[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007067214A - Power inductor - Google Patents

Power inductor Download PDF

Info

Publication number
JP2007067214A
JP2007067214A JP2005252146A JP2005252146A JP2007067214A JP 2007067214 A JP2007067214 A JP 2007067214A JP 2005252146 A JP2005252146 A JP 2005252146A JP 2005252146 A JP2005252146 A JP 2005252146A JP 2007067214 A JP2007067214 A JP 2007067214A
Authority
JP
Japan
Prior art keywords
insulator
power inductor
organic resin
coil conductor
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005252146A
Other languages
Japanese (ja)
Inventor
Mikiko Fukase
美紀子 深瀬
Kosuke Haruyama
耕佑 晴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2005252146A priority Critical patent/JP2007067214A/en
Publication of JP2007067214A publication Critical patent/JP2007067214A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small and low-profile power inductor having a satisfactory DC superimposed performance. <P>SOLUTION: The power inductor comprises a first insulating body 41, coil conductors 31, 32 formed on the upper and the lower surface of the body 41, a second insulating body 51 formed so as to cover the coil conductors 31, 32 and the body 41, and a third insulating body 61 formed so as to cover at least the upper and the lower surface of the body 51. At least the body 61 comprises an organic resin with a flat-metal-system soft magnetic material powder included as a filler. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、数百mA〜数十Aの電流に対応する大電流インダクタに関する。   The present invention relates to a high-current inductor corresponding to a current of several hundred mA to several tens of A.

チップインダクタはその使用用途等により定格電流や内部構造等が異なっている。例えば、信号ラインなどで用いられるインダクタは定格電流が数mA〜数十mAとなっており、電源ラインなどで用いられるインダクタ(「パワーインダクタ」と呼ぶ)は定格電流が数百mA〜数十Aとなっている。従来のチップ型のパワーインダクタとしては、巻線型のインダクタが用いられている(特許文献1参照)。この従来のパワーインダクタは、フェライトからなるコアに導線を巻いた構造となっている。
特開2003−297642号公報
Chip inductors differ in rated current, internal structure, etc. depending on their usage. For example, an inductor used in a signal line has a rated current of several mA to several tens of mA, and an inductor used in a power line or the like (referred to as a “power inductor”) has a rated current of several hundred mA to several tens of A. It has become. As a conventional chip-type power inductor, a wire-wound inductor is used (see Patent Document 1). This conventional power inductor has a structure in which a conducting wire is wound around a core made of ferrite.
JP 2003-297642 A

ところで近年の各種電子機器の小型化に伴い、このようなチップインダクタの小型・低背化が強く望まれている。特に、電源回路ではパワーインダクタが必須重要回路であるが、他の回路素子の小型化・高集積化が急速に進む中、パワーインダクタの小型・低背化は十分といえなかった。これは、インダクタのような磁気部品は小型化により磁性体容積が減少すると、磁気コアが磁気飽和しやすくなり、電源として扱える電流量が減少するためである。また、従来の巻線型パワーインダクタは、コアの周囲に導線を巻くという基本的構造を有しているため、特に低背化が困難であった。   By the way, with the recent miniaturization of various electronic devices, there is a strong demand for the reduction in size and height of such chip inductors. In particular, a power inductor is an essential circuit in a power supply circuit. However, as other circuit elements are rapidly becoming smaller and more highly integrated, it has not been sufficient to reduce the size and height of power inductors. This is because, when a magnetic part such as an inductor is reduced in size due to a reduction in size, the magnetic core is likely to be magnetically saturated, and the amount of current that can be handled as a power source is reduced. In addition, since the conventional wound power inductor has a basic structure in which a conducting wire is wound around the core, it is particularly difficult to reduce the height.

そこで、小型化・低背化を図るために、従来の巻線型インダクタに替えて主に信号用途で用いられていた積層型チップインダクタを電源用途として使用することも考えられる。しかし、従来の積層型チップインダクタでは、フェライト系磁性材料が主に使用されており、このフェライトは透磁率及び電気抵抗が高い反面飽和磁束密度が低いため、そのまま使用すると磁気飽和によるインダクタンス低下が顕著となり、直流重畳特性が悪化するという特性がある。このため、従来の積層型チップインダクタはその構造上電源用途として不適であった。   Therefore, in order to reduce the size and height, it is conceivable to use a multilayer chip inductor, which has been mainly used for signal purposes, as a power source instead of the conventional wire-wound inductor. However, in conventional multilayer chip inductors, ferrite-based magnetic materials are mainly used, and this ferrite has high permeability and electrical resistance, but has a low saturation magnetic flux density. Thus, there is a characteristic that the DC superimposition characteristic is deteriorated. For this reason, the conventional multilayer chip inductor is unsuitable for use as a power source because of its structure.

本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、直流重畳特性が良好な小型且つ低背なパワーインダクタを提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a small and low-profile power inductor having good DC superposition characteristics.

上記目的を達成するために、本願では、コイル導体が埋設された素体と、該素体の外面に前記コイル導体と接続する端子電極が形成されたパワーインダクタにおいて、前記素体は、第1の絶縁体と、第1の絶縁体の上面及び下面に形成されたコイル導体と、コイル導体及び第1の絶縁体を被覆するように形成された第2の絶縁体と、第2の絶縁体の少なくとも上面及び下面を被覆するように形成された第3の絶縁体とからなり、少なくとも第3の絶縁体は、扁平形状の金属系軟質磁性体粉をフィラとして含有させた有機樹脂からなることを特徴とするものを提案する。   In order to achieve the above object, in the present application, in a power inductor in which a coil conductor is embedded and a terminal electrode connected to the coil conductor is formed on an outer surface of the coil body, An insulator, a coil conductor formed on the top and bottom surfaces of the first insulator, a second insulator formed so as to cover the coil conductor and the first insulator, and a second insulator A third insulator formed so as to cover at least an upper surface and a lower surface, and at least the third insulator is made of an organic resin containing a flat metal-based soft magnetic powder as a filler. We propose something that features

出願人は、磁性材料粉をフィラとして含有した有機樹脂を磁性体として備えたインダクタにおいて、フィラの材質と直流重畳特性の関係を測定した。その結果、フィラとして金属系軟質磁性体粉を用いたものでは、電流に対するインダクタンスの変化率がフェライトよりも極めて小さく、高い電流を流すことができる、すなわち良好な直流重畳特性を有していることが分かった。また、出願人は、金属系軟質磁性体粉をフィラとして含有した有機樹脂を磁性体として備えたインダクタにおいて、粉体のアスペクト比と磁性体の透磁率の関係を測定した。その結果、球状の粉体よりも扁平した粉体の方がより高い透磁率を得られることが分かった。   The applicant measured the relationship between the material of the filler and the DC superposition characteristics in an inductor provided with an organic resin containing magnetic material powder as a filler as a magnetic material. As a result, in the case of using a metallic soft magnetic powder as a filler, the rate of change of inductance with respect to current is extremely smaller than that of ferrite, so that a high current can flow, that is, it has good DC superposition characteristics. I understood. In addition, the applicant measured the relationship between the aspect ratio of the powder and the magnetic permeability of the magnetic material in an inductor provided with an organic resin containing a metal-based soft magnetic material powder as a filler as the magnetic material. As a result, it was found that a flat powder can obtain a higher magnetic permeability than a spherical powder.

そして本発明では、磁性材料として扁平形状の金属系軟質磁性体粉をフィラとして含有させた有機樹脂を用いて素体を形成している。これにより、本発明に係るパワーインダクタは、小型化・低背化に好適な素体構造を有していながら、直流重畳特性が良好であり電源用途として好適なものとなる。   In the present invention, the element body is formed using an organic resin containing a flat metallic soft magnetic powder as a filler as a magnetic material. As a result, the power inductor according to the present invention has an element structure suitable for miniaturization and low profile, but has good direct current superposition characteristics and is suitable for power supply applications.

以上説明したように本発明によれば、磁性材料として扁平形状の金属系軟質磁性体粉をフィラとして含有させた有機樹脂を用いて素体を形成しているので、小型化・低背化に好適な素体構造を有していながら、直流重畳特性が良好であり電源用途として好適なものとなる。   As described above, according to the present invention, since the element body is formed using an organic resin containing a flat metal soft magnetic powder as a magnetic material as a filler, it is possible to reduce the size and height. Although it has a suitable element structure, it has good direct current superposition characteristics and is suitable for use as a power source.

(第1の実施の形態)
本発明の第1の実施の形態について図面を参照して説明する。図1はパワーインダクタの外観斜視図、図2はパワーインダクタの断面図、図3はパワーインダクタの素体の分解斜視図である。
(First embodiment)
A first embodiment of the present invention will be described with reference to the drawings. 1 is an external perspective view of a power inductor, FIG. 2 is a cross-sectional view of the power inductor, and FIG. 3 is an exploded perspective view of a power inductor element.

このパワーインダクタ1は、図1に示すように、コイルが埋設された薄型直方体形状の素体10と、該素体の両端部に形成され且つそれぞれコイル端に接続した端子電極21,22とを備えている。   As shown in FIG. 1, the power inductor 1 includes a thin rectangular parallelepiped element body 10 in which a coil is embedded, and terminal electrodes 21 and 22 formed at both ends of the element body and connected to the coil ends, respectively. I have.

素体10の内部構造について図2の断面図及び図3の分解斜視図を参照して説明する。なお、図3はコイルの構造を説明するため素体10の層構造については図示を省略した。   The internal structure of the element body 10 will be described with reference to the cross-sectional view of FIG. 2 and the exploded perspective view of FIG. Note that FIG. 3 omits the layer structure of the element body 10 in order to explain the structure of the coil.

図2及び図3に示すように、素体10は、素体10には、互いに対向配置された一対の渦巻き状のコイル導体31,32と、コイル導体31,32の間に介在する平板状の第1の絶縁体41と、第1の絶縁体41を挟み込み且つ前記コイル導体31,32を埋設するように形成された第2の絶縁体51と、第2の絶縁体51を埋設した第3の絶縁体61とからなる。第1の絶縁体41及び第2の絶縁体51には、コイル導体31,32の内周部において貫通孔71が形成されている。この貫通孔には第3の絶縁体61が充填されている。この貫通孔に充填された第3の絶縁体61はコイルのコアに相当する。また、第1の絶縁体層41及び第2の絶縁体層51の外周にも第3の絶縁体61が形成されている。   As shown in FIG. 2 and FIG. 3, the element body 10 includes a pair of spiral coil conductors 31 and 32 disposed opposite to each other and a flat plate shape interposed between the coil conductors 31 and 32. A first insulator 41, a second insulator 51 sandwiched between the first insulator 41 and embedded in the coil conductors 31 and 32, and a second insulator 51 embedded in the second insulator 51. 3 insulators 61. In the first insulator 41 and the second insulator 51, a through hole 71 is formed in the inner peripheral portions of the coil conductors 31 and 32. This through hole is filled with a third insulator 61. The third insulator 61 filled in the through hole corresponds to the core of the coil. A third insulator 61 is also formed on the outer periphery of the first insulator layer 41 and the second insulator layer 51.

各絶縁体41,51,61は、パワーインダクタ1の製品仕様・特性・用途等に応じて透磁率が設定されている。具体的には、各絶縁体41,51,61は金属系軟質磁性材料をフィラとして含有させた有機樹脂、又は、フィラを含有させていない有機樹脂からなる。すなわち、有機樹脂に対して、フィラ含有の有無、及び、フィラを含有させる際にはフィラの分量・材質等を適宜選択することにより、各絶縁体41,51,61の透磁率(透磁率1も含む)を設定可能となっている。   Each insulator 41, 51, 61 has a permeability set according to the product specifications, characteristics, application, etc. of the power inductor 1. Specifically, each insulator 41, 51, 61 is made of an organic resin containing a metallic soft magnetic material as a filler, or an organic resin not containing a filler. That is, the permeability of each of the insulators 41, 51, and 61 is appropriately selected by appropriately selecting the filler content, material, and the like when the filler is contained in the organic resin. Can be set).

本発明に係るパワーインダクタ1では、素体10中に3種の絶縁体41,51,61が形成されていることから、各絶縁体41,51,61の透磁率の組み合わせは多岐にわたるが、シミュレーションの結果、第1の絶縁体41の透磁率≦第2の絶縁体51の透磁率≦第3の絶縁体61の透磁率という関係が成り立つようにすると好適であった。特に、第1の絶縁体41の透磁率・第2の絶縁体51の透磁率・第3の絶縁体61の透磁率の組み合わせが、「高・高・高」,「1(非磁性)・高・高」,「1(非磁性)・1(非磁性)・高」となるものが、製品設計上好適である。   In the power inductor 1 according to the present invention, since the three types of insulators 41, 51, 61 are formed in the element body 10, there are various combinations of the magnetic permeability of the insulators 41, 51, 61. As a result of the simulation, it is preferable that the relationship of the permeability of the first insulator 41 ≦ the permeability of the second insulator 51 ≦ the permeability of the third insulator 61 is satisfied. In particular, the combination of the permeability of the first insulator 41, the permeability of the second insulator 51, and the permeability of the third insulator 61 is “high / high / high”, “1 (nonmagnetic) / High and high ”,“ 1 (non-magnetic), 1 (non-magnetic) and high ”are suitable for product design.

各絶縁体41,42,43で用いられる有機樹脂としては、熱可塑性樹脂又は熱硬化性樹脂のどちらであってもよい。熱硬化性樹脂の例としては、ベンゾシクロブテン(BCB)、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ポリイミド樹脂(PI)、ポリフェニレンエーテルオキサイド樹脂(PPO)、ビスマレイミドトリアジンシアネートエステル樹脂、フマレート樹脂、ポリブタジエン樹脂、ポリビニルベンジルエーテル樹脂などが挙げられる。また熱可塑性樹脂の例としては、超低密度ポリエチレン樹脂(VLDPE)、低密度ポリエチレン樹脂(LDPE)、線状低密度ポリエチレン樹脂(LLDPE)、中密度ポリエチレン樹脂(MDPE)、高密度ポリエチレン樹脂(HDPE)、ポリプロピレン樹脂(PP)、ポリブテン樹脂、ポリメチルペンテン樹脂、ポリビニルアルコール樹脂、エチレン・ビニルアルコール共重合体、ポリアクリロニトリル、ポリアミド樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、アイソタクチックポリスチレン樹脂、液晶ポリマーなどが挙げられる。特に、エポキシ樹脂、ポリイミド樹脂(PI)、ベンゾシクロブテン(BCB)は、低誘電率で且つ低誘電正接であること、及び、耐薬品性に優れており且つ低吸水率であるため高信頼性を確保することができる点で好ましい。   The organic resin used in each insulator 41, 42, 43 may be either a thermoplastic resin or a thermosetting resin. Examples of thermosetting resins include benzocyclobutene (BCB), epoxy resin, phenol resin, unsaturated polyester resin, vinyl ester resin, polyimide resin (PI), polyphenylene ether oxide resin (PPO), bismaleimide triazine cyanate ester Examples thereof include resins, fumarate resins, polybutadiene resins, and polyvinyl benzyl ether resins. Examples of thermoplastic resins include very low density polyethylene resin (VLDPE), low density polyethylene resin (LDPE), linear low density polyethylene resin (LLDPE), medium density polyethylene resin (MDPE), and high density polyethylene resin (HDPE). ), Polypropylene resin (PP), polybutene resin, polymethylpentene resin, polyvinyl alcohol resin, ethylene / vinyl alcohol copolymer, polyacrylonitrile, polyamide resin, polyacetal resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyphenylene sulfide resin, Examples include polyetheretherketone resins, isotactic polystyrene resins, liquid crystal polymers, and the like. In particular, epoxy resin, polyimide resin (PI), and benzocyclobutene (BCB) are highly reliable because of their low dielectric constant and low dielectric loss tangent, as well as excellent chemical resistance and low water absorption. Is preferable in that it can be secured.

各絶縁体41,42,43に含有させる金属系軟質磁性材料としては、純鉄(Fe),カーボニル鉄(Fe−C),けい素鋼(Fe−Si),パーマロイ(Fe−Ni),パーメンジュール(Fe−Co),スーパーマロイ(Fe−Ni−Mo),パーメンバー(Fe−Ni−Co),Fe−Al合金,Fe−Al−Si(好ましくはセンダスト(通称))などが挙げられる。本発明では、フィラとして有機樹脂に含有させる前記金属材料の各粒子が球状ではなく扁平形状となっていることを特徴としている。ここで扁平形状とは、アスペクト比が2以上であることを意味する。シミュレーションの結果、このような扁平形状の金属材料をフィラとして用いると、球状の金属材料と比較して高い透磁率が得られた。より具体的には、アスペクト比が2〜60が望ましく、さらに望ましくは10〜30である。このような絶縁体41,51,61により、本発明に係るパワーインダクタは直流重畳特性に優れたものとなる。   Examples of the metal-based soft magnetic material contained in each of the insulators 41, 42, and 43 include pure iron (Fe), carbonyl iron (Fe—C), silicon steel (Fe—Si), permalloy (Fe—Ni), per Menjules (Fe-Co), Supermalloy (Fe-Ni-Mo), Permembers (Fe-Ni-Co), Fe-Al alloys, Fe-Al-Si (preferably Sendust (common name)), etc. . The present invention is characterized in that each particle of the metal material contained in the organic resin as a filler has a flat shape instead of a spherical shape. Here, the flat shape means that the aspect ratio is 2 or more. As a result of simulation, when such a flat metal material was used as a filler, a higher magnetic permeability was obtained compared to a spherical metal material. More specifically, the aspect ratio is desirably 2 to 60, and more desirably 10 to 30. With such insulators 41, 51, 61, the power inductor according to the present invention has excellent direct current superposition characteristics.

図2及び図3に示すように、コイル導体31,32の外周側端部には端子電極21,22と接続するための引出電極31a,32aが形成されている。この引出電極31a,32aは、第2の絶縁体51及び第3の絶縁体61を貫通して素体10の側面に露出している。コイル導体31,32の内周側端部には、層間接続用のランド31b、32bが形成されている。このランド31b、32bは、前記貫通孔71の周縁部を囲むように形成されている。この貫通孔71の周面にはスルーホール72が形成されている。このスルーホール72によりコイル導体31とコイル導体32は層間接続している。   As shown in FIGS. 2 and 3, lead electrodes 31 a and 32 a for connecting to the terminal electrodes 21 and 22 are formed on the outer peripheral side ends of the coil conductors 31 and 32. The lead electrodes 31 a and 32 a pass through the second insulator 51 and the third insulator 61 and are exposed on the side surfaces of the element body 10. Interlayer connection lands 31b and 32b are formed at the inner peripheral side ends of the coil conductors 31 and 32, respectively. The lands 31 b and 32 b are formed so as to surround the peripheral edge of the through hole 71. A through hole 72 is formed on the peripheral surface of the through hole 71. The coil conductor 31 and the coil conductor 32 are interlayer-connected by the through hole 72.

各コイル導体31,32,スルーホール72,端子電極21,22の材料としては、導電性に優れた金属、例えばAg,Pd,Cu,Al或いはこれらの合金などが用いられる。   As a material for each of the coil conductors 31 and 32, the through hole 72, and the terminal electrodes 21 and 22, a metal having excellent conductivity, such as Ag, Pd, Cu, Al, or an alloy thereof is used.

次に、このパワーインダクタ1の製造方法について図面を参照して説明する。図4はパワーインダクタ1の製造工程を説明する図である。ここでは、第2の絶縁体51と第3の絶縁体61の透磁率が異なるパワーインダクタ1の製造方法について説明する。   Next, a method for manufacturing the power inductor 1 will be described with reference to the drawings. FIG. 4 is a diagram for explaining a manufacturing process of the power inductor 1. Here, the manufacturing method of the power inductor 1 in which the magnetic permeability of the 2nd insulator 51 and the 3rd insulator 61 differs is demonstrated.

本製造方法は、従来のプリント配線板の製造方法で用いられている方法である。具体的には、まず、フィラが含有された有機樹脂を平板状に形成した基台101にコア部に相当する貫通孔103を形成し、その内周面にコイル導体パターン102の層間接続を行うビア104を形成する。この基台101は第1の絶縁体41に相当するものである。貫通孔103の形成はドリル,レーザ,サンドブラスト,打ち抜き加工などで行う。また、ビア104は、スパッタ,無電解メッキなどでシード層を形成し、さらに電解メッキを行うことで形成する。なお、シード層はパラジウム錯体を付けた後に電解メッキを行うダイレクトメッキで代用してもよい。   This manufacturing method is a method used in a conventional method for manufacturing a printed wiring board. Specifically, first, a through hole 103 corresponding to a core portion is formed in a base 101 in which an organic resin containing filler is formed in a flat plate shape, and interlayer connection of the coil conductor pattern 102 is performed on the inner peripheral surface thereof. A via 104 is formed. This base 101 corresponds to the first insulator 41. The through-hole 103 is formed by drilling, laser, sandblasting, punching, or the like. The via 104 is formed by forming a seed layer by sputtering, electroless plating or the like and further performing electrolytic plating. The seed layer may be replaced by direct plating in which electrolytic plating is performed after the palladium complex is attached.

次に、基台101の両面にコイル導体パターン102を形成する(図4(a))。この基台101は第1の絶縁体41に相当するものである。コイル導体パターン102の形成方法としては、プリント配線板の製造工程で用いられているメッキ,エッチング,印刷法,転写法などの各種手法を用いることができる。ところで、本発明ではコイルに大電流を流すので導体配線は限られたスペースで断面積をできる限り大きくとりたいため、コイル導体パターン102は厚く形成したい。そこで、コイル導体パターン102の形成方法としては、メッキ又はエッチングが好ましい。   Next, the coil conductor pattern 102 is formed on both surfaces of the base 101 (FIG. 4A). This base 101 corresponds to the first insulator 41. As a method of forming the coil conductor pattern 102, various methods such as plating, etching, printing, and transfer used in the printed wiring board manufacturing process can be used. By the way, in the present invention, since a large current flows through the coil, the conductor wiring is desired to be as thick as possible in a limited space, and therefore the coil conductor pattern 102 is desired to be formed thick. Therefore, plating or etching is preferable as a method for forming the coil conductor pattern 102.

次に、基台101の両面に、フィラが含有された有機樹脂層105をラミネート法や静水圧プレス法などで形成する(図4(b))。このとき、前記貫通孔103にボイドの発生がないよう有機樹脂を充填する。この有機樹脂層105は、第2の絶縁体51に相当するものである。   Next, an organic resin layer 105 containing filler is formed on both surfaces of the base 101 by a laminating method, an isostatic pressing method, or the like (FIG. 4B). At this time, the through hole 103 is filled with an organic resin so that no void is generated. This organic resin layer 105 corresponds to the second insulator 51.

次に、コイル導体パターン102の内周側に、コア部に相当する貫通孔106を形成するとともに、コイル導体パターン102の外周側にも貫通孔107を形成する(図4(c))。このとき、コイル導体パターン102を切断しないように注意する。   Next, the through hole 106 corresponding to the core portion is formed on the inner peripheral side of the coil conductor pattern 102, and the through hole 107 is also formed on the outer peripheral side of the coil conductor pattern 102 (FIG. 4C). At this time, care is taken not to cut the coil conductor pattern 102.

次に、有機樹脂層105の両面に、フィラが含有された有機樹脂層108をラミネート法や静水圧プレス法などで形成する(図4(d))。このとき、前記貫通孔106,107にボイドの発生がないよう有機樹脂を充填する。この有機樹脂層108は、第3の絶縁体61に相当するものである。   Next, the organic resin layer 108 containing filler is formed on both surfaces of the organic resin layer 105 by a laminating method, an isostatic pressing method, or the like (FIG. 4D). At this time, the through holes 106 and 107 are filled with an organic resin so that no voids are generated. This organic resin layer 108 corresponds to the third insulator 61.

次に、この積層体を単位部品毎にカットすることで素体10が得られる(図4(e))。最後に、素体10の側面にディップ法などで端子電極21,22を形成することでパワーインダクタ1が得られる。   Next, the element body 10 is obtained by cutting the laminated body for each unit part (FIG. 4E). Finally, the power inductor 1 is obtained by forming the terminal electrodes 21 and 22 on the side surface of the element body 10 by dipping or the like.

なお、基台101や有機樹脂層105,108として熱可塑性樹脂を用いる場合、ラミネートによるより内側の絶縁層厚変動を防ぐため基台101となる絶縁樹脂よりもより外側の絶縁樹脂の可塑温度が低いと好適である。   When a thermoplastic resin is used as the base 101 and the organic resin layers 105 and 108, the plastic temperature of the insulating resin outside the insulating resin serving as the base 101 is lower in order to prevent the inner insulating layer thickness variation due to lamination. Low is preferable.

次に、第2の絶縁体51と第3の絶縁体61の透磁率が同じパワーインダクタ1の製造方法について図面を参照して説明する。より具体的には、第2の絶縁体51と第3の絶縁体61とが全く同じ特性を有しており、両者を一体に形成する場合について説明する。図5はパワーインダクタ1の製造工程を説明する図である。   Next, a method for manufacturing the power inductor 1 having the same magnetic permeability of the second insulator 51 and the third insulator 61 will be described with reference to the drawings. More specifically, a case will be described in which the second insulator 51 and the third insulator 61 have exactly the same characteristics and are formed integrally. FIG. 5 is a diagram for explaining a manufacturing process of the power inductor 1.

まず、前記製造方法と同様に、フィラが含有された有機樹脂を平板状に形成した基台201の両面に、コア部に相当する貫通孔203を形成するとともに、コイル導体パターン202の外周側の基台201にも貫通孔204を形成する。次に、基台201の両面にコイル導体パターン202を形成するとともに、貫通孔203の内周面にコイル導体パターン102の層間接続を行うビア205を形成する(図5(a))。なお、この基台201は第1の絶縁体41に相当するものである。   First, similarly to the manufacturing method, the through holes 203 corresponding to the core portions are formed on both sides of the base 201 in which the organic resin containing the filler is formed in a flat plate shape, and the outer peripheral side of the coil conductor pattern 202 is formed. A through hole 204 is also formed in the base 201. Next, the coil conductor patterns 202 are formed on both surfaces of the base 201, and the vias 205 for connecting the coil conductor patterns 102 between the inner peripheral surfaces of the through holes 203 are formed (FIG. 5A). The base 201 corresponds to the first insulator 41.

次に、基台201の両面に、フィラが含有された有機樹脂層206をラミネート法や静水圧プレス法などで形成する(図5(b))。このとき、前記貫通孔203及び204にボイドの発生がないよう有機樹脂を充填する。この有機樹脂層206は、第2の絶縁体51及び第3の絶縁体61に相当するものである。   Next, an organic resin layer 206 containing filler is formed on both surfaces of the base 201 by a laminating method, an isostatic pressing method, or the like (FIG. 5B). At this time, the through holes 203 and 204 are filled with an organic resin so that no voids are generated. The organic resin layer 206 corresponds to the second insulator 51 and the third insulator 61.

次に、この積層体を単位部品毎にカットすることで素体10が得られる(図5(c))。最後に、素体10の側面にディップ法などで端子電極21,22を形成することでパワーインダクタ1が得られる。   Next, the element body 10 is obtained by cutting the laminated body for each unit part (FIG. 5C). Finally, the power inductor 1 is obtained by forming the terminal electrodes 21 and 22 on the side surface of the element body 10 by dipping or the like.

このように、本実施の形態に係るパワーインダクタ1によれば、従来の巻線型とは異なり、従来のプリント配線板と同様に樹脂層と導体層とを積層した構造となっているので、小型化・低背化を容易に図ることができる。特に、その製造工程は、従来のプリント配線板の製造工程を応用できるので、製造コストの低廉化を図れる。具体的には、多数個の素体を同時に形成できるので、1個ずつ巻線工程が必要な従来の巻線型インダクタと比較して、製造効率が向上する。また、焼成工程を必要としないので、簡便な設備で製造可能であり、しかも製造に必要なエネルギーも少なくて済む。   As described above, the power inductor 1 according to the present embodiment has a structure in which a resin layer and a conductor layer are laminated in the same manner as a conventional printed wiring board, unlike a conventional winding type. Can be easily realized. In particular, the manufacturing process can be applied to the conventional manufacturing process of printed wiring boards, so that the manufacturing cost can be reduced. Specifically, since a large number of element bodies can be formed simultaneously, the manufacturing efficiency is improved as compared with a conventional wound inductor that requires a winding process one by one. In addition, since a firing step is not required, it can be manufactured with simple equipment and requires less energy for manufacturing.

また、本実施の形態に係るパワーインダクタ1では、有機樹脂層に含有させるフィラとして扁平形状の金属系軟質磁性材料を用いているので、小型・低背な構造であれながら高い直流重畳特性を得ることができる。また、素体10を形成する絶縁体は、第1の絶縁体41,51,61という3種の絶縁体により構成されるので、各絶縁体の樹脂やフィラを適宜選択することにより、種々の製品特性に対応させることが可能となる。   Further, in the power inductor 1 according to the present embodiment, since a flat metallic soft magnetic material is used as the filler contained in the organic resin layer, high DC superposition characteristics can be obtained even though the structure is small and low. be able to. Further, since the insulator forming the element body 10 is composed of three types of insulators, the first insulators 41, 51, and 61, various kinds of resins can be selected by appropriately selecting the resin and filler of each insulator. It becomes possible to correspond to product characteristics.

(第2の実施の形態)
本発明の第2の実施の形態に係るパワーインダクタについて図面を参照して説明する。図6はパワーインダクタの断面図、図7はパワーインダクタの素体の分解斜視図である。
(Second Embodiment)
A power inductor according to a second embodiment of the present invention will be described with reference to the drawings. 6 is a cross-sectional view of the power inductor, and FIG. 7 is an exploded perspective view of the power inductor body.

本実施の形態に係るパワーインダクタ2が、第1の実施の形態と異なる点は、コイルの形成層数にある。具体的には、第1の実施の形態に係るパワーインダクタ1ではコイル導体31,32が素体10に埋設されていたが、本実施の形態に係るパワーインダクタ2は、図6及び図7に示すように、コイル導体33,34,35,36が素体10に埋設されている。   The power inductor 2 according to the present embodiment differs from the first embodiment in the number of coil formation layers. Specifically, in the power inductor 1 according to the first embodiment, the coil conductors 31 and 32 are embedded in the element body 10, but the power inductor 2 according to the present embodiment is shown in FIGS. As shown, coil conductors 33, 34, 35, 36 are embedded in the element body 10.

コイル導体33,34は、第2の絶縁体51と外層面において第3の絶縁体61に埋設した状態で形成されている。また、コイル導体35,36は、前記第1の実施の形態におけるコイル導体31,32と同様に、第1の絶縁体41の外装面において第2の絶縁体52に埋設した状態で形成されている。   The coil conductors 33 and 34 are formed in a state of being embedded in the third insulator 61 on the outer surface of the second insulator 51. In addition, the coil conductors 35 and 36 are formed in a state of being embedded in the second insulator 52 on the exterior surface of the first insulator 41 in the same manner as the coil conductors 31 and 32 in the first embodiment. Yes.

コイル導体33,34の外周側端部には端子電極21,22と接続するための引出電極33a,34aが形成されている。この引出電極34a,34aは、第3の絶縁体61を貫通して素体10の側面に露出している。コイル導体33,34の内周側端部には、それぞれコイル導体35,36との間の層間接続用のランド33b、34bが形成されている。   Lead electrodes 33 a and 34 a for connection to the terminal electrodes 21 and 22 are formed on the outer peripheral side ends of the coil conductors 33 and 34. The extraction electrodes 34 a and 34 a penetrate the third insulator 61 and are exposed on the side surfaces of the element body 10. Lands 33b and 34b for interlayer connection with the coil conductors 35 and 36 are formed at the inner peripheral side ends of the coil conductors 33 and 34, respectively.

コイル導体35,36の外周側端部には、相互に層間接続するためのランド35a,36aが形成されている。各ランド35a,36aは、第1の絶縁体41を貫通するビア73を介して導通接続している。コイル導体35,36の内周側端部には、それぞれコイル導体33,34との間の層間接続用のランド35b、36bが形成されている。各ランド35b、36bは、第2の絶縁体52を貫通するビア74,75を介して、それぞれ対応するコイル導体33,34のランド33b、34bと導通接続している。他の構成・材質等については第1の実施の形態と同様である。   Lands 35a and 36a for interlayer connection are formed on the outer peripheral side ends of the coil conductors 35 and 36, respectively. The lands 35 a and 36 a are conductively connected through vias 73 that penetrate the first insulator 41. Lands 35b and 36b for interlayer connection with the coil conductors 33 and 34 are formed at the inner peripheral side ends of the coil conductors 35 and 36, respectively. The lands 35b and 36b are electrically connected to the lands 33b and 34b of the corresponding coil conductors 33 and 34 through vias 74 and 75 that penetrate the second insulator 52, respectively. Other configurations and materials are the same as those in the first embodiment.

次に、このパワーインダクタ2の製造方法について図8を参照して説明する。まず、従来のプリンタ配線板の製造方法で用いられているビルドアップ法を用いて、第1の絶縁体41,第2の絶縁体52,コイル導体33〜36,ビア73〜75に相当する積層体301を作成する(図8(b))。次に、コイルの内周側及び外周側に貫通孔302,303を形成する(図8(c))。このとき、コイル導体パターンを切断しないように注意する。   Next, a method for manufacturing the power inductor 2 will be described with reference to FIG. First, by using a build-up method used in a conventional method for manufacturing a printer wiring board, a stack corresponding to the first insulator 41, the second insulator 52, the coil conductors 33 to 36, and the vias 73 to 75 is used. A body 301 is created (FIG. 8B). Next, the through holes 302 and 303 are formed on the inner and outer peripheral sides of the coil (FIG. 8C). At this time, care is taken not to cut the coil conductor pattern.

次に、積層体301の両面に、フィラが含有された有機樹脂層304をラミネート法や静水圧プレス法などで形成する(図8(c))。このとき、前記貫通孔302,303にボイドの発生がないよう有機樹脂を充填する。この有機樹脂層304は、第3の絶縁体61に相当するものである。   Next, an organic resin layer 304 containing filler is formed on both surfaces of the laminate 301 by a laminating method, an isostatic pressing method, or the like (FIG. 8C). At this time, the through holes 302 and 303 are filled with an organic resin so that no voids are generated. This organic resin layer 304 corresponds to the third insulator 61.

次に、この積層体を単位部品毎にカットすることで素体10が得られる(図8(d))。最後に、素体10の側面にディップ法などで端子電極21,22を形成することでパワーインダクタ2が得られる。   Next, the element body 10 is obtained by cutting the laminated body for each unit part (FIG. 8D). Finally, the power inductor 2 is obtained by forming the terminal electrodes 21 and 22 on the side surface of the element body 10 by dipping or the like.

本実施の形態に係るパワーインダクタ2によれば、第1の実施の形態に係るパワーインダクタ1と比較してコイルの巻回数を大きくとれるので、インダクタンス値の向上が図れる。他の作用・効果については、第1の実施の形態と同様である。   According to the power inductor 2 according to the present embodiment, the number of turns of the coil can be increased as compared with the power inductor 1 according to the first embodiment, so that the inductance value can be improved. Other operations and effects are the same as those in the first embodiment.

なお、本実施の形態では、コイル導体33,34,35,36のうち外層側に位置するコイル導体33,34は第3の絶縁体61に埋設した構造となっているが、図9に示すパワーインダクタ2’のように、第2の絶縁体51に埋設するようにしてもよい。   In the present embodiment, among the coil conductors 33, 34, 35, and 36, the coil conductors 33 and 34 located on the outer layer side have a structure embedded in the third insulator 61, but are shown in FIG. It may be embedded in the second insulator 51 like the power inductor 2 ′.

以上本発明の実施の形態について詳述したが本発明はこれに限定されるものではない。例えば、上記各実施の形態では、コイルの内周側及び外周側において第1の絶縁体及び第2の絶縁体に貫通孔を形成し、この貫通孔に第3の絶縁体を充填した閉磁路型インダクタとなっているが、貫通孔の形成及び第3の絶縁体の充填を省略することにより開示路型インダクタとしてもよい。   Although the embodiment of the present invention has been described in detail above, the present invention is not limited to this. For example, in each of the above embodiments, a closed magnetic circuit in which through holes are formed in the first insulator and the second insulator on the inner peripheral side and the outer peripheral side of the coil, and the third insulator is filled in the through holes. Although it is a type inductor, it may be a disclosed path type inductor by omitting the formation of the through hole and the filling of the third insulator.

また、上記実施の形態では、第1の絶縁体41の透磁率・第2の絶縁体51の透磁率・第3の絶縁体61の透磁率の組み合わせが、「高・高・高」,「1(非磁性)・高・高」,「1(非磁性)・1(非磁性)・高」となるものを例示したが、他の組み合わせであってもよい。例えば、前記組み合わせが、「低・高・高」,「低・低・高」,「1(非磁性)・低・高」のものが挙げられる。どのような組み合わせを採用するかは、製品仕様等に応じて適宜選択すればよい。   In the above embodiment, the combination of the magnetic permeability of the first insulator 41, the magnetic permeability of the second insulator 51, and the magnetic permeability of the third insulator 61 is “high / high / high”, “ Although “1 (nonmagnetic) · high / high” and “1 (nonmagnetic) · 1 (nonmagnetic) · high” are illustrated, other combinations may be used. For example, the combinations include “low / high / high”, “low / low / high”, and “1 (non-magnetic) / low / high”. What kind of combination should be adopted may be appropriately selected according to product specifications and the like.

また、上記第1の実施の形態では、第3の絶縁体を充填させるためにコイルの内側に形成した貫通孔の内周面を利用してコイル導体の層間接続を行っているが、該貫通孔とは別に層間接続用のビアを介して導通接続するようにしてもよい。   Further, in the first embodiment, the interlayer connection of the coil conductor is performed using the inner peripheral surface of the through hole formed inside the coil in order to fill the third insulator. In addition to the hole, the conductive connection may be made via an interlayer connection via.

また、上記実施の形態では、素体の両端部に端子電極を形成したが、製品仕様等に応じて上面又は下面の何れか一方又は双方、或いは側面に形成するようにしてもよい。   Moreover, in the said embodiment, although the terminal electrode was formed in the both ends of an element | base_body, you may make it form in any one or both, or a side surface of an upper surface or a lower surface according to product specifications etc.

また、上記各実施の形態では、1回路のコイルを埋設したパワーインダクタについて説明したが、多回路のコイルを埋設したインダクタアレイにおいても本発明を適用できる。   In each of the above embodiments, the power inductor in which one circuit coil is embedded has been described. However, the present invention can also be applied to an inductor array in which multiple circuit coils are embedded.

パワーインダクタの外観斜視図External perspective view of power inductor パワーインダクタの断面図Cross section of power inductor パワーインダクタの素体の分解斜視図Disassembled perspective view of power inductor body パワーインダクタの製造方法を説明する図Diagram explaining the manufacturing method of power inductor パワーインダクタの製造方法を説明する図Diagram explaining the manufacturing method of power inductor パワーインダクタの断面図Cross section of power inductor パワーインダクタの素体の分解斜視図Disassembled perspective view of power inductor body パワーインダクタの製造方法を説明する図Diagram explaining the manufacturing method of power inductor パワーインダクタの断面図Cross section of power inductor

符号の説明Explanation of symbols

1,2,2’…パワーインダクタ、10…素体、21,22…端子電極、31〜36…コイル導体、41…第1の絶縁体、51…第2の絶縁体、61…第3の絶縁体、71…貫通孔、72…スルーホール、74,75…ビア   1, 2, 2 '... power inductor, 10 ... element body, 21, 22 ... terminal electrode, 31-36 ... coil conductor, 41 ... first insulator, 51 ... second insulator, 61 ... third Insulator, 71 ... through hole, 72 ... through hole, 74,75 ... via

Claims (7)

コイル導体が埋設された素体と、該素体の外面に前記コイル導体と接続する端子電極が形成されたパワーインダクタにおいて、
前記素体は、第1の絶縁体と、第1の絶縁体の上面及び下面に形成されたコイル導体と、コイル導体及び第1の絶縁体を被覆するように形成された第2の絶縁体と、第2の絶縁体の少なくとも上面及び下面を被覆するように形成された第3の絶縁体とからなり、
少なくとも第3の絶縁体は、扁平形状の金属系軟質磁性体粉をフィラとして含有させた有機樹脂からなる
ことを特徴とするパワーインダクタ。
In a power inductor in which a coil conductor is embedded and a terminal electrode connected to the coil conductor is formed on the outer surface of the element,
The element body includes a first insulator, a coil conductor formed on an upper surface and a lower surface of the first insulator, and a second insulator formed so as to cover the coil conductor and the first insulator. And a third insulator formed to cover at least the upper and lower surfaces of the second insulator,
The power inductor is characterized in that at least the third insulator is made of an organic resin containing a flat metal-based soft magnetic powder as a filler.
第2の絶縁体は、扁平形状の金属系軟質磁性体粉をフィラとして含有させた有機樹脂からなる
ことを特徴とする請求項1記載のパワーインダクタ。
2. The power inductor according to claim 1, wherein the second insulator is made of an organic resin containing a flat metallic soft magnetic powder as a filler.
第1の絶縁体は、扁平形状の金属系軟質磁性体粉をフィラとして含有させた有機樹脂からなる
ことを特徴とする請求項1又は2の何れか1項記載のパワーインダクタ。
3. The power inductor according to claim 1, wherein the first insulator is made of an organic resin containing a flat metal-based soft magnetic powder as a filler. 4.
第3の磁性体の透磁率は第2の磁性体の透磁率以上であり、且つ、第2の磁性体の透磁率は第1の磁性体の透磁率以上である
ことを特徴とする請求項1乃至3の何れか1項記載のパワーインダクタ。
The magnetic permeability of the third magnetic body is greater than or equal to the permeability of the second magnetic body, and the permeability of the second magnetic body is greater than or equal to the permeability of the first magnetic body. The power inductor according to any one of 1 to 3.
金属系軟質磁性体粉のアスペクト比は10以上である
ことを特徴とする請求項1乃至4の何れか1項記載のパワーインダクタ
The power inductor according to any one of claims 1 to 4, wherein the aspect ratio of the metallic soft magnetic powder is 10 or more.
コイル導体の内周部及び外周部には、第1の磁性体及び第2の磁性体を貫通して第3の磁性体が形成されている
ことを特徴とする請求項1乃至5の何れか1項記載のパワーインダクタ
The third magnetic body is formed in the inner peripheral portion and the outer peripheral portion of the coil conductor so as to penetrate the first magnetic body and the second magnetic body. 1. Power inductor according to item 1
コイル導体は多層に亘って形成されている
ことを特徴とする請求項1乃至6の何れか1項記載のパワーインダクタ
The power inductor according to any one of claims 1 to 6, wherein the coil conductor is formed in multiple layers.
JP2005252146A 2005-08-31 2005-08-31 Power inductor Withdrawn JP2007067214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005252146A JP2007067214A (en) 2005-08-31 2005-08-31 Power inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005252146A JP2007067214A (en) 2005-08-31 2005-08-31 Power inductor

Publications (1)

Publication Number Publication Date
JP2007067214A true JP2007067214A (en) 2007-03-15

Family

ID=37929046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005252146A Withdrawn JP2007067214A (en) 2005-08-31 2005-08-31 Power inductor

Country Status (1)

Country Link
JP (1) JP2007067214A (en)

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201375A (en) * 2012-03-26 2013-10-03 Tdk Corp Planar coil element and manufacturing method therefor
JP2013201374A (en) * 2012-03-26 2013-10-03 Tdk Corp Planar coil element
US20130263440A1 (en) * 2011-12-22 2013-10-10 Samsung Electro-Mechanics Co., Ltd Method for manufacturing inductor
CN103383886A (en) * 2012-05-02 2013-11-06 三星电机株式会社 Multilayer inductor and method of manufacturing the same
KR20130134639A (en) * 2012-05-31 2013-12-10 삼성전기주식회사 Chip inductor
JP2014027261A (en) * 2012-07-25 2014-02-06 Samsung Electro-Mechanics Co Ltd Laminate type inductor, and composition of protection layer of laminate type inductor
KR20140085997A (en) * 2012-12-28 2014-07-08 삼성전기주식회사 Power inductor and manufacturing method thereof
CN104051145A (en) * 2013-03-15 2014-09-17 三星电机株式会社 Inductor and method for manufacturing the same
KR101442404B1 (en) * 2013-03-29 2014-09-17 삼성전기주식회사 Inductor and method for manufacturing the same
KR101442402B1 (en) * 2013-03-25 2014-09-17 삼성전기주식회사 Inductor and method for manufacturing the same
JP2014170924A (en) * 2013-03-04 2014-09-18 Samsung Electro-Mechanics Co Ltd Power inductor and method of manufacturing the same
KR101451503B1 (en) * 2013-03-25 2014-10-15 삼성전기주식회사 Inductor and method for manufacturing the same
KR101449518B1 (en) * 2013-09-10 2014-10-16 주식회사 아모텍 Power Inductor and Manufacturing Method thereof
KR101462806B1 (en) * 2013-10-11 2014-11-20 삼성전기주식회사 Inductor and Manufacturing Method for the Same
US8896407B2 (en) 2011-11-16 2014-11-25 Nec Tokin Corporation Inductor
KR20150007448A (en) 2013-07-11 2015-01-21 삼성전기주식회사 Chip electronic component
CN104347228A (en) * 2013-07-29 2015-02-11 三星电机株式会社 Chip electronic component and manufacturing method thereof
KR20150019730A (en) 2013-08-14 2015-02-25 삼성전기주식회사 Chip electronic component
JP2015079958A (en) * 2013-10-16 2015-04-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. Chip electronic component, and mounting board and packaging unit of chip electronic component
KR20150044372A (en) 2013-10-16 2015-04-24 삼성전기주식회사 Chip electronic component, board having the same mounted thereon and packing unit thereof
US20150155091A1 (en) * 2012-04-24 2015-06-04 Cyntec Co., Ltd. Electromagnetic component and fabrication method thereof
JP2015156432A (en) * 2014-02-20 2015-08-27 株式会社村田製作所 Method of manufacturing inductor
CN104900375A (en) * 2014-03-07 2015-09-09 三星电机株式会社 Chip electronic member and manufacture method for the same
KR101558095B1 (en) 2014-06-24 2015-10-06 삼성전기주식회사 Multilayered electronic component
KR101558110B1 (en) * 2013-07-29 2015-10-19 삼성전기주식회사 Inductor and manufacturing method thereof
KR20150127999A (en) 2014-05-08 2015-11-18 삼성전기주식회사 Chip electronic component and manufacturing method thereof
KR101580399B1 (en) * 2014-06-24 2015-12-23 삼성전기주식회사 Chip electronic component and manufacturing method thereof
KR101588966B1 (en) * 2014-08-11 2016-01-26 삼성전기주식회사 Chip electronic component
WO2016021807A1 (en) * 2014-08-07 2016-02-11 주식회사 이노칩테크놀로지 Power inductor
WO2016021818A1 (en) * 2014-08-07 2016-02-11 주식회사 이노칩테크놀로지 Power inductor
WO2016021938A1 (en) * 2014-08-07 2016-02-11 주식회사 이노칩테크놀로지 Power inductor
KR20160018382A (en) * 2014-08-07 2016-02-17 주식회사 이노칩테크놀로지 Power Inductor
KR20160019039A (en) * 2014-08-07 2016-02-18 주식회사 이노칩테크놀로지 Power inductor
KR20160026940A (en) * 2016-02-18 2016-03-09 삼성전기주식회사 Coil component
WO2016039517A1 (en) * 2014-09-11 2016-03-17 주식회사 이노칩테크놀로지 Power inductor
WO2016039516A1 (en) * 2014-09-11 2016-03-17 주식회사 이노칩테크놀로지 Power inductor
KR20160031389A (en) * 2014-09-11 2016-03-22 주식회사 이노칩테크놀로지 Power inductor
KR20160033464A (en) 2014-09-18 2016-03-28 삼성전기주식회사 Chip electronic component and board having the same mounted thereon
KR101607027B1 (en) * 2014-11-19 2016-03-28 삼성전기주식회사 Chip electronic component and board having the same mounted thereon
CN105513747A (en) * 2014-10-14 2016-04-20 三星电机株式会社 Chip electronic component and board having the same
CN105513746A (en) * 2014-10-14 2016-04-20 株式会社村田制作所 Electronic component
US20160133374A1 (en) * 2014-11-10 2016-05-12 Murata Manufacturing Co., Ltd. Common mode choke coil
KR20160071957A (en) 2014-12-12 2016-06-22 삼성전기주식회사 Chip electronic component and manufacturing method thereof
KR20160071958A (en) 2014-12-12 2016-06-22 삼성전기주식회사 Chip electronic component and manufacturing method thereof
KR20160071956A (en) 2014-12-12 2016-06-22 삼성전기주식회사 Chip electronic component and manufacturing method thereof
KR20160081054A (en) 2014-12-30 2016-07-08 삼성전기주식회사 Chip electronic component and manufacturing method thereof
KR20160094123A (en) 2015-01-30 2016-08-09 삼성전기주식회사 Chip electronic component, manufacturing method thereof and board having the same
KR20160108935A (en) 2015-03-09 2016-09-21 삼성전기주식회사 Coil electronic component and manufacturing method thereof
KR20160118052A (en) * 2015-04-01 2016-10-11 삼성전기주식회사 Coil electronic component and manufacturing method thereof
KR20160123657A (en) 2015-04-16 2016-10-26 삼성전기주식회사 Chip electronic component
KR101681405B1 (en) 2015-03-18 2016-11-30 삼성전기주식회사 Power inductor
US20160351318A1 (en) * 2015-05-29 2016-12-01 Samsung Electro-Mechanics Co., Ltd. Coil electronic component
KR20170004124A (en) * 2015-07-01 2017-01-11 삼성전기주식회사 Coil electronic component and manufacturing method thereof
US9655247B1 (en) 2015-11-19 2017-05-16 Samsung Electro-Mechanics Co., Ltd. Coil component and board having the same
US20170140866A1 (en) * 2015-11-18 2017-05-18 Samsung Electro-Mechanics Co., Ltd. Coil component and method of manufacturing the same
US20170148561A1 (en) * 2015-11-19 2017-05-25 Samsung Electro-Mechanics Co., Ltd. Coil component and board having the same
KR101740820B1 (en) * 2014-11-28 2017-05-29 삼성전기주식회사 Common mode filter
JP2017098544A (en) * 2015-11-20 2017-06-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component
JP2017103360A (en) * 2015-12-02 2017-06-08 Tdk株式会社 Coil component and power supply circuit unit
KR20170088162A (en) 2016-01-22 2017-08-01 삼성전기주식회사 Coil component
KR20170097441A (en) * 2016-02-18 2017-08-28 삼성전기주식회사 Coil component and manufacturing method for the same
KR20170097445A (en) 2016-02-18 2017-08-28 삼성전기주식회사 Coil component
KR20170097438A (en) * 2016-02-18 2017-08-28 삼성전기주식회사 Coil component
KR20170097493A (en) 2016-02-18 2017-08-28 삼성전기주식회사 Inductor
KR20170097446A (en) * 2016-02-18 2017-08-28 삼성전기주식회사 Coil component and manufacturing method for the same
KR20170097864A (en) * 2016-02-19 2017-08-29 삼성전기주식회사 Coil component and manufacturing method for the same
KR20170097865A (en) * 2016-02-19 2017-08-29 삼성전기주식회사 Coil component
CN105321655B (en) * 2014-06-02 2017-09-01 三星电机株式会社 Chip electronic device and the plate for installing chip electronic device
KR101771739B1 (en) * 2012-11-08 2017-09-05 삼성전기주식회사 Thin film chip device and method for manufacturing the same
US20170345556A1 (en) * 2016-05-25 2017-11-30 Samsung Electro-Mechanics Co., Ltd. Coil electronic component and method for manufacturing the same
WO2018016821A1 (en) * 2016-07-19 2018-01-25 주식회사 모다이노칩 Power inductor
TWI618099B (en) * 2015-11-24 2018-03-11 摩達伊諾琴股份有限公司 Power inductor
US9954510B2 (en) 2014-11-28 2018-04-24 Samsung Electro-Mechanics Co., Ltd. Common mode filter
CN108010660A (en) * 2016-10-28 2018-05-08 三星电机株式会社 Coil block
KR20180046826A (en) * 2016-10-28 2018-05-09 삼성전기주식회사 Coil component
CN108231334A (en) * 2016-12-15 2018-06-29 三星电机株式会社 The manufacturing method of inductor and inductor
KR20180085219A (en) 2017-01-18 2018-07-26 삼성전기주식회사 Inductor and Manufacturing Method for the Same
JP2018137456A (en) * 2014-05-07 2018-08-30 サムソン エレクトロ−メカニックス カンパニーリミテッド. Chip electronic component
JP2018137421A (en) * 2017-02-20 2018-08-30 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil electronic component
KR20180099592A (en) 2018-08-22 2018-09-05 삼성전기주식회사 Chip electronic component and board having the same mounted thereon
CN109215972A (en) * 2017-07-05 2019-01-15 三星电机株式会社 Film-type inductor
KR20190008396A (en) * 2017-02-20 2019-01-23 삼성전기주식회사 Coil electronic component
KR20190015738A (en) 2019-01-31 2019-02-14 삼성전기주식회사 Chip electronic component
CN109524211A (en) * 2017-09-20 2019-03-26 三星电机株式会社 Coil block and the method for manufacturing the coil block
CN109559867A (en) * 2017-09-26 2019-04-02 三星电机株式会社 Coil block
US10276290B2 (en) 2014-11-14 2019-04-30 Samsung Electro-Mechanics Co., Ltd. Electronic component and method for manufacturing same
KR20190065991A (en) * 2019-05-31 2019-06-12 삼성전기주식회사 Coil component and manufacturing method for the same
KR20190082181A (en) 2019-07-01 2019-07-09 삼성전기주식회사 Chip electronic component
KR20190082736A (en) * 2019-07-03 2019-07-10 삼성전기주식회사 Coil component
KR20190123848A (en) * 2018-04-25 2019-11-04 삼성전기주식회사 Inductor
KR20200031426A (en) 2018-09-14 2020-03-24 삼성전기주식회사 Coil component
KR20200038220A (en) * 2020-04-01 2020-04-10 삼성전기주식회사 Coil component
KR20200074074A (en) 2020-06-17 2020-06-24 삼성전기주식회사 Chip electronic component
KR20210004900A (en) * 2019-07-05 2021-01-13 삼성전기주식회사 Coil component
KR20210037653A (en) 2020-06-17 2021-04-06 삼성전기주식회사 Chip electronic component
US10978235B2 (en) 2018-01-17 2021-04-13 Samsung Electro-Mechanics Co., Ltd. Inductor
JP2021072421A (en) * 2019-11-01 2021-05-06 株式会社村田製作所 Inductor
WO2021166763A1 (en) * 2020-02-17 2021-08-26 Tdk株式会社 Coil component and method for manufacturing same
US20210280353A1 (en) * 2020-03-06 2021-09-09 Tdk Corporation Coil component
US11205538B2 (en) 2017-12-11 2021-12-21 Samsung Electro-Mechanics Co., Ltd. Inductor and method of manufacturing the same
KR20220059446A (en) 2016-01-22 2022-05-10 삼성전기주식회사 Coil component
KR20230084744A (en) 2021-12-06 2023-06-13 삼성전기주식회사 Coil component
US11763970B2 (en) 2019-07-24 2023-09-19 Samsung Electro-Mechanics Co., Ltd. Coil electronic component
KR20230151247A (en) 2022-04-25 2023-11-01 삼성전기주식회사 Coil component
US12046413B2 (en) 2019-07-05 2024-07-23 Samsung Electro-Mechanics Co., Ltd. Coil component
US12131851B2 (en) 2020-04-02 2024-10-29 Murata Manufacturing Co., Ltd. Magnetic material and inductor
US12142405B2 (en) 2020-04-02 2024-11-12 Murata Manufacturing Co., Ltd. Magnetic material and inductor

Cited By (246)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8896407B2 (en) 2011-11-16 2014-11-25 Nec Tokin Corporation Inductor
US20130263440A1 (en) * 2011-12-22 2013-10-10 Samsung Electro-Mechanics Co., Ltd Method for manufacturing inductor
KR101376998B1 (en) 2012-03-26 2014-03-25 티디케이가부시기가이샤 flat coil element
JP2013201374A (en) * 2012-03-26 2013-10-03 Tdk Corp Planar coil element
KR20130109048A (en) * 2012-03-26 2013-10-07 티디케이가부시기가이샤 Flat coil element and method of producing the same
KR101598384B1 (en) * 2012-03-26 2016-02-29 티디케이가부시기가이샤 Flat coil element and method of producing the same
US10147540B2 (en) 2012-03-26 2018-12-04 Tdk Corporation Planar coil element and method for producing the same
JP2013201375A (en) * 2012-03-26 2013-10-03 Tdk Corp Planar coil element and manufacturing method therefor
US10332669B2 (en) * 2012-04-24 2019-06-25 Cyntec Co., Ltd. Electromagnetic component and fabrication method thereof
US20150155091A1 (en) * 2012-04-24 2015-06-04 Cyntec Co., Ltd. Electromagnetic component and fabrication method thereof
CN103383886A (en) * 2012-05-02 2013-11-06 三星电机株式会社 Multilayer inductor and method of manufacturing the same
CN103515077A (en) * 2012-05-31 2014-01-15 三星电机株式会社 Chip inductor
US9472608B2 (en) 2012-05-31 2016-10-18 Samsung Electro-Mechanics Co., Ltd Chip inductor
KR101580709B1 (en) * 2012-05-31 2015-12-28 삼성전기주식회사 Chip inductor
KR20130134639A (en) * 2012-05-31 2013-12-10 삼성전기주식회사 Chip inductor
US9660013B2 (en) 2012-05-31 2017-05-23 Samsung Electro-Mechanics Co., Ltd. Chip inductor
JP2018019109A (en) * 2012-07-25 2018-02-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. Laminate type inductor
JP2014027261A (en) * 2012-07-25 2014-02-06 Samsung Electro-Mechanics Co Ltd Laminate type inductor, and composition of protection layer of laminate type inductor
KR101771739B1 (en) * 2012-11-08 2017-09-05 삼성전기주식회사 Thin film chip device and method for manufacturing the same
KR20140085997A (en) * 2012-12-28 2014-07-08 삼성전기주식회사 Power inductor and manufacturing method thereof
KR101983136B1 (en) * 2012-12-28 2019-09-10 삼성전기주식회사 Power inductor and manufacturing method thereof
JP2014130988A (en) * 2012-12-28 2014-07-10 Samsung Electro-Mechanics Co Ltd Power inductor and method of manufacturing the same
JP2014170924A (en) * 2013-03-04 2014-09-18 Samsung Electro-Mechanics Co Ltd Power inductor and method of manufacturing the same
US9852836B2 (en) 2013-03-15 2017-12-26 Samsung Electro-Mechanics Co., Ltd. Inductor and method for manufacturing the same
CN104051145B (en) * 2013-03-15 2017-08-01 三星电机株式会社 Inductor and its manufacture method
CN104051145A (en) * 2013-03-15 2014-09-17 三星电机株式会社 Inductor and method for manufacturing the same
KR101442402B1 (en) * 2013-03-25 2014-09-17 삼성전기주식회사 Inductor and method for manufacturing the same
KR101451503B1 (en) * 2013-03-25 2014-10-15 삼성전기주식회사 Inductor and method for manufacturing the same
US9520223B2 (en) 2013-03-25 2016-12-13 Samsung Electro-Mechanics Co., Ltd. Inductor and method for manufacturing the same
KR101442404B1 (en) * 2013-03-29 2014-09-17 삼성전기주식회사 Inductor and method for manufacturing the same
CN104078204A (en) * 2013-03-29 2014-10-01 三星电机株式会社 Inductor and method for manufacturing the same
KR20150007448A (en) 2013-07-11 2015-01-21 삼성전기주식회사 Chip electronic component
KR101558110B1 (en) * 2013-07-29 2015-10-19 삼성전기주식회사 Inductor and manufacturing method thereof
CN104347228A (en) * 2013-07-29 2015-02-11 三星电机株式会社 Chip electronic component and manufacturing method thereof
KR101659248B1 (en) 2013-07-29 2016-09-30 삼성전기주식회사 Inductor and manufacturing method thereof
KR20160018614A (en) * 2013-07-29 2016-02-17 삼성전기주식회사 Inductor and manufacturing method thereof
KR20150019730A (en) 2013-08-14 2015-02-25 삼성전기주식회사 Chip electronic component
US9490062B2 (en) 2013-08-14 2016-11-08 Samsung Electro-Mechanics Co., Ltd. Chip electronic component
KR101449518B1 (en) * 2013-09-10 2014-10-16 주식회사 아모텍 Power Inductor and Manufacturing Method thereof
KR101462806B1 (en) * 2013-10-11 2014-11-20 삼성전기주식회사 Inductor and Manufacturing Method for the Same
US10014102B2 (en) 2013-10-11 2018-07-03 Samsung Electro-Mechanics Co., Ltd. Inductor and manufacturing method thereof
JP2015076603A (en) * 2013-10-11 2015-04-20 サムソン エレクトロ−メカニックス カンパニーリミテッド. Inductor and manufacturing method thereof
US10332670B2 (en) 2013-10-11 2019-06-25 Samsung Electro-Mechanics Co., Ltd. Inductor and manufacturing method thereof
US9437363B2 (en) 2013-10-11 2016-09-06 Samsung Electro-Mechanics Co., Ltd. Inductor and manufacturing method thereof
KR20150044372A (en) 2013-10-16 2015-04-24 삼성전기주식회사 Chip electronic component, board having the same mounted thereon and packing unit thereof
JP2015079958A (en) * 2013-10-16 2015-04-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. Chip electronic component, and mounting board and packaging unit of chip electronic component
JP2015156432A (en) * 2014-02-20 2015-08-27 株式会社村田製作所 Method of manufacturing inductor
US9478354B2 (en) 2014-02-20 2016-10-25 Murata Manufacturing Co., Ltd. Inductor manufacturing method
CN104900375A (en) * 2014-03-07 2015-09-09 三星电机株式会社 Chip electronic member and manufacture method for the same
JP2018137456A (en) * 2014-05-07 2018-08-30 サムソン エレクトロ−メカニックス カンパニーリミテッド. Chip electronic component
KR20150127999A (en) 2014-05-08 2015-11-18 삼성전기주식회사 Chip electronic component and manufacturing method thereof
US9331009B2 (en) 2014-05-08 2016-05-03 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and method of manufacturing the same
CN105321655B (en) * 2014-06-02 2017-09-01 三星电机株式会社 Chip electronic device and the plate for installing chip electronic device
US9536660B2 (en) 2014-06-24 2017-01-03 Hyundai Motor Company Chip electronic component and method of manufacturing the same
KR101580399B1 (en) * 2014-06-24 2015-12-23 삼성전기주식회사 Chip electronic component and manufacturing method thereof
KR101558095B1 (en) 2014-06-24 2015-10-06 삼성전기주식회사 Multilayered electronic component
WO2016021938A1 (en) * 2014-08-07 2016-02-11 주식회사 이노칩테크놀로지 Power inductor
KR20160019042A (en) * 2014-08-07 2016-02-18 주식회사 이노칩테크놀로지 Power Inductor
EP3179491A4 (en) * 2014-08-07 2018-04-18 Moda-Innochips Co., Ltd. Power inductor
US10541075B2 (en) 2014-08-07 2020-01-21 Moda-Innochips Co., Ltd. Power inductor
CN106605279B (en) * 2014-08-07 2018-09-07 摩达伊诺琴股份有限公司 Power inductor
US10573451B2 (en) 2014-08-07 2020-02-25 Moda-Innochips Co., Ltd. Power inductor
US10541076B2 (en) 2014-08-07 2020-01-21 Moda-Innochips Co., Ltd. Power inductor
JP2017524256A (en) * 2014-08-07 2017-08-24 モダ−イノチップス シーオー エルティディー Power inductor
KR20160019038A (en) * 2014-08-07 2016-02-18 주식회사 이노칩테크놀로지 Power inductor
JP2017524254A (en) * 2014-08-07 2017-08-24 モダ−イノチップス シーオー エルティディー Power inductor
KR101662206B1 (en) * 2014-08-07 2016-10-06 주식회사 모다이노칩 Power inductor
KR101686989B1 (en) * 2014-08-07 2016-12-19 주식회사 모다이노칩 Power Inductor
KR20160019039A (en) * 2014-08-07 2016-02-18 주식회사 이노칩테크놀로지 Power inductor
KR20160018382A (en) * 2014-08-07 2016-02-17 주식회사 이노칩테크놀로지 Power Inductor
WO2016021818A1 (en) * 2014-08-07 2016-02-11 주식회사 이노칩테크놀로지 Power inductor
WO2016021807A1 (en) * 2014-08-07 2016-02-11 주식회사 이노칩테크놀로지 Power inductor
CN106605279A (en) * 2014-08-07 2017-04-26 摩达伊诺琴股份有限公司 Power inductor
KR101718343B1 (en) * 2014-08-07 2017-03-21 주식회사 모다이노칩 Power Inductor
KR101681200B1 (en) * 2014-08-07 2016-12-01 주식회사 모다이노칩 Power inductor
KR101588966B1 (en) * 2014-08-11 2016-01-26 삼성전기주식회사 Chip electronic component
US9905349B2 (en) 2014-08-11 2018-02-27 Samsung Electro-Mechanics Co., Ltd. Chip electronic component
EP3196900A4 (en) * 2014-09-11 2018-06-20 Moda-Innochips Co., Ltd. Power inductor
JP2017528002A (en) * 2014-09-11 2017-09-21 モダ−イノチップス シーオー エルティディー Power inductor
US10308786B2 (en) 2014-09-11 2019-06-04 Moda-Innochips Co., Ltd. Power inductor and method for manufacturing the same
WO2016039516A1 (en) * 2014-09-11 2016-03-17 주식회사 이노칩테크놀로지 Power inductor
JP2017528001A (en) * 2014-09-11 2017-09-21 モダ−イノチップス シーオー エルティディー Power inductor and manufacturing method thereof
TWI573150B (en) * 2014-09-11 2017-03-01 英諾晶片科技股份有限公司 Power inductor and method of manufacturing the same
KR101662207B1 (en) * 2014-09-11 2016-10-06 주식회사 모다이노칩 Power inductor
EP3193344A4 (en) * 2014-09-11 2018-07-04 Moda-Innochips Co., Ltd. Power inductor and method for manufacturing same
CN106716566B (en) * 2014-09-11 2020-03-31 摩达伊诺琴股份有限公司 Power inductor and manufacturing method thereof
WO2016039517A1 (en) * 2014-09-11 2016-03-17 주식회사 이노칩테크놀로지 Power inductor
US10508189B2 (en) 2014-09-11 2019-12-17 Moda-Innochips Co., Ltd. Power inductor
KR20160031389A (en) * 2014-09-11 2016-03-22 주식회사 이노칩테크놀로지 Power inductor
CN106716566A (en) * 2014-09-11 2017-05-24 摩达伊诺琴股份有限公司 Power inductor and method for manufacturing same
US10170229B2 (en) 2014-09-18 2019-01-01 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and board having the same
KR20160033464A (en) 2014-09-18 2016-03-28 삼성전기주식회사 Chip electronic component and board having the same mounted thereon
KR20160043857A (en) 2014-10-14 2016-04-22 삼성전기주식회사 Chip electronic component and board having the same mounted thereon
US10553338B2 (en) 2014-10-14 2020-02-04 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and board having the same
US11469030B2 (en) 2014-10-14 2022-10-11 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and board having the same
CN105513746B (en) * 2014-10-14 2017-12-05 株式会社村田制作所 Electronic unit
US9847162B2 (en) 2014-10-14 2017-12-19 Murata Manufacturing Co., Ltd. Electronic component
CN105513747B (en) * 2014-10-14 2018-05-11 三星电机株式会社 Chip electronic component and the plate with the chip electronic component
CN105513746A (en) * 2014-10-14 2016-04-20 株式会社村田制作所 Electronic component
US12062476B2 (en) 2014-10-14 2024-08-13 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and board having the same
CN105513747A (en) * 2014-10-14 2016-04-20 三星电机株式会社 Chip electronic component and board having the same
US11626233B2 (en) 2014-10-14 2023-04-11 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and board having the same
US10090096B2 (en) * 2014-11-10 2018-10-02 Murata Manufacturing Co., Ltd Common mode choke coil
CN105590733A (en) * 2014-11-10 2016-05-18 株式会社村田制作所 Common mode choke coil
JP2016092322A (en) * 2014-11-10 2016-05-23 株式会社村田製作所 Common mode choke coil
CN105590733B (en) * 2014-11-10 2018-05-18 株式会社村田制作所 Common mode choke
US20160133374A1 (en) * 2014-11-10 2016-05-12 Murata Manufacturing Co., Ltd. Common mode choke coil
US10276290B2 (en) 2014-11-14 2019-04-30 Samsung Electro-Mechanics Co., Ltd. Electronic component and method for manufacturing same
KR101607027B1 (en) * 2014-11-19 2016-03-28 삼성전기주식회사 Chip electronic component and board having the same mounted thereon
US9954510B2 (en) 2014-11-28 2018-04-24 Samsung Electro-Mechanics Co., Ltd. Common mode filter
KR101740820B1 (en) * 2014-11-28 2017-05-29 삼성전기주식회사 Common mode filter
US10332667B2 (en) 2014-12-12 2019-06-25 Samsung Electro-Mechanics Co., Ltd. Electronic component having lead part including regions having different thicknesses and method of manufacturing the same
US10546681B2 (en) 2014-12-12 2020-01-28 Samsung Electro-Mechanics Co., Ltd. Electronic component having lead part including regions having different thicknesses and method of manufacturing the same
KR20160071956A (en) 2014-12-12 2016-06-22 삼성전기주식회사 Chip electronic component and manufacturing method thereof
US10923264B2 (en) 2014-12-12 2021-02-16 Samsung Electro-Mechanics Co., Ltd. Electronic component and method of manufacturing the same
KR20160071958A (en) 2014-12-12 2016-06-22 삼성전기주식회사 Chip electronic component and manufacturing method thereof
KR20160071957A (en) 2014-12-12 2016-06-22 삼성전기주식회사 Chip electronic component and manufacturing method thereof
US10141097B2 (en) 2014-12-12 2018-11-27 Samsung Electro-Mechanics Co., Ltd. Electronic component and method of manufacturing the same
KR20160081054A (en) 2014-12-30 2016-07-08 삼성전기주식회사 Chip electronic component and manufacturing method thereof
KR20160094123A (en) 2015-01-30 2016-08-09 삼성전기주식회사 Chip electronic component, manufacturing method thereof and board having the same
US11562851B2 (en) 2015-01-30 2023-01-24 Samsung Electro-Mechanics Co., Ltd. Electronic component, and method of manufacturing thereof
US10854383B2 (en) 2015-03-09 2020-12-01 Samsung Electro-Mechanics Co., Ltd. Coil electronic component and method of manufacturing the same
US12094649B2 (en) 2015-03-09 2024-09-17 Samsung Electro-Mechanics Co., Ltd. Coil electronic component and method of manufacturing the same
KR20160108935A (en) 2015-03-09 2016-09-21 삼성전기주식회사 Coil electronic component and manufacturing method thereof
KR101681405B1 (en) 2015-03-18 2016-11-30 삼성전기주식회사 Power inductor
KR101681406B1 (en) * 2015-04-01 2016-12-12 삼성전기주식회사 Coil electronic component and manufacturing method thereof
KR20160118052A (en) * 2015-04-01 2016-10-11 삼성전기주식회사 Coil electronic component and manufacturing method thereof
US9875837B2 (en) 2015-04-16 2018-01-23 Samsung Electro-Mechanics Co., Ltd. Coil electronic component
KR20160123657A (en) 2015-04-16 2016-10-26 삼성전기주식회사 Chip electronic component
US10115518B2 (en) 2015-05-29 2018-10-30 Samsung Electro-Mechanics Co., Ltd. Coil electronic component
CN106205951A (en) * 2015-05-29 2016-12-07 三星电机株式会社 Coil electronic building brick
US20160351318A1 (en) * 2015-05-29 2016-12-01 Samsung Electro-Mechanics Co., Ltd. Coil electronic component
KR101719908B1 (en) 2015-07-01 2017-03-24 삼성전기주식회사 Coil electronic component and manufacturing method thereof
KR20170004124A (en) * 2015-07-01 2017-01-11 삼성전기주식회사 Coil electronic component and manufacturing method thereof
JP2017017314A (en) * 2015-07-01 2017-01-19 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil electronic component and manufacturing method therefor
KR102138888B1 (en) * 2015-11-18 2020-07-28 삼성전기주식회사 Coil component and method of manufacturing the same
KR20170058006A (en) * 2015-11-18 2017-05-26 삼성전기주식회사 Coil component and method of manufacturing the same
JP2017098523A (en) * 2015-11-18 2017-06-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component and method of manufacturing the same
US10199154B2 (en) * 2015-11-18 2019-02-05 Samsung Electro-Mechanics Co., Ltd. Coil component and method of manufacturing the same
US20170140866A1 (en) * 2015-11-18 2017-05-18 Samsung Electro-Mechanics Co., Ltd. Coil component and method of manufacturing the same
US9655247B1 (en) 2015-11-19 2017-05-16 Samsung Electro-Mechanics Co., Ltd. Coil component and board having the same
US9984807B2 (en) 2015-11-19 2018-05-29 Samsung Electro-Mechanics Co., Ltd. Coil component and board having the same
US20170148561A1 (en) * 2015-11-19 2017-05-25 Samsung Electro-Mechanics Co., Ltd. Coil component and board having the same
JP2017098544A (en) * 2015-11-20 2017-06-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component
US11488768B2 (en) 2015-11-20 2022-11-01 Samsung Electro-Mechanics Co., Ltd. Coil component
TWI618099B (en) * 2015-11-24 2018-03-11 摩達伊諾琴股份有限公司 Power inductor
CN108292555A (en) * 2015-11-24 2018-07-17 摩达伊诺琴股份有限公司 Power inductor
US11139094B2 (en) 2015-11-24 2021-10-05 Moda-Innochips Co., Ltd. Power inductor
JP2017103360A (en) * 2015-12-02 2017-06-08 Tdk株式会社 Coil component and power supply circuit unit
KR20220059446A (en) 2016-01-22 2022-05-10 삼성전기주식회사 Coil component
KR20170088162A (en) 2016-01-22 2017-08-01 삼성전기주식회사 Coil component
KR20170097445A (en) 2016-02-18 2017-08-28 삼성전기주식회사 Coil component
KR20170097446A (en) * 2016-02-18 2017-08-28 삼성전기주식회사 Coil component and manufacturing method for the same
KR102404332B1 (en) * 2016-02-18 2022-06-07 삼성전기주식회사 Coil component and manufacturing method for the same
KR102404312B1 (en) * 2016-02-18 2022-06-07 삼성전기주식회사 Coil component
KR102414830B1 (en) * 2016-02-18 2022-06-30 삼성전기주식회사 Coil component
KR102414846B1 (en) * 2016-02-18 2022-07-01 삼성전기주식회사 Coil component and manufacturing method for the same
KR20220101590A (en) 2016-02-18 2022-07-19 삼성전기주식회사 Inductor
KR20160026940A (en) * 2016-02-18 2016-03-09 삼성전기주식회사 Coil component
KR20230067589A (en) 2016-02-18 2023-05-16 삼성전기주식회사 Inductor
KR20170097441A (en) * 2016-02-18 2017-08-28 삼성전기주식회사 Coil component and manufacturing method for the same
KR20170097438A (en) * 2016-02-18 2017-08-28 삼성전기주식회사 Coil component
KR20170097493A (en) 2016-02-18 2017-08-28 삼성전기주식회사 Inductor
KR102404313B1 (en) * 2016-02-18 2022-06-07 삼성전기주식회사 Coil component
KR20170097865A (en) * 2016-02-19 2017-08-29 삼성전기주식회사 Coil component
KR20170097864A (en) * 2016-02-19 2017-08-29 삼성전기주식회사 Coil component and manufacturing method for the same
KR102609135B1 (en) 2016-02-19 2023-12-05 삼성전기주식회사 Coil component and manufacturing method for the same
KR102538912B1 (en) * 2016-02-19 2023-06-01 삼성전기주식회사 Coil component
US20170345556A1 (en) * 2016-05-25 2017-11-30 Samsung Electro-Mechanics Co., Ltd. Coil electronic component and method for manufacturing the same
US10347419B2 (en) * 2016-05-25 2019-07-09 Samsung Electro-Mechanics Co., Ltd. Coil electronic component and method for manufacturing the same
WO2018016821A1 (en) * 2016-07-19 2018-01-25 주식회사 모다이노칩 Power inductor
US11424057B2 (en) 2016-07-19 2022-08-23 Moda-Innochips Co., Ltd. Power inductor
CN108010660A (en) * 2016-10-28 2018-05-08 三星电机株式会社 Coil block
CN112151233A (en) * 2016-10-28 2020-12-29 三星电机株式会社 Coil component
KR102063905B1 (en) 2016-10-28 2020-01-08 삼성전기주식회사 Coil component
KR20180046826A (en) * 2016-10-28 2018-05-09 삼성전기주식회사 Coil component
KR20200004900A (en) * 2016-10-28 2020-01-14 삼성전기주식회사 Coil component
US10504644B2 (en) 2016-10-28 2019-12-10 Samsung Electro-Mechanics Co., Ltd. Coil component
JP2018074144A (en) * 2016-10-28 2018-05-10 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component
KR20190039902A (en) * 2016-10-28 2019-04-16 삼성전기주식회사 Coil component
KR101973432B1 (en) * 2016-10-28 2019-04-29 삼성전기주식회사 Coil component
US11270829B2 (en) 2016-10-28 2022-03-08 Samsung Electro-Mechanics Co., Ltd. Coil component
KR20200067810A (en) * 2016-10-28 2020-06-12 삼성전기주식회사 Coil component
JP2018195841A (en) * 2016-10-28 2018-12-06 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component
KR102198531B1 (en) 2016-10-28 2021-01-06 삼성전기주식회사 Coil component
KR20200117966A (en) * 2016-10-28 2020-10-14 삼성전기주식회사 Coil component
KR102198530B1 (en) 2016-10-28 2021-01-06 삼성전기주식회사 Coil component
KR102194702B1 (en) * 2016-10-28 2020-12-23 삼성전기주식회사 Coil component
CN108231334A (en) * 2016-12-15 2018-06-29 三星电机株式会社 The manufacturing method of inductor and inductor
KR20180085219A (en) 2017-01-18 2018-07-26 삼성전기주식회사 Inductor and Manufacturing Method for the Same
JP2018137421A (en) * 2017-02-20 2018-08-30 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil electronic component
KR102471467B1 (en) * 2017-02-20 2022-11-28 삼성전기주식회사 Coil electronic component
KR20190008396A (en) * 2017-02-20 2019-01-23 삼성전기주식회사 Coil electronic component
US10559413B2 (en) 2017-02-20 2020-02-11 Samsung Electro-Mechanics Co., Ltd. Coil electronic component
CN109215972A (en) * 2017-07-05 2019-01-15 三星电机株式会社 Film-type inductor
CN109215972B (en) * 2017-07-05 2021-12-03 三星电机株式会社 Thin film type inductor
US11037722B2 (en) 2017-09-20 2021-06-15 Samsung Electro-Mechanics Co., Ltd. Coil component and method of manufacturing the same
CN109524211A (en) * 2017-09-20 2019-03-26 三星电机株式会社 Coil block and the method for manufacturing the coil block
KR101987213B1 (en) * 2017-09-20 2019-06-10 삼성전기주식회사 Coil component and manufacturing method for the same
CN109524211B (en) * 2017-09-20 2021-12-21 三星电机株式会社 Coil assembly and method of manufacturing the same
KR20190032852A (en) * 2017-09-20 2019-03-28 삼성전기주식회사 Coil component and manufacturing method for the same
US11424058B2 (en) 2017-09-26 2022-08-23 Samsung Electro-Mechanics Co., Ltd. Coil component
CN112712963B (en) * 2017-09-26 2024-05-17 三星电机株式会社 Coil assembly
CN109559867A (en) * 2017-09-26 2019-04-02 三星电机株式会社 Coil block
KR101998269B1 (en) * 2017-09-26 2019-09-27 삼성전기주식회사 Coil component
CN109559867B (en) * 2017-09-26 2021-02-26 三星电机株式会社 Coil component
KR20190035262A (en) * 2017-09-26 2019-04-03 삼성전기주식회사 Coil component
US20220351883A1 (en) * 2017-09-26 2022-11-03 Samsung Electro-Mechanics Co., Ltd. Coil component
CN112712963A (en) * 2017-09-26 2021-04-27 三星电机株式会社 Coil component
US11205538B2 (en) 2017-12-11 2021-12-21 Samsung Electro-Mechanics Co., Ltd. Inductor and method of manufacturing the same
US10978235B2 (en) 2018-01-17 2021-04-13 Samsung Electro-Mechanics Co., Ltd. Inductor
KR102663087B1 (en) * 2018-04-25 2024-05-08 삼성전기주식회사 Inductor
KR20190123848A (en) * 2018-04-25 2019-11-04 삼성전기주식회사 Inductor
KR102560377B1 (en) * 2018-04-25 2023-07-27 삼성전기주식회사 Inductor
KR20230114252A (en) * 2018-04-25 2023-08-01 삼성전기주식회사 Inductor
KR20180099592A (en) 2018-08-22 2018-09-05 삼성전기주식회사 Chip electronic component and board having the same mounted thereon
US11640870B2 (en) 2018-09-14 2023-05-02 Samsung Electro-Mechanics Co., Ltd. Coil component
KR20200031426A (en) 2018-09-14 2020-03-24 삼성전기주식회사 Coil component
KR20190015738A (en) 2019-01-31 2019-02-14 삼성전기주식회사 Chip electronic component
KR20190065991A (en) * 2019-05-31 2019-06-12 삼성전기주식회사 Coil component and manufacturing method for the same
KR102064118B1 (en) 2019-05-31 2020-01-08 삼성전기주식회사 Coil component and manufacturing method for the same
KR20190082181A (en) 2019-07-01 2019-07-09 삼성전기주식회사 Chip electronic component
KR102099133B1 (en) * 2019-07-03 2020-04-09 삼성전기주식회사 Coil component
KR20190082736A (en) * 2019-07-03 2019-07-10 삼성전기주식회사 Coil component
US12046413B2 (en) 2019-07-05 2024-07-23 Samsung Electro-Mechanics Co., Ltd. Coil component
KR102414838B1 (en) * 2019-07-05 2022-06-30 삼성전기주식회사 Coil component
KR20210004900A (en) * 2019-07-05 2021-01-13 삼성전기주식회사 Coil component
US11763970B2 (en) 2019-07-24 2023-09-19 Samsung Electro-Mechanics Co., Ltd. Coil electronic component
CN112786282A (en) * 2019-11-01 2021-05-11 株式会社村田制作所 Inductor
JP2021072421A (en) * 2019-11-01 2021-05-06 株式会社村田製作所 Inductor
US11735350B2 (en) 2019-11-01 2023-08-22 Murata Manufacturing Co., Ltd. Inductor
JP7111086B2 (en) 2019-11-01 2022-08-02 株式会社村田製作所 inductor
JP7471846B2 (en) 2020-02-17 2024-04-22 Tdk株式会社 Coil component and manufacturing method thereof
WO2021166763A1 (en) * 2020-02-17 2021-08-26 Tdk株式会社 Coil component and method for manufacturing same
JP2021129067A (en) * 2020-02-17 2021-09-02 Tdk株式会社 Coil component and manufacturing method thereof
US20210280353A1 (en) * 2020-03-06 2021-09-09 Tdk Corporation Coil component
KR20200038220A (en) * 2020-04-01 2020-04-10 삼성전기주식회사 Coil component
KR102249294B1 (en) * 2020-04-01 2021-05-07 삼성전기주식회사 Coil component
US12131851B2 (en) 2020-04-02 2024-10-29 Murata Manufacturing Co., Ltd. Magnetic material and inductor
US12142405B2 (en) 2020-04-02 2024-11-12 Murata Manufacturing Co., Ltd. Magnetic material and inductor
KR20200074074A (en) 2020-06-17 2020-06-24 삼성전기주식회사 Chip electronic component
KR102499470B1 (en) * 2020-06-17 2023-02-14 삼성전기주식회사 Chip electronic component
KR20210037653A (en) 2020-06-17 2021-04-06 삼성전기주식회사 Chip electronic component
KR102235695B1 (en) * 2020-06-17 2021-04-02 삼성전기주식회사 Chip electronic component
KR20230084744A (en) 2021-12-06 2023-06-13 삼성전기주식회사 Coil component
KR20230151247A (en) 2022-04-25 2023-11-01 삼성전기주식회사 Coil component

Similar Documents

Publication Publication Date Title
JP2007067214A (en) Power inductor
KR101792281B1 (en) Power Inductor and Manufacturing Method for the Same
US11605484B2 (en) Multilayer seed pattern inductor and manufacturing method thereof
US8941457B2 (en) Miniature power inductor and methods of manufacture
US9269486B2 (en) Power inductor and method of manufacturing the same
JP6815807B2 (en) Surface mount coil parts
US9490062B2 (en) Chip electronic component
KR101762039B1 (en) Coil component
KR102052770B1 (en) Power inductor and method for manufacturing the same
US20170025218A1 (en) Module substrate
TW201611051A (en) Power inductor
JP2006286934A (en) Common mode choke coil
US20160225512A1 (en) Power inductor
KR20160019039A (en) Power inductor
US20160276096A1 (en) Power inductor
WO2006008939A1 (en) Inductance component and manufacturing method thereof
KR20160117989A (en) Coil electronic component and manufacturing method thereof
KR20170073554A (en) Coil component
JP2003347124A (en) Magnetic element and power module using the same
US11170927B2 (en) Coil component
US11051406B2 (en) Component carrier with integrated inductor and manufacturing method
KR20170097862A (en) Coil component
JP2003282328A (en) Thin magnetic element, its manufacturing method, and power source module using the same
KR102100348B1 (en) A manufacturing method of power inductor and power inductor
JP2008294084A (en) Planar magnetic element, and electronic apparatus employing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070320

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090603