004-11-30 2010-03-03 スズキ株式会社 多気筒エンジンの失火検出装置
US7047957B1 (en) * 2005-04-25 2006-05-23 Delphi Technologies, Inc. Method and apparatus for monitoring a multiple step valve lifter
US7204132B2 (en) * 2005-04-28 2007-04-17 Ford Global Technologies, Llc Method for determining valve degradation
US7571047B2 (en) * 2007-08-02 2009-08-04 Delphi Technologies, Inc. Detection of valve deactivation failure by monitoring exhaust temperature

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102061957A (zh) * 2009-11-12 2011-05-18 铃木株式会社 用于内燃机的可变阀操作系统
JP2019196757A (ja) * 2018-05-11 2019-11-14 三菱重工エンジン&ターボチャージャ株式会社 制御装置、発電設備、制御方法、及びプログラム
JP7240820B2 (ja) 2018-05-11 2023-03-16 三菱重工エンジン&ターボチャージャ株式会社 制御装置、発電設備、制御方法、及びプログラム

Also Published As

Publication number Publication date
DE102006000453A1 (de) 2007-04-05
US20070056565A1 (en) 2007-03-15

Similar Documents

Publication Publication Date Title
US7146851B2 (en) Diagnostic apparatus for variable valve control system
US20070056565A1 (en) Control apparatus and control method for internal combustion engine
EP1873383B1 (en) Misfire detection apparatus for internal combustion engine
US7613554B2 (en) System and method for demonstrating functionality of on-board diagnostics for vehicles
JP3945117B2 (ja) 内燃機関のバルブ特性制御装置
CN102239318B (zh) 发动机系统控制装置
US20090292441A1 (en) Control Apparatus for Internal Combustion Engine
MXPA06012498A (es) Sistema de control para un motor de combustion interna.
CN102016270A (zh) 用于内燃发动机的失火探测设备
JP2005207336A (ja) 可変バルブ装置の異常診断装置
JP2008038705A (ja) 内燃機関の制御装置
JP5096096B2 (ja) 可変動弁機構の制御装置
CN203594475U (zh) 发动机的可变凸轮正时系统及该系统中的相位控制装置
JP4508225B2 (ja) 内燃機関の始動制御装置
JP4936140B2 (ja) 内燃機関の異常診断装置
US6745619B2 (en) Diagnostic method for variable compression ratio engine
US6994060B2 (en) Control apparatus and method for variable valve
JP4575936B2 (ja) 内燃機関の点火時期制御装置
JP2011001859A (ja) バルブタイミング装置の診断装置
JP4788964B2 (ja) 内燃機関の制御装置
JP2005214073A (ja) 可変バルブリフト制御システムの異常診断装置
JP4366602B2 (ja) 内燃機関の始動時燃料制御装置
JP2006037787A (ja) 内燃機関のバルブ特性制御装置
JP2007113513A (ja) 多気筒型内燃機関の制御装置
JP2007170363A (ja) エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091124