[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007049836A - Power converter and electric train for electric railway - Google Patents

Power converter and electric train for electric railway Download PDF

Info

Publication number
JP2007049836A
JP2007049836A JP2005232375A JP2005232375A JP2007049836A JP 2007049836 A JP2007049836 A JP 2007049836A JP 2005232375 A JP2005232375 A JP 2005232375A JP 2005232375 A JP2005232375 A JP 2005232375A JP 2007049836 A JP2007049836 A JP 2007049836A
Authority
JP
Japan
Prior art keywords
power
train
air conditioning
electric
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005232375A
Other languages
Japanese (ja)
Inventor
Yoshitaka Nishimura
欣剛 西村
Satoru Horie
堀江  哲
Kiyoshi Nakada
仲田  清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005232375A priority Critical patent/JP2007049836A/en
Publication of JP2007049836A publication Critical patent/JP2007049836A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power converter for driving a main electric motor which is constituted to enable a direct variable voltage variable frequency drive by separating a motor for an air-conditioned compressor occupying much of power consumption, from other loads of an auxiliary power supply, in the loads supplied power at a steady voltage and a steady frequency by the auxiliary power supply supplying power to the loads except the main electric motor. <P>SOLUTION: This power converter 11 of an electric train driven by variable frequency variable voltage output to a running main electric motor mounted on cars of the electric train outputs power with a variable frequency variable voltage, through selectors 41, 51 for selecting either of the main electric motor and the air-conditioned compressor or the both in accordance with the running state of the cars. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気車の車両に搭載された走行用主電動機と空調コンプレッサ用モータを電力変換装置により駆動制御する技術に関する。   The present invention relates to a technique for driving and controlling a main motor for traveling and an air conditioning compressor motor mounted on a vehicle of an electric vehicle by using a power converter.

電気鉄道用電車の電力変換装置は、小型・軽量化、高効率化、低騒音化、省保守化等を目的とし、可変電圧可変周波数(VVVF)インバータによる主電動機駆動が主流となっている。一方、電気鉄道用電車に搭載されている主電動機以外の各種負荷に対しては、補助電源装置から一定電圧一定周波数(CVCF)の電力が供給されている。最近では補助電源装置は従来の回転型電動発電機から安定した電力を供給できる静止型CVCFインバータに置き換えられており、万一、補助電源装置が故障した場合にも、主電動機駆動用の電力変換装置をCVCF運転し、負荷に電力を供給することで冗長性を持たせたシステムや、補助電源装置の負荷が大きいときに主電動機駆動用の電力変換装置を補助電源装置と並列にCVCF運転し、補助電源装置の容量を低減するシステム等があり、補助電源装置の高信頼化、小型・軽量化が図られている。   Power converters for electric railway trains are mainly driven by a main motor driven by a variable voltage variable frequency (VVVF) inverter for the purpose of reducing the size and weight, increasing the efficiency, reducing the noise, and reducing the maintenance. On the other hand, power of constant voltage and constant frequency (CVCF) is supplied from the auxiliary power supply to various loads other than the main motor mounted on the electric railway train. Recently, the auxiliary power supply has been replaced by a static CVCF inverter that can supply stable power from a conventional rotary motor generator. Even if the auxiliary power supply fails, power conversion for driving the main motor is possible. CVCF operation of the equipment and redundancy is provided by supplying power to the load, and when the load of the auxiliary power supply is heavy, the power converter for driving the main motor is operated in CVCF in parallel with the auxiliary power supply. There is a system for reducing the capacity of the auxiliary power supply device, and the auxiliary power supply device is highly reliable, downsized and lightened.

図9に従来の構成を示す。補助電源装置61が空調(コンプレッサ)用モータ31とそれ以外の負荷71に一定電圧一定周波数(CVCF)の電力を供給し、電力変換装置11は主電動機21に可変電圧可変周波数(VVVF)の電力を供給する。図10は、従来の第2の構成であり、補助電源装置61が正常な場合には、主電動機21は電力変換装置11により可変電圧可変周波数(VVVF)制御され、主電動機21以外の空調用モータ31と負荷71は、補助電源装置61により一定電圧一定周波数(CVCF)制御される。補助電源装置61が故障した場合には、故障信号81によりスイッチ91を主電動機21から空調用モータ31と負荷71に切り替え、電力変換装置11を可変電圧可変周波数駆動から一定電圧一定周波数駆動に変更して負荷71に電力を供給し、システムの冗長性を確保している。図11は、従来の第3の構成であり、ノッチ指令により、電力変換装置11が動作していない時に、切替制御部10がスイッチ91を主電動機21から空調用モータ31と負荷71に切り替え、電力変換装置11を可変電圧可変周波数駆動から一定電圧一定周波数駆動に変更し、補助電源装置61と並列運転する。補助電源装置61の負荷である空調用モータ31と負荷71に対して電力変換装置11からも電力を供給することで、補助電源装置61の容量を小さくでき小型化を実現している。   FIG. 9 shows a conventional configuration. The auxiliary power supply 61 supplies electric power of a constant voltage and constant frequency (CVCF) to the air conditioning (compressor) motor 31 and the other load 71, and the power converter 11 supplies electric power of a variable voltage variable frequency (VVVF) to the main motor 21. Supply. FIG. 10 shows a second conventional configuration. When the auxiliary power supply 61 is normal, the main motor 21 is controlled by the power converter 11 with variable voltage and variable frequency (VVVF), and is used for air conditioning other than the main motor 21. The motor 31 and the load 71 are controlled by a constant voltage and constant frequency (CVCF) by an auxiliary power supply 61. When the auxiliary power supply 61 fails, the switch 91 is switched from the main motor 21 to the air conditioning motor 31 and the load 71 by the failure signal 81, and the power converter 11 is changed from variable voltage variable frequency driving to constant voltage constant frequency driving. Thus, power is supplied to the load 71 to ensure system redundancy. FIG. 11 shows a third conventional configuration. When the power converter 11 is not operating due to the notch command, the switching control unit 10 switches the switch 91 from the main motor 21 to the air conditioning motor 31 and the load 71. The power converter 11 is changed from variable voltage variable frequency driving to constant voltage constant frequency driving, and is operated in parallel with the auxiliary power supply 61. By supplying electric power from the power converter 11 to the air conditioning motor 31 and the load 71 that are loads of the auxiliary power supply 61, the capacity of the auxiliary power supply 61 can be reduced and the size can be reduced.

しかしながら、電気鉄道用電車に搭載されている補助電源装置の負荷を従来のようにCVCFインバータにより駆動する場合、特に消費電力の大半を占める空調コンプレッサ用モータを最適な電圧・周波数で高性能・高効率に制御することが課題として残されている。また、車内温度が目標値と大きくかけ離れている場合でも、空調コンプレッサ用モータは一定電圧一定周波数で駆動されるため、車内温度が目標値と一致するまでに時間を要し、稼働時間が長くなるため消費電力量も大きくなる。さらに、空調コンプレッサ用モータ始動時には一般的に定格電流の5倍程度の突入電流が流れ、補助電源装置の容量を超えるため、空調の同時起動ができず時間差を設けて順次起動するシーケンス回路が必要である。一方、空調コンプレッサ用モータを一定電圧一定周波数の補助電源装置で高性能・高効率で駆動するためにはVVVFインバータを内蔵した空調を適用する必要があるため、空調装置の小型化、低コスト化が課題となる。   However, when the load of an auxiliary power supply device mounted on an electric railway train is driven by a CVCF inverter as in the past, the air conditioning compressor motor, which occupies most of the power consumption, has high performance and high performance at the optimum voltage and frequency. Controlling efficiency remains a challenge. Even if the in-vehicle temperature is far from the target value, the air conditioning compressor motor is driven at a constant voltage and constant frequency. Therefore, it takes time until the in-vehicle temperature matches the target value, and the operation time becomes longer. Therefore, the power consumption is also increased. Furthermore, when an air conditioning compressor motor is started, an inrush current of about 5 times the rated current generally flows and exceeds the capacity of the auxiliary power supply. Therefore, it is not possible to start air conditioning at the same time, and a sequence circuit that starts sequentially with a time difference is required. It is. On the other hand, in order to drive an air conditioning compressor motor with a high-performance, high-efficiency auxiliary power unit with a constant voltage and a constant frequency, it is necessary to apply air conditioning with a built-in VVVF inverter. Is an issue.

本発明は、主電動機以外の負荷に電力を供給する補助電源装置により一定電圧一定周波数で電力を供給されている負荷のうち、消費電力の大半を占める空調コンプレッサ用モータを補助電源装置の負荷と分離し、主電動機駆動用の電力変換装置で直接可変電圧可変周波数駆動できる構成とする。   The present invention relates to an air conditioning compressor motor that occupies most of the power consumption among loads that are supplied with power at a constant voltage and constant frequency by an auxiliary power supply that supplies power to a load other than the main motor. Separately, the variable voltage variable frequency drive can be directly performed by the power converter for driving the main motor.

すなわち、本発明は、電気車の車両に搭載された走行用主電動機に可変周波数可変電圧を出力し、駆動する電気車の電力変換装置であって、前記車両の走行状態に応じて、前記主電動機、空調コンプレッサ用モータ又はその両者を選択する選択手段を介して可変周波数可変電圧の電力を出力する電力変換装置である。   That is, the present invention provides a power converter for an electric vehicle that outputs and drives a variable frequency variable voltage to a main motor for traveling mounted on the vehicle of the electric vehicle, and the main converter according to the traveling state of the vehicle. This is a power converter that outputs electric power of variable frequency and variable voltage via a selection means for selecting an electric motor, an air conditioning compressor motor, or both.

また、本発明は、供給する電力を、空調コンプレッサ用モータを駆動するのに適切な電圧に昇圧又は降圧するための変圧器と空調コンプレッサ用モータをオン・オフ制御するための交流遮断機を備える電力変換装置である。   The present invention also includes a transformer for boosting or lowering the supplied power to a voltage suitable for driving the motor for the air conditioning compressor and an AC circuit breaker for controlling on / off of the motor for the air conditioning compressor. It is a power converter.

そして、本発明は、前記交流遮断機は、電力変換装置の前進・後進時に行われる3相の相順切替に対応して、常に一定の相順を空調コンプレッサ用モータに供給するための相順切替機能を有する電力変換装置である。   According to the present invention, the AC circuit breaker is adapted to the phase sequence for constantly supplying a constant phase sequence to the motor for the air-conditioning compressor in response to the three-phase sequence switching performed when the power conversion device moves forward and backward. A power conversion device having a switching function.

更に、本発明は、複数の車両を連結して一つの編成を成す電気鉄道用電車に艤装され、該電車を駆動するために台車に装備された主電動機に可変周波数可変電圧を出力し、駆動する電力変換装置において、前記電車の停止又は惰行中には、前記主電動機に供給する電力と同じもしくは異なる可変周波数可変電圧の電力を空調コンプレッサ用モータに供給する電力変換装置である。   Furthermore, the present invention provides a variable frequency variable voltage to a main motor mounted on an electric railway train that is connected to a plurality of vehicles to form a single train and drives the train to drive the train. In the power conversion apparatus, the electric power conversion apparatus supplies electric power of a variable frequency variable voltage that is the same as or different from the electric power supplied to the main motor to the air conditioning compressor motor while the train is stopped or coasting.

また、本発明は、前記電車の力行又は回生ブレーキ中には、前記主電動機に供給する電力と同じ出力周波数の電力を前記空調コンプレッサ用モータに供給する電力変換装置である。   Further, the present invention is a power converter that supplies power of the same output frequency to the motor for an air conditioning compressor as power supplied to the main motor during power running or regenerative braking of the train.

そして、本発明は、複数の車両を連結して一つの編成を成し、請求項1記載の電力変換装置を複数個具備する電気鉄道用電車において、空調装置は1両内で多重構成とし、多重化された空調コンプレッサ用モータは、編成内で異なる電力変換装置より電力を供給するように構成する電気鉄道用電車である。   And this invention connects a some vehicle and comprises one formation, In the electric railway train which comprises a plurality of power converters of Claim 1, an air-conditioner is made into a multiple | multiplex structure in one vehicle, Multiplexed air conditioning compressor motors are electric railway trains configured to supply power from different power converters within a train.

更に、本発明は、前記空調コンプレッサ用モータに供給する電力以外に必要な電源を供給する補助電源供給機能を前記電力変換装置のハードウェア内に追加した電気鉄道用電車である。   Furthermore, the present invention is an electric railway train in which an auxiliary power supply function for supplying necessary power in addition to the power supplied to the air conditioning compressor motor is added to the hardware of the power converter.

また、本発明は、編成内に複数台の前記追加された補助電源装置が存在する場合に、それらの補助電源装置の出力電圧や周波数及び位相を同期させた並列運転を行う電気鉄道用電車である。   The present invention is also an electric railway train that performs parallel operation in which the output voltage, frequency, and phase of the auxiliary power supply devices are synchronized when a plurality of the added auxiliary power supply devices are present in the train. is there.

そして、本発明は、前記空調コンプレッサ用モータに供給する電力以外に必要な電源を機能又は装置ごとに分割し、前記追加された補助電源装置についても同様に複数に分割して電力を供給する電気鉄道用電車である。   Further, the present invention divides a necessary power source in addition to power supplied to the air conditioning compressor motor for each function or device, and similarly supplies the added auxiliary power device into a plurality of power supplies. It is a railway train.

本発明によれば、電力変換装置は空調コンプレッサ用モータを最適かつ連続的な電圧・周波数で高性能・高効率に制御することができるため、主変換装置と補助電源装置のトータル容量を低減することで、装置の小型軽量化を実現することができる。また、コンプレッサの空気圧を連続的に制御できるため車内温度の変動を低減することができる。さらに車内温度と設定値に大きな差がある場合には、空調コンプレッサ用モータの高速回転による急速冷房運転により車内温度の設定値への追従性もよくなるため、車内環境の快適性を向上できる。   According to the present invention, the power conversion device can control the motor for the air conditioning compressor with high performance and high efficiency at an optimum and continuous voltage and frequency, so that the total capacity of the main conversion device and the auxiliary power supply device is reduced. As a result, the device can be reduced in size and weight. Further, since the air pressure of the compressor can be continuously controlled, fluctuations in the vehicle interior temperature can be reduced. Further, when there is a large difference between the in-vehicle temperature and the set value, the rapid cooling operation by high-speed rotation of the air conditioning compressor motor improves the follow-up to the set value of the in-vehicle temperature, so that the comfort of the in-vehicle environment can be improved.

本発明を実施するための最良の形態を説明する。
本発明の電力変換装置及び電気鉄道用電車の実施例について、図面を用いて説明する。
The best mode for carrying out the present invention will be described.
Embodiments of a power conversion device and an electric railway train according to the present invention will be described with reference to the drawings.

実施例1を説明する。図1に本発明の第一の実施例を示す。便宜上、空調コンプレッサ用モータを空調用モータと表記する。図1は電気鉄道用電車の電力変換装置11により主電動機21を制御するシステムにおいて、電力変換装置11と主電動機21を接続し開放するスイッチ41と、電力変換装置11と空調用モータ31を接続し開放するスイッチ51を有する構成である。   Example 1 will be described. FIG. 1 shows a first embodiment of the present invention. For convenience, the air conditioning compressor motor is referred to as an air conditioning motor. FIG. 1 shows a system in which a main motor 21 is controlled by a power converter 11 of an electric railway train. A switch 41 for connecting and opening the power converter 11 and the main motor 21, and a power converter 11 and an air conditioning motor 31 are connected. In this configuration, the switch 51 is opened.

図2に示す電車の一般的な一連の運転状態である停止、力行、だ(惰)行、回生ブレーキの各状態において、スイッチ41とスイッチ51の動作を説明する。電車の停止時、電力変換装置11は空調用モータ31のみを駆動すればよいため、スイッチ41をオフして主電動機21を開放し、スイッチ51をオンして電力変換装置11と空調用モータ31を接続する。このとき電力変換装置11の負荷容量を考えると、例えば2M2Tの4両1編成の電車において電力変換装置1台で主電動機2台と空調用モータ2台を駆動する場合、主電動機の容量を1台あたり135kVA、空調用モータを1台あたり15kVAとすると、電力変換装置の負荷容量は全部で300kVAとなり、そのうち空調用モータは30kVAになるため、全体の負荷容量の10%となる。コンプレッサの圧力が目標値に達すると、電力変換装置11の運転を停止し、スイッチ51をオフする。電車が加速している力行時にはスイッチ41、スイッチ51をともに接続しておき、電力変換装置11は主電動機21と空調用モータ31を同時に駆動する。電車の加速中にコンプレッサの圧力が目標値に達した場合は、スイッチ51をオフして空調用モータ31を電力変換装置11から切り離す。速度が目標値に達し、電車の惰行時には、停止時と同様に電力変換装置は空調用モータのみを駆動すればよいため、スイッチ41をオフし主電動機21を開放し、スイッチ51をオンして電力変換装置11と空調用モータ31を接続する。コンプレッサの圧力が目標値に達すると、電力変換装置11の運転を停止し、スイッチ51をオフする。惰行中に速度が低下してきた場合は再度力行し、速度が目標値に達した場合は再度惰行するが、このときのスイッチ41、51の動作は前述の通りである。電車が減速する回生ブレーキ中にはスイッチ41、スイッチ51をともに接続しておき、主電動機31が発生した電力を空調用モータ31に直接供給し、余剰電力は電力変換装置11を通して電源側に回生される。電車の停止以降は前述の動作を繰り返す。尚、電車の停止および惰行中に、コンプレッサ圧力が目標値に達していて空調用モータ31の駆動が不要な場合は、電力変換装置11の動作を停止し、スイッチ51はオンのままでもよい。   The operation of the switch 41 and the switch 51 will be described in each of the following states of a general series of driving states shown in FIG. Since the power converter 11 only needs to drive the air conditioning motor 31 when the train stops, the switch 41 is turned off to open the main motor 21, and the switch 51 is turned on to turn on the power converter 11 and the air conditioning motor 31. Connect. Considering the load capacity of the power converter 11 at this time, for example, when driving two main motors and two air conditioning motors with one power converter in a 2M2T four-car train, the capacity of the main motor is 1 Assuming 135 kVA per unit and 15 kVA per unit of air conditioning motor, the load capacity of the power converter is 300 kVA in total, of which the air conditioning motor is 30 kVA, which is 10% of the total load capacity. When the compressor pressure reaches the target value, the operation of the power converter 11 is stopped and the switch 51 is turned off. During powering when the train is accelerating, both the switch 41 and the switch 51 are connected, and the power converter 11 drives the main motor 21 and the air conditioning motor 31 simultaneously. When the pressure of the compressor reaches the target value during the acceleration of the train, the switch 51 is turned off and the air conditioning motor 31 is disconnected from the power converter 11. When the speed reaches the target value and the train coasts, the power conversion device only needs to drive the air conditioning motor as in the case of the stop, so the switch 41 is turned off, the main motor 21 is opened, and the switch 51 is turned on. The power converter 11 and the air conditioning motor 31 are connected. When the compressor pressure reaches the target value, the operation of the power converter 11 is stopped and the switch 51 is turned off. When the speed decreases during coasting, power is run again, and when the speed reaches the target value, coasting is performed again. The operation of the switches 41 and 51 at this time is as described above. During the regenerative braking in which the train decelerates, both the switch 41 and the switch 51 are connected so that the electric power generated by the main motor 31 is directly supplied to the air conditioning motor 31 and the surplus power is regenerated to the power source side through the power converter 11. Is done. The above operation is repeated after the train stops. If the compressor pressure has reached the target value and the driving of the air conditioning motor 31 is not required while the train is stopped and coasting, the operation of the power converter 11 is stopped and the switch 51 may remain on.

図3に主電動機以外の負荷を駆動する補助電源装置で、空調用モータを駆動した場合に必要な負荷容量の一般的な従来例を示す。空調用モータ以外の負荷、例えば照明やブレーキ装置用コンプレッサのモータ、直流電源に変換するダイオード整流回路等の負荷Aは電車の運転状態によらず常に40%一定とし、空調コンプレッサ用負荷Bは電車の力行、惰行および回生ブレーキ中は30%一定とし、電車の停止時にドアが開き、乗客が乗降する際に車内温度が外乱により温度設定値から大きく外れたときに空調が最大出力で運転し、このとき、2倍の60%負荷になり、補助電源装置の容量の100%に到達するとする。ドアが閉じたあと、力行し時間t1後に車内温度が設定値と一致してからコンプレッサの駆動を停止する。   FIG. 3 shows a general conventional example of load capacity required when an air-conditioning motor is driven by an auxiliary power supply device that drives a load other than the main motor. Loads other than air conditioning motors, for example, motors for compressors for lighting and brake devices, diode rectifier circuits that convert to DC power supply, etc., are always constant at 40% regardless of the operating state of the train. During powering, coasting, and regenerative braking, the door is open when the train stops, and when the passenger gets on and off, the air conditioning operates at the maximum output when the temperature inside the vehicle greatly deviates from the temperature setting due to disturbance, At this time, the load is doubled to 60%, and reaches 100% of the capacity of the auxiliary power supply. After the door is closed, after the power running time t1, the driving of the compressor is stopped after the vehicle interior temperature matches the set value.

図4に、本実施例において、電車の停止時や惰行時に、空調用モータを電力変換装置で直接可変電圧可変周波数駆動し、最適で高効率な運転をした場合の負荷容量を示す。尚、力行時および回生時の消費電力は従来と同等とする。空調用モータの高速駆動による急冷運転により、空調用モータの動作時間を半減できると想定し、電車の停止時や惰行時の空調用モータの消費電力を50%低減できるとすると、従来の補助電源装置の容量で必要だった最大60%の空調用モータ負荷Bは半分の30%の負荷になる。空調用モータ負荷Bは電力変換装置で直接駆動することにより、電力変換装置と補助電源装置のトータル負荷を低減でき、装置の小型・軽量化が実現できる。さらに、回生中は主電動機21から空調用モータ31に直接電力を供給するので、その分電力変換装置11の発生損失を抑制することができる。   FIG. 4 shows the load capacity in the present embodiment when the air conditioning motor is directly driven by the variable voltage variable frequency drive by the power converter when the train is stopped or coasting, and the motor is operated optimally and efficiently. Note that the power consumption during power running and regeneration is the same as in the past. Assuming that the operating time of the air conditioning motor can be halved by the rapid cooling operation by high-speed driving of the air conditioning motor, and the power consumption of the air conditioning motor can be reduced by 50% when the train is stopped or coasting, the conventional auxiliary power supply The maximum 60% air conditioning motor load B required by the capacity of the apparatus is half the load of 30%. By directly driving the air conditioning motor load B by the power converter, the total load of the power converter and the auxiliary power supply can be reduced, and the apparatus can be reduced in size and weight. Furthermore, since electric power is directly supplied from the main motor 21 to the air conditioning motor 31 during regeneration, the generation loss of the power converter 11 can be suppressed accordingly.

一方、空調用モータ31の制御は主電動機21を制御している電力変換装置11のCPU演算処理能力の余力分を利用することで、空調内部にあった制御機能を省略できる。また、空調用モータを電力変換装置で0電圧から滑らかに駆動することによって、始動時の突入電流を抑制することができ、空調用モータの順次投入シーケンスを省略することができるため、空調装置の小型・軽量化も実現できる。   On the other hand, the control of the air conditioning motor 31 can omit the control function in the air conditioning by using the remaining capacity of the CPU processing capacity of the power converter 11 that controls the main motor 21. In addition, by smoothly driving the air conditioning motor from 0 voltage with the power converter, the inrush current at the start can be suppressed, and the sequential turn-on sequence of the air conditioning motor can be omitted. Smaller and lighter can also be realized.

また、電力変換装置11と空調用モータ31の間に空調用モータを駆動するのに適切な所定の電圧に降圧する変圧器を設けた場合についても、図1と同様の効果が得られると同時にスイッチ51を低圧用のものを用いることができるようになるため、より経済的である。また、電車の後進時には、スイッチ51に三相の相順切替え機能をもたせることにより、空調用モータ31の回転方向を常に同一方向に保つことができる。   In addition, when a transformer for stepping down to a predetermined voltage suitable for driving the air conditioning motor is provided between the power conversion device 11 and the air conditioning motor 31, the same effect as in FIG. 1 can be obtained. Since the switch 51 for low pressure can be used, it is more economical. Further, when the train is moving backward, the rotation direction of the air conditioning motor 31 can be always kept in the same direction by providing the switch 51 with a three-phase phase switching function.

実施例2を説明する。図5に本発明の第二の実施例を示す。図5では、第1の車両で多重構成された複数台の空調用モータ31、32と第2の車両で多重構成された複数台の空調用モータ33、34のうち、第1の車両の電力変換装置11から空調用モータ31、33に電力を供給し、第2の車両の電力変換装置12から空調用モータ32、34に電力を供給する構成である。なお、車両及び空調用モータの数は、それぞれ3以上でも構成可能である。   A second embodiment will be described. FIG. 5 shows a second embodiment of the present invention. In FIG. 5, among the plurality of air conditioning motors 31 and 32 configured in multiples in the first vehicle and the plurality of air conditioning motors 33 and 34 configured in multiples in the second vehicle, the power of the first vehicle Electric power is supplied from the conversion device 11 to the air conditioning motors 31 and 33, and electric power is supplied from the power conversion device 12 of the second vehicle to the air conditioning motors 32 and 34. The number of vehicles and air conditioning motors can be three or more.

この構成により、仮に第1の車両の電力変換装置11が故障し、空調用モータ31、33が停止した場合でも、第2の車両の電力変換装置12から空調用モータ32、34に電力を供給でき、第1及び第2の車両の空調機能をそれぞれ完全に停止する可能性が少なくなり、冗長性のあるシステムを構成することができる。また、1編成内の補助電源装置2台で空調用モータに電力を供給する従来の一般的なシステムと比較して、電力変換装置で空調用モータを直接駆動することにより、1編成内に電力変換装置が3台以上存在する場合には、空調用モータの電源の数が従来と比較して多くなるため、冗長性の高いシステムを構成することができる。   With this configuration, even if the power conversion device 11 of the first vehicle breaks down and the air conditioning motors 31 and 33 stop, power is supplied from the power conversion device 12 of the second vehicle to the air conditioning motors 32 and 34. The possibility of completely stopping the air conditioning functions of the first and second vehicles is reduced, and a redundant system can be configured. Compared with the conventional general system that supplies power to the air conditioning motor with two auxiliary power supply units in one train, the power converter directly drives the air conditioning motor to generate power in one train. When there are three or more conversion devices, the number of power supplies for the air conditioning motor is increased as compared with the conventional one, so that a highly redundant system can be configured.

実施例3を説明する。図6に本発明の第三の実施例を示す。図6では主電動機21と空調用モータ31以外の負荷71に電力を供給する補助電源装置61を電力変換装置11のハードウェア内に追加した構成である。電力変換装置と補助電源装置がそれぞれ独立している現状のシステムでは、電車の給電電源が直流の場合には、電力変換装置と補助電源装置の電源ラインにそれぞれリアクトルや遮断器等が必要であるが、図6の構成により、補助電源装置のリアクトルや高圧遮断器等を電力変換装置のものと併用することができる。また、電車の給電電源が交流の場合には、これまで電力変換装置と補助電源装置の電源ラインにそれぞれトランスや交流遮断機が必要であったが、図6の構成により、これらを併用することができ、さらに交流から直流へ電力を変換する整流装置も併用することができる。また、補助電源装置用の高圧引き通し回路を電力変換装置と共通化することにより、従来のシステムでは補助電源装置のある先頭車に艤装されていた高圧引き通し回路を省略することができる。   A third embodiment will be described. FIG. 6 shows a third embodiment of the present invention. In FIG. 6, an auxiliary power supply device 61 that supplies power to a load 71 other than the main motor 21 and the air conditioning motor 31 is added to the hardware of the power conversion device 11. In the current system in which the power conversion device and the auxiliary power supply device are independent from each other, when the power supply power of the train is DC, a reactor, a circuit breaker, etc. are required for the power lines of the power conversion device and the auxiliary power supply device, respectively. However, with the configuration of FIG. 6, the reactor of the auxiliary power supply device, the high-voltage circuit breaker, and the like can be used together with those of the power converter. In addition, when the electric power supply of the train is AC, a transformer and an AC circuit breaker have been required for the power converter and auxiliary power supply power lines, respectively. In addition, a rectifier that converts power from alternating current to direct current can be used in combination. In addition, by sharing the high-voltage lead-in circuit for the auxiliary power supply device with the power converter, the high-voltage lead-in circuit installed in the leading vehicle with the auxiliary power supply device in the conventional system can be omitted.

従って図6の構成では、構成部品数を低減することができるため、システムの信頼性を向上させ、省保守化を実現することができる。電力変換装置が1編成内に3台以上ある場合は、従来の1編成内に2台の補助電源装置があるシステムと比較して補助電源装置の負荷に電力を供給できる電源の数が多くなるため、冗長性のあるシステムを構成することができる。   Accordingly, in the configuration of FIG. 6, the number of components can be reduced, so that the reliability of the system can be improved and maintenance can be saved. When there are three or more power conversion devices in one train, the number of power sources that can supply power to the load of the auxiliary power device is larger than in a conventional system having two auxiliary power devices in one train. Therefore, a redundant system can be configured.

実施例4を説明する。図7に本発明の第四の実施例を示す。図7は主電動機21、22と空調用モータ31、32以外の負荷を負荷711、721、712、722のように照明、空調用送風機、空気ブレーキ用コンプレッサ等の機能または装置ごとに分割し、補助電源装置も補助電源装置611、621、612,622のように複数に分割し、上記補助電源装置を電力変換装置11、12のハードウェア内にそれぞれ追加した構成である。   Example 4 will be described. FIG. 7 shows a fourth embodiment of the present invention. FIG. 7 divides loads other than the main motors 21 and 22 and the air conditioning motors 31 and 32 into functions or devices such as lighting, air conditioning blowers, and air brake compressors as loads 711, 721, 712, and 722, The auxiliary power supply device is also divided into a plurality of auxiliary power supply devices 611, 621, 612, and 622, and the auxiliary power supply device is added to the hardware of the power conversion devices 11 and 12, respectively.

例えば補助電源装置611、621、612、622が必要な定格容量のそれぞれ25%ずつを負担している場合を考える。補助電源装置が分割されていない場合、補助電源装置が故障すると、負荷711、721、712、722すべてに電力が供給できなくなり、他の健全な補助電源装置から延長給電しバックアップする場合は、自分の負荷100%と合計して200%の電力を供給する能力が必要であった。これに対し、図7の構成では、仮に1台の補助電源装置611が故障した場合でも、供給できる電力容量の低下を25%に抑えることができ、不足している25%の容量のみを残りの健全な補助電源装置で負担すればよいことになる。従って、負荷を分散し、それに合わせて補助電源装置も分割し、一つあたりの容量を小さくすることによって、補助電源装置故障時のバックアップに必要な容量を低減することができため、補助電源装置の小型軽量化を実現できる。また、補助電源装置611、621、612、622の出力電圧や周波数および位相を同期させた並列運転をすることにより、仮に補助電源装置611が故障した場合には残りの補助電源装置621、612、622で負荷711、721、712、722に電力を供給し続けることができるので、冗長性を持った信頼性の高いシステムを構成することができる。   For example, consider the case where the auxiliary power supply devices 611, 621, 612, and 622 bear 25% of the required rated capacity. If the auxiliary power supply is not divided, if the auxiliary power supply fails, power cannot be supplied to all of the loads 711, 721, 712, and 722. The ability to supply 200% of the total power with a load of 100% was required. On the other hand, in the configuration of FIG. 7, even if one auxiliary power supply device 611 fails, the reduction in the power capacity that can be supplied can be suppressed to 25%, and only the insufficient capacity of 25% remains. It will suffice to pay with a healthy auxiliary power supply device. Therefore, by distributing the load, dividing the auxiliary power supply unit accordingly and reducing the capacity per unit, the capacity required for backup in the event of failure of the auxiliary power supply unit can be reduced. Can be reduced in size and weight. In addition, by performing parallel operation in which the output voltage, frequency, and phase of the auxiliary power supply devices 611, 621, 612, and 622 are synchronized, if the auxiliary power supply device 611 fails, the remaining auxiliary power supply devices 621, 612, Since power can be continuously supplied to the loads 711, 721, 712, and 722 at 622, a highly reliable system with redundancy can be configured.

実施例5を説明する。図8に本発明の第五の実施例を示す。図8は電力変換装置11と主電動機21または空調用モータ31のどちらかを接続するスイッチ91を有する構成である。図8において、電車の停止時および惰行時には、スイッチ91を空調用モータ31側に接続することにより、電力変換装置11は空調用モータ31を直接可変電圧可変周波数駆動できる。電車の停止時および惰行時に、空調用モータ31を電力変換装置11で可変電圧可変周波数駆動できるため、図1と同様の効果が得られるのは明らかである。   Example 5 will be described. FIG. 8 shows a fifth embodiment of the present invention. FIG. 8 shows a configuration having a switch 91 that connects the power converter 11 to either the main motor 21 or the air conditioning motor 31. In FIG. 8, when the train is stopped and coasting, the power converter 11 can directly drive the air conditioning motor 31 with variable voltage and variable frequency by connecting the switch 91 to the air conditioning motor 31 side. Since the air conditioning motor 31 can be driven with the variable voltage and variable frequency by the power converter 11 when the train stops and coasts, it is clear that the same effect as in FIG. 1 can be obtained.

実施例1の電力変換装置の説明図。Explanatory drawing of the power converter device of Example 1. FIG. 実施例1における実施方法を説明したタイムチャートの説明図。Explanatory drawing of the time chart explaining the implementation method in Example 1. FIG. 従来の技術を説明した図。The figure explaining the prior art. 実施例1における効果を示す説明図。Explanatory drawing which shows the effect in Example 1. FIG. 実施例2の電力変換装置の説明図。Explanatory drawing of the power converter device of Example 2. FIG. 実施例3の電力変換装置の説明図。Explanatory drawing of the power converter device of Example 3. FIG. 実施例4の電力変換装置の説明図。Explanatory drawing of the power converter device of Example 4. FIG. 実施例5の電力変換装置の説明図。Explanatory drawing of the power converter device of Example 5. FIG. 従来の技術を説明した構成図。The block diagram explaining the prior art. 従来の第2の技術を説明した構成図。The block diagram explaining the conventional 2nd technique. 従来の第3の技術を説明した構成図。The block diagram explaining the conventional 3rd technique.

符号の説明Explanation of symbols

11、12 電力変換装置
21、22 主電動機
31〜34 空調用モータ
41、42、51、52、91 スイッチ
61、611、612、621、622 補助電源装置
71、711、712、721、722 負荷
11, 12 Power conversion device 21, 22 Main motor 31-34 Air conditioning motor 41, 42, 51, 52, 91 Switch 61, 611, 612, 621, 622 Auxiliary power supply 71, 711, 712, 721, 722 Load

Claims (9)

電気車の車両に搭載された走行用主電動機に可変周波数可変電圧を出力し、駆動する電気車の電力変換装置であって、
前記車両の走行状態に応じて、前記主電動機、空調コンプレッサ用モータ又はその両者を選択する選択手段を介して可変周波数可変電圧の電力を出力することを特徴とする電力変換装置。
An electric vehicle power converter that outputs and drives a variable frequency variable voltage to a driving main motor mounted on an electric vehicle,
A power converter that outputs variable-frequency variable-voltage power via a selection unit that selects the main motor, an air-conditioning compressor motor, or both in accordance with the traveling state of the vehicle.
請求項1記載の電力変換装置において、
供給する電力を、空調コンプレッサ用モータを駆動するのに適切な電圧に昇圧又は降圧するための変圧器と空調コンプレッサ用モータをオン・オフ制御するための交流遮断機を備えることを特徴とする電力変換装置。
The power conversion device according to claim 1,
Electric power comprising a transformer for boosting or stepping down the supplied power to a voltage suitable for driving an air conditioning compressor motor and an AC circuit breaker for on / off control of the air conditioning compressor motor Conversion device.
請求項2記載の電力変換装置において、
前記交流遮断機は、電力変換装置の前進・後進時に行われる3相の相順切替に対応して、常に一定の相順を空調コンプレッサ用モータに供給するための相順切替機能を有することを特徴とする電力変換装置。
The power conversion device according to claim 2,
The AC circuit breaker has a phase sequence switching function for supplying a constant phase sequence to the air conditioning compressor motor at all times, corresponding to the three phase sequence switching performed when the power conversion device moves forward and backward. A power conversion device.
複数の車両を連結して一つの編成を成す電気鉄道用電車に艤装され、該電車を駆動するために台車に装備された主電動機に可変周波数可変電圧を出力し、駆動する電力変換装置において、
前記電車の停止又は惰行中には、前記主電動機に供給する電力と同じもしくは異なる可変周波数可変電圧の電力を空調コンプレッサ用モータに供給することを特徴とする電力変換装置。
In a power converter for driving a variable frequency variable voltage to a main motor mounted on an electric railway train that is connected to a plurality of vehicles to form a single train and that drives the train.
An electric power conversion device that supplies electric power of a variable frequency variable voltage that is the same as or different from electric power supplied to the main motor to an air conditioning compressor motor while the train is stopped or coasting.
請求項4記載の電力変換装置において、
前記電車の力行又は回生ブレーキ中には、前記主電動機に供給する電力と同じ出力周波数の電力を前記空調コンプレッサ用モータに供給することを特徴とする電力変換装置。
The power conversion device according to claim 4, wherein
An electric power converter that supplies electric power having the same output frequency as electric power supplied to the main motor to the air conditioning compressor motor during power running or regenerative braking of the train.
複数の車両を連結して一つの編成を成し、請求項1記載の電力変換装置を複数個具備する電気鉄道用電車において、
空調装置は1両内で多重構成とし、多重化された空調コンプレッサ用モータは、編成内で異なる電力変換装置より電力を供給するように構成することを特徴とする電気鉄道用電車。
In an electric railway train comprising a plurality of power conversion devices according to claim 1, wherein a plurality of vehicles are connected to form a single formation.
The electric railway train is characterized in that the air conditioner has a multiple configuration in one vehicle, and the multiplexed air conditioning compressor motors are configured to supply power from different power conversion devices in the train.
請求項6記載の電気鉄道用電車において、
前記空調コンプレッサ用モータに供給する電力以外に必要な電源を供給する補助電源供給機能を前記電力変換装置のハードウェア内に追加したことを特徴とする電気鉄道用電車。
The electric railway train according to claim 6,
An electric railway train, wherein an auxiliary power supply function for supplying necessary power in addition to the power supplied to the air conditioning compressor motor is added to the hardware of the power converter.
請求項7記載の電気鉄道用電車において、
編成内に複数台の前記追加された補助電源装置が存在する場合に、それらの補助電源装置の出力電圧や周波数及び位相を同期させた並列運転を行うことを特徴とする電気鉄道用電車。
In the electric railway train according to claim 7,
An electric railroad train that performs parallel operation in which the output voltage, frequency, and phase of the auxiliary power supply devices are synchronized when a plurality of the added auxiliary power supply devices are present in the train.
請求項7記載の電気鉄道用電車において、
前記空調コンプレッサ用モータに供給する電力以外に必要な電源を機能又は装置ごとに分割し、前記追加された補助電源装置についても同様に複数に分割して電力を供給することを特徴とする電気鉄道用電車。
In the electric railway train according to claim 7,
Electric railway that divides necessary power sources in addition to power to be supplied to the air conditioning compressor motor for each function or device, and similarly divides the added auxiliary power device into a plurality of power supplies. Train.
JP2005232375A 2005-08-10 2005-08-10 Power converter and electric train for electric railway Pending JP2007049836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005232375A JP2007049836A (en) 2005-08-10 2005-08-10 Power converter and electric train for electric railway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005232375A JP2007049836A (en) 2005-08-10 2005-08-10 Power converter and electric train for electric railway

Publications (1)

Publication Number Publication Date
JP2007049836A true JP2007049836A (en) 2007-02-22

Family

ID=37852226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005232375A Pending JP2007049836A (en) 2005-08-10 2005-08-10 Power converter and electric train for electric railway

Country Status (1)

Country Link
JP (1) JP2007049836A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102050125A (en) * 2010-12-24 2011-05-11 上海加冷松芝汽车空调股份有限公司 Variable frequency heat pump air conditioning unit for railway vehicle
CN103684000A (en) * 2012-09-11 2014-03-26 山东朗进科技股份有限公司 Power supply technology for passenger train air conditioning unit, and power supply device for passenger train air conditioning unit
CN103661456A (en) * 2012-09-11 2014-03-26 山东朗进科技股份有限公司 Novel direct-current power supply passenger train variable frequency air conditioner
CN104108319A (en) * 2013-04-16 2014-10-22 株式会社东芝 Electric motor car control device and electric motor car control method
JPWO2013001646A1 (en) * 2011-06-30 2015-02-23 三菱電機株式会社 Auxiliary power supply for vehicle
JP2015127176A (en) * 2013-12-27 2015-07-09 株式会社東芝 Vehicle air-conditioning controller
JP2015157551A (en) * 2014-02-24 2015-09-03 株式会社東芝 vehicle information control device
JP2016119729A (en) * 2014-12-18 2016-06-30 三菱電機株式会社 Power converter
US9744855B2 (en) 2011-06-30 2017-08-29 Mitsubishi Electric Corporation Vehicle auxiliary power supply

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102050125A (en) * 2010-12-24 2011-05-11 上海加冷松芝汽车空调股份有限公司 Variable frequency heat pump air conditioning unit for railway vehicle
JPWO2013001646A1 (en) * 2011-06-30 2015-02-23 三菱電機株式会社 Auxiliary power supply for vehicle
US9744855B2 (en) 2011-06-30 2017-08-29 Mitsubishi Electric Corporation Vehicle auxiliary power supply
CN103684000A (en) * 2012-09-11 2014-03-26 山东朗进科技股份有限公司 Power supply technology for passenger train air conditioning unit, and power supply device for passenger train air conditioning unit
CN103661456A (en) * 2012-09-11 2014-03-26 山东朗进科技股份有限公司 Novel direct-current power supply passenger train variable frequency air conditioner
CN104108319A (en) * 2013-04-16 2014-10-22 株式会社东芝 Electric motor car control device and electric motor car control method
JP2015127176A (en) * 2013-12-27 2015-07-09 株式会社東芝 Vehicle air-conditioning controller
JP2015157551A (en) * 2014-02-24 2015-09-03 株式会社東芝 vehicle information control device
JP2016119729A (en) * 2014-12-18 2016-06-30 三菱電機株式会社 Power converter

Similar Documents

Publication Publication Date Title
US7451842B2 (en) Control system for electric motor car
JP5918788B2 (en) Railway vehicle drive system and train system equipped with the same
KR101075641B1 (en) Driving device of rail vehicle
CN102196938B (en) Propulsion control device for electric car
EP3038854B1 (en) Electric power conversion device, emergency traveling system and railway vehicle
JP5182310B2 (en) Driving system for railway trains
JP2010200576A (en) Power supply method and power supply system for ac-dc dual current electric railcar
JP6139236B2 (en) Electric locomotive control device
JP2007049836A (en) Power converter and electric train for electric railway
EP1356981A2 (en) Power supply device for railway carriages and/or drive units
US9731607B1 (en) Vehicle brake control system
JP2007252083A (en) Control unit of electric vehicle
JP5972756B2 (en) Electric vehicle control device
JP3974092B2 (en) Electric vehicle control device
JP5352731B2 (en) Driving system for railway trains
JP2014212621A (en) Electric locomotive controller
JP2007244035A (en) Electric car controlling device
JP2018152979A (en) Electric power source system for electric motor vehicle, electric power supply control method and additional electric power source system
JP2004364412A (en) Auxiliary power unit for vehicle, and electric rolling stock using it
CN112124152B (en) Power supply circuit and power supply control method for locomotive auxiliary system
JPH1066201A (en) Controlling device for power supply for electric car
JPH10215501A (en) Power supply for vehicle
JP4594958B2 (en) Electric vehicle control device
JP5810147B2 (en) Power converter for vehicle
JP7584712B2 (en) Power conversion equipment for railway vehicles