JP2007070660A - High strength thin steel sheet having excellent formability, and method for producing the same - Google Patents
High strength thin steel sheet having excellent formability, and method for producing the same Download PDFInfo
- Publication number
- JP2007070660A JP2007070660A JP2005256602A JP2005256602A JP2007070660A JP 2007070660 A JP2007070660 A JP 2007070660A JP 2005256602 A JP2005256602 A JP 2005256602A JP 2005256602 A JP2005256602 A JP 2005256602A JP 2007070660 A JP2007070660 A JP 2007070660A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- temperature
- strength thin
- thin steel
- slab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、主としてプレス加工されて使用される自動車等の足回り部品や構造材料に好適な、成形性に優れた高強度薄鋼板およびその製造方法に関するものである。 TECHNICAL FIELD The present invention relates to a high-strength thin steel sheet excellent in formability, which is suitable for undercarriage parts and structural materials such as automobiles that are mainly pressed and used, and a method for producing the same.
成形性と高強度とを兼備した高強度薄鋼板として、フェライト・マルテンサイト組織を有する複合組織鋼板や、残留オーステナイトを含有する鋼板などが知られている。複合組織鋼は、フェライト地にマルテンサイトを分散させた鋼板であって、低降伏比で引張強度が高く、しかも伸び特性にも優れている。また、さらに高い伸びを得るには残留オーステナイトを含有する鋼板がある。組織中に残留オーステナイトを生成させ、この残留オーステナイトが加工変形中に誘起変態して優れた延性を発揮するものである。例えば特許文献1、2には、フェライト、ベイナイト、残留オーステナイトからなるTRIP型の成形性に優れた高強度鋼板が開示されている。 Known as high-strength thin steel sheets having both formability and high strength are steel sheets having a composite structure having a ferrite / martensite structure, steel sheets containing retained austenite, and the like. A composite steel is a steel sheet in which martensite is dispersed in a ferrite ground, has a low yield ratio, high tensile strength, and excellent elongation characteristics. In order to obtain higher elongation, there is a steel sheet containing retained austenite. Residual austenite is generated in the structure, and this retained austenite induces transformation during processing deformation and exhibits excellent ductility. For example, Patent Documents 1 and 2 disclose high-strength steel sheets having excellent formability of TRIP type made of ferrite, bainite, and retained austenite.
ところが、従来の連続鋳造においては、スラブの中間部(厚みtのスラブの1/4t位置)における平均冷却速度は、0.1℃/sec程度の小さいものであったので、デンドライトの成長が大きくMnのミクロ偏析が大きいものであった。このミクロ偏析部は圧延に際して伸長されてMnバンドを形成し、この部分はMs点が低いのでTRIP型鋼板においては残留オーステナイトが不均一に分布してしまう。その結果冷間加工によって加工誘起変態したマルテンサイトとフェライトとの界面に応力が集中して破壊が発生しやすいものであった。このように、従来のTRIP型高強度薄鋼板においてはMnバンドに起因する組織の不均一性が成形性、特に局部延性を阻害する要因となっていた。
本発明は、従来よりも組織が均一で成形性に優れたTRIP型の高強度薄鋼板およびその製造方法を提供することを課題とする。 An object of the present invention is to provide a TRIP-type high-strength thin steel sheet having a uniform structure and excellent formability as compared with the conventional one and a method for producing the same.
上記の課題を解決するためになされた本発明の成形性に優れた高強度薄鋼板は、
質量%にて、
C:0.05〜0.25%、Si:2.0%以下、Mn:0.8〜3%、P:0.0010〜0.1%、S:0.0010〜0.05%、N:0.0010〜0.010%、Al:0.01〜2.0%を含有し、残部鉄及び不可避的不純物からなる鋼組成であって、
板厚tの1/8t〜3/8tの範囲でのMnミクロ偏析が、式(1)を満たす範囲にあり、
平均炭素量0.9%以上の残留オーステナイトを3%以上含有することを特徴とするものである。
0.10≧σ/Mn ・・・(1)
ここでMnは添加量、σはMnミクロ偏析測定における標準偏差である。
The high-strength thin steel sheet excellent in formability of the present invention made to solve the above problems is
In mass%
C: 0.05-0.25%, Si: 2.0% or less, Mn: 0.8-3%, P: 0.0010-0.1%, S: 0.0010-0.05%, N: 0.0010 to 0.010%, Al: 0.01 to 2.0%, steel composition consisting of the balance iron and inevitable impurities,
Mn microsegregation in the range of 1 / 8t to 3 / 8t of the plate thickness t is in the range satisfying the formula (1),
It contains 3% or more of retained austenite having an average carbon content of 0.9% or more.
0.10 ≧ σ / Mn (1)
Here, Mn is an addition amount, and σ is a standard deviation in Mn microsegregation measurement.
上記した発明において鋼組成中にさらに、
Cr:0.01〜5%、Mo:0.01〜5%、Ni:0.01〜5%、Cu:0.01〜5%、Co:0.01〜5%、W:0.01〜5%の1種または2種以上を含有することができ、
鋼組成中にさらに、
Ti、Nb、Zr、Hf、Ta、Vの1種または2種以上を単独または合計で0.001〜1%含有することができ、
鋼組成中にさらに、
Bを0.0001〜0.0050%含有することができ、
鋼組成中にさらに、
Mg、Ca、Y、REMの1種または2種以上を0.0001〜0.5%含有することができる。
In the above-described invention, during the steel composition,
Cr: 0.01-5%, Mo: 0.01-5%, Ni: 0.01-5%, Cu: 0.01-5%, Co: 0.01-5%, W: 0.01 Can contain -5% of one or more,
Further during the steel composition
One or more of Ti, Nb, Zr, Hf, Ta, V can be contained alone or in total 0.001-1%,
Further during the steel composition
0.0001-0.0050% of B can be contained,
Further during the steel composition
One or more of Mg, Ca, Y, and REM can be contained in an amount of 0.0001 to 0.5%.
また、本発明の成形性に優れた高強度薄鋼板の製造方法は、
請求項1〜5の何れかに記載の高強度薄鋼板をスラブから製造する高強度薄鋼板の製造方法であって、
鋳造後冷却途中のスラブを、スラブの厚みtの1/4tの位置における平均冷却速度を100℃/min以上として、液相線温度から固相線温度の間を冷却した後に、そのまま又は1100℃以上に再加熱し、
次いで、仕上げ温度を850〜970℃として熱間圧延を行い、その後700〜600℃の温度域まで平均冷却速度10〜100℃/secで冷却した後、同温度域で1〜5秒停留させた後、再び平均冷却速度10〜100℃/secで冷却して300℃以上450℃以下の温度で巻き取って、熱延鋼板となすことを特徴とするものである。
Moreover, the manufacturing method of the high strength thin steel sheet excellent in formability of the present invention is as follows:
A method for producing a high-strength thin steel sheet, wherein the high-strength thin steel sheet according to claim 1 is produced from a slab,
The slab in the middle of cooling after casting is cooled as it is or 1100 ° C after cooling between the liquidus temperature and the solidus temperature at an average cooling rate at 1/4 t of the slab thickness t of 100 ° C / min or more. Reheat to above,
Subsequently, hot rolling was performed at a finishing temperature of 850 to 970 ° C., and thereafter cooling was performed at an average cooling rate of 10 to 100 ° C./sec to a temperature range of 700 to 600 ° C., and then retained in the same temperature range for 1 to 5 seconds. Then, it is cooled again at an average cooling rate of 10 to 100 ° C./sec and wound up at a temperature of 300 ° C. or higher and 450 ° C. or lower to form a hot-rolled steel sheet.
また、本発明の成形性に優れた高強度薄鋼板の製造方法は、
請求項1〜5の何れかに記載の高強度薄鋼板をスラブから製造する高強度薄鋼板の製造方法であって、
鋳造後冷却途中のスラブを、スラブの厚みtの1/4tの位置における平均冷却速度を100℃/min以上として、液相線温度から固相線温度の温度域を冷却した後に、そのまま又は1100℃以上に再加熱して、
仕上げ温度を850〜970℃として熱間圧延を行い、その後650℃以下の温度域まで平均冷却速度10〜100℃/secで冷却した後、650℃以下の温度で巻取って、熱延鋼板となし、
当該熱延鋼板を、酸洗後圧下率40%以上の冷間圧延を施し、
最高温度を0.1×(Ac3 −Ac1 )+Ac1 以上、Ac3 +50℃以下として焼鈍した後に、平均で0.1〜200℃/secの冷却速度で350℃以上、500℃以下の温度域に冷却し、引き続いて同温度域で10秒以上、1000秒以下保持して、冷延鋼板となすことを特徴とするものである。
Moreover, the manufacturing method of the high strength thin steel sheet excellent in formability of the present invention is as follows:
A method for producing a high-strength thin steel sheet, wherein the high-strength thin steel sheet according to claim 1 is produced from a slab,
The slab that is in the process of being cooled after casting is cooled as it is or 1100 after cooling the temperature range from the liquidus temperature to the solidus temperature at an average cooling rate at 1/4 t of the slab thickness t of 100 ° C./min or more. Reheat to over ℃,
Hot-rolling is performed at a finishing temperature of 850 to 970 ° C., and then cooled to a temperature range of 650 ° C. or lower at an average cooling rate of 10 to 100 ° C./sec. None,
The hot-rolled steel sheet is subjected to cold rolling with a reduction rate of 40% or more after pickling,
After annealing at a maximum temperature of 0.1 × (Ac 3 −Ac 1 ) + Ac 1 or more and Ac 3 + 50 ° C. or less, 350 ° C. or more and 500 ° C. or less at an average cooling rate of 0.1 to 200 ° C./sec. The steel sheet is cooled to a temperature range, and subsequently kept in the same temperature range for 10 seconds or more and 1000 seconds or less to form a cold-rolled steel sheet.
本発明の高強度薄鋼板は、Mnのミクロ偏析が従来よりも著しく小さいので、Mnの偏析が圧延方向に伸ばされたMnバンドが起こりにくい。従って、Mnバンド起因のバンド状組織を回避することができるので、成形性が従来の高強度薄鋼板よりも優れる。
また、本発明の高強度薄鋼板の製造方法は、凝固時の冷却速度を高めた熱延鋼板を製造により、通常のスラブよりも凝固組織を微細にしてMnのミクロ偏析を小さいものとすることができる。よって、Mnバンドが小さく組織が均一であるので、従来よりも成形性に優れた高強度薄鋼板を製造することができる。
また、本発明の高強度薄鋼板の製造方法は、上記の熱延鋼板を圧延、焼鈍して冷延鋼板を製造するので、従来よりもMnのミクロ偏析が小さく組織が均一である。したがって、従来よりも成形性に優れた高強度薄鋼板を製造することができる。
本発明においては、凝固時の冷却速度が100℃/minより高くできれば、どのような手法で鋳造しても良い。例えば、連続鋳造において、スラブ厚を薄くすることや、インゴット鋳造において、インゴットのサイズを小さくすること、また、通常のスラブのうち、冷却速度の速い表層部分を切り出し、これを用いても良い。
In the high-strength thin steel sheet of the present invention, the Mn microsegregation is remarkably smaller than that of the prior art, so that a Mn band in which the Mn segregation is extended in the rolling direction is less likely to occur. Therefore, since the band-like structure resulting from the Mn band can be avoided, the formability is superior to the conventional high-strength thin steel sheet.
The method for producing a high-strength thin steel sheet according to the present invention is to produce a hot-rolled steel sheet with an increased cooling rate during solidification, thereby reducing the Mn microsegregation by making the solidification structure finer than a normal slab. Can do. Therefore, since the Mn band is small and the structure is uniform, it is possible to manufacture a high-strength thin steel sheet that is more excellent in formability than conventional ones.
Moreover, since the manufacturing method of the high-strength thin steel plate of this invention rolls and anneals said hot-rolled steel plate and manufactures a cold-rolled steel plate, Mn microsegregation is smaller than before and a structure | tissue is uniform. Therefore, it is possible to produce a high-strength thin steel sheet that has better formability than before.
In the present invention, casting may be performed by any method as long as the cooling rate during solidification can be higher than 100 ° C./min. For example, in continuous casting, the thickness of the slab may be reduced, in ingot casting, the size of the ingot may be reduced, or a surface layer portion having a high cooling rate may be cut out from a normal slab and used.
本発明の成形性に優れた高強度薄鋼板は、板厚tの1/8t〜3/8tの範囲におけるMnのミクロ偏析が、式(1)を満たすことを特徴とする。
0.10≧σ/Mn ・・・(1)
ここで、Mnは添加量、σはMnミクロ偏析測定における標準偏差である。標準偏差σは、EPMA(X線マイクロアナライザー)を用いて、板厚断面を研磨した試料を板厚方向に線分析することにより得られたMn濃度分布データから求めた。
The high strength thin steel sheet having excellent formability according to the present invention is characterized in that the microsegregation of Mn in the range of 1 / 8t to 3 / 8t of the sheet thickness t satisfies the formula (1).
0.10 ≧ σ / Mn (1)
Here, Mn is an addition amount, and σ is a standard deviation in Mn microsegregation measurement. The standard deviation σ was obtained from Mn concentration distribution data obtained by performing line analysis in the plate thickness direction on a sample having a plate thickness polished using EPMA (X-ray microanalyzer).
σが、0.10<σ/Mnの場合には、Mn濃度のばらつきが大きく、Mnのミクロ偏析が十分小さくない。このためMnのミクロ偏析が圧延方向に伸ばされて比較的大きなMnバンドを形成するので、組織を均一なものとすることができず、延性劣化の原因となり得る。したがって、Mnのミクロ偏析は、0.10≧σ/Mn、の関係を満たさねばならない。成形性の要求が高い場合には、ミクロ偏析は、(2)式を満たすものとするのが望ましい。これによって、組織をさらに均一化して成形性を高めることができるからである。
0.05≧σ/Mn ・・・(2)
この条件は冷却の遅い板厚tの1/8t〜3/8tの範囲において満たされる必要がある。
なお、高強度薄鋼板とは、高強度薄鋼板または高強度薄鋼板をいう。
When σ is 0.10 <σ / Mn, variation in Mn concentration is large, and microsegregation of Mn is not sufficiently small. For this reason, since the microsegregation of Mn is extended in the rolling direction to form a relatively large Mn band, the structure cannot be made uniform, which can cause ductility deterioration. Therefore, the microsegregation of Mn must satisfy the relationship of 0.10 ≧ σ / Mn. When the demand for formability is high, it is desirable that the microsegregation satisfies the formula (2). This is because the structure can be made more uniform and the moldability can be improved.
0.05 ≧ σ / Mn (2)
This condition needs to be satisfied in the range of 1 / 8t to 3 / 8t of the plate thickness t with slow cooling.
In addition, a high strength thin steel plate means a high strength thin steel plate or a high strength thin steel plate.
また、本発明の成形性に優れた高強度薄鋼板は、組織中に、平均炭素量0.9%以上の残留オーステナイトを3%以上含有することを特徴とする。即ち当該高強度薄鋼板は、フェライトとベイナイトの複合組織に準安定な残留オーステナイトを3%〜20%含有している。TRIP現象を起こし成形性を良好にするためには3%以上の残留オーステナイトが必須である。一方、残留オーステナイトが20%を超えると、多量のマルテンサイトが存在して二次成形性に問題を生じることがある。なお、残留オーステナイトは平均炭素量が0.9%以上であることが必要である。0.9%未満では、TRIP現象を延性に反映させるには不十分なオーステナイトの安定度である。 Further, the high strength thin steel sheet having excellent formability according to the present invention is characterized in that the structure contains 3% or more of retained austenite having an average carbon content of 0.9% or more. That is, the high-strength thin steel sheet contains 3% to 20% of retained austenite metastable in the composite structure of ferrite and bainite. In order to cause the TRIP phenomenon and improve the moldability, 3% or more of retained austenite is essential. On the other hand, if the retained austenite exceeds 20%, a large amount of martensite is present, which may cause a problem in secondary formability. The retained austenite must have an average carbon content of 0.9% or more. If it is less than 0.9%, the stability of austenite is insufficient to reflect the TRIP phenomenon in ductility.
以下に本発明の高強度薄鋼板の化学成分の限定理由を説明する。
Cは、オーステナイト安定化元素であり、残留オーステナイト生成のために重要な元素である。Cは二相共存温度域およびベイナイト変態温度域でフェライト中からオーステナイト中に移動し、その安定度を増す。その結果安定したオーステナイトが室温まで冷却した後にも残留し、これにより大きな伸びがもたらされる。Cの含有量が0.05%未満では適度の安定度を持つ残留オーステナイトを得ることができない。一方、0.25%を超えると残留オーステナイトは多量に得られるが、溶接性を低下させることになる。従って、本発明におけるCの範囲は、0.05〜0.25%とする。
The reason for limiting the chemical components of the high-strength thin steel sheet of the present invention will be described below.
C is an austenite stabilizing element and is an important element for producing retained austenite. C moves from ferrite to austenite in the two-phase coexistence temperature range and the bainite transformation temperature range, and increases its stability. As a result, stable austenite remains after cooling to room temperature, which leads to a large elongation. If the C content is less than 0.05%, retained austenite having an appropriate stability cannot be obtained. On the other hand, if it exceeds 0.25%, a large amount of retained austenite is obtained, but the weldability is lowered. Therefore, the range of C in the present invention is 0.05 to 0.25%.
Siは、残留オーステナイトを安定化させるに重要な元素であって、ベイナイト変態時に炭化物の析出を抑制することにより、未変態のオーステナイト相中に0.9%以上のCを濃化させ、Ms点を室温以下まで低下させる。また、脱酸成分としても有効で、このような効果を発揮させるためには、Siは0.01%以上添加する必要があるが、2.0%を超えて添加すると延性が低下するほか化成処理性も低下するので、上限を2.0%とする。 Si is an important element for stabilizing the retained austenite. By suppressing the precipitation of carbides during bainite transformation, 0.9% or more of C is concentrated in the untransformed austenite phase, and the Ms point. Is reduced to below room temperature. It is also effective as a deoxidizing component, and in order to exert such effects, it is necessary to add Si in an amount of 0.01% or more. Since the processability also decreases, the upper limit is made 2.0%.
Mnは、オーステナイトを安定化させるとともに鋼の焼入れ性を高めて強度を高めるのに必要である。このためには、Mnは0.8%以上添加する必要がある。しかし、3.0%を超えると伸びが低下するほか、Mnバンドが顕著になって加工性を低下させるので、上限を3.0%とする。なお、上限を2.0%とするのが成形性確保の点から望ましい。 Mn is necessary for stabilizing austenite and enhancing the hardenability of the steel to increase the strength. For this purpose, it is necessary to add 0.8% or more of Mn. However, if it exceeds 3.0%, the elongation is lowered, and the Mn band becomes prominent and the workability is lowered, so the upper limit is made 3.0%. The upper limit is preferably 2.0% from the viewpoint of securing moldability.
Pは含有量が多いと粒界へ偏析するために局部延性を劣化させる。また、溶接性を劣化させる。従って、上限を0.1%とする。なお、Pをいたずらに低減させることは、製鋼段階での精錬時のコストアップにつながるので、下限は0.0010%とする。 When P is contained in a large amount, it segregates to the grain boundary, so that the local ductility is deteriorated. In addition, the weldability is deteriorated. Therefore, the upper limit is made 0.1%. In addition, since reducing P unnecessarily leads to a cost increase at the time of refining in the steelmaking stage, the lower limit is made 0.0010%.
Sは、MnSを形成して局部延性、溶接性を著しく劣化させる元素である。従って、上限を0.05%とする。また、精錬コストの問題から下限を0.0010%とする。 S is an element that forms MnS and significantly deteriorates local ductility and weldability. Therefore, the upper limit is made 0.05%. Further, the lower limit is made 0.0010% due to the problem of refining costs.
Nは、C同様オーステナイトの安定化に寄与する。この目的のためには0.0010%以上含有する必要がある。しかし、Nを0.010%を超えて含有すると延性や溶接性が低下することとなるので、上限を0.010%とする。 N, like C, contributes to the stabilization of austenite. For this purpose, it is necessary to contain 0.0010% or more. However, if N is contained in excess of 0.010%, ductility and weldability deteriorate, so the upper limit is made 0.010%.
Alは、脱酸剤として重要である。また、ベイナイトを促進させるために重要な添加元素でもある。この目的のためにはAlは0.01%以上添加する必要がある。一方、Alを過度に添加しても上記効果は飽和し、かえって鋼を脆化させるため、その上限を2.0%とした。なお、化成処理性の要求が高い場合には、1.5%以下とするのが望ましい。 Al is important as a deoxidizer. It is also an important additive element for promoting bainite. For this purpose, Al needs to be added in an amount of 0.01% or more. On the other hand, even if Al is added excessively, the above effect is saturated and the steel is embrittled, so the upper limit was made 2.0%. In addition, when the request | requirement of chemical conversion property is high, it is desirable to set it as 1.5% or less.
Cr、Mo、Ni、Cu、Co、Wは、焼入れ性を向上させて鋼の強度を高めるが、何れも0.01%未満ではその効果は小さい。一方、5.0%を超えて添加しても、強度上昇の効果は飽和するし、延性の低下をもたらすこととなる。 Cr, Mo, Ni, Cu, Co, and W improve the hardenability and increase the strength of the steel, but the effect is small when the content is less than 0.01%. On the other hand, even if added over 5.0%, the effect of increasing the strength is saturated and the ductility is lowered.
Ti、Nb、Zr、Hf、Ta、Vは、微細な窒化物、炭化物を析出して鋼を強化させるが、何れも0.001%未満ではその効果は小さい。一方、1%を超えて添加しても効果は飽和するのみならず、延性が低下する。 Ti, Nb, Zr, Hf, Ta, and V precipitate fine nitrides and carbides to strengthen the steel, but the effect is small at less than 0.001%. On the other hand, adding over 1% not only saturates the effect, but also reduces ductility.
Bは微量で焼入れ性を高める。このためには0.0001%以上添加する必要があるが、0.0050%を超えて添加しても効果は飽和するのみならず、延性が低下する。また、Tiとの複合添加が有効である。 B increases the hardenability in a small amount. For this purpose, it is necessary to add 0.0001% or more, but even if added over 0.0050%, the effect is not only saturated but also the ductility is lowered. Further, composite addition with Ti is effective.
Mg、Ca、Y、REM(希土類元素)は、硫化物や酸化物の形状を制御して延性を向上させる。この目的のためには、これらの元素の1種または2種以上を単独または合計で0.0001%以上添加する必要がある。しかし、過度の添加は成形性を劣化させるため、その上限を0.5%とする。 Mg, Ca, Y, and REM (rare earth elements) improve the ductility by controlling the shape of sulfides and oxides. For this purpose, it is necessary to add one or more of these elements alone or in total to 0.0001% or more. However, excessive addition degrades moldability, so the upper limit is made 0.5%.
鋼は、以上の元素のほかSn、Asなどの不可避的に混入する元素を含み、残部鉄からなる。 In addition to the above elements, steel contains elements inevitably mixed such as Sn and As, and is made of the remaining iron.
以下に本発明に係る高強度薄鋼板の製造方法について説明する。
本発明の高強度薄鋼板を製造するに際しては、鋳造スラブを、液相線温度から固相線温度の間を100℃/min以上の平均冷却速度で冷却する。ここでの平均冷却速度は、スラブの中間部(厚みtのスラブの1/4tの位置)における平均冷却速度を指す。本発明においては、凝固時の冷却速度が100℃/minより高くできれば、どのような手法で鋳造しても良い。例えば、連続鋳造において、スラブ厚を薄くすることや、インゴット鋳造において、インゴットのサイズを小さくすること、また、通常のスラブのうち、冷却速度の速い表層部分を切り出し、これを用いても良い。例えば、連鋳スラブの厚さを変化させる場合には、スラブの厚みを、100〜30mmとするのが望ましい。厚みが100を超えるとスラブを十分大きい冷却速度で冷却することができないからであり、30mm未満とすると鋳造速度が大きくなって湯面変動、ブレークアウトなどを引き起こし、スラブを安定して鋳造することが困難となるからである。
Below, the manufacturing method of the high intensity | strength thin steel plate which concerns on this invention is demonstrated.
In producing the high strength thin steel sheet of the present invention, the cast slab is cooled at an average cooling rate of 100 ° C./min or more between the liquidus temperature and the solidus temperature. Here, the average cooling rate refers to the average cooling rate in the middle part of the slab (the position of 1/4 t of the slab of thickness t). In the present invention, casting may be performed by any method as long as the cooling rate during solidification can be higher than 100 ° C./min. For example, in continuous casting, the thickness of the slab may be reduced, in ingot casting, the size of the ingot may be reduced, or a surface layer portion having a high cooling rate may be cut out from a normal slab and used. For example, when the thickness of the continuous cast slab is changed, the thickness of the slab is preferably 100 to 30 mm. This is because when the thickness exceeds 100, the slab cannot be cooled at a sufficiently high cooling rate. When the thickness is less than 30 mm, the casting speed increases, causing fluctuations in the molten metal surface, breakout, etc., and stable slab casting. This is because it becomes difficult.
また、液相線温度から固相線温度の間の平均冷却速度が、100℃/min未満の場合には、溶鋼を急速に凝固させることができずに、Mnのミクロ偏析を、0.10≧σ/Mn、の関係を満たすような小さいものとすることができない。したがって、当該平均冷却速度は100℃/min以上とする。なお、望ましくは、液相線温度から固相線温度の間を平均で200℃/min以上で冷却する。これによって、Mnのミクロ偏析をより小さいものとすることができる。 In addition, when the average cooling rate between the liquidus temperature and the solidus temperature is less than 100 ° C./min, the molten steel cannot be rapidly solidified, and Mn microsegregation is reduced to 0.10. It cannot be as small as satisfying the relationship of ≧ σ / Mn. Therefore, the said average cooling rate shall be 100 degrees C / min or more. Desirably, cooling is performed at an average of 200 ° C./min or more between the liquidus temperature and the solidus temperature. Thereby, the microsegregation of Mn can be made smaller.
冷却後のスラブは、そのまま熱間圧延に供することができる。あるいは、1100℃未満に冷却されていた場合には、1100℃以上、1300℃以下に再加熱することができる。1100℃未満の温度では熱間圧延における変形抵抗が大きいからであり、1300℃超ではスケールの生成が大きくなって鋼板の表面性状を良好なものとすることができないからである。 The slab after cooling can be directly subjected to hot rolling. Alternatively, when it is cooled to less than 1100 ° C., it can be reheated to 1100 ° C. or higher and 1300 ° C. or lower. This is because the deformation resistance in hot rolling is large at a temperature below 1100 ° C., and the generation of scale is large at temperatures exceeding 1300 ° C., and the surface properties of the steel sheet cannot be made favorable.
次いで、仕上げ温度を850〜970℃としてスラブを熱間圧延する。仕上げ温度が、850℃未満では(α+γ)2相域圧延となり、板の形状を損ねる場合があるからであり、970℃を超えるとオーステナイト粒径が粗大になって、強度、延性が低下するからである。 Next, the slab is hot-rolled at a finishing temperature of 850 to 970 ° C. If the finishing temperature is less than 850 ° C., (α + γ) two-phase region rolling may occur, and the shape of the plate may be impaired. If it exceeds 970 ° C., the austenite grain size becomes coarse, and the strength and ductility decrease. It is.
鋼は熱間圧延後、700〜600℃まで平均冷却速度10〜100℃/secで一次冷却した後、1〜5秒停留させて空冷を行い、再び10〜100℃/secの平均冷却速度で二次冷却して、300℃以上、450℃以下の温度で巻き取る。熱間圧延後の冷却温度が700℃以上では、その後の空冷でのフェライトの生成が遅い。一方、600℃より低い場合には成形性に有害なパーライトが早期に生成しやすいからである。冷却後は1〜5秒停留させるが、停留時間が1秒未満ではフェライトを十分析出させることができないからであり、5秒までの冷却で所望の量のフェライトを析出させることができるからである。 After hot rolling, the steel is first cooled to 700 to 600 ° C. at an average cooling rate of 10 to 100 ° C./sec, then stopped for 1 to 5 seconds, air cooled, and again at an average cooling rate of 10 to 100 ° C./sec. Secondary cooling is performed and winding is performed at a temperature of 300 ° C. or higher and 450 ° C. or lower. When the cooling temperature after hot rolling is 700 ° C. or higher, the formation of ferrite in the subsequent air cooling is slow. On the other hand, when the temperature is lower than 600 ° C., pearlite harmful to moldability is easily generated at an early stage. After cooling, it is retained for 1 to 5 seconds, but if the retention time is less than 1 second, ferrite cannot be sufficiently precipitated, and a desired amount of ferrite can be precipitated by cooling to 5 seconds. is there.
停留後は再び10〜100℃/secの平均冷却速度で冷却して300℃以上450℃以下の温度で巻き取る。10℃/sec未満の冷却速度では、有害なパーライトが生成するからであり、また、100℃/secでの冷却で十分パーライトの生成を抑制することができからである。また、巻取り温度が450℃超では炭化物生成が促進され300℃より低いとベイナイトの生成が困難となるので、巻取り温度は300℃以上450℃以下とする。ベイナイト変態させることによりオーステナイト中の炭素濃度を高めて室温においても安定な残留オーステナイトを残存させることができる。
以上のようにスラブを高速で冷却した後に、温度を制御して熱間圧延を行って巻き取ることによって、Mnのミクロ偏析が小さく、フェライトを主相とし、3%以上の残留オーステナイトを含有する組織が均一で、成形性に優れた高強度薄鋼板を製造することができる。
After stopping, it is cooled again at an average cooling rate of 10 to 100 ° C./sec and wound up at a temperature of 300 ° C. or higher and 450 ° C. or lower. This is because harmful pearlite is generated at a cooling rate of less than 10 ° C./sec, and generation of pearlite can be sufficiently suppressed by cooling at 100 ° C./sec. Further, when the coiling temperature exceeds 450 ° C., carbide formation is promoted, and when it is lower than 300 ° C., it becomes difficult to form bainite. Therefore, the coiling temperature is set to 300 ° C. or more and 450 ° C. or less. By performing bainite transformation, the carbon concentration in the austenite can be increased, and stable retained austenite can be left even at room temperature.
As described above, after cooling the slab at high speed, by controlling the temperature and performing hot rolling to take up, the microsegregation of Mn is small, the main phase is ferrite, and 3% or more of retained austenite is contained. A high-strength thin steel sheet having a uniform structure and excellent formability can be produced.
また、本発明の成形性に優れた高強度薄鋼板は、以下のようにして製造することができる。すなわち、上記したような化学成分を有する鋳造スラブを、スラブ中間部の平均冷却速度を100℃/min以上として、液相線温度から固相線温度の間を冷却した後に、そのまま若しくは1100℃以上に再加熱する。スラブの冷却において温度を制御する理由は既記したとおりである。 Moreover, the high-strength thin steel sheet excellent in formability of the present invention can be produced as follows. That is, the casting slab having the above-described chemical component is cooled as it is or 1100 ° C. or more after cooling between the liquidus temperature and the solidus temperature with an average cooling rate of the slab intermediate part being 100 ° C./min or more. Reheat to. The reason for controlling the temperature in cooling the slab is as described above.
次いで、仕上げ温度を850〜970℃として熱間圧延を行い、その後650℃以下の温度域まで平均冷却速度10〜100℃/secで冷却した後650℃以下の温度で巻き取って、上記したような熱延鋼板となす。仕上げ温度の限定理由は既記したとおりである。熱間圧延後の冷却温度が650℃より高い場合には、層状のパーライトが生成しやすくなるからである。また、冷却速度が10℃/sec未満でも層状パーライトが生成しやすいためであり、100℃/sec超では巻取り温度の制御が困難となるからである。そして、巻取り温度を650℃以下とするのは、これより高い温度では層状パーライトが生成しやすく均一な熱延組織を得ることが困難となるからである。 Next, hot rolling is performed at a finishing temperature of 850 to 970 ° C., and then cooling is performed at an average cooling rate of 10 to 100 ° C./sec. A hot-rolled steel sheet. The reasons for limiting the finishing temperature are as described above. This is because when the cooling temperature after hot rolling is higher than 650 ° C., layered pearlite is easily generated. Further, even if the cooling rate is less than 10 ° C./sec, layered pearlite is likely to be generated, and if it exceeds 100 ° C./sec, it is difficult to control the coiling temperature. The reason why the coiling temperature is set to 650 ° C. or lower is that, at a temperature higher than this, lamellar pearlite is easily generated and it is difficult to obtain a uniform hot rolled structure.
以上のようにして製造した熱延鋼板を、酸洗後圧下率40%以上の冷間圧延を施し、最高温度を0.1×(Ac3−Ac1)+Ac1以上、Ac3+50℃以下の温度で焼鈍した後に、0.1〜200℃/secの平均冷却速度で350〜500℃の温度域に冷却し、引き続いて同温度域で10〜1000秒保持することによって、成形性に優れた高強度薄鋼板を製造することができる。 The hot-rolled steel sheet produced as described above is cold-rolled at a reduction rate of 40% or more after pickling, and the maximum temperature is 0.1 × (Ac 3 -Ac 1 ) + Ac 1 or more, Ac 3 + 50 ° C. or less. After being annealed at a temperature of, it is cooled to a temperature range of 350 to 500 ° C. at an average cooling rate of 0.1 to 200 ° C./sec, and subsequently held in the same temperature range for 10 to 1000 seconds, thereby being excellent in moldability. High strength thin steel sheet can be manufactured.
冷延鋼板の製造において、圧下率が40%未満では焼鈍後の結晶粒を微細なものとすることができないので、圧下率は40%以上とする。
また、焼鈍の最高温度は、0.1×(Ac3−Ac1)+Ac1以上、Ac3+50℃以下とする必要がある。最高温度が、0.1×(Ac3−Ac1)+Ac1 (℃)未満の場合には、焼鈍温度で得られるオーステナイト量が少ないので、鋼板中に所望の量の残留オーステナイトを残すことができない。また、焼鈍温度の高温化は粒界酸化層の生成や結晶粒の粗大化が促進されるうえ、製造コストの上昇をまねくために、焼鈍温度の上限をAc3+50℃以下とする。
In the production of a cold-rolled steel sheet, if the rolling reduction is less than 40%, crystal grains after annealing cannot be made fine, so the rolling reduction is set to 40% or more.
Further, the maximum temperature of the annealing, 0.1 × (Ac 3 -Ac 1 ) + Ac 1 or more, is required to be Ac 3 + 50 ° C. or less. When the maximum temperature is less than 0.1 × (Ac 3 −Ac 1 ) + Ac 1 (° C.), the amount of austenite obtained at the annealing temperature is small, so that a desired amount of retained austenite may be left in the steel sheet. Can not. Further, increasing the annealing temperature promotes the formation of grain boundary oxide layers and the coarsening of crystal grains, and increases the manufacturing cost, so that the upper limit of the annealing temperature is set to Ac 3 + 50 ° C. or lower.
焼鈍後の冷却は、オーステナイト相からフェライト相への変態を促して、未変態のオーステナイト相中にCを濃化させてオーステナイトの安定化を図るのに重要である。この冷却速度を0.1℃/sec未満にすることは、パーライトが生成してしまうため、この冷却速度の下限を0.1℃/secとする。一方、冷却速度が200℃/sec超の場合にはフェライト変態を十分進行させることができないので、焼鈍後の冷却速度は、0.1〜200℃/secとする。 Cooling after annealing is important for promoting the transformation from the austenite phase to the ferrite phase and concentrating C in the untransformed austenite phase to stabilize the austenite. When this cooling rate is less than 0.1 ° C./sec, pearlite is generated, so the lower limit of this cooling rate is 0.1 ° C./sec. On the other hand, when the cooling rate exceeds 200 ° C./sec, the ferrite transformation cannot sufficiently proceed, so the cooling rate after annealing is 0.1 to 200 ° C./sec.
冷却温度は、350〜500℃とする。350℃未満ではマルテンサイトが発生しやすくなるからであり、500℃を超えるとベイナイトを生成させることが困難となるからである。
そして、鋼板をその温度域で10〜1000秒保持する。10秒未満ででは、ベイナイトを十分生成させることができないからであり、1000秒までの保持で目的とするベイナイト量を生成させることができるからである。1000秒を超えると炭化物が生成してしまう。
Cooling temperature shall be 350-500 degreeC. This is because martensite is likely to be generated when the temperature is lower than 350 ° C., and it is difficult to generate bainite when the temperature exceeds 500 ° C.
And a steel plate is hold | maintained for 10 to 1000 seconds in the temperature range. This is because if it is less than 10 seconds, sufficient bainite cannot be generated, and the target amount of bainite can be generated by holding up to 1000 seconds. If it exceeds 1000 seconds, carbides are generated.
以上のようにスラブを高速で冷却した後に、温度を制御して熱延鋼板を製造し、この熱延鋼板を冷延、焼鈍することによって、Mnのミクロ偏析が小さく、フェライトを主相とし、3%以上の残留オーステナイトを含有する組織が均一で、成形性に優れた高強度薄鋼板を製造することができる。 After cooling the slab at a high speed as described above, a hot-rolled steel sheet is produced by controlling the temperature, and by cold-rolling and annealing the hot-rolled steel sheet, Mn microsegregation is small, and ferrite is the main phase. A high-strength thin steel sheet having a uniform structure containing 3% or more of retained austenite and excellent in formability can be produced.
以下、実施例に基づき本発明を詳細に説明する。
転炉またはラボで溶製した表1に示す化学成分の鋼を鋳造した。このとき、スラブの1/4tにおける液相線温度から固相線温度間の冷却速度を表2および3に示すように変化させた。これらのスラブを熱間圧延に供して熱延鋼板、ならびに冷延鋼板を製造した。熱延鋼板の製造条件、材料特性を表2に、冷延鋼板の製造条件、材料特性を表3に示す。
Hereinafter, the present invention will be described in detail based on examples.
Steels having chemical components shown in Table 1 that were melted in a converter or a laboratory were cast. At this time, the cooling rate between the liquidus temperature and the solidus temperature at 1/4 t of the slab was changed as shown in Tables 2 and 3. These slabs were subjected to hot rolling to produce hot rolled steel sheets and cold rolled steel sheets. Table 2 shows the manufacturing conditions and material characteristics of the hot-rolled steel sheet, and Table 3 shows the manufacturing conditions and material characteristics of the cold-rolled steel sheet.
表2、3において、残留オーステナイトの体積率およびその炭素濃度は、特開平11−193435号公報に記載されているように、X線解析により実験的に求めた。即ち残留オーステナイトの体積率Vγは、Mo−Kα線を用いて得たデータから次式により算出することができる。
Vγ=(2/3){100/(0.7×α(211)/γ(220)+1)}+(1/3){100/(0.78×α(211)/γ(311)+1)}
但し、α(211)、γ(220)、α(211)、γ(311)は面強度を示す。
また、残留オーステナイトの炭素濃度Cγは、Cu−Kα線によるX線解析でオーステナイトの(200)面、(220)面、(311)面の反射角から格子定数(単位はオングストローム)を求め、次式に従い、算出することができる。
Cγ=(格子定数−3.572)/0.033
In Tables 2 and 3, the volume fraction of retained austenite and its carbon concentration were experimentally determined by X-ray analysis as described in JP-A-11-193435. That is, the volume fraction Vγ of retained austenite can be calculated from the data obtained using the Mo—Kα ray by the following equation.
Vγ = (2/3) {100 / (0.7 × α (211) / γ (220) +1)} + (1/3) {100 / (0.78 × α (211) / γ (311) +1)}
However, α (211), γ (220), α (211), and γ (311) indicate surface strength.
The carbon concentration Cγ of retained austenite is obtained by calculating the lattice constant (unit: angstrom) from the reflection angles of the (200) plane, (220) plane, and (311) plane of austenite by X-ray analysis using Cu-Kα ray. It can be calculated according to the formula.
Cγ = (lattice constant−3.572) /0.033
表1中、上段のH付き鋼種は熱延鋼板の製造に供した鋼であり、下段のC付き鋼種は冷延鋼板の製造に供した鋼である。
先ず、熱延鋼板製造の試験結果について表1、2により説明する。
鋼種AH〜GHは、化学成分が本発明の範囲内にある鋼である。これに対し、鋼種CAHはMnが本発明の範囲より高い。このため組織中にマルテンサイトが発生して、処理番号22に示すとおり強度は高いが伸びが極めて低いものとなった。
また、鋼種CBHはCr、Mo、Mgが、鋼種CCHはTi、Nbが本発明の範囲より高い。このため処理番号23、24に示すとおり熱延中に割れが多発してしまった。
In Table 1, the upper steel grade with H is steel used for the production of hot-rolled steel sheets, and the lower steel grade with C is steel used for the production of cold-rolled steel sheets.
First, the test results of hot-rolled steel sheet production will be described with reference to Tables 1 and 2.
Steel types AH to GH are steels whose chemical components are within the scope of the present invention. On the other hand, the steel type CAH has a Mn higher than the range of the present invention. For this reason, martensite was generated in the structure, and the strength was high but the elongation was extremely low as shown in Process No. 22.
Steel grade CBH is higher in Cr, Mo and Mg, and steel grade CCH is higher in Ti and Nb than the scope of the present invention. For this reason, as shown in treatment numbers 23 and 24, cracks frequently occurred during hot rolling.
処理番号3、5、8、14、18のものは、鋼種は本発明の範囲内にある化学成分を有するが、鋳造時のスラブの冷却において、液相線温度から固相線温度の間の冷却速度が100℃/minより大幅に小さい。このためMnのミクロ偏析の指数σ/Mnが0.1より大きく、Mnバンドが形成されて組織が不均一なものとなって、伸びの低い熱延鋼板となってしまった。 For treatment numbers 3, 5, 8, 14, and 18, the steel grade has a chemical component that is within the scope of the present invention, but in the cooling of the slab during casting, between the liquidus temperature and the solidus temperature. The cooling rate is significantly lower than 100 ° C./min. For this reason, the index σ / Mn of Mn microsegregation was larger than 0.1, and a Mn band was formed and the structure became non-uniform, resulting in a hot-rolled steel sheet with low elongation.
処理番号9のものは、熱延の仕上げ温度が低く、巻取りまでの平均冷却速度が小さく、且つ巻取り温度が本発明の範囲より高い。このため残留オーステナイトを残存させることができず鋼板の強度が低く且つ伸びが小さい。
処理番号12のものは、熱延後の冷却速度が小さく、一次冷却停止温度が低く、冷却後の停留時間が本発明の範囲より長い。このため、パーライトが生成して残留オーステナイトを生成させることができず、その結果強度、伸びバランスに劣る鋼板となってしまった。
処理番号21のものは、熱延前の加熱温度が低い。また、巻取りまでの平均冷却速度が小さく、巻取り温度が本発明の範囲を超えて高い。この結果、組織中にパーライトが生成して十分なベイナイトを生成させることができず強度が低くなってしまった。
Process No. 9 has a low hot rolling finishing temperature, a small average cooling rate until winding, and a winding temperature higher than the range of the present invention. For this reason, residual austenite cannot be left, and the strength of the steel sheet is low and the elongation is small.
In the process number 12, the cooling rate after hot rolling is small, the primary cooling stop temperature is low, and the retention time after cooling is longer than the range of the present invention. For this reason, pearlite was produced | generated and a retained austenite could not be produced | generated, As a result, it became the steel plate inferior to an intensity | strength and an elongation balance.
The thing of the process number 21 has the low heating temperature before hot rolling. Moreover, the average cooling rate until winding is small, and winding temperature is high exceeding the range of this invention. As a result, pearlite was generated in the structure, and sufficient bainite could not be generated, resulting in low strength.
以上のような比較例に対して、処理番号1、2、4、6、7、10、11、13、15、16、17、19、20のものは、供試鋼の化学成分が適正であって、スラブの冷却条件、熱延条件も本発明の範囲内の条件であったので、Mnのミクロ偏析が小さく主相をフェライト組織とし、適度な量の残留オーステナイトを確保することができた。その結果、強度、延性バランスに優れた高強度薄鋼板を製造することができた。 Compared to the comparative examples as described above, the chemical composition of the test steel is appropriate for the treatment numbers 1, 2, 4, 6, 7, 10, 11, 13, 15, 16, 17, 19, and 20. Since the slab cooling conditions and hot rolling conditions were also within the scope of the present invention, the microphase segregation of Mn was small and the main phase was a ferrite structure, and an appropriate amount of retained austenite could be secured. . As a result, a high-strength thin steel sheet having an excellent balance between strength and ductility could be produced.
次に、冷延鋼板製造の試験結果について表1、3により説明する。
鋼種AC〜HCは、化学成分が本発明の範囲内にある鋼である。これに対し、鋼種CACはMnが本発明の範囲より高い。このため組織中にマルテンサイトが発生して、処理番号53に示すとおり強度が高いが伸びが著しく低いものとなった。
また、鋼種CBCはMo、Cuが、鋼種CCCはC、Ti、Nbが、鋼種CDCはB、Mgが本発明の範囲より高い。このため処理番号54、55、56に示すとおり熱延中に割れが多発して冷延が不可能であった。
Next, the test results of cold-rolled steel sheet production will be described with reference to Tables 1 and 3.
Steel types AC to HC are steels whose chemical components are within the scope of the present invention. On the other hand, the steel type CAC has a Mn higher than the range of the present invention. For this reason, martensite was generated in the structure, and as shown in treatment number 53, the strength was high but the elongation was extremely low.
Further, the steel type CBC is higher in the range of Mo and Cu, the steel type CCC is higher in the range of C, Ti and Nb, and the steel type CDC is higher in the range of B and Mg. For this reason, as shown in treatment numbers 54, 55 and 56, cracks frequently occurred during hot rolling, and cold rolling was impossible.
処理番号33、35、38、46、51のものは、鋼種は本発明の範囲内にある化学成分を有するが、鋳造時のスラブの冷却において、液相線温度から固相線温度の間の冷却速度が100℃/minより大幅に小さい。このためMnのミクロ偏析の指数σ/Mnが0.1より大きく、Mnバンドが形成された結果組織が不均一なものとなって強度、伸びバランスの劣る冷延鋼板となってしまった。 For treatment numbers 33, 35, 38, 46 and 51, the steel grade has a chemical component within the scope of the present invention, but in the cooling of the slab during casting, between the liquidus temperature and the solidus temperature. The cooling rate is significantly lower than 100 ° C./min. For this reason, the index σ / Mn of Mn microsegregation was larger than 0.1, and as a result of the formation of the Mn band, the structure became non-uniform, resulting in a cold-rolled steel sheet with poor strength and elongation balance.
処理番号39のものは、熱延前の加熱温度、熱延の仕上げ温度が低く、巻取りまでの平均冷却速度が小さく、且つ冷延の圧下率が低い。このため炭素濃度の高い残留オーステナイトを生成することができず、また結晶粒も粗大なものとなって、鋼板の伸びが低い。
処理番号40のものは、焼鈍後の冷却速度が本発明の範囲より小さい。このため冷却中にパーライトが生成してしまって残留オーステナイトを残存させることができず、強度の低い鋼板となってしまった。
In the process No. 39, the heating temperature before hot rolling and the finishing temperature of hot rolling are low, the average cooling rate until winding is small, and the rolling reduction of cold rolling is low. For this reason, a retained austenite with a high carbon concentration cannot be generated, and the crystal grains are coarse, so that the elongation of the steel sheet is low.
The thing of the process number 40 has the cooling rate after annealing smaller than the range of this invention. For this reason, pearlite was generated during cooling, and the retained austenite could not be left, resulting in a steel sheet having low strength.
処理番号41のものは、焼鈍の最高温度が低く、焼鈍の冷却停止温度が高い。このため残留オーステナイトを残存させることができず、よって鋼板の強度、伸びが低い。
処理番号49のものは、熱延仕上げ温度が低く、巻取り温度が本発明の範囲を超えて高い。また、焼鈍の最高温度が低く、冷却停止後の保持時間が長い。このため、残留オーステナイトを残存させることができず、強度が低く、伸びの小さい鋼板となってしまった。
The thing of the process number 41 has the low maximum temperature of annealing, and the cooling stop temperature of annealing is high. For this reason, residual austenite cannot be left, and therefore the strength and elongation of the steel sheet are low.
In the case of treatment number 49, the hot rolling finishing temperature is low and the winding temperature is higher than the range of the present invention. Moreover, the maximum temperature of annealing is low and the holding time after a cooling stop is long. For this reason, the retained austenite cannot be left, and the steel sheet has low strength and small elongation.
以上のような比較例に対して、処理番号31、32、34、36、37、42〜45、47、48、50、52のものは、供試鋼の化学成分が適正であって、スラブの冷却条件、熱延条件ならびに冷延、焼鈍条件が本発明の範囲内であったので、Mnのミクロ偏析が小さくフェライト・ベイナイト組織に3%以上の残留オーステナイトを有する組織が均一で、成形性に優れた高強度薄鋼板を製造することができた。 Compared to the comparative examples as described above, the treatment numbers 31, 32, 34, 36, 37, 42 to 45, 47, 48, 50, and 52 are suitable for the chemical composition of the test steel, and the slab Since the cooling conditions, hot rolling conditions, cold rolling and annealing conditions of the present invention were within the scope of the present invention, the micro segregation of Mn was small and the structure containing 3% or more of retained austenite in the ferrite-bainite structure was uniform and formability It was possible to produce a high-strength thin steel sheet with excellent resistance.
Claims (7)
C:0.05〜0.25%、Si:2.0%以下、Mn:0.8〜3%、P:0.0010〜0.1%、S:0.0010〜0.05%、N:0.0010〜0.010%、Al:0.01〜2.0%を含有し、残部鉄及び不可避的不純物からなる鋼組成を有し、
板厚tの1/8t〜3/8tの範囲でのMnミクロ偏析が、式(1)を満たす範囲にあり、
組織中に平均炭素量0.9%以上の残留オーステナイトを3%以上含有することを特徴とする成形性に優れた高強度薄鋼板。
0.10≧σ/Mn ・・・(1)
ここでMnは添加量、σはMnミクロ偏析測定における標準偏差である。 In mass%
C: 0.05-0.25%, Si: 2.0% or less, Mn: 0.8-3%, P: 0.0010-0.1%, S: 0.0010-0.05%, N: 0.0010 to 0.010%, Al: 0.01 to 2.0%, and having a steel composition composed of the balance iron and inevitable impurities,
Mn microsegregation in the range of 1 / 8t to 3 / 8t of the plate thickness t is in the range satisfying the formula (1),
A high-strength thin steel sheet with excellent formability characterized by containing 3% or more of retained austenite having an average carbon content of 0.9% or more in the structure.
0.10 ≧ σ / Mn (1)
Here, Mn is an addition amount, and σ is a standard deviation in Mn microsegregation measurement.
Cr:0.01〜5%、Mo:0.01〜5%、Ni:0.01〜5%、Cu:0.01〜5%、Co:0.01〜5%、W:0.01〜5%の1種または2種以上を含有することを特徴とする請求項1に記載の成形性に優れた高強度薄鋼板。 Further during the steel composition
Cr: 0.01-5%, Mo: 0.01-5%, Ni: 0.01-5%, Cu: 0.01-5%, Co: 0.01-5%, W: 0.01 The high-strength thin steel sheet having excellent formability according to claim 1, containing ˜5% of one kind or two or more kinds.
Ti、Nb、Zr、Hf、Ta、Vの1種または2種以上を、単独または合計で0.001〜1%含有することを特徴とする請求項1または2に記載の成形性に優れた高強度薄鋼板。 Further during the steel composition
One or two or more of Ti, Nb, Zr, Hf, Ta, and V are contained alone or in total in an amount of 0.001 to 1%, and the moldability according to claim 1 or 2 is excellent. High strength thin steel sheet.
Bを0.0001〜0.0050%含有することを特徴とする請求項1〜3の何れかにに記載の成形性に優れた高強度薄鋼板。 Further during the steel composition
The high strength thin steel sheet having excellent formability according to any one of claims 1 to 3, wherein B is contained in an amount of 0.0001 to 0.0050%.
Mg、Ca、Y、REMの1種または2種以上を0.0001〜0.5%含有することを特徴とする請求項1〜4の何れかに記載の成形性に優れた高強度薄鋼板。 Further during the steel composition
The high-strength thin steel sheet having excellent formability according to any one of claims 1 to 4, comprising 0.0001 to 0.5% of one or more of Mg, Ca, Y, and REM. .
鋳造後冷却途中のスラブを、スラブの厚みtの1/4tの位置における平均冷却速度を100℃/min以上として、液相線温度から固相線温度の間を冷却した後に、そのまま又は1100℃以上に再加熱し、
次いで、仕上げ温度を850〜970℃として熱間圧延を行い、その後700〜600℃の温度域まで平均冷却速度10〜100℃/secで冷却した後、同温度域で1〜5秒停留させた後、再び平均冷却速度10〜100℃/secで冷却して300℃以上450℃以下の温度で巻き取って、熱延鋼板となすことを特徴とする成形性に優れた高強度薄鋼板の製造方法。 A method for producing a high-strength thin steel sheet, wherein the high-strength thin steel sheet according to claim 1 is produced from a slab,
The slab in the middle of cooling after casting is cooled as it is or 1100 ° C after cooling between the liquidus temperature and the solidus temperature at an average cooling rate at 1/4 t of the slab thickness t of 100 ° C / min or more. Reheat to above,
Subsequently, hot rolling was performed at a finishing temperature of 850 to 970 ° C., and thereafter cooling was performed at an average cooling rate of 10 to 100 ° C./sec to a temperature range of 700 to 600 ° C., and then retained in the same temperature range for 1 to 5 seconds. After that, it is cooled again at an average cooling rate of 10 to 100 ° C./sec and wound at a temperature of 300 ° C. or higher and 450 ° C. or lower to produce a hot-rolled steel plate. Method.
鋳造後冷却途中のスラブを、スラブの厚みtの1/4tの位置における平均冷却速度を100℃/min以上として、液相線温度から固相線温度の温度域を冷却した後に、そのまま又は1100℃以上に再加熱して、
仕上げ温度を850〜970℃として熱間圧延を行い、その後650℃以下の温度域まで平均冷却速度10〜100℃/secで冷却した後、650℃以下の温度で巻取って、熱延鋼板となし、
当該熱延鋼板を、酸洗後圧下率40%以上の冷間圧延を施し、
最高温度を0.1×(Ac3 −Ac1 )+Ac1 以上、Ac3 +50℃以下として焼鈍した後に、平均で0.1〜200℃/secの冷却速度で350℃以上、500℃以下の温度域に冷却し、引き続いて同温度域で10秒以上、1000秒以下保持して、冷延鋼板となすことを特徴とする成形性に優れた高強度薄鋼板の製造方法。
A method for producing a high-strength thin steel sheet, wherein the high-strength thin steel sheet according to claim 1 is produced from a slab,
The slab that is in the process of being cooled after casting is cooled as it is or 1100 after cooling the temperature range from the liquidus temperature to the solidus temperature at an average cooling rate at 1/4 t of the slab thickness t of 100 ° C./min or more. Reheat to over ℃,
Hot-rolling is performed at a finishing temperature of 850 to 970 ° C., and then cooled to a temperature range of 650 ° C. or lower at an average cooling rate of 10 to 100 ° C./sec. None,
The hot-rolled steel sheet is subjected to cold rolling with a reduction rate of 40% or more after pickling,
After annealing at a maximum temperature of 0.1 × (Ac 3 −Ac 1 ) + Ac 1 or more and Ac 3 + 50 ° C. or less, 350 ° C. or more and 500 ° C. or less at an average cooling rate of 0.1 to 200 ° C./sec. A method for producing a high-strength thin steel sheet having excellent formability, wherein the steel sheet is cooled to a temperature range and subsequently kept in the same temperature range for 10 seconds to 1000 seconds to form a cold-rolled steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005256602A JP4410741B2 (en) | 2005-09-05 | 2005-09-05 | High strength thin steel sheet with excellent formability and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005256602A JP4410741B2 (en) | 2005-09-05 | 2005-09-05 | High strength thin steel sheet with excellent formability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007070660A true JP2007070660A (en) | 2007-03-22 |
JP4410741B2 JP4410741B2 (en) | 2010-02-03 |
Family
ID=37932379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005256602A Active JP4410741B2 (en) | 2005-09-05 | 2005-09-05 | High strength thin steel sheet with excellent formability and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4410741B2 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009263685A (en) * | 2008-04-22 | 2009-11-12 | Nippon Steel Corp | High strength steel sheet having reduced deterioration in characteristic after cutting, and method for producing the same |
JP2011084813A (en) * | 2009-09-15 | 2011-04-28 | Usui Kokusai Sangyo Kaisha Ltd | Workpiece made of high strength steel having excellent notch fatigue strength, and method for producing the same |
KR101412354B1 (en) | 2012-03-29 | 2014-06-25 | 현대제철 주식회사 | High strength steel sheet and method for manufacturing the same |
CN104264039A (en) * | 2014-10-13 | 2015-01-07 | 内蒙古科技大学 | TRIP (transformation induced plasticity) steel plate containing rare earth La and preparation method |
JP2015078398A (en) * | 2013-10-15 | 2015-04-23 | 新日鐵住金株式会社 | HIGH-STRENGTH STEEL SHEET, HIGH-STRENGTH GALVANIZED STEEL SHEET AND HIGH-STRENGTH ALLOYED GALVANIZED STEEL SHEET HAVING MAXIMUM TENSILE STRENGTH OF 780 MPa AND EXCELLENT COLLISION CHARACTERISTIC AND THEIR PRODUCTION METHOD |
JP2015078394A (en) * | 2013-10-15 | 2015-04-23 | 新日鐵住金株式会社 | HIGH-STRENGTH COLD-ROLLED STEEL SHEET, HIGH-STRENGTH GALVANIZED STEEL SHEET AND HIGH-STRENGTH ALLOYED GALVANIZED STEEL SHEET HAVING MAXIMUM TENSILE STRENGTH OF 780 MPa AND EXCELLENT COLLISION CHARACTERISTIC AND THEIR PRODUCTION METHOD |
CN105039851A (en) * | 2015-08-17 | 2015-11-11 | 攀钢集团攀枝花钢铁研究院有限公司 | Titanium alloyed TAM steel and manufacturing method thereof |
CN105039845A (en) * | 2015-08-17 | 2015-11-11 | 攀钢集团攀枝花钢铁研究院有限公司 | Vanadium alloying TAM steel and preparing method thereof |
CN105886942A (en) * | 2016-06-21 | 2016-08-24 | 安庆市灵宝机械有限责任公司 | High-tungsten wear-resistant alloy steel |
CN106119697A (en) * | 2016-06-21 | 2016-11-16 | 安庆市灵宝机械有限责任公司 | A kind of high tungsten wear-resisting alloy steel preparation method |
JP2017002366A (en) * | 2015-06-11 | 2017-01-05 | 新日鐵住金株式会社 | Hot rolled steel sheet excellent in cold workability and manufacturing method thereof |
CN107475627A (en) * | 2017-08-23 | 2017-12-15 | 武汉钢铁有限公司 | 600MPa levels analysis of producing hot rolled TRIP and manufacture method based on CSP flows |
CN107488814A (en) * | 2017-08-23 | 2017-12-19 | 武汉钢铁有限公司 | 800MPa levels analysis of producing hot rolled TRIP and manufacture method based on CSP flows |
CN107557692A (en) * | 2017-08-23 | 2018-01-09 | 武汉钢铁有限公司 | 1000MPa levels analysis of producing hot rolled TRIP and manufacture method based on CSP flows |
US9988700B2 (en) * | 2011-07-29 | 2018-06-05 | Nippon Steel & Sumitomo Metal Corporation | High-strength steel sheet and high-strength galvanized steel sheet excellent in shape fixability, and manufacturing method thereof |
JP2018145525A (en) * | 2017-03-07 | 2018-09-20 | Jfeスチール株式会社 | Hot rolled steel sheet and production method thereof, cold rolled steel sheet and production method thereof, production method of cold rolled annealed steel sheet, and production method of hot-dip galvanized steel sheet |
WO2020179295A1 (en) * | 2019-03-06 | 2020-09-10 | 日本製鉄株式会社 | Hot-rolled steel sheet |
WO2020179292A1 (en) * | 2019-03-06 | 2020-09-10 | 日本製鉄株式会社 | Hot rolled steel sheet |
WO2021117711A1 (en) | 2019-12-09 | 2021-06-17 | 日本製鉄株式会社 | Hot-rolled steel sheet |
JPWO2021206045A1 (en) * | 2020-04-07 | 2021-10-14 | ||
CN115612928A (en) * | 2022-09-27 | 2023-01-17 | 武汉钢铁有限公司 | High-strength steel based on CSP process and manufacturing method thereof |
US12116646B2 (en) | 2020-03-11 | 2024-10-15 | Nippon Steel Corporation | Hot-rolled steel sheet |
-
2005
- 2005-09-05 JP JP2005256602A patent/JP4410741B2/en active Active
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009263685A (en) * | 2008-04-22 | 2009-11-12 | Nippon Steel Corp | High strength steel sheet having reduced deterioration in characteristic after cutting, and method for producing the same |
JP2011084813A (en) * | 2009-09-15 | 2011-04-28 | Usui Kokusai Sangyo Kaisha Ltd | Workpiece made of high strength steel having excellent notch fatigue strength, and method for producing the same |
US9988700B2 (en) * | 2011-07-29 | 2018-06-05 | Nippon Steel & Sumitomo Metal Corporation | High-strength steel sheet and high-strength galvanized steel sheet excellent in shape fixability, and manufacturing method thereof |
KR101412354B1 (en) | 2012-03-29 | 2014-06-25 | 현대제철 주식회사 | High strength steel sheet and method for manufacturing the same |
JP2015078398A (en) * | 2013-10-15 | 2015-04-23 | 新日鐵住金株式会社 | HIGH-STRENGTH STEEL SHEET, HIGH-STRENGTH GALVANIZED STEEL SHEET AND HIGH-STRENGTH ALLOYED GALVANIZED STEEL SHEET HAVING MAXIMUM TENSILE STRENGTH OF 780 MPa AND EXCELLENT COLLISION CHARACTERISTIC AND THEIR PRODUCTION METHOD |
JP2015078394A (en) * | 2013-10-15 | 2015-04-23 | 新日鐵住金株式会社 | HIGH-STRENGTH COLD-ROLLED STEEL SHEET, HIGH-STRENGTH GALVANIZED STEEL SHEET AND HIGH-STRENGTH ALLOYED GALVANIZED STEEL SHEET HAVING MAXIMUM TENSILE STRENGTH OF 780 MPa AND EXCELLENT COLLISION CHARACTERISTIC AND THEIR PRODUCTION METHOD |
CN104264039A (en) * | 2014-10-13 | 2015-01-07 | 内蒙古科技大学 | TRIP (transformation induced plasticity) steel plate containing rare earth La and preparation method |
JP2017002366A (en) * | 2015-06-11 | 2017-01-05 | 新日鐵住金株式会社 | Hot rolled steel sheet excellent in cold workability and manufacturing method thereof |
CN105039851A (en) * | 2015-08-17 | 2015-11-11 | 攀钢集团攀枝花钢铁研究院有限公司 | Titanium alloyed TAM steel and manufacturing method thereof |
CN105039851B (en) * | 2015-08-17 | 2017-03-01 | 攀钢集团攀枝花钢铁研究院有限公司 | Ti Alloying TAM steel and its manufacture method |
CN105039845A (en) * | 2015-08-17 | 2015-11-11 | 攀钢集团攀枝花钢铁研究院有限公司 | Vanadium alloying TAM steel and preparing method thereof |
CN106119697A (en) * | 2016-06-21 | 2016-11-16 | 安庆市灵宝机械有限责任公司 | A kind of high tungsten wear-resisting alloy steel preparation method |
CN105886942A (en) * | 2016-06-21 | 2016-08-24 | 安庆市灵宝机械有限责任公司 | High-tungsten wear-resistant alloy steel |
JP2018145525A (en) * | 2017-03-07 | 2018-09-20 | Jfeスチール株式会社 | Hot rolled steel sheet and production method thereof, cold rolled steel sheet and production method thereof, production method of cold rolled annealed steel sheet, and production method of hot-dip galvanized steel sheet |
CN107488814A (en) * | 2017-08-23 | 2017-12-19 | 武汉钢铁有限公司 | 800MPa levels analysis of producing hot rolled TRIP and manufacture method based on CSP flows |
CN107475627A (en) * | 2017-08-23 | 2017-12-15 | 武汉钢铁有限公司 | 600MPa levels analysis of producing hot rolled TRIP and manufacture method based on CSP flows |
CN107475627B (en) * | 2017-08-23 | 2018-12-21 | 武汉钢铁有限公司 | 600MPa grade analysis of producing hot rolled TRIP and manufacturing method based on CSP process |
CN107557692A (en) * | 2017-08-23 | 2018-01-09 | 武汉钢铁有限公司 | 1000MPa levels analysis of producing hot rolled TRIP and manufacture method based on CSP flows |
EP3936628A4 (en) * | 2019-03-06 | 2022-10-26 | Nippon Steel Corporation | Hot rolled steel sheet |
WO2020179295A1 (en) * | 2019-03-06 | 2020-09-10 | 日本製鉄株式会社 | Hot-rolled steel sheet |
WO2020179292A1 (en) * | 2019-03-06 | 2020-09-10 | 日本製鉄株式会社 | Hot rolled steel sheet |
JP6784344B1 (en) * | 2019-03-06 | 2020-11-11 | 日本製鉄株式会社 | Hot-rolled steel sheet |
JP6784343B1 (en) * | 2019-03-06 | 2020-11-11 | 日本製鉄株式会社 | Hot-rolled steel sheet |
CN113330127A (en) * | 2019-03-06 | 2021-08-31 | 日本制铁株式会社 | Hot rolled steel plate |
US12123064B2 (en) | 2019-03-06 | 2024-10-22 | Nippon Steel Corporation | Hot-rolled steel sheet |
EP3936630A4 (en) * | 2019-03-06 | 2022-11-02 | Nippon Steel Corporation | Hot-rolled steel sheet |
WO2021117711A1 (en) | 2019-12-09 | 2021-06-17 | 日本製鉄株式会社 | Hot-rolled steel sheet |
KR20220062603A (en) | 2019-12-09 | 2022-05-17 | 닛폰세이테츠 가부시키가이샤 | hot rolled steel |
US12116646B2 (en) | 2020-03-11 | 2024-10-15 | Nippon Steel Corporation | Hot-rolled steel sheet |
WO2021206045A1 (en) * | 2020-04-07 | 2021-10-14 | 日本製鉄株式会社 | Slab exhibiting excellent sensitivity to surface cracks, and method for continuously casting same |
JP7269523B2 (en) | 2020-04-07 | 2023-05-09 | 日本製鉄株式会社 | Slab with excellent resistance to surface cracking and its continuous casting method |
JPWO2021206045A1 (en) * | 2020-04-07 | 2021-10-14 | ||
CN115612928A (en) * | 2022-09-27 | 2023-01-17 | 武汉钢铁有限公司 | High-strength steel based on CSP process and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4410741B2 (en) | 2010-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4410741B2 (en) | High strength thin steel sheet with excellent formability and method for producing the same | |
JP6588440B2 (en) | High strength low specific gravity steel plate and method for producing the same | |
CA2851325C (en) | High-strength hot rolled steel sheet with excellent bendability and low-temperature toughness, and method for manufacturing the same | |
JP4902026B2 (en) | Steel plate and steel plate manufacturing method | |
JP5858174B2 (en) | Low yield ratio high strength cold-rolled steel sheet and method for producing the same | |
JP6779320B2 (en) | Clad steel sheet with excellent strength and formability and its manufacturing method | |
JP5825082B2 (en) | High yield ratio high strength cold-rolled steel sheet with excellent elongation and stretch flangeability and its manufacturing method | |
JP5195413B2 (en) | High-strength hot-rolled steel sheet excellent in bending workability and toughness anisotropy and method for producing the same | |
JP4644076B2 (en) | High strength thin steel sheet with excellent elongation and hole expansibility and manufacturing method thereof | |
WO2013094130A1 (en) | High-strength steel sheet and process for producing same | |
KR20140048348A (en) | Thin steel sheet and process for producing same | |
JP6682988B2 (en) | High-tensile steel plate with excellent ductility and method of manufacturing the same | |
JP2008261023A (en) | High-strength low-specific gravity steel sheet having excellent ductility and workability, and its production method | |
JP2009215572A (en) | High strength cold rolled steel sheet having excellent yield stress, elongation and stretch-flange formability | |
JP2008088547A (en) | Fire-resistant steel having excellent high-temperature strength, toughness and reheat embrittlement resistance and process for production of the same | |
JP4644075B2 (en) | High-strength steel sheet with excellent hole expansibility and manufacturing method thereof | |
JP2009001909A (en) | Manufacturing method of high-strength cold-rolled steel sheet | |
JP5842748B2 (en) | Cold rolled steel sheet and method for producing the same | |
JP5462742B2 (en) | Method for producing high-strength steel sheet with excellent mechanical property stability | |
JP4514150B2 (en) | High strength steel plate and manufacturing method thereof | |
JP2017025397A (en) | Hot rolled steel sheet and method of producing the same | |
JP4757858B2 (en) | Refractory steel material excellent in high temperature strength, toughness and reheat embrittlement resistance, and production method thereof | |
JP4105974B2 (en) | High-strength hot-rolled steel sheet excellent in fatigue characteristics and stretch flangeability of punched end face, and method for producing the same | |
KR101786262B1 (en) | Hot-rolled thick steel plate having excellent strength and dwtt toughness at low temperature, and method for manufacturing the same | |
JP3885314B2 (en) | Method for producing high-strength hot-rolled steel sheet having excellent shape and workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080303 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091008 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091106 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091113 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4410741 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121120 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121120 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131120 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131120 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |