JP2007069325A - Minute electromagnetic device manufacturing method and minute electromagnetic device manufactured thereby - Google Patents
Minute electromagnetic device manufacturing method and minute electromagnetic device manufactured thereby Download PDFInfo
- Publication number
- JP2007069325A JP2007069325A JP2005260588A JP2005260588A JP2007069325A JP 2007069325 A JP2007069325 A JP 2007069325A JP 2005260588 A JP2005260588 A JP 2005260588A JP 2005260588 A JP2005260588 A JP 2005260588A JP 2007069325 A JP2007069325 A JP 2007069325A
- Authority
- JP
- Japan
- Prior art keywords
- electromagnetic device
- manufacturing
- micro
- coil
- micro electromagnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Micromachines (AREA)
- Chemical Vapour Deposition (AREA)
- Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
本発明は、多種多様な材料、場所、形状、大きさで任意の微小立体構造物が作製可能である集束イオンビーム化学気相成長法(FIB−CVD)を用いた微小電磁装置の作製方法及びそれによって作製される微小電磁装置に関するものである。 The present invention relates to a method for manufacturing a micro electromagnetic device using focused ion beam chemical vapor deposition (FIB-CVD) capable of manufacturing an arbitrary micro three-dimensional structure with various materials, places, shapes, and sizes, and The present invention relates to a micro electromagnetic device manufactured thereby.
これまでに、本願発明者らは、FIB−CVDを用いた立体構造物の作製技術としてナノワイングラス、コイル、ピラーなどの任意の立体構造物の作製について既に提案している(下記特許文献1〜4、下記非特許文献1〜2参照)。 So far, the present inventors have already proposed the production of an arbitrary three-dimensional structure such as nano wine glass, coil, pillar, etc. as a three-dimensional structure production technique using FIB-CVD (Patent Document 1 below). -4, the following nonpatent literature 1-2 reference).
ところで、従来、電磁装置は水平方向ないし垂直方向へ銅線を巻いたものであり、μmサイズからメートルサイズのものまで、銅線を巻く製造方法がとられている。
これまでの電磁装置の作製方法には、銅線を巻く製造技術がとられてきた。そのため単一の銅線を巻くことにより銅線の線径に限界があり、外径を小さくすることが困難であった。また、銅線を巻く中心に鉄芯など心材が無い場合、形状を維持するのが難しく任意の場所、形状で作製するためには制約があった。 The manufacturing method of winding a copper wire has been taken in the conventional method for manufacturing an electromagnetic device. Therefore, there is a limit to the diameter of the copper wire by winding a single copper wire, and it has been difficult to reduce the outer diameter. In addition, when there is no core material such as an iron core at the center where the copper wire is wound, it is difficult to maintain the shape, and there is a restriction to manufacture it at an arbitrary place and shape.
本発明は、上記状況に鑑みて、FIB−CVDを用いて、小型で、任意の場所、形状で微小電磁装置を作製することができる微小電磁装置の作製方法及びそれによって作製される微小電磁装置を提供することを目的とする。 In view of the above situation, the present invention provides a method for manufacturing a micro electromagnetic device that can be manufactured in a small size and in an arbitrary place and shape using FIB-CVD, and a micro electromagnetic device manufactured thereby. The purpose is to provide.
本発明は、上記目的を達成するために、
(1)微小電磁装置の作製方法において、三次元CADを用いて設計した微小電磁装置の三次元構造モデルに基づいた描画データから、原料ガスに集束イオンビームを照射するFIB−CVD装置の集束イオンビームの照射位置とビームの強度、照射時間、照射間隔、照射方向を制御し、基体上にコイルを含む微小電磁装置を作製することを特徴とする。
In order to achieve the above object, the present invention provides
(1) Focused ion of FIB-CVD apparatus that irradiates source gas with focused ion beam from drawing data based on three-dimensional structural model of micro-electromagnetic apparatus designed by using three-dimensional CAD in manufacturing method of micro-electromagnetic apparatus The present invention is characterized in that a minute electromagnetic device including a coil is manufactured on a substrate by controlling a beam irradiation position and beam intensity, irradiation time, irradiation interval, and irradiation direction.
(2)上記(1)記載の微小電磁装置の作製方法において、前記基体が基板であり、この基板の任意の箇所に鉄芯及びコイルを具備する微小電磁装置を作製することを特徴とする。 (2) In the method for manufacturing a micro electromagnetic device according to (1), the base is a substrate, and a micro electromagnetic device including an iron core and a coil at an arbitrary portion of the substrate is manufactured.
(3)上記(1)記載の微小電磁装置の作製方法において、前記基体がガラスキャピラリーであり、このガラスキャピラリーの任意の箇所に鉄芯及びコイルを具備する微小電磁装置を作製することを特徴とする。 (3) The method for manufacturing a micro electromagnetic device according to (1), wherein the base is a glass capillary, and a micro electromagnetic device including an iron core and a coil at an arbitrary portion of the glass capillary is manufactured. To do.
(4)上記(1)記載の微小電磁装置の作製方法において、前記鉄芯は原料ガスとしてフェロセンガス〔Fe(C5 H5 )2 〕又はペンタカルボニルガス〔Fe(CO)5 〕を用い、前記コイルにはフェナントレンガス(C14H10)を用い、前記微小電磁装置を異なる材料により作製することを特徴とする。 (4) In the manufacturing method of the micro electromagnetic device according to (1), the iron core uses ferrocene gas [Fe (C 5 H 5 ) 2 ] or pentacarbonyl gas [Fe (CO) 5 ] as a source gas, The coil is made of phenanthrene gas (C 14 H 10 ), and the micro electromagnetic device is made of a different material.
(5)上記(1)記載の微小電磁装置の作製方法において、基体上に2本の配線を所定距離隔てて対向させ、該2本の配線の一方の端部間に第1の微小コイルを配置し、前記2本の配線のもう一方の端部間に第2の微小コイルを配置することを特徴とする。 (5) In the method for manufacturing a micro electromagnetic device according to (1), two wirings are opposed to each other at a predetermined distance on a base, and a first micro coil is disposed between one end portions of the two wirings. And a second micro coil is arranged between the other ends of the two wirings.
(6)上記(1)記載の微小電磁装置の作製方法において、基体上の凸部に微小コイルを巻回し、前記凸部に拡声のための振動板を取り付け、スピーカーを構成することを特徴とする。 (6) The method for manufacturing a micro electromagnetic device according to (1) above, wherein a micro coil is wound around a convex portion on a base, a diaphragm for sound expansion is attached to the convex portion, and a speaker is configured. To do.
(7)上記(1)記載の微小電磁装置の作製方法において、基体上に2本の配線を所定距離隔てて対向させ、該2本の配線の一方の端部間に第1の微小コイルを配置し、前記2本の配線のもう一方の端部間に第2の微小コイルを配置し、前記第1の微小コイルと第2の微小コイルとの間に磁路を形成する鉄芯を配置し、変圧器を構成することを特徴とする。 (7) In the method for manufacturing a micro electromagnetic device according to (1), two wirings are opposed to each other at a predetermined distance on a base, and a first micro coil is disposed between one end portions of the two wirings. And arranging a second microcoil between the other ends of the two wires, and an iron core forming a magnetic path between the first microcoil and the second microcoil. And forming a transformer.
(8)上記(1)記載の微小電磁装置の作製方法において、基体上に2本の配線を複数組設け、該複数組の配線を中央部に対して放射状に配置し、前記複数組の配線の各端部間にそれぞれ微小コイルを配置して対向させ、前記中央部に回転軸が配置される複数の突極を有する回転子を配置し、電磁誘導モーターを構成することを特徴とする。 (8) In the method for manufacturing a micro electromagnetic device according to (1), a plurality of sets of two wirings are provided on a substrate, the plurality of sets of wirings are arranged radially with respect to a central portion, and the plurality of sets of wirings An electromagnetic induction motor is configured by arranging a minute coil between each end of each of the coils and facing each other, and a rotor having a plurality of salient poles each having a rotation shaft disposed at the center.
(9)微小電磁装置であって、請求項1〜8の何れか一項記載の微小電磁装置の作製方法によって作製される。 (9) A minute electromagnetic device, which is produced by the method for producing a minute electromagnetic device according to any one of claims 1 to 8.
本発明によれば、FIB−CVDを用いて、小型で、任意の場所、形状で微小電磁装置を作製することができる。 According to the present invention, a micro electromagnetic device can be manufactured in a small size and in an arbitrary place and shape by using FIB-CVD.
本発明の微小電磁装置の作製方法は、三次元CADを用いて設計した微小電磁装置の三次元構造モデルに基づいた描画データから、原料ガスに集束イオンビームを照射するFIB−CVD装置の集束イオンビームの照射位置とビームの強度、照射時間、照射間隔、照射方向を制御し、基体上にコイルを含む微小電磁装置を作製する。 The manufacturing method of the micro electromagnetic device of the present invention is based on the focused ion of the FIB-CVD apparatus that irradiates the source gas with the focused ion beam from the drawing data based on the three-dimensional structural model of the micro electromagnetic device designed using the three-dimensional CAD. A minute electromagnetic device including a coil on a substrate is manufactured by controlling the irradiation position and intensity of the beam, irradiation time, irradiation interval, and irradiation direction.
以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
図1は本発明にかかるFIB−CVDによる微小電磁装置(電磁石)の作製装置の概略構成図である。 FIG. 1 is a schematic configuration diagram of an apparatus for producing a micro electromagnetic device (electromagnet) by FIB-CVD according to the present invention.
まず、電子計算機(CAD)を利用して微小電磁装置の三次元モデルデータを設計し、次にその微小電磁装置の三次元モデルデータを高さ方向に分割し、その断面形状を算出して積層構造の離散的な描画データを作成する。次いでその描画データに基づいて、ビームの照射位置、ビームとビームの強度、照射時間、照射間隔、照射方向を決定し、集束イオンビームを制御する。そのために、制御装置15は、CPU(中央処理装置)16、微小電磁装置を作製するための三次元モデルデータメモリ17、入出力インターフェイス18、表示装置19、データ入力装置20とを備えている。 First, the three-dimensional model data of the micro electromagnetic device is designed using a computer (CAD), and then the three-dimensional model data of the micro electromagnetic device is divided in the height direction, and the cross-sectional shape is calculated and stacked. Create discrete drawing data of structure. Next, based on the drawing data, a beam irradiation position, beam and beam intensity, irradiation time, irradiation interval, and irradiation direction are determined, and the focused ion beam is controlled. For this purpose, the control device 15 includes a CPU (central processing unit) 16, a three-dimensional model data memory 17 for producing a minute electromagnetic device, an input / output interface 18, a display device 19, and a data input device 20.
そこで、ガスノズル11からCVDガスとしてフェナントレンガス(C14H10)12を噴射する。フェナントレンガス12は約85℃に加熱してガス圧1.0×10-4Paで噴射し、そのガス雰囲気中でビーム照射電流約7pa程度のGa+ 集束イオンビーム13を照射することでCVDを行う。 Therefore, phenanthrene gas (C 14 H 10 ) 12 is injected from the gas nozzle 11 as a CVD gas. The phenanthrene gas 12 is heated to about 85 ° C., injected at a gas pressure of 1.0 × 10 −4 Pa, and irradiated with a Ga + focused ion beam 13 having a beam irradiation current of about 7 pa in the gas atmosphere. Do.
Ga+ 集束イオンビーム13によるCVDは、フェナントレンガス12雰囲気中にGa+ 集束イオンビーム13を照射することで、基板(シリコン基板)14〔ガラスキャピラリーであってもよい〕に吸着しているフェナントレン分子をビーム励起表面反応により分解し、カーボンを析出させ堆積させることでDLCを成長させていくものであり、Ga+ 集束イオンビーム13を任意方向にスキャンさせることにより、DLCを任意の形状にすることができる。 In the CVD using the Ga + focused ion beam 13, the phenanthrene molecules adsorbed on the substrate (silicon substrate) 14 (which may be a glass capillary) by irradiating the Ga + focused ion beam 13 in the phenanthrene gas 12 atmosphere. Is grown by beam-excited surface reaction, and carbon is deposited and deposited to grow DLC. By scanning the Ga + focused ion beam 13 in any direction, the DLC can be shaped arbitrarily. Can do.
ここで、Ga+ 集束イオンビーム13を制御するために用いた描画装置(図示なし)は、外部波形発生装置と立体構造のCADデータをZ軸方向の階層ごとの断面データに分割し描画させる3D−CAM(図示なし)の2種である。これらの描画装置を用いてGa+ 集束イオンビーム13の電磁界偏向制御を行うことで、Ga+ 集束イオンビーム13をソースガス12の噴射中にコントロールすることにより、DLCを任意の形状に成長させ、微小電磁装置を作成する。 Here, the drawing device (not shown) used for controlling the Ga + focused ion beam 13 is a 3D that divides and draws external waveform generator and three-dimensional CAD data into cross-sectional data for each layer in the Z-axis direction. -CAM (not shown). By performing electromagnetic field deflection control of the Ga + focused ion beam 13 using these drawing apparatuses, the DLC can be grown into an arbitrary shape by controlling the Ga + focused ion beam 13 during the injection of the source gas 12. Create a micro electromagnetic device.
図2は本発明の実施例を示す微小電磁装置の作製装置の模式図である。 FIG. 2 is a schematic view of an apparatus for manufacturing a micro electromagnetic device showing an embodiment of the present invention.
以下、微小電磁装置の具体的製作を図2を参照しながら説明する。 Hereinafter, specific fabrication of the micro electromagnetic device will be described with reference to FIG.
まず、ガスノズル11から原料ガス(フェナントレンガス12)を基板14に向けて噴射する。噴射された原料ガス分子が基板14表面に吸着される。そこへ、Ga+ 集束イオンビーム13を照射すると原料ガス分子が分解され堆積物21が生成される。この繰り返しの過程によって堆積物21が成長する。成長過程において独自に開発した3D−CAM(3次元CAM)を用い、Ga+ 集束イオンビーム13を任意の方向、照射位置、照射間隔を制御することによって微小電磁装置の作製が可能となる。また、噴射する原料ガスの種類を変えることにより様々な材質の微小電磁装置が作製可能である。この集束イオンビーム化学気相成長法(FIB−CVD)は、ナノサイズの微小電磁装置を作製する上で非常に有効な手段である。また、微小電磁装置を任意の場所へ作製することができる。 First, a source gas (phenanthrene gas 12) is injected from the gas nozzle 11 toward the substrate 14. The injected source gas molecules are adsorbed on the surface of the substrate 14. When irradiated with the Ga + focused ion beam 13, the source gas molecules are decomposed and a deposit 21 is generated. Through this repeated process, the deposit 21 grows. By using 3D-CAM (three-dimensional CAM) uniquely developed in the growth process and controlling the Ga + focused ion beam 13 in an arbitrary direction, irradiation position, and irradiation interval, a micro electromagnetic device can be manufactured. In addition, micro electromagnetic devices of various materials can be manufactured by changing the type of raw material gas to be injected. This focused ion beam chemical vapor deposition (FIB-CVD) is a very effective means for producing nano-sized micro electromagnetic devices. In addition, the minute electromagnetic device can be manufactured at an arbitrary place.
図3は本発明の実施例を示すガラスキャピラリー上に製作される微小電磁装置を示す図である。 FIG. 3 is a view showing a micro electromagnetic device manufactured on a glass capillary showing an embodiment of the present invention.
この図において、31はガラスキャピラリー、31Aはそのガラスキャピラリー31の先端面、32はガラスキャピラリー31の内部、33はガラスキャピラリー31の内部32に配置されるAl−Niワイヤー、33AはそのAl−Niワイヤー33の端子電極、34はガラスキャピラリー31の外部、34Aはその外部34に設けられる金コーティングからなる端子電極、35はガラスキャピラリー31の先端面31Aに垂直に形成される鉄芯、36はその鉄芯35に巻回されるとともに、一方の端部はAl−Niワイヤー33の端子電極33Aへ、もう一方の端部は金コーティングからなる端子電極34Aに接続されるDLCコイルである。 In this figure, 31 is a glass capillary, 31A is the tip of the glass capillary 31, 32 is the inside of the glass capillary 31, 33 is an Al-Ni wire disposed in the inside 32 of the glass capillary 31, and 33A is its Al-Ni. The terminal electrode of the wire 33, 34 is the outside of the glass capillary 31, 34A is a terminal electrode made of gold coating provided on the outside 34, 35 is an iron core formed perpendicular to the tip surface 31A of the glass capillary 31, and 36 is The DLC coil is wound around the iron core 35, and has one end connected to the terminal electrode 33A of the Al-Ni wire 33 and the other end connected to the terminal electrode 34A made of gold coating.
このように、ガラスキャピラリー31の内部には、Al−Niワイヤー34を通し、外部には金コーティングをして2端子電極33Aと34Aを作製した。その電極33Aと34A間にFIB−CVDを用いて、集束イオンビームの照射位置とビームの強度、照射時間、照射間隔、照射方向を制御し、まず、鉄芯35を作製し、それに巻回するようにDLCコイル36を作製し、微小電磁装置とした。 Thus, the Al—Ni wire 34 was passed through the inside of the glass capillary 31 and gold coating was applied to the outside to produce the two-terminal electrodes 33A and 34A. FIB-CVD is used between the electrodes 33A and 34A to control the irradiation position of the focused ion beam, the intensity of the beam, the irradiation time, the irradiation interval, and the irradiation direction. First, the iron core 35 is produced and wound around it. Thus, the DLC coil 36 was produced as a micro electromagnetic device.
原料ガスとしてDLCコイル36にはフェナントレンガス(C14H10)を、鉄芯35にはフェロセンガス〔Fe(C5 H5 )2 〕又はペンタカルボニルガス〔Fe(CO)5 〕を使用した。DLCコイル36の直径は2μm、コイルの高さは11μm、線径は200nmとなった。また、鉄芯35として使用したフェロセンガス又はペンタカルボニルガスのピラーの高さは13.5μm、線径は100nmである。 As source gases, phenanthrene gas (C 14 H 10 ) was used for the DLC coil 36, and ferrocene gas [Fe (C 5 H 5 ) 2 ] or pentacarbonyl gas [Fe (CO) 5 ] was used for the iron core 35. The diameter of the DLC coil 36 was 2 μm, the height of the coil was 11 μm, and the wire diameter was 200 nm. The pillar height of the ferrocene gas or pentacarbonyl gas used as the iron core 35 is 13.5 μm, and the wire diameter is 100 nm.
図4は本発明によって作製された微小電磁装置の動作を行う実験装置の模式図である。 FIG. 4 is a schematic view of an experimental apparatus that performs the operation of the micro electromagnetic device manufactured according to the present invention.
この図において、40は上記したようにして得られた微小電磁装置であり、この微小電磁装置40はガラスキャピラリー41の先端部に配置されており、鉄芯42とDLCコイル43からなり、DLCコイル43の両端は、切替えスイッチ44を有する定電流電源45に接続されている。 In this figure, reference numeral 40 denotes a micro electromagnetic device obtained as described above, and this micro electromagnetic device 40 is disposed at the tip of a glass capillary 41 and comprises an iron core 42 and a DLC coil 43. Both ends of 43 are connected to a constant current power supply 45 having a changeover switch 44.
このようにガラスキャピラリー41上に作製した微小電磁装置40の動作確認を図4のように配置して常温の室内光学顕微鏡下で行った。 Thus, the operation | movement confirmation of the micro electromagnetic device 40 produced on the glass capillary 41 was arrange | positioned like FIG. 4, and it performed under the room temperature indoor optical microscope.
まず、電磁装置40側を定電流電源45に接続し、そしてFIB−CVDによって約20μmに成長させたFeピラー46(接地され接地電位にある)を微小電磁装置40の先端5μmの位置に置き、微小電磁装置40に1Aの電流を流した時のFeピラー46の動作を確認するという方法をとった。 First, the electromagnetic device 40 side is connected to a constant current power supply 45, and an Fe pillar 46 (grounded and grounded) grown to about 20 μm by FIB-CVD is placed at a position of 5 μm at the tip of the micro electromagnetic device 40, A method of confirming the operation of the Fe pillar 46 when a current of 1 A was passed through the micro electromagnetic device 40 was adopted.
図5はその結果を示す図であり、図5(a)は微小電磁装置40が消勢されている初期状態を、図5(b)は微小電磁装置40のDLCコイル43に正方向の電流が印加された状態を、図5(b)は微小電磁装置40のDLCコイル43に逆方向の電流が印加された状態を示す図である。 FIG. 5 is a diagram showing the results. FIG. 5A shows an initial state in which the micro electromagnetic device 40 is de-energized, and FIG. 5B shows a positive current in the DLC coil 43 of the micro electromagnetic device 40. FIG. 5B is a diagram showing a state in which a reverse current is applied to the DLC coil 43 of the micro electromagnetic device 40.
すなわち、まず、初期状態である図5(a)から正方向の電流、つまり、Al−Niワイヤー側から金コーティングの方に1Aの電流を流した時は、図5(b)に示すように、Feピラー46は反発し元の位置から2.5μmほど微小電磁装置40から遠ざかった。そして、逆方向の電流、つまり、金コーティング側からAl−Niワイヤー側へ1Aの電流を流した時は、図5(c)に示すように、Feピラー46は微小電磁装置40に引き寄せられ、初期状態の図5(a)から1.0μmほど微小電磁装置40へ近づいた。このことから微小電磁装置40が磁界を発生していることが明らかになった。 That is, first, when a current in the positive direction from FIG. 5A, which is the initial state, that is, when a current of 1 A flows from the Al—Ni wire side to the gold coating, as shown in FIG. The Fe pillar 46 was repelled and moved away from the micro electromagnetic device 40 by about 2.5 μm from the original position. Then, when a current in the reverse direction, that is, a current of 1 A is passed from the gold coating side to the Al—Ni wire side, the Fe pillar 46 is attracted to the micro electromagnetic device 40 as shown in FIG. From the initial state of FIG. 5A, the micro electromagnetic device 40 was approached by about 1.0 μm. This revealed that the micro electromagnetic device 40 generates a magnetic field.
次に、微小コイルを隣接して並べて配置した微小電磁誘導装置の検証を行った。 Next, a micro electromagnetic induction device in which micro coils are arranged adjacent to each other was verified.
図6は本発明の実施例を示す微小コイルを隣接して並べて配置した微小電磁誘導装置を示す図である。 FIG. 6 is a view showing a minute electromagnetic induction device in which minute coils showing an embodiment of the present invention are arranged adjacent to each other.
この図において、まず、シリコン基板51上に左右の配線52,53;54,55を有する四端子電極52A,53A;54A,55Aの作製を行った。左右の配線52,54と53,55と間の距離は6μm、向かい合う電極52A,53Aと54A,55A同士の距離は4μm、この左右の電極52Aと53A及び54Aと55A間に橋渡しするようにFIB−CVDを用いて微小コイル56,57を作製した。 In this figure, first, four terminal electrodes 52A, 53A; 54A, 55A having left and right wirings 52, 53; 54, 55 on a silicon substrate 51 were produced. The distance between the left and right wirings 52, 54 and 53, 55 is 6 μm, the distance between the facing electrodes 52A, 53A and 54A, 55A is 4 μm, and the FIB is bridged between the left and right electrodes 52A and 53A and 54A and 55A. The microcoils 56 and 57 were produced using -CVD.
微小コイル56の直径は2μm、コイルの高さは11μm、線径は200nmとなった。向かい合う微小コイル57の形状は微小コイル56に同一とした。 The diameter of the microcoil 56 was 2 μm, the height of the coil was 11 μm, and the wire diameter was 200 nm. The shape of the facing microcoil 57 is the same as that of the microcoil 56.
一方の微小コイル56に1Hzの交流電圧をかけた時に、他方の微小コイル57に生じた誘導電流の値を図7に示す。図7(a)は正弦波を入力した場合の入力電圧と誘導電流の特性図である。また、図7(b)は方形波を入力した場合の入力電圧と誘導電流の特性図である。この測定データから、さらに入力電圧を時間微分した値と誘導電流のグラフを図8に示す。図8(a)は正弦波の場合の電圧の時間微分値と誘導電流の特性図、図8(b)は方形波の場合の電圧の時間微分値と誘導電流の特性図である。 FIG. 7 shows the value of the induced current generated in the other microcoil 57 when an AC voltage of 1 Hz is applied to one microcoil 56. FIG. 7A is a characteristic diagram of input voltage and induced current when a sine wave is input. FIG. 7B is a characteristic diagram of the input voltage and the induced current when a square wave is input. FIG. 8 shows a graph of the induced current and the value obtained by further differentiating the input voltage from this measurement data. FIG. 8A is a characteristic diagram of the time differential value of the voltage and the induced current in the case of a sine wave, and FIG. 8B is a characteristic diagram of the time differential value of the voltage and the induced current in the case of a square wave.
これにより、入力電圧を時間微分した値が誘導電流の値と重なることが分る。これは磁束の変化に伴い電磁誘導によって生じた誘導電流であることを示す。 Thereby, it can be seen that the value obtained by differentiating the input voltage with time overlaps the value of the induced current. This indicates an induced current generated by electromagnetic induction accompanying a change in magnetic flux.
次に、FIB−CVDにより作製した微小電磁誘導装置の適用例について述べる。 Next, an application example of a micro electromagnetic induction device manufactured by FIB-CVD will be described.
図9は本発明の微小電磁誘導装置としての微小スピーカーを示す図である。 FIG. 9 is a diagram showing a small speaker as a small electromagnetic induction device of the present invention.
この図において、基体61の凸部62に微小コイル63が巻回され、その上方に拡声を行う振動板64が配置されている。 In this figure, a minute coil 63 is wound around a convex portion 62 of a base body 61, and a diaphragm 64 that performs loudspeaking is disposed above it.
図10は本発明の微小電磁誘導装置としての微小変圧器を示す図である。 FIG. 10 is a diagram showing a micro-transformer as a micro-electromagnetic induction device according to the present invention.
この図において、基板71上に2本の配線72,73と75,76を所定距離隔てて対向させ、その配線72,73間に接続される第1次の微小コイル74と、これに対向して配置される配線75,76間に接続される第2次の微小コイル77とが配置され、この第1次の微小コイル74と第2次の微小コイル77中に磁路を形成する鉄芯78が配置される。 In this figure, two wirings 72, 73 and 75, 76 are opposed to each other on a substrate 71 at a predetermined distance, and a primary micro coil 74 connected between the wirings 72, 73 is opposed to this. A secondary microcoil 77 connected between the wirings 75, 76 arranged in this manner is disposed, and an iron core that forms a magnetic path in the primary microcoil 74 and the secondary microcoil 77. 78 is arranged.
図11は本発明の微小電磁誘導装置としての有する微小電磁誘導モータを示す図である。 FIG. 11 is a view showing a minute electromagnetic induction motor as the minute electromagnetic induction device of the present invention.
この図において、基板81上に4方から中心位置に向かうように、2本を1対とする4組の配線82A,82B:83A,83B:84A,84B:85A,85Bを配置し、配線82A,82B間に接続される第1の微小コイル86と、配線83A,83B間に接続される第2の微小コイル87と、配線84A,84B間に接続される第3の微小コイル88と、配線85A,85B間に接続される第4の微小コイル89とを配置し、それらの中央部に回転軸90Aと4つの突極90Bを有する回転子90を配置するようにしている。 In this figure, four sets of wirings 82A, 82B: 83A, 83B: 84A, 84B: 85A, 85B, which are a pair of two wires, are arranged on the substrate 81 from the four directions toward the central position, and the wiring 82A. , 82B, a first microcoil 86 connected between the wires 83A, 83B, a second microcoil 87 connected between the wires 83A, 83B, a third microcoil 88 connected between the wires 84A, 84B, and a wire A fourth microcoil 89 connected between 85A and 85B is disposed, and a rotor 90 having a rotation shaft 90A and four salient poles 90B is disposed in the center thereof.
図12は本発明の微小電磁誘導装置としての微小ピックアップを示す図である。 FIG. 12 is a view showing a micro pickup as the micro electromagnetic induction device of the present invention.
この図において、永久磁石91上に鉄芯92が設けられており、この鉄芯92に微小コイル93が巻回され、その微小コイル93の端部はギターアンプへと接続される。鉄芯92の上方には金属弦94が配置されている。 In this figure, an iron core 92 is provided on a permanent magnet 91, a minute coil 93 is wound around the iron core 92, and the end of the minute coil 93 is connected to a guitar amplifier. A metal string 94 is disposed above the iron core 92.
また、核磁気共鳴装置(NMR:Nuclear Magnetic Resonance)の電磁コイルへの適用も可能である。 Moreover, the application to the electromagnetic coil of a nuclear magnetic resonance apparatus (NMR: Nuclear Magnetic Resonance) is also possible.
上記した微小電磁誘導装置の微小コイル自身がnmからμmオーダーであることから、上記したスピーカー(図9)、変圧器(図10)、電磁誘導モーター(図11)、ピックアップ(図12)、核磁気共鳴装置など電磁コイルが主要となる電磁誘導装置がμmオーダーで作製が可能となる。 Since the minute coil itself of the minute electromagnetic induction device is on the order of nm to μm, the speaker (FIG. 9), transformer (FIG. 10), electromagnetic induction motor (FIG. 11), pickup (FIG. 12), nucleus An electromagnetic induction device mainly composed of an electromagnetic coil such as a magnetic resonance device can be manufactured on the order of μm.
また、微小な電磁誘導モーターをマニピュレータの動作部分に組み込み微小な動作制御を行うことが可能となる。更に、マイクロマシン、ナノマシンの機械的に動作する部品として組み込むことが可能である。 In addition, a minute electromagnetic induction motor can be incorporated into the operation part of the manipulator to perform minute operation control. Furthermore, it can be incorporated as a mechanically operated component of a micromachine or nanomachine.
FIB−CVDは、任意の微小な立体構造物の作製が可能であるから、図13に示すように微小コイルの巻数を自由に決めることができる。図13(a)は3巻回の微小コイル101を、図13(b)は4巻回の微小コイル102を、図13(c)は5巻回の微小コイル103をそれぞれ示している。 Since FIB-CVD can produce an arbitrary minute three-dimensional structure, the number of turns of the minute coil can be freely determined as shown in FIG. 13A shows a three-turn microcoil 101, FIG. 13B shows a four-turn microcoil 102, and FIG. 13C shows a five-turn microcoil 103, respectively.
このことから、巻数の異なる電磁誘導装置を鉄芯により繋げることで微小な変圧器の作製が可能となる。また、HDDの磁気ヘッドなど微小なコイルにより発生させる磁場の範囲を縮小し大容量化することもできる。電磁装置を応用し利用するNMRにおいては試料を設置する周辺のコイル及び磁場をかける電磁装置を微小とすることで、試料を微量で観測することが可能となる。 For this reason, it is possible to produce a micro-transformer by connecting electromagnetic induction devices having different numbers of windings with an iron core. Further, the range of the magnetic field generated by a small coil such as a magnetic head of an HDD can be reduced to increase the capacity. In NMR using an electromagnetic device, the sample can be observed in a minute amount by making the surrounding coil where the sample is placed and the electromagnetic device that applies the magnetic field minute.
上記にしたように、本発明によれば、
(1)FIB−CVDによる微小電磁装置の作製方法を利用することで、任意の大きさや形状を有する微小電磁装置を作製することが可能である。
(2)FIB−CVDによる微小電磁装置の作製方法を利用することで、シリコン基板上やガラスキャピラリー上の任意の場所に微小電磁装置を作製することが可能である。
(3)FIB−CVDによる微小電磁誘導装置の作製方法を利用することで、任意の場所において微小電磁誘導装置を作製することが可能である。
(4)FIB−CVDによる微小電磁誘導装置の作製方法を利用することでさまざまな装置(スピーカー、変圧器、モーター、ピックアップなど)への応用が可能である。
As mentioned above, according to the present invention,
(1) By using a manufacturing method of a micro electromagnetic device by FIB-CVD, a micro electromagnetic device having an arbitrary size and shape can be manufactured.
(2) By using the manufacturing method of the micro electromagnetic device by FIB-CVD, it is possible to manufacture the micro electromagnetic device in an arbitrary place on the silicon substrate or the glass capillary.
(3) By using the manufacturing method of the micro electromagnetic induction device by FIB-CVD, it is possible to manufacture the micro electromagnetic induction device at an arbitrary place.
(4) Application to various devices (speakers, transformers, motors, pickups, etc.) is possible by using the manufacturing method of the micro electromagnetic induction device by FIB-CVD.
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形・応用が可能であり、これらを本発明の範囲から排除するものではない。 In addition, this invention is not limited to the said Example, A various deformation | transformation and application are possible based on the meaning of this invention, These are not excluded from the scope of the present invention.
本発明の微小電磁装置の作製方法及びそれによって作製される微小電磁装置は、FIB−CVDを用いて、小型で、任意の場所、形状に作製される、微小電磁装置の作製方法及びそれによって作製される微小電磁装置として好適であり、ナノマシーンの部品を得るために利用可能である。 A manufacturing method of a micro electromagnetic device of the present invention and a micro electromagnetic device manufactured by the method are manufactured in a small size and in an arbitrary place and shape using FIB-CVD, and a manufacturing method of the micro electromagnetic device It is suitable as a micro electromagnetic device to be used, and can be used to obtain a part of a nano machine.
11 ガスノズル
12 CVDガスとしてフェナントレン(C14H10)ガス
13 Ga+ 集束イオンビーム
14,51 基板(シリコン基板)
15 制御装置
16 CPU(中央処理装置)
17 微小電磁誘導装置を作製するための三次元モデルデータメモリ
18 入出力インターフェース
19 表示装置
20 データ入力装置
21 堆積物
31,41 ガラスキャピラリー
31A ガラスキャピラリーの先端面
32 ガラスキャピラリーの内部
33 ガラスキャピラリーの内部に配置されるAl−Niワイヤー
33A Al−Niワイヤーの端子電極
34 ガラスキャピラリーの外部
34A 金コーティングからなる端子電極
35 ガラスキャピラリーの先端面に垂直に形成される鉄芯
36,43 DLCコイル
40 微小電磁誘導装置
42,78,92 鉄芯
44 切替えスイッチ
45 定電流電源
46 Feピラー
52,53;54,55,72,73,75,76,82A,82B:83A,83B:84A,84B:85A,85B 配線
52A,53A;54A,55A 四端子電極
56,57,63,93 微小コイル
61 基体
62 凸部
64 振動板
71,81 基板
74 第1次の微小コイル
77 第2次の微小コイル
86 第1の微小コイル
87 第2の微小コイル
88 第3の微小コイル
89 第4の微小コイル
90 4つの突極を有する回転子
90A 回転軸
90B 突極
91 永久磁石板
94 金属弦
101 3巻回の微小コイル
102 4巻回の微小コイル
103 5巻回の微小コイル
11 Gas nozzle 12 Phenanthrene (C 14 H 10 ) gas as a CVD gas 13 Ga + focused ion beam 14, 51 Substrate (silicon substrate)
15 Control device 16 CPU (Central processing unit)
17 Three-dimensional model data memory for producing a minute electromagnetic induction device 18 Input / output interface 19 Display device 20 Data input device 21 Deposit 31, 41 Glass capillary 31A End surface of glass capillary 32 Inside glass capillary 33 Inside glass capillary Al-Ni wire 33A Al-Ni wire terminal electrode 34 External of glass capillary 34A Terminal electrode made of gold coating 35 Iron core formed perpendicular to the tip surface of the glass capillary 36, 43 DLC coil 40 Micro electromagnetic Induction device 42, 78, 92 Iron core 44 Changeover switch 45 Constant current power supply 46 Fe pillar 52, 53; 54, 55, 72, 73, 75, 76, 82A, 82B: 83A, 83B: 84A, 84B: 85A, 85B Wires 52A, 53A; 54A, 55A Four-terminal electrodes 56, 57, 63, 93 Micro coil 61 Base body 62 Convex section 64 Diaphragm 71, 81 Substrate 74 Primary micro coil 77 Secondary micro coil 86 First Minute coil 87 Second minute coil 88 Third minute coil 89 Fourth minute coil 90 Rotor having four salient poles 90A Rotating shaft 90B Salient pole 91 Permanent magnet plate 94 Metal string 101 Three-turn minute coil 102 4 turns micro coil 103 5 turns micro coil
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005260588A JP2007069325A (en) | 2005-09-08 | 2005-09-08 | Minute electromagnetic device manufacturing method and minute electromagnetic device manufactured thereby |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005260588A JP2007069325A (en) | 2005-09-08 | 2005-09-08 | Minute electromagnetic device manufacturing method and minute electromagnetic device manufactured thereby |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007069325A true JP2007069325A (en) | 2007-03-22 |
Family
ID=37931229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005260588A Pending JP2007069325A (en) | 2005-09-08 | 2005-09-08 | Minute electromagnetic device manufacturing method and minute electromagnetic device manufactured thereby |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007069325A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014024697A1 (en) | 2012-08-09 | 2014-02-13 | 独立行政法人科学技術振興機構 | Spin motor and spin rotary member |
CN103985536A (en) * | 2014-04-25 | 2014-08-13 | 讯创(天津)电子有限公司 | Manufacturing method and manufacturing device for three-dimensional wireless charging coil |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0243714A (en) * | 1988-08-04 | 1990-02-14 | Matsushita Electric Ind Co Ltd | Manufacture of ferrous magnetic thin film |
JPH10276493A (en) * | 1997-03-31 | 1998-10-13 | Sony Corp | Sound converter |
JPH11313392A (en) * | 1998-04-30 | 1999-11-09 | Mitsubishi Heavy Ind Ltd | Dynamic electroacoustic transducer and speaker |
JP2001107252A (en) * | 1999-10-07 | 2001-04-17 | Japan Science & Technology Corp | Three-dimensional micro structure, its manufacturing method and its manufacturing device |
JP2001332434A (en) * | 2001-03-28 | 2001-11-30 | Tdk Corp | Method of manufacturing electronic component |
WO2002044079A1 (en) * | 2000-11-29 | 2002-06-06 | Seiko Instruments Inc. | Method and apparatus for manufacturing ultra fine three-dimensional structure |
JP2002221513A (en) * | 2001-01-25 | 2002-08-09 | Seiji Motojima | Micro sensor and its use |
JP2002260945A (en) * | 2001-02-27 | 2002-09-13 | Star Micronics Co Ltd | Laminated coil and its manufacturing method |
JP2004174637A (en) * | 2002-11-26 | 2004-06-24 | Japan Science & Technology Agency | Electron wave interference element |
WO2004077536A1 (en) * | 2003-02-28 | 2004-09-10 | Japan Science And Technology Agency | Production method for antenna and production device for antenna |
WO2004076343A1 (en) * | 2003-02-28 | 2004-09-10 | Japan Science And Technology Agency | Method for fabricating three-dimensional microstructure by fib-cvd and drawing system for three-dimensional microstructure |
JP2004345009A (en) * | 2003-05-21 | 2004-12-09 | Japan Science & Technology Agency | Micro three-dimensional structure manipulator |
-
2005
- 2005-09-08 JP JP2005260588A patent/JP2007069325A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0243714A (en) * | 1988-08-04 | 1990-02-14 | Matsushita Electric Ind Co Ltd | Manufacture of ferrous magnetic thin film |
JPH10276493A (en) * | 1997-03-31 | 1998-10-13 | Sony Corp | Sound converter |
JPH11313392A (en) * | 1998-04-30 | 1999-11-09 | Mitsubishi Heavy Ind Ltd | Dynamic electroacoustic transducer and speaker |
JP2001107252A (en) * | 1999-10-07 | 2001-04-17 | Japan Science & Technology Corp | Three-dimensional micro structure, its manufacturing method and its manufacturing device |
WO2002044079A1 (en) * | 2000-11-29 | 2002-06-06 | Seiko Instruments Inc. | Method and apparatus for manufacturing ultra fine three-dimensional structure |
JP2002221513A (en) * | 2001-01-25 | 2002-08-09 | Seiji Motojima | Micro sensor and its use |
JP2002260945A (en) * | 2001-02-27 | 2002-09-13 | Star Micronics Co Ltd | Laminated coil and its manufacturing method |
JP2001332434A (en) * | 2001-03-28 | 2001-11-30 | Tdk Corp | Method of manufacturing electronic component |
JP2004174637A (en) * | 2002-11-26 | 2004-06-24 | Japan Science & Technology Agency | Electron wave interference element |
WO2004077536A1 (en) * | 2003-02-28 | 2004-09-10 | Japan Science And Technology Agency | Production method for antenna and production device for antenna |
WO2004076343A1 (en) * | 2003-02-28 | 2004-09-10 | Japan Science And Technology Agency | Method for fabricating three-dimensional microstructure by fib-cvd and drawing system for three-dimensional microstructure |
JP2004345009A (en) * | 2003-05-21 | 2004-12-09 | Japan Science & Technology Agency | Micro three-dimensional structure manipulator |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014024697A1 (en) | 2012-08-09 | 2014-02-13 | 独立行政法人科学技術振興機構 | Spin motor and spin rotary member |
KR20150045455A (en) | 2012-08-09 | 2015-04-28 | 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 | Spin motor and spin rotary member |
CN104584416A (en) * | 2012-08-09 | 2015-04-29 | 独立行政法人科学技术振兴机构 | Spin motor and spin rotary member |
US9548634B2 (en) | 2012-08-09 | 2017-01-17 | Japan Science And Technology Agency | Spin motor and rotary member |
CN103985536A (en) * | 2014-04-25 | 2014-08-13 | 讯创(天津)电子有限公司 | Manufacturing method and manufacturing device for three-dimensional wireless charging coil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2020097789A (en) | Structures and methods utilizing structured magnetic material | |
US5019117A (en) | Plasma apparatus | |
US8736128B2 (en) | Three dimensional magnetic field manipulation in electromagnetic devices | |
TWI593013B (en) | Method of etching multilayer films | |
CN103247511B (en) | Substrate board treatment | |
US8736136B2 (en) | Magnetic field manipulation in switched reluctance motors and design method | |
JP2016540111A5 (en) | ||
KR20140114821A (en) | Substrate processing apparatus | |
JP4137317B2 (en) | Micro three-dimensional structure, manufacturing method thereof, and manufacturing apparatus thereof | |
US20200275211A1 (en) | Transducer and method of operation | |
CN1299301C (en) | Coil device and manufacture thereof | |
JP7107285B2 (en) | Magnetic structure and method of manufacturing magnetic structure | |
US20060017010A1 (en) | Magnet for scanning ion beams | |
JP2007069325A (en) | Minute electromagnetic device manufacturing method and minute electromagnetic device manufactured thereby | |
CN104885575A (en) | Plasma apparatus and substrate processing apparatus | |
JP2004345009A (en) | Micro three-dimensional structure manipulator | |
US20030025085A1 (en) | Low-aberration deflectors for use in charged-particle-beam optical systems, and methods for fabricating such deflectors | |
TW200424349A (en) | Production method for antenna and production device for antenna | |
TW201117201A (en) | A patterned magnetic bit data storage media and a method for manufacturing the same | |
JP5545735B2 (en) | Magnetoelectric effect element | |
US20050069707A1 (en) | Soft magnetic particles methods of making and articles formed therefrom | |
Mehri et al. | Optimized sol–gel chemical route using vacuum suction for fabrication of densely packed NiFe 2 O 4 nanowires | |
RU2702810C1 (en) | Method of creating skyrmions and their arrays in a magnetic medium using a scanning microscope probe | |
KR20010114201A (en) | Preparation method and setup of ferromagnetic nanowires | |
WO2022111876A1 (en) | Method of manufacturing a permanent magnet using a magnetic material mold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071030 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100316 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100408 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100824 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100917 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110405 |