[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007060748A - Superconducting multishaft motor and vehicle equipped therewith - Google Patents

Superconducting multishaft motor and vehicle equipped therewith Download PDF

Info

Publication number
JP2007060748A
JP2007060748A JP2005240327A JP2005240327A JP2007060748A JP 2007060748 A JP2007060748 A JP 2007060748A JP 2005240327 A JP2005240327 A JP 2005240327A JP 2005240327 A JP2005240327 A JP 2005240327A JP 2007060748 A JP2007060748 A JP 2007060748A
Authority
JP
Japan
Prior art keywords
superconducting
rotor
drive shaft
axial direction
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005240327A
Other languages
Japanese (ja)
Inventor
Shingo Oohashi
紳悟 大橋
Toshiyuki Sonoda
敏之 園田
Toru Okazaki
徹 岡崎
Hidehiko Sugimoto
英彦 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005240327A priority Critical patent/JP2007060748A/en
Publication of JP2007060748A publication Critical patent/JP2007060748A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance flux utilization efficiency of a superconducting motor, and to miniaturize the motor while reducing transmission loss. <P>SOLUTION: The superconducting multishaft motor comprises a stator 11 having a superconducting field coil 16 arranged to direct the flux in the axial direction, a first rotor 12 having an armature 22 arranged oppositely to one side of the stator 11 in the axial direction while directing the flux in the axial direction, a second rotor 13 having the armature 25 arranged oppositely to the other side of the stator 11 in the axial direction while directing the flux in the axial direction, a first drive shaft 27 secured to the first rotor 12, and a second drive shaft 28 secured to the second rotor 13 and rotating independently from the first drive shaft 27. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超電導多軸モータおよびそれを備えた車両に関し、詳しくは、超電導材料を用いたモータに独立して回転する駆動軸が複数存在するものに関する。   The present invention relates to a superconducting multi-axis motor and a vehicle including the superconducting multi-axis motor, and more particularly to a motor having a plurality of drive shafts rotating independently of a motor using a superconducting material.

近年、ガソリン等の化石燃料の枯渇や排気ガスによる環境悪化を改善すべく、電気エネルギーによりモータを駆動して走行する電気自動車やハイブリッド自動車の開発が進められている。この場合、常電導モータを使用した場合には、電気抵抗による銅損が発生して低効率となると共に通電電流に限界があるために高出力化が困難となる問題がある。一方、特開平6−6907号公報、特開平5−276734号公報等に開示されているように、超電導モータを採用すれば、超電導材料での銅損がなくなり高効率になると共に小型化および高出力化を図ることが可能となる。図5に示す超電導モータ1は、超電導材料で形成された回転子2を駆動軸3に外嵌固定していると共に、回転子2の外周側に所要の空隙をあけて断面円筒状の固定子4を配置し、磁束方向が径方向に向くようにしている。   In recent years, in order to improve the exhaustion of fossil fuels such as gasoline and the deterioration of the environment due to exhaust gas, the development of electric vehicles and hybrid vehicles that run by driving a motor with electric energy has been promoted. In this case, when a normal conducting motor is used, there is a problem that copper loss occurs due to electrical resistance, resulting in low efficiency and a difficulty in increasing output because of a limit in the energization current. On the other hand, as disclosed in JP-A-6-6907, JP-A-5-276734, etc., if a superconducting motor is employed, copper loss in the superconducting material is eliminated and high efficiency is achieved, while miniaturization and high performance are achieved. It is possible to achieve output. A superconducting motor 1 shown in FIG. 5 has a rotor 2 formed of a superconducting material fixedly fitted to a drive shaft 3 and a stator having a cylindrical cross section with a required gap formed on the outer periphery of the rotor 2. 4 is arranged so that the magnetic flux direction is directed in the radial direction.

しかしながら、超電導モータ1では回転子2の超電導材料で強力な磁束を発生させているにも関わらず、N極・S極の片側しか有効利用されていない。即ち、固定子4との対向側である回転子2の外周側の磁極しか利用されておらず、回転子2の内周側に発生する磁極はトルクに寄与しないため非効率となる問題がある。   However, although the superconducting motor 1 generates a strong magnetic flux with the superconducting material of the rotor 2, only one side of the N pole and the S pole is effectively used. That is, only the magnetic pole on the outer peripheral side of the rotor 2 that is opposite to the stator 4 is used, and the magnetic pole generated on the inner peripheral side of the rotor 2 does not contribute to the torque, resulting in inefficiency. .

また、近年の自動車では、走行状況に合せて左右の両輪の回転数を相違させ、走行安定性を向上させたものが現れているが、このような自動車では、図6に示すように、1軸モータ1からの出力をディファレンシャルギア5を介して各車輪に伝達することで、各車輪に回転差を発生させている。しかしながら、ディファレンシャルギア5は重量・体積ともに大きく車両の小型軽量化に反すると共に、ギアで発生する伝達ロス(モータ出力の約3〜7%のロス)も大きいため好ましくない。
図7に示すように、四輪の夫々のタイヤホイール内に1軸モータ1を内蔵する所謂インホイールモータも現れているが、モータ数が多くなるため車両重量およびコストが増大する。また、トルクを稼ぐためにモータ1と車輪との間に減速機6を介設するため、減速機6のギアで発生する伝達ロス(モータ出力の約1〜3%のロス)も存在する。
特開平6−6907号公報 特開平5−276734号公報
Further, in recent automobiles, there are some cars in which the rotational speeds of the left and right wheels are made different from each other according to the driving situation and the driving stability is improved. In such cars, as shown in FIG. By transmitting the output from the shaft motor 1 to each wheel via the differential gear 5, a rotational difference is generated in each wheel. However, the differential gear 5 is not preferable because it is large in both weight and volume, contrary to the reduction in size and weight of the vehicle, and has a large transmission loss (a loss of about 3 to 7% of the motor output) generated by the gear.
As shown in FIG. 7, a so-called in-wheel motor that incorporates the single-axis motor 1 in each tire wheel of four wheels also appears. However, since the number of motors increases, the vehicle weight and cost increase. Further, since the speed reducer 6 is interposed between the motor 1 and the wheels in order to earn torque, there is also a transmission loss (a loss of about 1 to 3% of the motor output) generated by the gear of the speed reducer 6.
JP-A-6-6907 Japanese Patent Application Laid-Open No. 5-276734

本発明は、前記問題に鑑みてなされたもので、超電導モータの磁束利用効率を向上させると共に、小型化を図り且つ伝達ロスも低減することを課題としている。   The present invention has been made in view of the above problems, and it is an object of the present invention to improve the magnetic flux utilization efficiency of a superconducting motor, to reduce the size, and to reduce transmission loss.

前記課題を解決するため、本発明は第1に、磁束方向を軸線方向に向けた超電導界磁体を有するステータと、
前記ステータの軸線方向の一側に対向配置され、磁束方向を軸線方向に向けた電機子コイルを有する第1ロータと、
前記ステータの軸線方向の他側に対向配置され、磁束方向を軸線方向に向けた電機子コイルを有する第2ロータと、
前記第1ロータに固定された第1駆動軸と、
前記第2ロータに固定されて前記第1駆動軸とは独立して回転する第2駆動軸とを備えていることを特徴とする超電導多軸モータを提供している。
In order to solve the above problems, the present invention firstly, a stator having a superconducting field magnet with the magnetic flux direction oriented in the axial direction,
A first rotor having an armature coil disposed opposite to one side in the axial direction of the stator and having a magnetic flux direction in the axial direction;
A second rotor having an armature coil disposed opposite to the other axial direction of the stator and having a magnetic flux direction in the axial direction;
A first drive shaft fixed to the first rotor;
A superconducting multi-axis motor is provided, comprising a second drive shaft fixed to the second rotor and rotating independently of the first drive shaft.

前記構成とすると、超電導界磁体で発生する強力な磁束はステータの両側にN極とS極を発生させるが、ステータの両側にロータを配置しているので、超電導界磁体で発生する界磁をトルク発生に有効利用することができる。また、第1ロータと第2ロータにはそれぞれ独立して駆動軸を取り付けているので、各ロータの電機子コイルへの通電を相違させて各ロータの回転数を相違させることで、第1駆動軸と第2駆動軸との夫々の回転数を独立して異ならせることが可能となる。なお、前記超電導界磁体は、超電導界磁コイルあるいは超電導界磁バルクとしていると好ましい。   With the above configuration, the strong magnetic flux generated in the superconducting field magnet generates N and S poles on both sides of the stator, but since the rotor is disposed on both sides of the stator, the magnetic field generated in the superconducting field magnet is not generated. It can be used effectively for torque generation. In addition, since the drive shafts are independently attached to the first rotor and the second rotor, the first drive can be achieved by making the energization to the armature coil of each rotor different to make the rotation speed of each rotor different. The rotational speeds of the shaft and the second drive shaft can be made different independently. The superconducting field body is preferably a superconducting field coil or a superconducting field bulk.

前記超電導界磁コイルあるいは/および前記電機子コイルの中空部には圧粉磁性体を磁心として配置していると好ましい。
前記構成とすると、圧粉磁性体は金型による成形が容易であり加工性に優れると共に、磁気特性が等方的となる利点がある。また、圧粉磁性体は、磁性粉末を絶縁樹脂で結合し、あるいは、被膜で覆った磁性粉末を絶縁樹脂で結合した構成とすることで、個々の磁性粉末の間が樹脂で絶縁され、一般の軟磁性材料よりも渦電流損失が低減されて磁気特性に優れる磁心が得られ、コイルの磁束を強化することができる。
It is preferable that a powder magnetic material is disposed as a magnetic core in the hollow portion of the superconducting field coil and / or the armature coil.
With the above-described configuration, the dust magnetic body is advantageous in that it is easy to mold with a mold and has excellent workability and isotropic magnetic characteristics. In addition, the magnetic powder body has a structure in which the magnetic powder is bonded with an insulating resin, or the magnetic powder covered with a coating is bonded with an insulating resin, so that the individual magnetic powders are insulated with a resin. As compared with the soft magnetic material, eddy current loss is reduced and a magnetic core having excellent magnetic characteristics can be obtained, and the magnetic flux of the coil can be strengthened.

前記第1ロータおよび前記第2ロータの前記電機子コイルは超電導材で形成していると好適である。
即ち、電機子コイルも超電導化することで大電流を流すことが可能となり、電機子コイルの巻数を大幅に低減することができる。したがって、コイル中心に中空部を大きく形成できるため、該中空部に配置する磁心も大きくでき、磁束を強化してトルクアップを図ることが可能となる。
The armature coils of the first rotor and the second rotor are preferably formed of a superconducting material.
That is, by making the armature coil superconductive, a large current can flow, and the number of turns of the armature coil can be greatly reduced. Therefore, since the hollow portion can be formed large in the center of the coil, the magnetic core disposed in the hollow portion can be increased, and the magnetic flux can be strengthened to increase the torque.

本発明は第2に、前記超電導多軸モータを搭載した車両であって、
前記第1駆動軸を第1車輪に接続していると共に、前記第2駆動軸を第2車輪に接続していることを特徴とする車両を提供している。
Second, the present invention is a vehicle equipped with the superconducting multi-axis motor,
The vehicle is characterized in that the first drive shaft is connected to a first wheel and the second drive shaft is connected to a second wheel.

前記構成とすると、前記超電導多軸モータによれば1台のモータで2つの駆動軸の回転速度を独立して制御することが可能なため、第1車輪と第2車輪とに異なる回転数を与えることができる。したがって、2台のモータで2つの車輪を駆動するよりも全体としてモータの小型化が図れると共に、従来のようなディファレンシャルギア等を介設する必要がなくなり、動力伝達ロスを低減することが可能となる。また、ディファレンシャルギア等を廃止できることで、車両の小型軽量化にも貢献する。なお、第1車輪は右輪で第2車輪は左輪としていると好ましい。   With the above configuration, according to the superconducting multi-axis motor, the rotational speeds of the two drive shafts can be controlled independently by a single motor, so different rotation speeds are applied to the first wheel and the second wheel. Can be given. Therefore, it is possible to reduce the size of the motor as a whole rather than driving two wheels with two motors, and it is not necessary to use a differential gear or the like as in the prior art, and it is possible to reduce power transmission loss. Become. In addition, the ability to eliminate the differential gear and the like contributes to a reduction in the size and weight of the vehicle. The first wheel is preferably a right wheel and the second wheel is a left wheel.

前記第1駆動軸は第1車輪に直結接続していると共に、前記第2駆動軸は第2車輪に直結接続していると好ましい。
即ち、従来のインホイールモータの場合は減速機を介設してトルクを向上させていたが、モータの超電導化を行うことでトルクが増大するため、減速機なしのダイレクトドライブで車両を駆動することができ、重量低減、スペース増と共に動力伝達率の向上を図ることができる。
Preferably, the first drive shaft is directly connected to the first wheel, and the second drive shaft is directly connected to the second wheel.
In other words, in the case of the conventional in-wheel motor, the torque is improved through the reduction gear, but the torque is increased by superconducting the motor, so the vehicle is driven by the direct drive without the reduction gear. It is possible to improve the power transmission rate as well as reducing the weight and increasing the space.

以上の説明より明らかなように、第1の発明によれば、ステータの両側にロータを配置しているので、超電導界磁体で発生する界磁の両極をトルク発生に有効利用できる。また、一対のロータはそれぞれ独立して駆動軸を取り付けているので、各ロータの回転数を相違させることで、第1駆動軸と第2駆動軸との夫々の出力回転数を異ならせることができる。
また、第2の発明によれば、ディファレンシャルギア等による動力伝達ロスを無くしつつ、1台のモータで2つの車輪に異なる回転数を与えることができると共に、車載モータ数の低減および車両の小型軽量化にも貢献する。
As apparent from the above description, according to the first invention, since the rotor is arranged on both sides of the stator, both poles of the field generated in the superconducting field body can be effectively used for torque generation. Further, since the pair of rotors are independently attached with the drive shafts, the output rotational speeds of the first drive shaft and the second drive shaft can be made different by changing the rotational speed of each rotor. it can.
In addition, according to the second invention, it is possible to give different rotational speeds to two wheels with one motor while eliminating a power transmission loss due to a differential gear or the like, and to reduce the number of on-vehicle motors and reduce the size and weight of the vehicle. Contribute to the realization.

本発明の実施形態を図面を参照して説明する。
図1は第1実施形態のアキシャルギャップ型の超電導多軸モータ10を示し、ステータ11の軸線方向の一側に第1ロータ12を対向配置していると共に、他側に第2ロータ13を対向配置している。また、第1ロータ12には第1駆動軸27を固定していると共に、第2ロータ13には第2駆動軸28を同一軸線上に固定している。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an axial gap type superconducting multi-axis motor 10 according to the first embodiment, in which a first rotor 12 is opposed to one side of the stator 11 in the axial direction and a second rotor 13 is opposed to the other side. It is arranged. Further, the first drive shaft 27 is fixed to the first rotor 12, and the second drive shaft 28 is fixed to the second rotor 13 on the same axis.

ステータ11は略円盤形状で、ケーシング等の固定部Gに固定された樹脂等の非磁性体からなる支持部14の中心に左右一対の軸受18、19を配置し、その外周側には周方向に等間隔をあけてコイル取付穴14aを複数設けている。これらコイル取付穴14aに円環状で真空断熱構造の断熱冷媒容器15を埋設し、断熱冷媒容器15に超電導材からなる巻線である超電導界磁コイル16を収容している。即ち、超電導界磁コイル16の軸線を各駆動軸27、28の軸線と平行に配置することで、コイル16の磁束方向を軸線方向に向けている。また、断熱冷媒容器15の中空部には磁性体からなる磁心17を配置している。このように、複数の超電導界磁コイル16を軸線回りの周方向に間隔をあけて取り付け、夫々の超電導界磁コイル16の磁束方向が軸線方向を向くように配置している。   The stator 11 has a substantially disk shape, and a pair of left and right bearings 18 and 19 are arranged at the center of a support portion 14 made of a non-magnetic material such as a resin fixed to a fixing portion G such as a casing. A plurality of coil mounting holes 14a are provided at equal intervals. An annular heat insulating refrigerant container 15 having a vacuum heat insulating structure is embedded in the coil mounting holes 14a, and a superconducting field coil 16 that is a winding made of a superconducting material is accommodated in the heat insulating refrigerant container 15. That is, by arranging the axis of the superconducting field coil 16 in parallel with the axis of the drive shafts 27 and 28, the magnetic flux direction of the coil 16 is directed in the axial direction. A magnetic core 17 made of a magnetic material is disposed in the hollow portion of the heat insulating refrigerant container 15. In this way, a plurality of superconducting field coils 16 are attached at intervals in the circumferential direction around the axis, and are arranged so that the magnetic flux direction of each superconducting field coil 16 faces the axial direction.

磁心17は、磁性粉末(鉄粉等)を絶縁樹脂でプレス結合して加熱処理を施した圧粉磁性体、あるいは、被膜(燐酸化合物被膜等)で覆った磁性粉末(鉄粉等)を絶縁樹脂で結合して加熱処理を施した圧粉磁性体としている。圧粉磁性体の結合用樹脂としては、ポリフェニレンサルファイドや可溶性ポリイミド等の樹脂が好適に用いられる。
超電導界磁コイル16を形成する超電導材としては、ビスマス系やイットリウム系等の超電導材を用いている。断熱冷媒容器15には、図示しない冷媒供給部から液体窒素等の極低温の冷媒が供給されている。また、超電導界磁コイル16には、図示しない電源装置から給電がなされている。
The magnetic core 17 insulates magnetic powder (iron powder, etc.) covered with a magnetic powder powder (iron powder, etc.) covered with a magnetic powder (iron powder, etc.) or heat treated by press bonding with an insulating resin. The magnetic powder body is bonded with resin and heat-treated. A resin such as polyphenylene sulfide or soluble polyimide is preferably used as the resin for binding the dust magnetic material.
As a superconducting material for forming the superconducting field coil 16, a bismuth-based or yttrium-based superconducting material is used. The heat insulating refrigerant container 15 is supplied with a cryogenic refrigerant such as liquid nitrogen from a refrigerant supply unit (not shown). The superconducting field coil 16 is supplied with power from a power supply device (not shown).

第1ロータ12と第2ロータ13とは左右対称の略円盤形状で、第1ロータ12のヨーク21の中心に第1駆動軸27が固定されており、ヨーク21より若干延出する第1駆動軸27の端部をステータ11の軸受18に内嵌している。一方、第2ロータ13のヨーク24の中心に第2駆動軸27が独立して固定されており、ヨーク24より若干延出する第2駆動軸28の端部をステータ11の軸受19に内嵌している。   The first rotor 12 and the second rotor 13 have a substantially symmetrical disk shape, and a first drive shaft 27 is fixed to the center of the yoke 21 of the first rotor 12. The first drive extends slightly from the yoke 21. The end of the shaft 27 is fitted in the bearing 18 of the stator 11. On the other hand, the second drive shaft 27 is independently fixed to the center of the yoke 24 of the second rotor 13, and the end of the second drive shaft 28 slightly extending from the yoke 24 is fitted into the bearing 19 of the stator 11. is doing.

ヨーク21、24の外周側のステータ11との対向面側には周方向に等間隔をあけてコイル取付穴21a、24aを設け、これらコイル取付穴21a、24aに銅等の常電導材からなる複数の電機子コイル22、25を埋設している。即ち、電機子コイル22、25の軸線を各駆動軸27、28の軸線と平行に配置することで、コイル22、25の磁束方向を軸線方向に向けている。また、電機子コイル22、25の中空部には磁性体からなる磁心23、26を配置している。このように、複数の電機子コイル22、25を軸線回りの周方向に間隔をあけて取り付け、各電機子コイル22、25の磁束方向が軸線方向を向くように配置している。なお、ヨーク21、24および磁心23、26は、磁性粉末(鉄粉等)を絶縁樹脂でプレス結合して加熱処理を施した圧粉磁性体、あるいは、被膜(燐酸化合物被膜等)で覆った磁性粉末(鉄粉等)を絶縁樹脂で結合して加熱処理を施した圧粉磁性体としている。圧粉磁性体の結合用樹脂としては、ポリフェニレンサルファイドや可溶性ポリイミド等の樹脂が好適に用いられる。   Coil mounting holes 21a and 24a are provided at equal intervals in the circumferential direction on the outer surface side of the yokes 21 and 24 facing the stator 11, and the coil mounting holes 21a and 24a are made of a normal conductive material such as copper. A plurality of armature coils 22 and 25 are embedded. That is, by arranging the axis of the armature coils 22 and 25 in parallel with the axis of the drive shafts 27 and 28, the magnetic flux direction of the coils 22 and 25 is directed in the axial direction. In addition, magnetic cores 23 and 26 made of a magnetic material are disposed in the hollow portions of the armature coils 22 and 25. As described above, the plurality of armature coils 22 and 25 are attached at intervals in the circumferential direction around the axis, and are arranged so that the magnetic flux direction of each armature coil 22 and 25 faces the axial direction. The yokes 21 and 24 and the magnetic cores 23 and 26 are covered with a powder magnetic material obtained by press-bonding magnetic powder (iron powder or the like) with an insulating resin and subjected to heat treatment, or a coating (phosphoric acid compound coating or the like). The magnetic powder (iron powder or the like) is made of a powder magnetic material obtained by bonding with an insulating resin and performing a heat treatment. A resin such as polyphenylene sulfide or soluble polyimide is preferably used as the resin for binding the dust magnetic material.

以上の構成とすると、第1ロータ12の電機子コイル22と、第2ロータ13の電機子コイル25とに異なった電流をそれぞれ給電することにより、左右のロータ12、13が別々に独立して回転し、第1駆動軸27と第2駆動軸28との回転数を相違させることができる。
また、ステータ11の両側にロータ12、13を配置することで、超電導界磁コイル16で発生する強力な左右の磁極の両方をトルク発生に有効利用することができる。即ち、超電導界磁コイル16の有効利用を図ることで、高価な超電導材の使用量を抑えることができ、コストパフォーマンスが向上する。なお、超電導界磁コイル16の代わりに公知の超電導界磁バルクを用いてもよい。
With the above configuration, by feeding different currents to the armature coil 22 of the first rotor 12 and the armature coil 25 of the second rotor 13, the left and right rotors 12 and 13 are separately and independently provided. It can rotate and can make the rotation speed of the 1st drive shaft 27 and the 2nd drive shaft 28 different.
Further, by arranging the rotors 12 and 13 on both sides of the stator 11, both the strong left and right magnetic poles generated by the superconducting field coil 16 can be effectively used for torque generation. That is, by using the superconducting field coil 16 effectively, the amount of expensive superconducting material used can be suppressed, and cost performance is improved. Instead of the superconducting field coil 16, a known superconducting field bulk may be used.

次に、超電導多軸モータ10を搭載した車両Cについて説明する。
車両C(電気自動車)は、図3に示すように、バッテリー30と、バッテリー30からの直流電流を所定電圧の交流に変換する2つのインバータ31、32と、バッテリー30およびインバータ31、32から供給される電力により駆動される超電導多軸モータ10とを備えている。超電導多軸モータ10の第1駆動軸27には左車輪33を直結接続している一方、第2駆動軸28には右車輪34を直結接続している。なお、ステータ11の超電導界磁コイル16には直流電流を給電し、第1ロータ12および第2ロータ13には交流電流を給電している。
Next, the vehicle C equipped with the superconducting multi-axis motor 10 will be described.
As shown in FIG. 3, the vehicle C (electric vehicle) is supplied from the battery 30, two inverters 31 and 32 that convert the direct current from the battery 30 into alternating current of a predetermined voltage, and the battery 30 and the inverters 31 and 32. And a superconducting multi-axis motor 10 driven by the generated electric power. The left wheel 33 is directly connected to the first drive shaft 27 of the superconducting multi-axis motor 10, while the right wheel 34 is directly connected to the second drive shaft 28. Note that a direct current is supplied to the superconducting field coil 16 of the stator 11, and an alternating current is supplied to the first rotor 12 and the second rotor 13.

以上の構成とすると、モータ10と車輪33、34との間に従来のようなディファレンシャルギア等を介設する必要がなくなり、動力伝達ロスを低減できる。また、ディファレンシャルギア等を廃止できることで、車両Cが小型軽量化されると共に車載スペースに余裕をもたせることができる。さらに、ギア系統を削減できることにより、ギア摩擦による騒音も無くすことができ車両Cの静寂性向上にも寄与する。また、従来のインホイールモータに比べて、車載するモータ数を半減することが可能となる。   With the above configuration, there is no need to provide a conventional differential gear or the like between the motor 10 and the wheels 33 and 34, and power transmission loss can be reduced. Further, since the differential gear and the like can be eliminated, the vehicle C can be reduced in size and weight, and an in-vehicle space can be provided. Furthermore, since the gear system can be reduced, noise due to gear friction can be eliminated, which contributes to improvement in the quietness of the vehicle C. In addition, the number of motors mounted on the vehicle can be halved compared to conventional in-wheel motors.

図4は第2実施形態を示す。
第1実施形態との相違点は、第1ロータ12’と第2ロータ13’の電機子コイル41、44を超電導材で形成している点である。
第1ロータ12’および第2ロータ13’は、ヨーク21、24の外周側のステータ11との対向面側には周方向に等間隔をあけてコイル取付穴21a、24aを設け、これらコイル取付穴21a、24aに円環状で真空断熱構造の断熱冷媒容器40、43を埋設し、断熱冷媒容器40、43に超電導材からなる巻線である超電導電機子コイル41、44を収容している。また、断熱冷媒容器40、43の中空部には磁性体からなる磁心42、45を配置している。このように、複数の超電導電機子コイル41、44を軸線回りの周方向に間隔をあけて取り付け、各超電導電機子コイル41、44の磁束方向が軸線方向を向くように配置している。また、磁心42、45は、鉄粉等の磁性粉末に樹脂等で絶縁被覆を施した粉末磁性体を用いてプレス成形されたものとしている。
FIG. 4 shows a second embodiment.
The difference from the first embodiment is that the armature coils 41 and 44 of the first rotor 12 'and the second rotor 13' are formed of a superconducting material.
The first rotor 12 ′ and the second rotor 13 ′ are provided with coil mounting holes 21 a and 24 a at equal intervals in the circumferential direction on the outer surface side of the yokes 21 and 24 facing the stator 11. The heat insulating refrigerant containers 40 and 43 having an annular and vacuum heat insulating structure are embedded in the holes 21a and 24a. In addition, magnetic cores 42 and 45 made of a magnetic material are disposed in the hollow portions of the heat insulating refrigerant containers 40 and 43. As described above, the plurality of superconducting armature coils 41 and 44 are attached at intervals in the circumferential direction around the axis, and are arranged so that the magnetic flux direction of each superconducting armature coil 41 and 44 faces the axial direction. The magnetic cores 42 and 45 are press-molded using a powder magnetic material obtained by applying an insulating coating with a resin or the like to a magnetic powder such as iron powder.

以上の構成とすると、電機子コイル41、44も超電導化して大電流を通電可能としているため、巻数を大幅低減することができ、コイル中心に大きな空間を形成することが可能となる。したがって、コイル中空部により大きな磁心42、45を配置することができ、磁束の強化が図られてトルクアップに貢献する。なお、ステータ11は第1実施形態と同様であるため同一符号を付して説明を省略する。   With the above configuration, the armature coils 41 and 44 are also superconducting to allow a large current to flow, so that the number of turns can be greatly reduced and a large space can be formed at the center of the coil. Therefore, the large magnetic cores 42 and 45 can be disposed in the coil hollow portion, and the magnetic flux is strengthened to contribute to the torque increase. In addition, since the stator 11 is the same as that of 1st Embodiment, it attaches | subjects the same code | symbol and abbreviate | omits description.

本発明の第1実施形態の超電導多軸モータの断面図である。It is sectional drawing of the superconducting multi-axis motor of 1st Embodiment of this invention. ステータの正面図である。It is a front view of a stator. 超電導多軸モータが搭載された車両の概略図である。It is the schematic of the vehicle carrying a superconducting multi-axis motor. 第2実施形態の超電導多軸モータの断面図である。It is sectional drawing of the superconducting multi-axis motor of 2nd Embodiment. 従来例の超電導モータを示す断面図である。It is sectional drawing which shows the superconducting motor of a prior art example. 従来例の車両の概略図である。It is the schematic of the vehicle of a prior art example. 別の従来例の車両の概略図である。It is the schematic of the vehicle of another prior art example.

符号の説明Explanation of symbols

10 超電導多軸モータ
11 ステータ
12 第1ロータ
13 第2ロータ
15 断熱冷媒容器
16 超電導界磁コイル
17、23、26 磁心
18、19 軸受
21、24 ヨーク
22、25 電機子コイル
27 第1駆動軸
28 第2駆動軸
C 車両
DESCRIPTION OF SYMBOLS 10 Superconducting multi-axis motor 11 Stator 12 1st rotor 13 2nd rotor 15 Adiabatic refrigerant container 16 Superconducting field coil 17, 23, 26 Magnetic core 18, 19 Bearing 21, 24 Yoke 22, 25 Armature coil 27 First drive shaft 28 Second drive shaft C vehicle

Claims (6)

磁束方向を軸線方向に向けた超電導界磁体を有するステータと、
前記ステータの軸線方向の一側に対向配置され、磁束方向を軸線方向に向けた電機子コイルを有する第1ロータと、
前記ステータの軸線方向の他側に対向配置され、磁束方向を軸線方向に向けた電機子コイルを有する第2ロータと、
前記第1ロータに固定された第1駆動軸と、
前記第2ロータに固定されて前記第1駆動軸とは独立して回転する第2駆動軸とを備えていることを特徴とする超電導多軸モータ。
A stator having a superconducting field with the magnetic flux direction in the axial direction;
A first rotor having an armature coil disposed opposite to one side in the axial direction of the stator and having a magnetic flux direction in the axial direction;
A second rotor having an armature coil disposed opposite to the other axial direction of the stator and having a magnetic flux direction in the axial direction;
A first drive shaft fixed to the first rotor;
A superconducting multi-axis motor comprising: a second drive shaft fixed to the second rotor and rotating independently of the first drive shaft.
前記超電導界磁体は、超電導界磁コイルあるいは超電導界磁バルクとしている請求項1に記載の超電導多軸モータ。   The superconducting multi-axis motor according to claim 1, wherein the superconducting field body is a superconducting field coil or a superconducting field bulk. 前記超電導界磁コイルあるいは/および前記電機子コイルの中空部には圧粉磁性体を磁心として配置している請求項2に記載の超電導多軸モータ。   The superconducting multi-axis motor according to claim 2, wherein a dust magnetic material is disposed as a magnetic core in a hollow portion of the superconducting field coil and / or the armature coil. 前記第1ロータおよび前記第2ロータの前記電機子コイルは超電導材で形成している請求項1乃至請求項3のいずれか1項に記載の超電導多軸モータ。   The superconducting multi-axis motor according to any one of claims 1 to 3, wherein the armature coils of the first rotor and the second rotor are formed of a superconducting material. 請求項1乃至請求項4のいずれか1項に記載の超電導多軸モータを搭載した車両であって、
前記第1駆動軸を第1車輪に接続していると共に、前記第2駆動軸を第2車輪に接続していることを特徴とする車両。
A vehicle equipped with the superconducting multi-axis motor according to any one of claims 1 to 4,
A vehicle having the first drive shaft connected to a first wheel and the second drive shaft connected to a second wheel.
前記第1駆動軸は第1車輪に直結接続していると共に、前記第2駆動軸は第2車輪に直結接続している請求項5に記載の車両。   The vehicle according to claim 5, wherein the first drive shaft is directly connected to the first wheel, and the second drive shaft is directly connected to the second wheel.
JP2005240327A 2005-08-22 2005-08-22 Superconducting multishaft motor and vehicle equipped therewith Pending JP2007060748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005240327A JP2007060748A (en) 2005-08-22 2005-08-22 Superconducting multishaft motor and vehicle equipped therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005240327A JP2007060748A (en) 2005-08-22 2005-08-22 Superconducting multishaft motor and vehicle equipped therewith

Publications (1)

Publication Number Publication Date
JP2007060748A true JP2007060748A (en) 2007-03-08

Family

ID=37923717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005240327A Pending JP2007060748A (en) 2005-08-22 2005-08-22 Superconducting multishaft motor and vehicle equipped therewith

Country Status (1)

Country Link
JP (1) JP2007060748A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016254A1 (en) * 2008-08-06 2010-02-11 株式会社Ihi Superconducting coil and magnetic field generator
KR20110129888A (en) * 2009-02-13 2011-12-02 아이시스 이노베이션 리미티드 Electric machine - modular
US9054566B2 (en) 2009-04-14 2015-06-09 Isis Innovation Ltd Electric machine—evaporative cooling
US9071117B2 (en) 2009-02-13 2015-06-30 Isis Innovation Ltd. Electric machine—flux
JP2016111839A (en) * 2014-12-08 2016-06-20 株式会社Ihi Drift prevention device in superconducting parallel circuit device
US9496776B2 (en) 2009-02-13 2016-11-15 Oxford University Innovation Limited Cooled electric machine
CN112436697A (en) * 2019-08-26 2021-03-02 美的威灵电机技术(上海)有限公司 Motor and fan
WO2023221532A1 (en) * 2022-05-16 2023-11-23 中国矿业大学 Axial magnetic flux switch reluctance electric motor with full-pitch winding, and multi-objective optimization method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601069A (en) * 1983-06-18 1985-01-07 三菱電機株式会社 Motor for electric truck
JPH01303046A (en) * 1988-05-27 1989-12-06 Kawasaki Heavy Ind Ltd Motor
JP2004274889A (en) * 2003-03-07 2004-09-30 Yaskawa Electric Corp In-vacuum device for drive and substrate conveying apparatus using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601069A (en) * 1983-06-18 1985-01-07 三菱電機株式会社 Motor for electric truck
JPH01303046A (en) * 1988-05-27 1989-12-06 Kawasaki Heavy Ind Ltd Motor
JP2004274889A (en) * 2003-03-07 2004-09-30 Yaskawa Electric Corp In-vacuum device for drive and substrate conveying apparatus using same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354907B2 (en) 2008-08-06 2013-01-15 Ihi Corporation Superconducting coil assembly and magnetic field generating equipment
WO2010016254A1 (en) * 2008-08-06 2010-02-11 株式会社Ihi Superconducting coil and magnetic field generator
RU2479880C2 (en) * 2008-08-06 2013-04-20 АйЭйчАй КОРПОРЕЙШН Assembly of superconductive coils and equipment for generation of magnetic field
US9071117B2 (en) 2009-02-13 2015-06-30 Isis Innovation Ltd. Electric machine—flux
JP2012518377A (en) * 2009-02-13 2012-08-09 アイシス イノベイシヨン リミテツド Electromechanical-modular
KR20110129888A (en) * 2009-02-13 2011-12-02 아이시스 이노베이션 리미티드 Electric machine - modular
US9318938B2 (en) 2009-02-13 2016-04-19 Isis Innovation Ltd. Electric machine-modular
KR101654392B1 (en) * 2009-02-13 2016-09-05 아이시스 이노베이션 리미티드 Electric machine - modular
US9496776B2 (en) 2009-02-13 2016-11-15 Oxford University Innovation Limited Cooled electric machine
US9054566B2 (en) 2009-04-14 2015-06-09 Isis Innovation Ltd Electric machine—evaporative cooling
JP2016111839A (en) * 2014-12-08 2016-06-20 株式会社Ihi Drift prevention device in superconducting parallel circuit device
CN112436697A (en) * 2019-08-26 2021-03-02 美的威灵电机技术(上海)有限公司 Motor and fan
WO2023221532A1 (en) * 2022-05-16 2023-11-23 中国矿业大学 Axial magnetic flux switch reluctance electric motor with full-pitch winding, and multi-objective optimization method therefor

Similar Documents

Publication Publication Date Title
US7462968B2 (en) Electric wheel
JP5022008B2 (en) Electromechanical device having a three-dimensional stator laminated sheet structure
CN107112872A (en) Motor with SMC cores
US11299031B2 (en) Wheel hub motor for electric vehicle
CN203942424U (en) A kind of without yoke closed slot multi-disc type permanent magnet motor
CN109478814B (en) Stator of rotating electric machine and rotating electric machine
CN104113171A (en) Yoke-free closed slot type multi-plate permanent magnet motor
WO2020213651A1 (en) Rotating electric machine
WO2017038326A1 (en) Rotor, rotating electrical machine provided therewith, and method of manufacturing rotor
KR102318963B1 (en) Multiple in wheel motor for Electric Vehicles with auxiliary driving motors which can drive at emergency
JP2007060748A (en) Superconducting multishaft motor and vehicle equipped therewith
WO2020213650A1 (en) Rotating electric machine
CN110120729A (en) A kind of radial magnetic field stator with no yoke Double-rotor disc permanent magnet synchronous motor
KR101331696B1 (en) Apparatus of Driving Wheels for in-wheel System
US20230396138A1 (en) Electric disk motor for driving a wheel rim
CN110800193B (en) Stator for rotating electric machine, and method for manufacturing stator for rotating electric machine
JP2007060744A (en) Motor for both power generation/driving and vehicle equipped with that motor
WO2019208032A1 (en) Stator and rotating electric machine
KR101938889B1 (en) To the motor and alternator in wheel system for motor vehicles
JP4751134B2 (en) Inductor type motor and vehicle equipped with the same
JPH07143696A (en) Motor
JP4751135B2 (en) Inductor-type power generation / drive motor and automobile equipped with the same
KR101955029B1 (en) Trains for convergence in parallel the motor and alternator in wheel system
JP3651150B2 (en) Load drive device
US11641139B2 (en) Lubricant supported electric motor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120731