JP2007057379A - Internal resistance detection method of secondary battery - Google Patents
Internal resistance detection method of secondary battery Download PDFInfo
- Publication number
- JP2007057379A JP2007057379A JP2005243173A JP2005243173A JP2007057379A JP 2007057379 A JP2007057379 A JP 2007057379A JP 2005243173 A JP2005243173 A JP 2005243173A JP 2005243173 A JP2005243173 A JP 2005243173A JP 2007057379 A JP2007057379 A JP 2007057379A
- Authority
- JP
- Japan
- Prior art keywords
- internal resistance
- secondary battery
- current
- battery
- soc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Tests Of Electric Status Of Batteries (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は二次電池の内部抵抗検出方法に関するものであり、より詳細には、内部抵抗の検出精度を向上させた検出方法に関する。 The present invention relates to a method for detecting the internal resistance of a secondary battery, and more particularly to a detection method that improves the detection accuracy of internal resistance.
二次電池の用途として電気自動車の用途が注目されているが、このような用途における電池の内部抵抗の推定技法が開発されている。例えば、従来の電気車両における二次電池の内部抵抗(以下Rとも称する。)推定は、以下3つの何れかの方法若しくは組み合わせによって行うのが一般的であり、例えば、「ハイブリッド車両用電池の内部抵抗検出方法」(特許文献1を参照されたい。)、「二次電池の内部抵抗の算出方法およびその方法を実現する為のプログラム」(特許文献2を参照されたい。)などがある。
(1)電池の充放電電流I、負荷時電圧Vをサンプリングし、回帰直線演算を行ってその傾きからRを推定する。
(2)電池の充放電電流I、電圧V、開放電圧推定EO及び演算式:EO=V+I×Rを元に、瞬時のRを求める。
(3) (2)で求めたRを適応フィルタにかけて、精度を向上させる。
(1) Sampling the charging / discharging current I and the load voltage V of the battery, performing a regression line calculation, and estimating R from the slope.
(2) Obtain instantaneous R based on battery charge / discharge current I, voltage V, open-circuit voltage estimation EO, and calculation formula: EO = V + I × R.
(3) Apply R to the adaptive filter to improve accuracy.
上述した二次電池の内部抵抗推定方法における問題点を以下に示す。
(1)の問題点
直線回帰に用いるI、Vが電流・電圧センサの精度に左右される為、Rの演算精度が悪い。演算頻度(I、V取得条件の成立)が低い為、急な内部抵抗Rの変動に追従できない。充放電電流が一定の場合、Rの演算ができない。
(2)の問題点
開放電圧推定EOをSOCから推定する際、SOCの演算精度が悪いとRの演算精度も悪い。I、Vが電流・電圧センサの精度に左右される為、Rの演算精度が悪い。
(3)の問題点
演算に用いる「瞬時の」I、Vの同期が取れていない(サンプリングのタイミングが完全には合っていない)と、「瞬時の実電池のR」を正確に求められない。I、Vが電流・電圧センサの精度に左右される為、Rの演算精度が悪い。さらに、充放電電流が一定の場合、Rの演算ができない。Rの演算精度が悪い為、負荷時の電池残量(SOC)の演算精度が低下するという課題があった。
Problems in the method for estimating the internal resistance of the secondary battery described above will be shown below.
Problem of (1) Since I and V used for linear regression depend on the accuracy of the current / voltage sensor, the calculation accuracy of R is poor. Since the calculation frequency (I and V acquisition conditions are met) is low, it cannot follow sudden fluctuations in internal resistance R. When charge / discharge current is constant, R cannot be calculated.
Problem (2) When estimating the open circuit voltage estimation EO from the SOC, if the SOC calculation accuracy is poor, the R calculation accuracy is also poor. Since I and V depend on the accuracy of the current / voltage sensor, the R calculation accuracy is poor.
If the “instantaneous” I and V used in the problem calculation of (3) are not synchronized (the sampling timing is not perfectly matched), the “instantaneous R of actual battery” cannot be obtained accurately. . Since I and V depend on the accuracy of the current / voltage sensor, the R calculation accuracy is poor. Further, when the charge / discharge current is constant, R cannot be calculated. Since the calculation accuracy of R is poor, there is a problem that the calculation accuracy of the remaining battery level (SOC) at the time of load decreases.
上述した諸課題を解決すべく、第1の発明による二次電池の内部抵抗検出方法は、
充放電電流値から前記二次電池の現在の残存容量SOCを演算し、
前記二次電池の充放電電流が所定の第1の閾値より小さい第1の領域(電流値<CURLO#)においては、予め取得した、前記二次電池の残存容量SOCと内部抵抗Rとの関係を示す相関マップまたは演算式を用いて、前記二次電池の現在の残存容量SOCから前記電池の現在の内部抵抗Rを求め、
前記充放電電流が前記所定の第1の閾値以上かつ所定の第2の閾値未満である第2の領域(電流値≧CURLO#、且つ、電流値<CURHI#)においては、予め取得した、前記二次電池の前記第2の領域に達した瞬間の残存容量SOC-init別に規定される内部抵抗Rと放電時間DTとの関係を示す相関マップまたは演算式を用いて、前記第2の領域に達した瞬間(即ち放電開始時)の残存容量SOC-init(例えば、当該領域に達したときに記憶装置に格納しておく)および前記二次電池の現在までの放電時間DTから前記二次電池の現在の内部抵抗Rを求める、
ことを特徴とする。
In order to solve the above-described problems, a method for detecting the internal resistance of a secondary battery according to the first invention is:
Calculate the current remaining capacity SOC of the secondary battery from the charge / discharge current value,
In the first region (current value <CURLO #) in which the charge / discharge current of the secondary battery is smaller than a predetermined first threshold, the relationship between the remaining capacity SOC of the secondary battery and the internal resistance R acquired in advance. Using a correlation map or an arithmetic expression indicating the current internal resistance R of the battery from the current remaining capacity SOC of the secondary battery,
In the second region (current value ≧ CURLO # and current value <CURHI #) in which the charge / discharge current is equal to or higher than the predetermined first threshold and lower than the predetermined second threshold, the charge / discharge current is acquired in advance, Using the correlation map or the calculation formula showing the relationship between the internal resistance R and the discharge time DT defined for each remaining capacity SOC-init at the moment of reaching the second area of the secondary battery, Remaining capacity SOC-init (for example, stored in a storage device when the area is reached) at the moment of reaching (that is, at the start of discharge) and the discharge time DT of the secondary battery to the present time, the secondary battery For the current internal resistance R of
It is characterized by that.
また、第2の発明による二次電池の内部抵抗検出方法は、
前記求めた内部抵抗Rを演算手段(演算回路、CPU、MPU、DSPなど)を用いて前記二次電池の温度に応じて補正する、
ことを特徴とする。
Further, the internal resistance detection method of the secondary battery according to the second invention is:
The calculated internal resistance R is corrected according to the temperature of the secondary battery using a calculation means (calculation circuit, CPU, MPU, DSP, etc.),
It is characterized by that.
また、第3の発明による二次電池の内部抵抗検出方法は、
前記二次電池が電動車両に搭載されたものである、
ことを特徴とする。
上述したように本発明の解決手段を方法として説明してきたが、本発明はこれらに実質的に相当する装置、プログラム、プログラムを記録した記憶媒体としても実現し得るものであり、本発明の範囲にはこれらも包含されるものと理解されたい。
Further, the internal resistance detection method of the secondary battery according to the third invention is:
The secondary battery is mounted on an electric vehicle.
It is characterized by that.
As described above, the solution of the present invention has been described as a method. However, the present invention can be realized as a device, a program, and a storage medium storing the program substantially corresponding to these, and the scope of the present invention. It should be understood that these are also included.
第1の発明によれば、過度現象に伴う電池の内部抵抗上昇を理想的且つリアルタイムに追従することができ、精度良く内部抵抗R及び電池の残存容量SOCを推定することができる。また、充放電電流が一定の場合であっても内部抵抗Rを精度よく算出することが可能である。第1の領域(即ち、低電流域)においては、時間経過と共に内部抵抗が殆ど変化しないため、SOC−Rの相関が成り立つので(傾き=小)、この第1の領域ではこのSOC−Rの相関関係を利用して精度良く演算を行うことができる。次に、第2の領域(即ち、中電流域)においては、時間対内部抵抗で比例関係(傾き=大)が成立するので、この第2の領域ではこの時間対内部抵抗の相関関係を利用して精度良く演算を行うことができる。本願発明では、第2の領域よりも高い電流が流れる場合を演算対象から除外してあるが、その第1の理由は、最も多い用途と想定される電動車両の場合には車両のシステム出力(例えば30kW)があるので、一定電流以上(例えば100A)が流れるシーンがほとんど無いため、この一定電流以上を上限として除外する構成をとっても実用上何ら問題がないからである。第2の理由は、第2の領域を超える高電流領域では、時間対内部抵抗で比例関係が成立しない(拡散限界)からである。即ち、本願発明は、これらの相関関係がよく成立する各領域においてのみ演算を行うことによって演算精度を高く保持するものである。 According to the first invention, it is possible to follow the increase in the internal resistance of the battery due to the transient phenomenon ideally and in real time, and it is possible to accurately estimate the internal resistance R and the remaining capacity SOC of the battery. Further, even when the charge / discharge current is constant, the internal resistance R can be accurately calculated. In the first region (that is, the low current region), since the internal resistance hardly changes with the passage of time, the SOC-R correlation is established (slope = small). Therefore, in this first region, the SOC-R Calculation can be performed with high accuracy using the correlation. Next, in the second region (that is, the medium current region), a proportional relationship (slope = large) is established with respect to time vs. internal resistance. Therefore, in this second region, this time vs. internal resistance correlation is used. Thus, the calculation can be performed with high accuracy. In the present invention, the case where a current higher than that in the second region flows is excluded from the calculation target, but the first reason is that the system output of the vehicle ( This is because there is almost no scene where a constant current or more (for example, 100 A) flows, and there is no practical problem even if a configuration in which this constant current or more is excluded as the upper limit is used. The second reason is that in a high current region exceeding the second region, a proportional relationship is not established with respect to time versus internal resistance (diffusion limit). In other words, the present invention maintains high calculation accuracy by performing calculations only in each region where these correlations are well established.
また、第2の発明によれば、電池の温度変化に伴う電池の内部抵抗Rの変動を補正して、内部抵抗Rの演算精度を向上する。特に、電動車両などの用途では、大電流を用いるため二次電池の温度が相当変動することになり、このような温度補正処理を行う効果が大きい。 In addition, according to the second aspect of the invention, the variation in the internal resistance R of the battery accompanying the change in battery temperature is corrected, and the calculation accuracy of the internal resistance R is improved. In particular, in applications such as electric vehicles, a large current is used, so the temperature of the secondary battery varies considerably, and the effect of performing such temperature correction processing is great.
また、今後急速に普及が予測される用途が電気自動車を代表とする電動車両であり、このような用途では、大容量の二次電池で高電圧の電流の充放電を頻繁に繰り返すため、電池残量の増減が激しく、これの算出のために内部抵抗Rを適時かつ精度良く求めておく必要があるが、第3の発明によれば、このような電動車両に搭載された二次電池の内部抵抗Rを適時かつ精度良く求めることが可能となる。 In addition, electric vehicles such as electric vehicles are expected to be used rapidly in the future, and in such applications, high-capacity secondary batteries are frequently charged and discharged with a high voltage current. In order to calculate this, it is necessary to obtain the internal resistance R in a timely and accurate manner. According to the third invention, the secondary battery mounted on such an electric vehicle It becomes possible to obtain the internal resistance R in a timely and accurate manner.
以降、諸図面を参照しつつ、本発明の実施態様を詳細に説明する。尚、以下に示す実施形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。例えば、本発明を電気自動車に適用した場合を想定して説明をするが、本発明は二次電池を使う他の用途にも広く適用可能である。
図1は、本発明による内部抵抗測定方法の使用に供するのに適した電気車両の強電システムの構成図である。複数のセル107を直列に接続して構成した、電源としての組電池101は、正極(+)側及び負極(−)側に接続された強電ハーネス102、111を介して、インバータ106及び、このインバータさらにモータ電源ハーネス117Hを介して車両駆動用モータ117に電力を供給する。強電ハーネス102、111には、電力供給を開始/遮断する為のリレー103、110が設置され、リレーのオン/オフは、電池制御装置109のリレー制御信号線113からのリレー制御信号によって行われるものとする。電池制御装置109は、総電圧センサ104からの電流センサ入力信号線114を介した入力信号及び、電流センサ105からの総電圧センサ入力信号線115を介した入力信号を基に、組電池101の総電圧BATVOL及び、現在の入出力電流BATCURを規定周期でサンプリングする。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The embodiment described below is an example embodying the present invention, and does not limit the technical scope of the present invention. For example, the present invention will be described on the assumption that the present invention is applied to an electric vehicle. However, the present invention can be widely applied to other uses using a secondary battery.
FIG. 1 is a configuration diagram of a high-power system for an electric vehicle suitable for use in the internal resistance measuring method according to the present invention. An assembled
次に、本特許が適例とする二次電池の内部抵抗特性について、図1、図2、図3及び図4を用いて説明する。図2は、二次電池の放電時間と内部特性との関係を示す相関図である。一定の電池温度BATTEMP#及び放電電流<CURHI#の条件下において、放電開始SOCをSOC1〜4#とした場合、電池の内部抵抗R1〜R4は放電時間に比例する。ただし、内部抵抗の変化の傾きA1〜A4は、放電開始時のSOCであり、かつ、対象とする放電電流の領域に達した瞬間のSOCであるSOC1〜4#別に異なる。即ち、この相関図は、二次電池における放電の対象領域に達した瞬間の残存容量SOC-init別に規定された、内部抵抗Rと放電時間DTとの関係を示す相関マップである。 Next, the internal resistance characteristics of the secondary battery which is an example of this patent will be described with reference to FIGS. 1, 2, 3 and 4. FIG. FIG. 2 is a correlation diagram showing the relationship between the discharge time and the internal characteristics of the secondary battery. When the discharge start SOC is set to SOC1 to 4 # under the conditions of a constant battery temperature BATTEMP # and discharge current <CURHI #, the internal resistances R1 to R4 of the battery are proportional to the discharge time. However, the slopes A1 to A4 of the change in the internal resistance are different depending on SOC1 to 4 #, which are the SOC at the start of discharge and the SOC at the moment of reaching the target discharge current region. In other words, this correlation diagram is a correlation map showing the relationship between the internal resistance R and the discharge time DT defined for each remaining capacity SOC-init at the moment of reaching the discharge target region in the secondary battery.
下に具体的に内部抵抗の変化の傾きA1〜A4を求める手法を説明する。
具体例
放電開始SOC=SOC1#の時:
R1= A1×t+RINT1#
傾きAnは、放電開始時のSOCであるSOC#kから求める。
図3に、図2に示した二次電池のSOCと内部抵抗特性との相関を示す。図4に、図2に示した二次電池の温度と内部抵抗特性との相関を示す。また、図5に、図2に示した二次電池の放電開始SOCと傾きAとの相関を示す。これらの図に示すように、放電開始時のSOC別に規定される内部抵抗と放電時間とは正の相関が強く、一定の傾きAで変化するものであり、本願発明はこの特性を利用したものである。
A method for obtaining the inclinations A1 to A4 of changes in internal resistance will be specifically described below.
Specific example When starting discharge SOC = SOC1 #:
R1 = A1 x t + RINT1 #
The slope An is obtained from SOC # k, which is the SOC at the start of discharge.
FIG. 3 shows the correlation between the SOC and the internal resistance characteristics of the secondary battery shown in FIG. FIG. 4 shows the correlation between the temperature and the internal resistance characteristics of the secondary battery shown in FIG. FIG. 5 shows a correlation between the discharge start SOC and the slope A of the secondary battery shown in FIG. As shown in these figures, the internal resistance defined for each SOC at the start of discharge and the discharge time have a strong positive correlation and change with a constant slope A. The present invention utilizes this characteristic. It is.
次に、図1に示した実施態様における内部抵抗演算ロジックについて、図6のフローチャートを用いて説明する。図に示すようにステップS601では、車両起動により、電池制御装置109の電源を入れて、内部抵抗演算を開始する。ステップS602では、電圧センサ104、電流センサ105からのA/D入力を基に、電池モジュールの総電圧BATVOL、充放電電流BATCURを求める。ステップS603では電池残存容量BATSOCを演算する。ステップS604では、求めたBATSOCに基づきSOC対内部抵抗の相関マップ(図3)を参照して初期内部抵抗RINTを求める。SOC対内部抵抗の相関マップの一例を表で示すと以下のようになる。このとき、SOCに基づきRINTが無負荷時(TIME=0sec)の内部抵抗と仮定してRINTを求める。
この求めたBATSOCに基づきSOC対傾きAの相関マップ(図5)を参照して傾きAを演算する。更に、負荷開始時内部抵抗推定RINT=RINT#とする。このSOC対傾きAの相関マップを表としての一例を表で示すと以下のようになる。
Based on the obtained BATSOC, the slope A is calculated with reference to the correlation map of SOC vs. slope A (FIG. 5). Further, the internal resistance estimation RINT = RINT # at the start of load. An example of the SOC vs. slope A correlation map as a table is as follows.
ステップS605では、車両制御コントローラ116から通信116Sを介してシャツトダウン要求を受信したらステップS616へ移行、それ以外であればステップS606へ移行する。ステップS606では、充放電電流|BATCUR|≧CURLO#であればS607へ移行、それ以外であればS603へ移行する。ステップS607では、充放電電流|BATCUR|<CURHI#であればS608へ移行、それ以外であればS614へ移行する。ステップS608では、初期内部抵抗である切片RINT#=RINT、傾きA#=Aとする。なお、ステップS604では、便宜上、内部抵抗RINTは1回計算される構成となっているが、実際には内部抵抗RINTをその時のSOCに応じて常に更新する構成になっている。即ち、第1の領域(低電流域)から第2の領域(中電流域)に以降したときのR≒RINTになり、RINTを第2の領域における以下の演算式の切片として使っても問題ない。即ち、
抵抗R=A#×time(s)+RINT(0sec時の内部抵抗)
で求めることができる。ステップS609では、放電時間計測のためTIMUPカウンタ≠0であればTIMUP=0にクリアしてからTIMUPカウンタを開始する。ステップS610では、負荷時電池内部抵抗Rを演算する(内部抵抗R=傾きA#×放電時間TIMUP+初期内部抵抗RINT#)。
In step S605, if a shirt down request is received from the
Resistance R = A # × time (s) + RINT (Internal resistance at 0 sec)
Can be obtained. In step S609, if the TIMUP counter is not 0 for measuring the discharge time, the TIMUP counter is started after clearing to TIMUP = 0. In step S610, the battery internal resistance R at load is calculated (internal resistance R = slope A # × discharge time TIMUP + initial internal resistance RINT #).
ステップS611では、充放電電流|BATCUR|≧CURLO#であればS612へ移行、それ以外であればS603へ移行する。ステップS612では、TIMUPカウンタ<DISTIME#であればS613へ移行、それ以外であればS614へ移行する。ステップS613では、充放電電流|BATCUR|≧CURHI#であれば614へ移行、それ以外であれば610へ移行する。ステップS614では、R=R(前回値)を保持する。ステップS615では、上位制御器である車両制御コントローラ116からシャツトダウン要求を受信したらS616へ移行、それ以外であればS610へ移行する。ステップS616では内部抵抗演算を終了する。
In step S611, if the charge / discharge current | BATCUR | ≧ CURLO #, the process proceeds to S612, and otherwise, the process proceeds to S603. In step S612, if TIMUP counter <DISTIME #, the process proceeds to S613; otherwise, the process proceeds to S614. In step S613, if the charge / discharge current | BATCUR | ≧ CURHI #, the process proceeds to 614. Otherwise, the process proceeds to 610. In step S614, R = R (previous value) is held. In step S615, if a shirt down request is received from the
図7は、二次電池の温度劣化補正のための処理を示すフローチャートである。図に示すように、ステップS701では、温度による内部抵抗補正ロジックを開始する。ステップS702ではサーミスタ108からの温度検出信号線112を介したA/D入力を基に、平均電池温度BATTEMPを求める。ステップS703は、二次電池の温度BATTEMPに基づき電池温度一劣化係数マップ(図4)を参照して、温度劣化係数RREKを演算する。ステップS704では、R演算実施済みであればS705Aへ移行、それ以外であればS705Bへ移行する。ステップS705Aでは、補正電池内部抵抗BATRESを下記のように演算する。
補正内部抵抗BATRES=補正前内部抵抗R×温度劣化係数RREK
ステップS706Bでは、BATRES=RINTIAL#とする。ステップS707では、車両制御コントローラ116からシャツトダウン要求を受信したらS708へ移行、それ以外であれば703へ移行する。ステップS707では温度による内部抵抗補正演算を終了する。
FIG. 7 is a flowchart showing a process for correcting the temperature deterioration of the secondary battery. As shown in the figure, in step S701, an internal resistance correction logic based on temperature is started. In step S702, the average battery temperature BATTEMP is obtained based on the A / D input from the
Corrected internal resistance BATRES = Internal resistance before correction R x Temperature degradation coefficient RREK
In step S706B, BATRES = RINTIAL #. In step S707, if a shirt down request is received from the
本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各部材、各手段、各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の部材、手段、ステップなどを1つに組み合わせたり或いは分割したりすることが可能である。 Although the present invention has been described based on the drawings and examples, it should be noted that those skilled in the art can easily make various modifications and corrections based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention. For example, the functions included in each member, each means, each step, etc. can be rearranged so that there is no logical contradiction, and a plurality of members, means, steps, etc. can be combined or divided into one. Is possible.
101 組電池
102,111 強電ハーネス
103,110 リレー
104 総電圧センサ
105 電流センサ
106 インバータ
107 セル
108 サーミスタ
109 電池制御装置
112 温度検出信号線
113 リレー制御信号線
114 電流センサ入力信号線
115 総電圧センサ入力信号線
116 車両制御コントローラ
116S 信号線
117 車両駆動用モータ
117H モータ電源ハーネス
101 battery pack
102,111 High-voltage harness
103,110 Relay
104 Total voltage sensor
105 Current sensor
106 Inverter
107 cells
108 thermistor
109 Battery control device
112 Temperature detection signal line
113 Relay control signal line
114 Current sensor input signal line
115 Total voltage sensor input signal line
116 Vehicle controller
116S signal line
117 Vehicle drive motor
117H Motor power harness
Claims (3)
前記二次電池の充放電電流が所定の第1の閾値より小さい第1の領域においては、予め取得した、前記二次電池の残存容量SOCと内部抵抗Rとの関係を示す相関マップまたは演算式を用いて、前記二次電池の現在の残存容量SOCから前記電池の現在の内部抵抗Rを求め、
前記充放電電流が前記所定の第1の閾値以上かつ所定の第2の閾値未満である第2の領域においては、予め取得した、前記二次電池の前記第2の領域に達した瞬間の残存容量SOC-init別に規定される内部抵抗Rと放電時間DTとの関係を示す相関マップまたは演算式を用いて、前記第2の領域に達した瞬間の残存容量SOC-initおよび前記二次電池の現在までの放電時間DTから前記二次電池の現在の内部抵抗Rを求める、
ことを特徴とする二次電池の内部抵抗検出方法。 A method for detecting the internal resistance of a secondary battery,
In the first region where the charging / discharging current of the secondary battery is smaller than a predetermined first threshold, a correlation map or an arithmetic expression indicating the relationship between the remaining capacity SOC of the secondary battery and the internal resistance R acquired in advance. Is used to determine the current internal resistance R of the battery from the current remaining capacity SOC of the secondary battery,
In the second region where the charge / discharge current is not less than the predetermined first threshold value and less than the predetermined second threshold value, the remaining at the moment of reaching the second region of the secondary battery acquired in advance. Using a correlation map or an arithmetic expression indicating the relationship between the internal resistance R and the discharge time DT defined for each capacity SOC-init, the remaining capacity SOC-init at the moment of reaching the second region and the secondary battery Obtain the current internal resistance R of the secondary battery from the discharge time DT up to now,
The internal resistance detection method of the secondary battery characterized by the above-mentioned.
前記求めた内部抵抗Rを前記二次電池の温度に応じて補正する、
ことを特徴とする二次電池の内部抵抗検出方法。 The internal resistance detection method of the secondary battery according to claim 1,
The obtained internal resistance R is corrected according to the temperature of the secondary battery,
The internal resistance detection method of the secondary battery characterized by the above-mentioned.
前記二次電池が電動車両に搭載されたものである、
ことを特徴とする二次電池の内部抵抗検出方法。 In the internal resistance detection method of the secondary battery according to claim 1 or 2,
The secondary battery is mounted on an electric vehicle.
The internal resistance detection method of the secondary battery characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005243173A JP4661457B2 (en) | 2005-08-24 | 2005-08-24 | Detection method of internal resistance of secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005243173A JP4661457B2 (en) | 2005-08-24 | 2005-08-24 | Detection method of internal resistance of secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007057379A true JP2007057379A (en) | 2007-03-08 |
JP4661457B2 JP4661457B2 (en) | 2011-03-30 |
Family
ID=37921003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005243173A Expired - Fee Related JP4661457B2 (en) | 2005-08-24 | 2005-08-24 | Detection method of internal resistance of secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4661457B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009106118A (en) * | 2007-10-25 | 2009-05-14 | Hitachi Koki Co Ltd | Charging device |
CN103018566A (en) * | 2012-11-26 | 2013-04-03 | 力神迈尔斯动力电池系统有限公司 | Lithium ion battery direct current internal resistance testing method and battery screening method |
JP2013083522A (en) * | 2011-10-07 | 2013-05-09 | K-Engineering Co Ltd | Device and method for determining deterioration of secondary cell |
CN103949413A (en) * | 2014-04-17 | 2014-07-30 | 山东驰翔新能源科技有限公司 | Lithium ion battery sorting method |
WO2014136593A1 (en) * | 2013-03-07 | 2014-09-12 | 古河電気工業株式会社 | Secondary battery state detecting device and secondary battery state detecting method |
JPWO2012169063A1 (en) * | 2011-06-10 | 2015-02-23 | 日立ビークルエナジー株式会社 | Battery control device, battery system |
CN105259509A (en) * | 2015-10-19 | 2016-01-20 | 深圳奥特迅电力设备股份有限公司 | Device and method of performing on-line measurement on connecting cable resistance between accumulators |
CN105583170A (en) * | 2016-01-28 | 2016-05-18 | 珠海光宇电池有限公司 | Method for screening lithium ion batteries |
JP2019152527A (en) * | 2018-03-02 | 2019-09-12 | トヨタ自動車株式会社 | Battery diagnosing device and method |
JP2020191779A (en) * | 2018-03-28 | 2020-11-26 | 東洋システム株式会社 | Deterioration state determination device and deterioration state determination method |
CN115224750A (en) * | 2021-04-19 | 2022-10-21 | 北京小米移动软件有限公司 | Charging duration determining method and device, terminal and storage medium |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103336244A (en) * | 2013-06-13 | 2013-10-02 | 天津力神电池股份有限公司 | Lithium Ion battery voltage, internal resistance and shell resistance comprehensive test device |
TWI547705B (en) * | 2014-12-05 | 2016-09-01 | 財團法人工業技術研究院 | Method and system for online estimating internal resistance of battery |
CN105903690B (en) * | 2016-04-27 | 2018-06-29 | 珠海光宇电池有限公司 | It is a kind of to screen the method for recycling bad battery core |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001330654A (en) * | 2000-05-22 | 2001-11-30 | Suzuki Motor Corp | Estimation device for battery residual capacity |
JP2004241325A (en) * | 2003-02-07 | 2004-08-26 | Espec Corp | Battery state diagnostic device and battery state diagnostic method |
JP2005156351A (en) * | 2003-11-26 | 2005-06-16 | Nissan Motor Co Ltd | Method of computing maximum discharge electric power in battery |
-
2005
- 2005-08-24 JP JP2005243173A patent/JP4661457B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001330654A (en) * | 2000-05-22 | 2001-11-30 | Suzuki Motor Corp | Estimation device for battery residual capacity |
JP2004241325A (en) * | 2003-02-07 | 2004-08-26 | Espec Corp | Battery state diagnostic device and battery state diagnostic method |
JP2005156351A (en) * | 2003-11-26 | 2005-06-16 | Nissan Motor Co Ltd | Method of computing maximum discharge electric power in battery |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009106118A (en) * | 2007-10-25 | 2009-05-14 | Hitachi Koki Co Ltd | Charging device |
JPWO2012169063A1 (en) * | 2011-06-10 | 2015-02-23 | 日立ビークルエナジー株式会社 | Battery control device, battery system |
JP2013083522A (en) * | 2011-10-07 | 2013-05-09 | K-Engineering Co Ltd | Device and method for determining deterioration of secondary cell |
CN103018566A (en) * | 2012-11-26 | 2013-04-03 | 力神迈尔斯动力电池系统有限公司 | Lithium ion battery direct current internal resistance testing method and battery screening method |
WO2014136593A1 (en) * | 2013-03-07 | 2014-09-12 | 古河電気工業株式会社 | Secondary battery state detecting device and secondary battery state detecting method |
US10393820B2 (en) | 2013-03-07 | 2019-08-27 | Furukawa Electric Co., Ltd. | Secondary battery state detecting device and secondary battery state detecting method |
CN103949413A (en) * | 2014-04-17 | 2014-07-30 | 山东驰翔新能源科技有限公司 | Lithium ion battery sorting method |
CN105259509A (en) * | 2015-10-19 | 2016-01-20 | 深圳奥特迅电力设备股份有限公司 | Device and method of performing on-line measurement on connecting cable resistance between accumulators |
CN105583170B (en) * | 2016-01-28 | 2017-12-26 | 珠海光宇电池有限公司 | A kind of screening technique of lithium ion battery |
CN105583170A (en) * | 2016-01-28 | 2016-05-18 | 珠海光宇电池有限公司 | Method for screening lithium ion batteries |
JP2019152527A (en) * | 2018-03-02 | 2019-09-12 | トヨタ自動車株式会社 | Battery diagnosing device and method |
JP7069837B2 (en) | 2018-03-02 | 2022-05-18 | トヨタ自動車株式会社 | Battery diagnostic equipment and method |
JP2020191779A (en) * | 2018-03-28 | 2020-11-26 | 東洋システム株式会社 | Deterioration state determination device and deterioration state determination method |
JP2020191780A (en) * | 2018-03-28 | 2020-11-26 | 東洋システム株式会社 | Deterioration state determination device and deterioration state determination method |
JP7201254B2 (en) | 2018-03-28 | 2023-01-10 | 東洋システム株式会社 | Deterioration state determination device and deterioration state determination method |
JP7201253B2 (en) | 2018-03-28 | 2023-01-10 | 東洋システム株式会社 | Deterioration state determination device and deterioration state determination method |
CN115224750A (en) * | 2021-04-19 | 2022-10-21 | 北京小米移动软件有限公司 | Charging duration determining method and device, terminal and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP4661457B2 (en) | 2011-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101414287B1 (en) | Arithmetic processing apparatus for calculating internal resistance/open-circuit voltage of secondary battery | |
JP4075762B2 (en) | Apparatus and method for calculating remaining capacity in secondary battery | |
JP4097183B2 (en) | Secondary battery remaining capacity estimation method and apparatus, and battery pack system | |
US10267864B2 (en) | Battery management system including apparatus for estimating battery state | |
CN108885242B (en) | Secondary battery degradation estimation device and secondary battery degradation estimation method | |
US8040108B2 (en) | Apparatus for estimating state of charge of rechargeable battery charged by vehicle-mounted power generation apparatus | |
JP5598869B2 (en) | Secondary battery state detection device and secondary battery state detection method | |
JP4661457B2 (en) | Detection method of internal resistance of secondary battery | |
JP2008039515A (en) | Apparatus for detecting remaining capacity of battery | |
JP2006197727A (en) | Method of controlling limited current of battery | |
JP2010086901A (en) | Deterioration diagnosing device and degradation diagnosing method of lithium secondary battery | |
US11754631B2 (en) | Chargeable battery temperature estimation apparatus and chargeable battery temperature estimation method | |
JP2015224975A (en) | Battery charge/discharge current detection device | |
WO2019024787A1 (en) | Discharge control method and device for power battery, controller, and automobile | |
CN105378499A (en) | Secondary battery state detection device and secondary battery state detection method | |
EP3756937B1 (en) | Apparatus and method for estimating soc | |
JP4449240B2 (en) | Battery capacity judgment device | |
JP2009126277A (en) | Internal state detection device of on-board secondary battery | |
JP2004271342A (en) | Charging and discharging control system | |
JP2009300362A (en) | Soc calculation circuit, charge system, and soc calculation method | |
JP2003068370A (en) | Detector of charged state of battery | |
JP5454027B2 (en) | Charge control device and charge control method | |
JP2019132696A (en) | Control device of all-solid-state battery | |
JP2004325263A (en) | Self-discharge amount detection device of battery | |
JPH10319100A (en) | Battery charging state detecting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080625 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101207 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101220 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4661457 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140114 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |