[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007057040A - Continuously variable transmission device - Google Patents

Continuously variable transmission device Download PDF

Info

Publication number
JP2007057040A
JP2007057040A JP2005244756A JP2005244756A JP2007057040A JP 2007057040 A JP2007057040 A JP 2007057040A JP 2005244756 A JP2005244756 A JP 2005244756A JP 2005244756 A JP2005244756 A JP 2005244756A JP 2007057040 A JP2007057040 A JP 2007057040A
Authority
JP
Japan
Prior art keywords
pulley
bearing
shaft
ring
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005244756A
Other languages
Japanese (ja)
Inventor
Yuichi Ito
雄一 伊藤
Tomoya Sakaguchi
智也 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005244756A priority Critical patent/JP2007057040A/en
Publication of JP2007057040A publication Critical patent/JP2007057040A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuously variable transmission device whose efficiency is prevented from lowering by setting the distance to the working point of a load vector from a toothed ring on a V-pulley to be shorter than 1.3 times as much as a ball pitch circle radius. <P>SOLUTION: The continuously variable transmission device comprises a first shaft 12 rotatably supported on the housing 10, a second shaft 36 rotatably supported on the housing 10, the V-pulley 16 with its variable width supported on the first shaft 12, the ring 30 supported at its outer periphery with both side faces contacting the V-pulley 16, and a mechanism 40 for moving the ring 30 around the second shaft 36. The distance from the working point of the load vector from the ring 30 on the V-pulley 16 to the working point on a bearing is set to be shorter than 1.3 times the ball pitch circle radius of the bearing 18 supporting the V-pulley 16. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は自動車や各種産業機械において利用される無段変速装置に関する。   The present invention relates to a continuously variable transmission used in automobiles and various industrial machines.

無段変速装置(CVT:Continuously Variable Transmission)は昔から多くの考案がなされている。特許文献1にはトラクションドライブ式無断変速装置の一例が記載されている。この無段変速装置は、軸方向に可動の一対のプーリ部材で外周に歯を切ったリングを軸方向両側から挟んだ構造である(図1左側および図2参照)。そして、プーリ部材を支持する第一の軸と、リングの歯とかみ合う歯車をもった第二の軸との間でトルクを伝達するようになっている。
特開2004−263857号公報
Many ideas have been devised for continuously variable transmissions (CVTs). Patent Document 1 describes an example of a traction drive type continuously variable transmission. This continuously variable transmission has a structure in which a pair of pulley members movable in the axial direction sandwich a ring whose teeth are cut on the outer periphery from both sides in the axial direction (see the left side of FIG. 1 and FIG. 2). Torque is transmitted between a first shaft that supports the pulley member and a second shaft that has a gear meshing with the teeth of the ring.
JP 2004-263857 A

特許文献1に記載された装置では、Vプーリの支持軸受はアンギュラ玉軸受で内輪回転となっている。そして、リングはVプーリの半径方向の一箇所で挟まれるため、支持軸受にはモーメント荷重が作用する。この場合、Vプーリへのリングからの荷重ベクトルの作用点から軸受の作用点までの距離が支持軸受の玉ピッチ円半径の約1.3倍より大きくなると伝達効率が低下することが判った(図6参照)。なお、図6は、横軸にピッチ円半径比(荷重ベクトルと軸受作用点間の距離/ピッチ円半径)、縦軸に伝達効率(%)をとり、両者の関係を示したものである。   In the device described in Patent Document 1, the support bearing of the V pulley is an angular ball bearing, and the inner ring rotates. And since a ring is pinched | interposed in one place of the radial direction of V pulley, a moment load acts on a support bearing. In this case, it was found that the transmission efficiency decreases when the distance from the point of action of the load vector from the ring to the V pulley to the point of action of the bearing is greater than about 1.3 times the ball pitch circle radius of the support bearing ( (See FIG. 6). In FIG. 6, the horizontal axis represents the pitch circle radius ratio (distance between the load vector and the bearing operating point / pitch circle radius), and the vertical axis represents the transmission efficiency (%).

この発明の主要な目的は、特許文献1に記載されたタイプの無段変速装置において、伝達効率の低下を防止することにある。   A main object of the present invention is to prevent a reduction in transmission efficiency in a continuously variable transmission of the type described in Patent Document 1.

この発明の無段変速装置は、ハウジングに回転自在に支持された第一の軸と、ハウジングに回転自在に支持された第二の軸と、第一の軸に支持された溝幅が可変のVプーリと、両側面にてVプーリと接触し外周を支えられたリングと、第二の軸回りにリングを移動させるための機構とから構成され、Vプーリへの歯付きリングからの荷重ベクトルの作用点から軸受の作用点までの距離をVプーリを支持する軸受の玉ピッチ円半径の1.3倍よりも小さくしたことを特徴とするものである。   The continuously variable transmission of the present invention includes a first shaft that is rotatably supported by the housing, a second shaft that is rotatably supported by the housing, and a groove width that is supported by the first shaft is variable. V pulley, a ring that contacts the V pulley on both sides and supported on the outer periphery, and a mechanism for moving the ring around the second axis, and a load vector from the toothed ring to the V pulley The distance from the point of action to the point of action of the bearing is smaller than 1.3 times the ball pitch circle radius of the bearing supporting the V pulley.

図4に示すように、Vプーリへの歯付きリングからの荷重ベクトルの作用点すなわち荷重作用点から軸受の作用点までの距離を玉のピッチ円半径の1.3倍より小さくすることで、図7に示すような伝達効率が得られ、図6に関連して上に述べたような伝達効率の低下を防ぐことができる。なお、この効率低下は軸受トルクの増大のためと、本結果より推定される。すなわち、モーメント荷重の増加のため、玉の接触角が位相に対して変化するようになり、軸受のトルクが増加したと考えられる。   As shown in FIG. 4, by reducing the action point of the load vector from the toothed ring to the V pulley, that is, the distance from the load action point to the bearing action point is less than 1.3 times the pitch circle radius of the ball, The transmission efficiency as shown in FIG. 7 can be obtained, and the reduction of the transmission efficiency as described above with reference to FIG. 6 can be prevented. This reduction in efficiency is estimated from this result because of an increase in bearing torque. That is, it is considered that the contact angle of the ball changes with respect to the phase due to the increase of the moment load, and the torque of the bearing has increased.

以下、図面に従ってこの発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1の右側にこの発明の実施の形態である無段変速装置の断面を示し、図2にこの発明の無断変速装置の構想図を示す。構想図(図2)に関しては従来の技術も同様である。これらの図から理解できるように、この無段変速装置は、軸方向に可動な一対のプーリ部材16a,16bでリング30を軸方向両側から挟んだ構造である。この実施の形態ではリング30は外周に歯車のような歯をもっているため、以下では歯付きリングと呼ぶこととする。   1 shows a cross section of a continuously variable transmission according to an embodiment of the present invention, and FIG. 2 shows a conceptual diagram of the continuously variable transmission of the present invention. The conventional technology is the same for the conceptual diagram (FIG. 2). As can be understood from these drawings, the continuously variable transmission has a structure in which the ring 30 is sandwiched from both sides in the axial direction by a pair of pulley members 16a and 16b movable in the axial direction. In this embodiment, the ring 30 has teeth such as gears on the outer periphery, and will be hereinafter referred to as a toothed ring.

図1において、符号10はハウジングを概括的に指している。すなわち、ここではハウジングは単一の部材ではなく、全体として装置の外殻を構成する複数の部材を包括的にハウジングと呼んでいる。図示するように、ハウジング10内に、互いに平行な二本の軸12,36がそれぞれ軸受を介して回転自在に支持されている。そして、これらの軸12,36は、一方の軸(12または36)を入力軸とすると、他方の軸(36または12)が出力軸となる関係にある。   In FIG. 1, reference numeral 10 generally indicates a housing. That is, here, the housing is not a single member, but a plurality of members constituting the outer shell of the apparatus as a whole are collectively called a housing. As shown in the figure, two shafts 12 and 36 parallel to each other are rotatably supported in the housing 10 via bearings. These shafts 12 and 36 are in a relationship such that when one axis (12 or 36) is an input shaft, the other axis (36 or 12) is an output shaft.

軸12はVプーリ16を構成する一対のプーリ部材16a,16bを支持している。各プーリ部材16a,16bはボス部とディスク部とからなり、ディスク部が向かい合ってV溝を形成している。ディスク部はボス部の端部から半径方向に立ち上がっている。ボス部は軸12に摺動自在に嵌め合わせてあり、ボールスプライン14によって軸12の軸方向に移動可能である。なお、ボールスプライン14の構造は、軸12とプーリ部材16a,16bに形成した溝間にボールを介在させた周知のとおりのものである。   The shaft 12 supports a pair of pulley members 16 a and 16 b constituting the V pulley 16. Each pulley member 16a, 16b is composed of a boss portion and a disk portion, and the disk portions face each other to form a V-groove. The disk portion rises in the radial direction from the end of the boss portion. The boss is slidably fitted to the shaft 12 and can be moved in the axial direction of the shaft 12 by a ball spline 14. The structure of the ball spline 14 is a well-known structure in which a ball is interposed between grooves formed in the shaft 12 and the pulley members 16a and 16b.

図1は中心線の左右に従来の技術とこの発明の実施の形態を対比して示してある。図1の左側のプーリ部材16aは、ボス部の外周に軸受18aが配置してある。軸受18aはプーリ部材18aとねじ軸22aとの間に介在してプーリ部材18aを回転自在に支持する。図1の右側のプーリ部材16bは、フランジ部の大径側に軸受18bが配置してある。軸受18bはプーリ部材16bとねじ軸22bとの間に介在してプーリ部材16bを回転自在に支持する。このような構成であるため、軸受18bは軸受18aよりもピッチ円径が大きく、したがって、軸受18bの方が、軸受の作用点から荷重作用点までの距離が短い。具体的には同距離をピッチ円径の1.3倍未満に設定してある。   FIG. 1 shows a comparison between the prior art and the embodiment of the present invention on the left and right of the center line. The pulley member 16a on the left side of FIG. 1 has a bearing 18a disposed on the outer periphery of the boss portion. The bearing 18a is interposed between the pulley member 18a and the screw shaft 22a and rotatably supports the pulley member 18a. The pulley member 16b on the right side of FIG. 1 has a bearing 18b disposed on the large diameter side of the flange portion. The bearing 18b is interposed between the pulley member 16b and the screw shaft 22b and rotatably supports the pulley member 16b. Because of such a configuration, the bearing 18b has a larger pitch circle diameter than the bearing 18a, and therefore the bearing 18b has a shorter distance from the bearing operating point to the load operating point. Specifically, the same distance is set to less than 1.3 times the pitch circle diameter.

軸受18bは、図5に示すように、外輪回転の玉軸受であるが、この場合、軸受の作用点がVプーリの面から離れるため、荷重ベクトルとの距離が小さくなり、実質のモーメント荷重の大きさが減少する。このため、より小さなピッチ円径の玉軸受を使用することができ、低トルク化が期待できるため、伝達効率の向上を図ることができる。   As shown in FIG. 5, the bearing 18b is a ball bearing that rotates the outer ring. In this case, since the point of action of the bearing is away from the surface of the V pulley, the distance from the load vector is reduced, and the actual moment load is reduced. The size decreases. For this reason, a ball bearing having a smaller pitch circle diameter can be used, and a reduction in torque can be expected, so that transmission efficiency can be improved.

なお、玉軸受に代えて円すいころ軸受を採用すると、モーメント荷重の支持剛性が飛躍的に向上するため、上述のようにピッチ円を大きくしなくてもよい。   Note that when a tapered roller bearing is used instead of the ball bearing, the support rigidity of the moment load is remarkably improved, so that the pitch circle need not be increased as described above.

各プーリ部材16a,16bは溝幅調節機構20を備えている。溝幅調節機構20はここではボールねじタイプで、ねじ軸22a,22bと、ナット26と、複数のボール28を含んでいる。ねじ軸22a,22bは外周にボール28を転動させるためのらせん溝を有し、かつ、外周に歯を切ったフランジ24を有し、軸受18を介してプーリ部材16a,16bのボス部に回転自在に支持されている。ナット26は内周にボール28を転動させるためのらせん溝を有し、ハウジング10に固定されている。   Each pulley member 16a, 16b is provided with a groove width adjusting mechanism 20. Here, the groove width adjusting mechanism 20 is a ball screw type, and includes screw shafts 22 a and 22 b, a nut 26, and a plurality of balls 28. The screw shafts 22a and 22b have a spiral groove for rolling the ball 28 on the outer periphery, and have a flange 24 with teeth cut on the outer periphery, and are attached to the bosses of the pulley members 16a and 16b via the bearing 18. It is supported rotatably. The nut 26 has a spiral groove for rolling the ball 28 on the inner periphery, and is fixed to the housing 10.

通常のボールねじと同様に、ねじ軸22a、22bのらせん溝とナット26のらせん溝との間にボール28が介在し、ボール28がらせん溝に沿って循環走行してねじ軸22a,22bとナット26の滑らかな相対回転および軸方向移動を許容する。この場合、ナット26は固定されているため、ねじ軸22a,22bが回転すると同時に軸方向に相対移動する。したがって、ねじ軸22a,22bのフランジ24を外部の駆動手段(図示省略)によって回転させると、その回転方向によって、ねじ軸22a,22bが軸方向に移動し、軸受18を介してプーリ部材16a,16bを相互に接近する向きに移動させ、または、プーリ部材16a,16bが相互に離反する向きに移動するのを許容する。   Similar to a normal ball screw, a ball 28 is interposed between the spiral groove of the screw shafts 22a and 22b and the spiral groove of the nut 26, and the ball 28 circulates along the spiral groove and the screw shafts 22a and 22b. Allows smooth relative rotation and axial movement of the nut 26. In this case, since the nut 26 is fixed, the screw shafts 22a and 22b rotate and move relative to each other in the axial direction. Therefore, when the flange 24 of the screw shafts 22a and 22b is rotated by an external driving means (not shown), the screw shafts 22a and 22b are moved in the axial direction depending on the rotation direction, and the pulley members 16a and 16a are 16b is moved in a direction approaching each other, or the pulley members 16a and 16b are allowed to move in directions away from each other.

歯付きリング30の側面の断面形状はVプーリ16のV溝の断面形状と実質的に一致している。より具体的には、歯付きリング30の側面の断面形状は、平面とするほか、副曲率を設けた曲面とすることもできる。歯付きリング30は歯車34とかみ合い、その歯車34は軸36に固定してある。歯付きリング30は、歯車34の歯とかみ合う歯の軸方向両側に平滑な円筒状ガイド面32を有し、そのガイド面32にてガイドローラ42,44と接する。歯付きリング30のガイドには、図示するように歯付きリング30の外周面と接して転動するガイドローラ42,44を採用するほか、歯付きリング30との接触荷重は小さいため、歯付きリング30と滑り接触する滑り軸受(シュー)を採用してもよい。   The cross-sectional shape of the side surface of the toothed ring 30 substantially matches the cross-sectional shape of the V groove of the V pulley 16. More specifically, the cross-sectional shape of the side surface of the toothed ring 30 can be a flat surface or a curved surface provided with a secondary curvature. The toothed ring 30 meshes with a gear 34 that is fixed to a shaft 36. The toothed ring 30 has smooth cylindrical guide surfaces 32 on both sides in the axial direction of the teeth that mesh with the teeth of the gear 34, and contacts the guide rollers 42 and 44 at the guide surfaces 32. The guide of the toothed ring 30 employs guide rollers 42 and 44 that roll in contact with the outer peripheral surface of the toothed ring 30 as shown in the figure. A sliding bearing (shoe) that is in sliding contact with the ring 30 may be employed.

図2に示すように、この実施の形態では四つのガイドローラ42,44が設けてあり、図1にはそのうちの二つ、つまり、歯車34の両側に配置した一対の円板42a,42bで構成されるガイドローラ42と、同図の上部に現れているガイドローラ44の断面が示してある。ガイドローラ42は軸36に対して回転自在に支持されている。それ以外のすべてのガイドローラ44はそれぞれピン46を介して回転自在にガイドプレート40に支持されている。したがって、ガイドローラ42,44相互の位置関係は固定的である。これらのガイドローラ42,44のうち、図2の左端に現れているガイドローラ44は歯付きリング30の振れ防止の役割をも果たす。ガイドプレート40は軸36と同軸に、カラー38に旋回自在に支持されている。   As shown in FIG. 2, in this embodiment, four guide rollers 42, 44 are provided. In FIG. 1, two of them, that is, a pair of discs 42a, 42b arranged on both sides of the gear 34 are shown. A cross section of the guide roller 42 configured and the guide roller 44 appearing in the upper part of the figure is shown. The guide roller 42 is supported so as to be rotatable with respect to the shaft 36. All other guide rollers 44 are rotatably supported by the guide plate 40 via pins 46, respectively. Therefore, the positional relationship between the guide rollers 42 and 44 is fixed. Of these guide rollers 42 and 44, the guide roller 44 appearing at the left end in FIG. 2 also serves to prevent the toothed ring 30 from shaking. The guide plate 40 is coaxially supported by the shaft 36 and is supported by the collar 38 so as to be rotatable.

歯付きリング30は三つ以上のガイドローラ42,44で外周から拘束されているため、中心軸がなくても回転が可能である(心なしローラ)。ガイドローラ42,44はガイドプレート40で連結してあり、ガイドプレート40を旋回させることによって中心O1回りに歯付きリング30の回転中心を移動させることができる。したがって、歯付きリング30の外周に切られた歯は歯車34と常にかみ合った状態にある。歯付きリング30とVプーリ16との間にすきまが生じないようにVプーリ16とガイドプレート40を制御すれば、歯付きリング30が中心O1回りに移動することにより、Vプーリ16との接触点が変化し、一定の歯車34の回転数に対し、Vプーリ16の速度を連続的に変えることができる。このようにして、いわゆるCVTが構成される。 Since the toothed ring 30 is constrained from the outer periphery by three or more guide rollers 42 and 44, the toothed ring 30 can be rotated without a central axis (centerless roller). The guide rollers 42 and 44 are connected by a guide plate 40, and the rotation center of the toothed ring 30 can be moved around the center O 1 by turning the guide plate 40. Therefore, the teeth cut on the outer periphery of the toothed ring 30 are always in mesh with the gear 34. If the V pulley 16 and the guide plate 40 are controlled so that there is no gap between the toothed ring 30 and the V pulley 16, the toothed ring 30 moves around the center O 1, whereby The contact point changes, and the speed of the V pulley 16 can be continuously changed with respect to a constant rotation speed of the gear 34. In this way, a so-called CVT is configured.

Vプーリ16を支持する軸12を入力側とすると、歯付きリング30を押し込んだ状態が減速状態となる。伝達トルクが同じであれば、歯付きリング30を押し込んだときのVプーリ16による挟みつけ力は大きくすべきで、逆に歯付きリング30とVプーリ16との接触点が大径側にあるときは小さくてもよい。挟み込み力によるVプーリ16の曲げ応力を考えた場合、大径接触時の挟み込み力を軽減できる、Vプーリ16を入力とするこの方法が、出力とするよりもベターである。   When the shaft 12 that supports the V pulley 16 is on the input side, the state in which the toothed ring 30 is pushed in is the deceleration state. If the transmission torque is the same, the clamping force by the V pulley 16 when the toothed ring 30 is pushed in should be increased, and conversely, the contact point between the toothed ring 30 and the V pulley 16 is on the large diameter side. Sometimes it can be small. When considering the bending stress of the V pulley 16 due to the pinching force, this method using the V pulley 16 that can reduce the pinching force at the time of large diameter contact is better than the output.

図2に矢印で示す方向にVプーリ16から回転力が入力されると、Vプーリ16から歯付きリング30に力Fが作用し、ほぼ同じ大きさの力が歯車34から作用する。歯車34からの反力が歯付きリング30をVプーリ16に押し込む方向に働くため、伝達トルクの増大に伴い自動的に接触力が大きくなる。   When a rotational force is input from the V pulley 16 in the direction indicated by the arrow in FIG. 2, a force F acts on the toothed ring 30 from the V pulley 16, and a force of almost the same magnitude acts from the gear 34. Since the reaction force from the gear 34 acts in a direction to push the toothed ring 30 into the V pulley 16, the contact force automatically increases as the transmission torque increases.

この発明の実施の形態(右側)を示す無段変速装置の断面図Sectional drawing of continuously variable transmission which shows embodiment (right side) of this invention 無段変速装置の構想図Conceptual diagram of continuously variable transmission 従来の技術を示すプーリ部材および支持軸受の断面図Sectional view of pulley member and support bearing showing conventional technology この発明の実施の形態を示すプーリ部材および支持軸受の断面図Sectional drawing of the pulley member and support bearing which show embodiment of this invention プーリ部材および支持軸受の変形例を示す断面図Sectional drawing which shows the modification of a pulley member and a support bearing ピッチ円半径比と伝達効率の関係を示すグラフGraph showing the relationship between pitch circle radius ratio and transmission efficiency ピッチ円半径比と伝達効率の関係を示すグラフGraph showing the relationship between pitch circle radius ratio and transmission efficiency

符号の説明Explanation of symbols

10 ハウジング
12 軸
14 ボールスプライン
16 Vプーリ
16a,14b プーリ部材
P 接触部
18a,18b 軸受
20 溝幅調節機構
22a,22b ねじ軸
24 フランジ
26 ナット
28 ボール
30 歯付きリング
32 ガイド面
34 歯車
36 軸
38 カラー
40 ガイドプレート
42 ガイドローラ
42a,42b 側板
44 ガイドローラ
46 ピン
10 housing 12 shaft 14 ball spline 16 V pulley 16a, 14b pulley member P contact portion 18a, 18b bearing 20 groove width adjusting mechanism 22a, 22b screw shaft 24 flange 26 nut 28 ball 30 toothed ring 32 guide surface 34 gear 36 shaft 38 Color 40 Guide plate 42 Guide roller 42a, 42b Side plate 44 Guide roller 46 Pin

Claims (1)

ハウジングに回転自在に支持された第一の軸と、ハウジングに回転自在に支持された第二の軸と、第一の軸に支持された溝幅が可変のVプーリと、両側面にてVプーリと接触し外周を支えられたリングと、第二の軸回りにリングを移動させるための機構とから構成され、Vプーリへの歯付きリングからの荷重ベクトルの作用点から軸受の作用点までの距離をVプーリを支持する軸受の玉ピッチ円半径の1.3倍よりも小さくした無段変速装置。   A first shaft rotatably supported by the housing; a second shaft rotatably supported by the housing; a V pulley having a variable groove width supported by the first shaft; It consists of a ring that contacts the pulley and supported on the outer periphery, and a mechanism for moving the ring around the second axis, from the point of action of the load vector from the toothed ring to the V pulley to the point of action of the bearing Is a continuously variable transmission that is smaller than 1.3 times the ball pitch circle radius of the bearing that supports the V pulley.
JP2005244756A 2005-08-25 2005-08-25 Continuously variable transmission device Withdrawn JP2007057040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005244756A JP2007057040A (en) 2005-08-25 2005-08-25 Continuously variable transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005244756A JP2007057040A (en) 2005-08-25 2005-08-25 Continuously variable transmission device

Publications (1)

Publication Number Publication Date
JP2007057040A true JP2007057040A (en) 2007-03-08

Family

ID=37920691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005244756A Withdrawn JP2007057040A (en) 2005-08-25 2005-08-25 Continuously variable transmission device

Country Status (1)

Country Link
JP (1) JP2007057040A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100858910B1 (en) * 2007-06-28 2008-09-17 신용철 Continuously variable transmission
WO2010074367A1 (en) * 2008-12-26 2010-07-01 Shin Hyun Woo Continuously variable transmission apparatus
KR100984187B1 (en) 2008-09-23 2010-09-28 신현우 Continuously Variable Transmission
KR100984188B1 (en) 2008-09-23 2010-09-28 신현우 Continuously Variable Transmission of Hub Type
KR101006779B1 (en) 2008-12-26 2011-01-10 신현우 Continuously Variable Transmission
KR101027833B1 (en) 2009-02-05 2011-04-07 신현우 Continuously Variable Transmission
KR101029316B1 (en) 2008-12-26 2011-04-13 신현우 Continuously Variable Transmission of Hub Type
KR101220907B1 (en) 2010-05-31 2013-01-11 메탈릭스시스템(주) Continuously variable transmission

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100858910B1 (en) * 2007-06-28 2008-09-17 신용철 Continuously variable transmission
KR100984187B1 (en) 2008-09-23 2010-09-28 신현우 Continuously Variable Transmission
KR100984188B1 (en) 2008-09-23 2010-09-28 신현우 Continuously Variable Transmission of Hub Type
WO2010074367A1 (en) * 2008-12-26 2010-07-01 Shin Hyun Woo Continuously variable transmission apparatus
KR101006779B1 (en) 2008-12-26 2011-01-10 신현우 Continuously Variable Transmission
KR101029316B1 (en) 2008-12-26 2011-04-13 신현우 Continuously Variable Transmission of Hub Type
CN102265064A (en) * 2008-12-26 2011-11-30 申炫佑 Continuously variable transmission apparatus
US8708856B2 (en) 2008-12-26 2014-04-29 Hyun Woo Shin Continuously variable transmission apparatus
KR101027833B1 (en) 2009-02-05 2011-04-07 신현우 Continuously Variable Transmission
KR101220907B1 (en) 2010-05-31 2013-01-11 메탈릭스시스템(주) Continuously variable transmission

Similar Documents

Publication Publication Date Title
JP2007057040A (en) Continuously variable transmission device
JP6279755B2 (en) Continuously variable transmission
JP2007292140A (en) Continuously variable transmission
JP4811795B2 (en) Toroidal continuously variable transmission
JP2004263857A (en) Traction drive type continuously variable transmission
JP4831427B2 (en) Toroidal continuously variable transmission
JP5082589B2 (en) Toroidal continuously variable transmission
JP2008064122A (en) Continuously variable transmission
JP2007057035A (en) Continuously variable transmission device
JP2007292139A (en) Continuously variable transmission
JP2007057034A (en) Continuously variable transmission device
JP2007057039A (en) Continuously variable transmission
JP2007057037A (en) Continuously variable transmission device
JP2007057036A (en) Continuously variable transmission device
JP2007247852A (en) Continuously variable transmission
JP2007271042A (en) Continuously variable transmission
JP4519707B2 (en) Traction drive continuously variable transmission
JP2007271043A (en) Continuously variable transmission
JP2011112089A (en) Toroidal continuously variable transmission
JP3997759B2 (en) Pulley width adjustment device for continuously variable transmission
JP2007247851A (en) Continuously variable transmission
JP2007255595A (en) Continuously variable transmission device
JP2007071224A (en) Continuously variable transmission
JP6492614B2 (en) Toroidal continuously variable transmission
JP2007247853A (en) Continuously variable transmission

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104