JP2007040520A - Tapered roller bearing - Google Patents
Tapered roller bearing Download PDFInfo
- Publication number
- JP2007040520A JP2007040520A JP2006083708A JP2006083708A JP2007040520A JP 2007040520 A JP2007040520 A JP 2007040520A JP 2006083708 A JP2006083708 A JP 2006083708A JP 2006083708 A JP2006083708 A JP 2006083708A JP 2007040520 A JP2007040520 A JP 2007040520A
- Authority
- JP
- Japan
- Prior art keywords
- tapered roller
- raceway surface
- roughness
- inner ring
- outer ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/583—Details of specific parts of races
- F16C33/585—Details of specific parts of races of raceways, e.g. ribs to guide the rollers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
- F16C19/34—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
- F16C19/36—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
- F16C19/364—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/34—Rollers; Needles
- F16C33/36—Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
- F16C33/366—Tapered rollers, i.e. rollers generally shaped as truncated cones
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/40—Linear dimensions, e.g. length, radius, thickness, gap
- F16C2240/50—Crowning, e.g. crowning height or crowning radius
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/40—Linear dimensions, e.g. length, radius, thickness, gap
- F16C2240/54—Surface roughness
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
Abstract
Description
本発明は、種々の産業機械で使用される円錐ころ軸受に関する。 The present invention relates to a tapered roller bearing used in various industrial machines.
円錐ころ軸受に於いて、円錐ころに、正のスキューモーメントを与える従来例としては、特許文献1及び2がある。
これら特許文献1及び2では、(1)円錐ころのコーンセンターを、内・外輪のコーンセンクーより手前にし、(2)円錐ころの転動面と内・外輪の軌道面との速度差に起因して生じるスキューモーメントを、外輪側より内輪側を大にしてある。
In these
また、円錐ころ軸受のクラウニングを決定する従来例として、特許文献3がある。この特許文献3では、荷重、ミスアライメントが与えられた条件で、寿命を最大にするクラウニングを決定する方法が開示されている。特許文献3では、寿命が最適になるような繰り返し計算方法を用いており、実例として挙げられている実施例(FIG.6のE図)は、大鍔側の方が小鍔側より、クラウニングの落ち量が大きい。
しかしながら、特許文献1では、円錐ころのコーンセンターを、内・外輪のコーンセンターからずらすことが前提で、設計上の制約を与えるものであるほかに、円錐ころの転動面と内・外輪の軌道面とに強制的に速度差を生じさせることで、摩擦が増大することが考えられる。
However, in
また、特許文献3では、その実施例(FIG.6のE図)のように、大鍔側の方が小鍔側より、クラウニングの落ち量が大きくなる場合があり、スキュー角が正の方向にずれることが必ずしも期待できない。
In
本発明は、上述したような事情に鑑みてなされたものであって、円錐ころ軸受に働く力をより厳密に考察することにより、円錐ころのコーンセンターを内・外輪のコーンセンターとずらせることことなく、円錐ころに、正のスキューモーメントを生じさせることができる、円錐ころ軸受を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and by more strictly considering the force acting on the tapered roller bearing, the cone center of the tapered roller is shifted from the cone center of the inner and outer rings. An object of the present invention is to provide a tapered roller bearing capable of generating a positive skew moment in a tapered roller without any problems.
上記の目的を達成するため、本発明に係る円錐ころ軸受は、内輪と外輪と複数の円錐ころとを有する円錐ころ軸受において、
円錐ころのコーンセンターと、内・外輪のコーンセンターとは、一致し、
回転時に、円錐ころに、正のスキューが生じることを特徴とする。
In order to achieve the above object, a tapered roller bearing according to the present invention is a tapered roller bearing having an inner ring, an outer ring, and a plurality of tapered rollers.
The cone center of the tapered roller matches the cone center of the inner and outer rings
A positive skew is generated in the tapered roller during rotation.
好適には、円錐ころの転動面、外輪の軌道面、及び内輪の軌道面の少なくとも1つの粗さは、大鍔側にいくほど、大きく設定してある。 Preferably, the roughness of at least one of the rolling surface of the tapered roller, the raceway surface of the outer ring, and the raceway surface of the inner ring is set to be larger as it goes to the large collar side.
また好適には、円錐ころの転動面の粗さσrと、外輪の軌道面の粗さσoとの合成粗さ
((σr 2+σo 2)1/2)、
及び、円錐ころの転動面の粗さσrと内輪の軌道面の粗さσiとの合成粗さ
((σr 2+σi 2)1/2)
の少なくとも一方は、大鍔側にいくほど、大きく設定してある。
Also preferably, the combined roughness ((σ r 2 + σ o 2 ) 1/2 ) of the roughness σ r of the rolling surface of the tapered roller and the roughness σ o of the raceway surface of the outer ring,
And the combined roughness of the roughness σ r of the rolling surface of the tapered roller and the roughness σ i of the raceway surface of the inner ring ((σ r 2 + σ i 2 ) 1/2 )
At least one of these is set to be larger as it goes to the side of the ridge.
さらに、好適には、前記内輪の軌道面の粗さを、前記外輪の軌道面の粗さより粗くし、前記円錐ころに、正のスキューを生じさせる。 Further preferably, the roughness of the raceway surface of the inner ring is made larger than the roughness of the raceway surface of the outer ring, and a positive skew is generated in the tapered rollers.
さらに、好適には、円錐ころの転動面の粗さσrと、外輪の軌道面の粗さσoとの合成粗さ
((σr 2+σo 2)1/2)、
及び、円錐ころの転動面の粗さσrと内輪の軌道面の粗さσiとの合成粗さ
((σr 2+σi 2)1/2)
が、((σr 2+σi 2)1/2)>((σr 2+σo 2)1/2)に設定してある。
Further preferably, the combined roughness ((σ r 2 + σ o 2 ) 1/2 ) of the roughness σ r of the rolling surface of the tapered roller and the roughness σ o of the raceway surface of the outer ring,
And the combined roughness of the roughness σ r of the rolling surface of the tapered roller and the roughness σ i of the raceway surface of the inner ring ((σ r 2 + σ i 2 ) 1/2 )
Is set to ((σ r 2 + σ i 2 ) 1/2 )> ((σ r 2 + σ o 2 ) 1/2 ).
さらに、好適には、円錐ころの転動面、外輪の軌道面、及び内輪の軌道面の少なくとも1つにクラウニング加工を施し、
その大鍔側のクラウニングの落ち量は、小鍔側のクラウニングの落ち量より小さく設定してある。
Further, preferably, at least one of the rolling surface of the tapered roller, the raceway surface of the outer ring, and the raceway surface of the inner ring is subjected to crowning processing,
The amount of the crowning drop on the large heel side is set smaller than the amount of the crowning drop on the small heel side.
さらに、好適には、円錐ころの転動面、外輪の軌道面、及び内輪の軌道面の少なくとも1つに、被膜処理を施し、
その摩擦係数は、大鍔側の方が小鍔側より大きく設定してある。
Furthermore, preferably, a coating treatment is applied to at least one of the rolling surface of the tapered roller, the raceway surface of the outer ring, and the raceway surface of the inner ring,
The coefficient of friction is set larger on the large heel side than on the small heel side.
さらに、好適には、円錐ころの転動面、外輪の軌道面、及び内輪の軌道面の少なくとも1つの小鍔側に、その摩擦係数を減少する被膜処理が施してある。 Further, preferably, at least one small side of the rolling surface of the tapered roller, the raceway surface of the outer ring, and the raceway surface of the inner ring is coated with a coating to reduce the coefficient of friction.
さらに、好適には、円錐ころの転動面、外輪の軌道面、及び内輪の軌道面の少なくとも1つの大鍔側に、その摩擦係数を増大する被膜処理が施してある。 Further, preferably, at least one large flange side of the rolling surface of the tapered roller, the raceway surface of the outer ring, and the raceway surface of the inner ring is subjected to a coating treatment that increases the coefficient of friction.
さらに、好適には、前記内・外輪の軌道面のどちらか一方を被膜処理し、前記円錐ころに、正のスキューを生じさせる。 Further, preferably, either one of the raceway surfaces of the inner and outer rings is coated to cause a positive skew in the tapered rollers.
さらに、好適には、前記外輪の軌道面に、摩擦係数が小さくなる被膜処理を施し、前記円錐ころに、正のスキューを生じさせる。 Further, preferably, a coating treatment with a small friction coefficient is applied to the raceway surface of the outer ring to cause a positive skew in the tapered roller.
さらに、好適には、前記内輪の軌道面に、摩擦係数が大きくなる被膜処理を施し、前記円錐ころに、正のスキューを生じさせる。 Further, preferably, a coating treatment for increasing a friction coefficient is applied to the raceway surface of the inner ring, and a positive skew is generated in the tapered roller.
本発明によれば、円錐ころのコーンセンターを内・外輪のコーンセンターとずらせることことなく、円錐ころに、正のスキューモーメントを生じさせることができる。以上から、スキュー角が正方向にずれるので、負のスキュー角をとる場合に比べて、摩擦が小になり、寿命が長くなる。 According to the present invention, a positive skew moment can be generated in the tapered rollers without shifting the cone centers of the tapered rollers with the cone centers of the inner and outer rings. From the above, since the skew angle is shifted in the positive direction, the friction is reduced and the life is prolonged as compared with the case of taking a negative skew angle.
以下、本発明の実施の形態に係る円錐ころ軸受を図面を参照しつつ説明する。 Hereinafter, a tapered roller bearing according to an embodiment of the present invention will be described with reference to the drawings.
(第1実施の形態)
図1は、本発明の第1実施の形態に係り、円錐ころの自転軸回りの力と、モーメントとの釣り合いを模式的に示す図である。
(First embodiment)
FIG. 1 is a diagram schematically showing a balance between a force around a rotation axis of a tapered roller and a moment according to the first embodiment of the present invention.
本実施の形態では、自転軸回りの円錐ころに働く力を考察している。 In this embodiment, the force acting on the tapered rollers around the rotation axis is considered.
大鍔の荷重をQf、摩擦係数をμとし、内輪から円錐ころに働くトラクションをTi、外輪から働くトラクションをToとし、定常時、公転座標系から視て、円錐ころ回転軸回りの力とモーメントの釣り合いを考えると、μQf、Ti、Toは、図1の向きに働く。 The force and moment around the axis of rotation of the tapered roller as viewed from the revolving coordinate system in the steady state, where Qf is the load of Daegu, μ is the friction coefficient, Ti is the traction acting from the inner ring to the tapered roller, and To is the traction acting from the outer ring. In consideration of the balance, μQf, Ti, and To work in the direction of FIG.
これは、接点位置で内輪回転方向に大鍔の摩擦μQfが働き、接点位置から比べると、内輪軌道面では、回転半径が小さくなるため、軌道面の周速が遅くなり、円錐ころ転動面は、回転半径が短くなるため、転動面の周速が速くなり、円錐ころは、自転の方向と逆向きに内輪軌道面からトラクションTiを受けることになることを示している。 This is because a large amount of friction μQf acts in the inner ring rotation direction at the contact position, and compared with the contact position, the inner ring raceway surface has a smaller radius of rotation, so the circumferential speed of the raceway surface becomes slower and the tapered roller rolling surface. Indicates that since the rotation radius is shortened, the peripheral speed of the rolling surface is increased, and the tapered roller receives traction Ti from the inner ring raceway surface in the direction opposite to the rotation direction.
仮に、Tiが図1の向きと逆の向きにかかるとすると、モーメントの釣り合いにより、Toは、図1と逆の向きに働かなければならないが、その場合、力の釣り合いが成立しなくなってしまうので、Tiは、図1の向きに働かなければならないことが分かる。 If Ti is applied in the direction opposite to that shown in FIG. 1, To must work in the direction opposite to that shown in FIG. 1 due to the balance of moments. In that case, the balance of force will not be established. Thus, it can be seen that Ti must work in the direction of FIG.
また、Toの向きは、円錐ころが外輪から駆動力を得ることを示している。仮にToが図1の向きと反対に働くとすると、力の釣り合いから、Ti>μQfでなければならないが、そうすると、モーメントの釣り合いが成り立たないので、Toは、図1の向きに働かなければならないことが分かる。 The direction of To indicates that the tapered roller obtains a driving force from the outer ring. If To works in the direction opposite to that in FIG. 1, the force balance must satisfy Ti> μQf. However, since the moment balance does not hold, To must work in the direction in FIG. 1. I understand that.
軸方向粗さに分布がないとし、つば荷重によるチルト及び軌道面の面圧分布の変化を無視すると、Ti,Toは、円錐ころの中心に働くのでスキューモーメントは、発生しない。 If there is no distribution in the axial roughness, and if the tilt and the change in the surface pressure distribution of the raceway surface due to the collar load are ignored, Ti and To work at the center of the tapered roller, so no skew moment is generated.
円錐ころ端面から円錐ころ中心までの距離をLとすると、円錐ころは、大鍔からの摩擦により、μQf×Lの負のスキューモーメントを発生させるため、円錐ころは、負のスキューをする。これにより、接点位置は、円錐ころ中心とのずれがΔxになり、Δx×Qfの正のスキューモーメントが発生して、次式が成立する。
μQf×L=Δx×Qf
When the distance from the end surface of the tapered roller to the center of the tapered roller is L, the tapered roller generates a negative skew moment of μQf × L due to friction from the large cage, and therefore the tapered roller has a negative skew. Thereby, the deviation of the contact position from the center of the tapered roller becomes Δx, a positive skew moment of Δx × Qf is generated, and the following equation is established.
μQf × L = Δx × Qf
図2は、本発明の第1実施の形態に係り、軸方向に粗さを変えたときのトラクションの模式図である。 FIG. 2 is a schematic diagram of traction when the roughness is changed in the axial direction according to the first embodiment of the present invention.
本実施の形態では、大鍔方向にいく程、粗さが粗くなる。従って、大鍔方向にいく程、金属接触の割合が大きくなり、摩擦が増大するので、トラクションには、分布ができ、内・外輪のトラクションの働く重心位置は、円錐ころ中心位置からΔyi(内輪側)、Δyo(外輪側)の距離だけずれる。 In the present embodiment, the roughness becomes rougher as the direction is larger. Therefore, as the direction of the main shaft increases, the ratio of metal contact increases and the friction increases, so that the traction is distributed, and the center of gravity position at which the inner / outer ring traction acts is Δyi (inner ring Side) and Δyo (outer ring side).
そのため、正のスキューモーメント(Δyi×Ti+Δyo×To)が発生し、円錐ころのスキューが正の方向にずれる。 Therefore, a positive skew moment (Δyi × Ti + Δyo × To) is generated, and the skew of the tapered rollers is shifted in the positive direction.
なお、ここで、文献(NSK Technical Journal 649号 3頁(7)式の第2項,1988)に見られるように、粗さが粗い程、摩擦係数が増大することは、公知である。
Here, as seen in the literature (NSK Technical Journal 649,
以上から、本実施の形態では、スキュー角が正方向にずれるので、負のスキュー角をとる場合に比べて、摩擦が小になり、寿命が長くなる。 From the above, in the present embodiment, the skew angle is shifted in the positive direction, so that the friction is reduced and the life is extended as compared with the case of taking the negative skew angle.
図3は、本発明の第1実施の形態に係る円錐ころの模式的断面図である。 FIG. 3 is a schematic cross-sectional view of the tapered roller according to the first embodiment of the present invention.
内輪1と、外輪2との間に、円錐ころ3が転動自在に介装してあり、内輪1の大径側には、大鍔4が形成してある。
A
円錐ころ3の転動面、外輪2の軌道面、及び内輪1の軌道面の少なくとも1つの粗さは、大鍔側にいくほど、大きく設定してある。
At least one roughness of the rolling surface of the tapered
別言すれば、円錐ころの転動面の自乗平均粗さσr(μm)と、外輪の軌道面の自乗平均粗さσo(μm)との合成粗さ
((σr 2+σo 2)1/2)(μm)、
及び、円錐ころの転動面の自乗平均粗さσr(μm)と内輪の軌道面の自乗平均粗さσi(μm)との合成粗さ
((σr 2+σi 2)1/2)(μm)
の少なくとも一方は、大鍔側にいくほど、大きく設定してある。
In other words, the combined roughness ((σ r 2 + σ o 2 ) of the mean square roughness σ r (μm) of the rolling surface of the tapered roller and the mean square roughness σ o (μm) of the raceway surface of the outer ring. ) 1/2 ) (μm),
And the combined roughness ((σ r 2 + σ i 2 ) 1/2 of the mean square roughness σ r (μm) of the rolling surface of the tapered roller and the mean square roughness σ i (μm) of the raceway surface of the inner ring. ) (Μm)
At least one of these is set to be larger as it goes to the side of Oiso.
本実施の形態では、大鍔方向にいく程、粗さが粗くなる。従って、大鍔方向にいく程、金属接触の割合が大きくなり、摩擦が増大するので、トラクションには、分布ができ、内・外輪1,2のトラクションの働く重心位置は、円錐ころ3の中心位置からΔyi(内輪側)、Δyo(外輪側)の距離だけずれる。そのため、正のスキューモーメント(Δyi×Ti+Δyo×To)が発生し、円錐ころ3のスキューが正の方向にずれる。以上から、本実施の形態では、スキュー角が正方向にずれるので、負のスキュー角をとる場合に比べて、摩擦が小になり、寿命が長くなる。
In the present embodiment, the roughness becomes rougher as the direction is larger. Accordingly, as the direction of the main shaft increases, the ratio of the metal contact increases and the friction increases, so that the traction is distributed, and the center of gravity position where the traction of the inner and
(第2実施の形態)
本実施の形態では、図1を参照して、自転軸回りの円錐ころに働く力を考察している。
(Second Embodiment)
In the present embodiment, the force acting on the tapered roller around the rotation axis is considered with reference to FIG.
大鍔の荷重をQf、摩擦係数をμとし、内輪から円錐ころに働くトラクションをTi、外輪から働くトラクションをToとし、定常時、公転座標系から視て、円錐ころ回転軸回りの力とモーメントの釣り合いを考えると、μQf、Ti、Toは、図1の向きに働く。 The force and moment around the axis of rotation of the tapered roller as viewed from the revolving coordinate system in the steady state, where Qf is the load of Daegu, μ is the friction coefficient, Ti is the traction acting from the inner ring to the tapered roller, and To is the traction acting from the outer ring. In consideration of the balance, μQf, Ti, and To work in the direction of FIG.
これは、接点位置で内輪回転方向に大鍔の摩擦μQfが働き、接点位置から比べると、内輪軌道面では、回転半径が小さくなるため、軌道面の周速が遅くなり、円錐ころ転動面は、回転半径が短くなるため、転動面の周速が速くなり、円錐ころは、自転の方向と逆向きに内輪軌道面からトラクションTiを受けることになることを示している。 This is because a large amount of friction μQf acts in the inner ring rotation direction at the contact position, and compared with the contact position, the inner ring raceway surface has a smaller radius of rotation, so the circumferential speed of the raceway surface becomes slower and the tapered roller rolling surface. Indicates that since the rotation radius is shortened, the peripheral speed of the rolling surface is increased, and the tapered roller receives traction Ti from the inner ring raceway surface in the direction opposite to the rotation direction.
仮に、Tiが図1の向きと逆の向きにかかるとすると、モーメントの釣り合いにより、Toは、図1と逆の向きに働かなければならないが、その場合、力の釣り合いが成立しなくなってしまうので、Tiは、図1の向きに働かなければならないことが分かる。 If Ti is applied in the direction opposite to that shown in FIG. 1, To must work in the direction opposite to that shown in FIG. 1 due to the balance of moments. In that case, the balance of force will not be established. Thus, it can be seen that Ti must work in the direction of FIG.
また、Toの向きは、円錐ころが外輪から駆動力を得ることを示している。仮にToが図1の向きと反対に働くとすると、力の釣り合いから、Ti>μQfでなければならないが、そうすると、モーメントの釣り合いが成り立たないので、Toは、図1の向きに働かなければならないことが分かる。 The direction of To indicates that the tapered roller obtains a driving force from the outer ring. If To works in the direction opposite to that in FIG. 1, the force balance must satisfy Ti> μQf. However, since the moment balance does not hold, To must work in the direction in FIG. 1. I understand that.
軸方向に摩擦の分布がないとし、つば荷重によるチルト及び軌道面の面圧分布の変化を無視すると、Ti,Toは、円錐ころの中心に働くのでスキューモーメントは、発生しない。 Assuming that there is no friction distribution in the axial direction, and ignoring the tilt and the change in the surface pressure distribution of the raceway surface due to the brim load, Ti and To work at the center of the tapered roller, so no skew moment is generated.
円錐ころ端面から円錐ころ中心までの距離をLとすると、円錐ころは、大鍔からの摩擦により、μQf×Lの負のスキューモーメントを発生させるため、円錐ころは、負のスキューをする。これにより、接点位置は、円錐ころ中心とのずれがΔxになり、Δx×Qfの正のスキューモーメントが発生して、次式が成立する。
μQf×L=Δx×Qf
When the distance from the end surface of the tapered roller to the center of the tapered roller is L, the tapered roller generates a negative skew moment of μQf × L due to friction from the large cage, and therefore the tapered roller has a negative skew. Thereby, the deviation of the contact position from the center of the tapered roller becomes Δx, a positive skew moment of Δx × Qf is generated, and the following equation is established.
μQf × L = Δx × Qf
図4は、本発明の第2実施の形態に係り、軸方向にクラウニング加工を施した場合のトラクションの模式図である。 FIG. 4 is a schematic diagram of traction when crowning is performed in the axial direction according to the second embodiment of the present invention.
本実施の形態では、後述するように、円錐ころの転動面、外輪の軌道面、及び内輪の軌道面の少なくとも1つにクラウニング加工を施し、その大鍔側のクラウニングの落ち量は、小鍔側のクラウニングの落ち量より小さく設定してある。 In the present embodiment, as will be described later, crowning is applied to at least one of the rolling surface of the tapered roller, the raceway surface of the outer ring, and the raceway surface of the inner ring, and the amount of the crowning drop on the large collar side is small. It is set smaller than the amount of drop of the crowning on the heel side.
従って、面圧分布は、大鍔方向の面圧が小鍔側の面圧より大きく、トラクションには、分布ができ、内・外輪のトラクションの働く重心位置は、円錐ころ中心位置からΔyi(内輪側)、Δyo(外輪側)の距離だけずれる。 Therefore, the surface pressure distribution is greater in the large heel direction than the surface pressure on the small heel side, the traction is distributed, and the center of gravity position at which the inner and outer ring traction acts is Δyi (inner ring Side) and Δyo (outer ring side).
そのため、正のスキューモーメント(Δyi×Ti+Δyo×To)が発生し、円錐ころのスキューが正の方向にずれる。 Therefore, a positive skew moment (Δyi × Ti + Δyo × To) is generated, and the skew of the tapered rollers is shifted in the positive direction.
以上から、本実施の形態では、スキュー角が正方向にずれるので、負のスキュー角をとる場合に比べて、摩擦が小になり、寿命が長くなる。 From the above, in the present embodiment, the skew angle is shifted in the positive direction, so that the friction is reduced and the life is extended as compared with the case of taking the negative skew angle.
図5(a)(b)(c)は、それぞれ、本発明の第2実施の形態に係り、クラウニング加工例を示す模式図である。 FIGS. 5A, 5B, and 5C are schematic views showing examples of crowning processing according to the second embodiment of the present invention.
本実施の形態では、円錐ころの転動面、外輪の軌道面、及び内輪の軌道面の少なくとも1つにクラウニング加工を施し、その大鍔側のクラウニングの落ち量は、小鍔側のクラウニングの落ち量より小さく設定してある。 In the present embodiment, crowning is applied to at least one of the rolling surface of the tapered roller, the raceway surface of the outer ring, and the raceway surface of the inner ring, and the amount of fall of the crowning on the large collar side is the same as that of the crowning on the small collar side. It is set smaller than the drop amount.
図5(a)の例では、クラウニング加工は、左右円弧の大きさが違う。大鍔側の落ち量が小鍔側の落ち量に比べ小さい。すなわち、クラウニング半径R1<クラウニング半径R2である。 In the example of FIG. 5A, the crowning process differs in the size of the left and right arcs. The amount of fall on the Oiso side is smaller than that on the Oiso side. That is, the crowning radius R1 <the crowning radius R2.
図5(b)の例では、クラウニング加工は、両端だらしであり、左右円弧の大きさが違う。大鍔側の落ち量が小鍔側の落ち量に比べ小さい。すなわち、クラウニング半径R1<クラウニング半径R2である。 In the example of FIG. 5B, the crowning process is splayed at both ends, and the sizes of the left and right arcs are different. The amount of fall on the Oiso side is smaller than that on the Oiso side. That is, the crowning radius R1 <the crowning radius R2.
図5(c)の例では、クラウニング加工は、複合円弧であり、左右円弧の大きさが違う。大鍔側の落ち量が小鍔側の落ち量に比べ小さい。すなわち、クラウニング半径R1<クラウニング半径R2である。 In the example of FIG. 5C, the crowning process is a composite arc, and the sizes of the left and right arcs are different. The amount of fall on the Oiso side is smaller than that on the Oiso side. That is, the crowning radius R1 <the crowning radius R2.
(第3実施の形態)
本実施の形態では、図1を参照して、自転軸回りの円錐ころに働く力を考察している。
(Third embodiment)
In the present embodiment, the force acting on the tapered roller around the rotation axis is considered with reference to FIG.
大鍔の荷重をQf、摩擦係数をμとし、内輪から円錐ころに働くトラクションをTi、外輪から働くトラクションをToとし、定常時、公転座標系から視て、円錐ころ回転軸回りの力とモーメントの釣り合いを考えると、μQf、Ti、Toは、図1の向きに働く。 The force and moment around the axis of rotation of the tapered roller as viewed from the revolving coordinate system in the steady state, where Qf is the load of Daegu, μ is the friction coefficient, Ti is the traction acting from the inner ring to the tapered roller, and To is the traction acting from the outer ring. In consideration of the balance, μQf, Ti, and To work in the direction of FIG.
これは、接点位置で内輪回転方向に大鍔の摩擦μQfが働き、接点位置から比べると、内輪軌道面では、回転半径が小さくなるため、軌道面の周速が遅くなり、円錐ころ転動面は、回転半径が短くなるため、転動面の周速が速くなり、円錐ころは、自転の方向と逆向きに内輪軌道面からトラクションTiを受けることになることを示している。 This is because a large amount of friction μQf acts in the inner ring rotation direction at the contact position, and compared with the contact position, the inner ring raceway surface has a smaller radius of rotation, so the circumferential speed of the raceway surface becomes slower and the tapered roller rolling surface. Indicates that since the rotation radius is shortened, the peripheral speed of the rolling surface is increased, and the tapered roller receives traction Ti from the inner ring raceway surface in the direction opposite to the rotation direction.
仮に、Tiが図1の向きと逆の向きにかかるとすると、モーメントの釣り合いにより、Toは、図1と逆の向きに働かなければならないが、その場合、力の釣り合いが成立しなくなってしまうので、Tiは、図1の向きに働かなければならないことが分かる。 If Ti is applied in the direction opposite to that shown in FIG. 1, To must work in the direction opposite to that shown in FIG. 1 due to the balance of moments. In that case, the balance of force will not be established. Thus, it can be seen that Ti must work in the direction of FIG.
また、Toの向きは、円錐ころが外輪から駆動力を得ることを示している。仮にToが図1の向きと反対に働くとすると、力の釣り合いから、Ti>μQfでなければならないが、そうすると、モーメントの釣り合いが成り立たないので、Toは、図1の向きに働かなければならないことが分かる。 The direction of To indicates that the tapered roller obtains a driving force from the outer ring. If To works in the direction opposite to that in FIG. 1, the force balance must satisfy Ti> μQf. However, since the moment balance does not hold, To must work in the direction in FIG. 1. I understand that.
軸方向に摩擦の分布がないとし、つば荷重によるチルト及び軌道面の面圧分布の変化を無視すると、Ti,Toは、円錐ころの中心に働くのでスキューモーメントは、発生しない。 Assuming that there is no friction distribution in the axial direction, and ignoring the tilt and the change in the surface pressure distribution of the raceway surface due to the brim load, Ti and To work at the center of the tapered roller, so no skew moment is generated.
円錐ころ端面から円錐ころ中心までの距離をLとすると、円錐ころは、大鍔からの摩擦により、μQf×Lの負のスキューモーメントを発生させるため、円錐ころは、負のスキューをする。これにより、接点位置は、円錐ころ中心とのずれがΔxになり、Δx×Qfの正のスキューモーメントが発生して、次式が成立する。
μQf×L=Δx×Qf
When the distance from the end surface of the tapered roller to the center of the tapered roller is L, the tapered roller generates a negative skew moment of μQf × L due to friction from the large cage, and therefore the tapered roller has a negative skew. Thereby, the deviation of the contact position from the center of the tapered roller becomes Δx, a positive skew moment of Δx × Qf is generated, and the following equation is established.
μQf × L = Δx × Qf
図6は、本発明の第3実施の形態に係り、軸方向に被膜処理を施した場合のトラクションの模式図である。 FIG. 6 relates to the third embodiment of the present invention and is a schematic diagram of traction when a coating treatment is performed in the axial direction.
本実施の形態では、小鍔側に被膜処理がしてある。 In the present embodiment, a coating process is performed on the side of the gavel.
例えば、リン酸エステル改質膜を処理すると、摩擦係数が減少する(参考文献:特開平2−256920号公報)。 For example, when the phosphate ester-modified film is treated, the friction coefficient decreases (reference document: Japanese Patent Laid-Open No. 2-256920).
また、DLCを被膜処理すると、摩擦係数が減少する(参考文献:特開2000−240667号公報)。 In addition, when the DLC is coated, the coefficient of friction decreases (reference document: Japanese Patent Laid-Open No. 2000-240667).
従って、相対的に大鍔側の摩擦係数は、小鍔側より大きくなり、摩擦が増大するので、トラクションには、分布ができ、内・外輪のトラクションの働く重心位置は、円錐ころ中心位置からΔyi(内輪側)、Δyo(外輪側)の距離だけずれる。 Therefore, the friction coefficient on the large collar side is relatively larger than that on the small collar side, and the friction is increased, so that the traction is distributed, and the center of gravity position where the inner and outer ring traction acts is from the central position of the tapered roller. The distance is shifted by Δyi (inner ring side) and Δyo (outer ring side).
そのため、正のスキューモーメント(Δyi×Ti+Δyo×To)が発生し、円錐ころのスキューが正の方向にずれる。 Therefore, a positive skew moment (Δyi × Ti + Δyo × To) is generated, and the skew of the tapered rollers is shifted in the positive direction.
また、逆に摩擦係数が大きくなる被膜の場合は、大鍔側に被膜処理をすると、同様の考察により、正のスキューモーメントが発生して、円錐ころのスキューが正方向にずれる。 On the other hand, in the case of a film having a large friction coefficient, if the film is processed on the large collar side, a positive skew moment is generated due to the same consideration, and the skew of the tapered roller is shifted in the positive direction.
以上から、本実施の形態では、スキュー角が正方向にずれるので、負のスキュー角をとる場合に比べて、摩擦が小になり、寿命が長くなる。 From the above, in the present embodiment, the skew angle is shifted in the positive direction, so that the friction is reduced and the life is extended as compared with the case of taking the negative skew angle.
図7(a)(b)は、それぞれ、本発明の第3実施の形態に係る円錐ころの模式的断面図である。 FIGS. 7A and 7B are schematic cross-sectional views of tapered rollers according to the third embodiment of the present invention, respectively.
内輪1と、外輪2との間に、円錐ころ3が転動自在に介装してあり、内輪1の大径側には、大鍔4が形成してある。
A
図7(a)の例では、円錐ころ3の転動面、外輪2の軌道面、及び内輪1の軌道面の少なくとも1つの小鍔側に、その摩擦係数を減少する被膜処理(Ma)が施してある。
In the example of FIG. 7A, a coating treatment (Ma) for reducing the friction coefficient is provided on at least one small side of the rolling surface of the tapered
図7(b)の例では、円錐ころ3の転動面、外輪2の軌道面、及び内輪1の軌道面の少なくとも1つの大鍔側に、その摩擦係数を増大する被膜処理(Mb)が施してある。
In the example of FIG. 7B, a coating treatment (Mb) that increases the coefficient of friction is provided on at least one large flange side of the rolling surface of the tapered
(第4実施の形態)
図8は、本発明の第4実施の形態に係り、円錐ころの自転軸回りの力と、モーメントとの釣り合いを模式的に示す図である。
(Fourth embodiment)
FIG. 8 is a diagram schematically showing the balance between the force around the rotation axis of the tapered roller and the moment according to the fourth embodiment of the present invention.
本実施の形態では、自転軸回りの円錐ころに働く力を考察している。 In this embodiment, the force acting on the tapered rollers around the rotation axis is considered.
鍔の荷重をQf、摩擦係数をμとし、内輪から円錐ころに働くトラクションをTi、外輪から働くトラクションをToとし、定常時、公転座標系から視ると、円錐ころに於ける、μQf、Ti、Toは、図8の向きに働く。参照文献(NSK Technical Journal 649号 図2,1988)。 The load of the heel is Qf, the friction coefficient is μ, the traction that works from the inner ring to the tapered roller is Ti, the traction that works from the outer ring is To, and when viewed from the revolving coordinate system in the steady state, μQf, Ti in the tapered roller , To work in the direction of FIG. Reference (NSK Technical Journal 649, FIG. 2, 1988).
ここで、円錐ころのチルトに関するモーメントの釣り合いを考える(図8左上)。鍔荷重により円錐ころはチルトするので、内輪側は大鍔側、外輪側は小鍔側に面圧の重心は移動する。 Here, consider the balance of moments related to the tilt of the tapered roller (upper left in FIG. 8). Since the tapered roller is tilted by the saddle load, the center of gravity of the surface pressure moves to the large collar side on the inner ring side and to the small collar side on the outer ring side.
内・外輪のトラクションは、面圧分布にほぼ比例するので(T≒μP)、内輪側は、大鍔側、外輪側は、小鍔側に、トラクションの重心が移動する。 Since the traction of the inner and outer rings is substantially proportional to the surface pressure distribution (T≈μP), the center of gravity of the traction moves to the large collar side on the inner ring side and to the small collar side on the outer ring side.
従って、内輪側のトラクションは、正のスキューモーメント、外輪側のトラクションは、負のスキューモーメントを与える。 Therefore, the traction on the inner ring side gives a positive skew moment, and the traction on the outer ring side gives a negative skew moment.
本実施の形態では、内輪の軌道面の粗さは、外輪の軌道面の粗さより粗くしてある。別言すれば、((σr 2+σi 2)1/2)>((σr 2+σo 2)1/2)に設定してある。 In the present embodiment, the roughness of the raceway surface of the inner ring is made rougher than the roughness of the raceway surface of the outer ring. In other words, ((σ r 2 + σ i 2 ) 1/2 )> ((σ r 2 + σ o 2 ) 1/2 ) is set.
従って、正のスキューモーメントが大きくなり、円錐ころのスキューが正方向に移動するため、トルクが下がり、寿命が伸びる。以上から、本実施の形態では、スキュー角が正方向にずれるので、負のスキュー角をとる場合に比べて、摩擦が小になり、寿命が長くなる。 Accordingly, the positive skew moment increases and the skew of the tapered roller moves in the positive direction, so that the torque is reduced and the life is extended. From the above, in the present embodiment, the skew angle is shifted in the positive direction, so that the friction is reduced and the life is extended as compared with the case of taking the negative skew angle.
なお、ここで、文献(NSK Technical Journal 649号 3頁(7)式の第2項)に見られるように、粗さが粗い程、摩擦係数が増大することは、公知である。
Here, as seen in the literature (NSK Technical Journal 649,
図9は、本発明の第4実施の形態に係る円錐ころの模式的断面図である。 FIG. 9 is a schematic cross-sectional view of a tapered roller according to a fourth embodiment of the present invention.
内輪1と、外輪2との間に、円錐ころ3が転動自在に介装してあり、内輪1の大径側には、大鍔4が形成してある。本実施の形態では、内輪1の軌道面1aの粗さは、外輪2の軌道面2aの粗さより粗くしてある。従って、正のスキューモーメントが大きくなり、円錐ころ3のスキューが正方向に移動するため、トルクが下がり、寿命が伸びる。
A
(第5実施の形態)
本実施の形態では、図8を参照して、自転軸回りの円錐ころに働く力を考察している。
(Fifth embodiment)
In the present embodiment, the force acting on the tapered roller around the rotation axis is considered with reference to FIG.
鍔の荷重をQf、摩擦係数をμとし、内輪から円錐ころに働くトラクションをTi、外輪から働くトラクションをToとし、定常時、公転座標系から視ると、円錐ころに於ける、μQf、Ti、Toは、図8の向きに働く。参照文献(NSK Technical Journal 649号 図2,1988)。 The load of the heel is Qf, the friction coefficient is μ, the traction that works from the inner ring to the tapered roller is Ti, the traction that works from the outer ring is To, and when viewed from the revolving coordinate system in the steady state, μQf, Ti in the tapered roller , To work in the direction of FIG. Reference (NSK Technical Journal 649, FIG. 2, 1988).
ここで、円錐ころのチルトに関するモーメントの釣り合いを考える(図8左上)。鍔荷重により円錐ころはチルトするので、内輪側は大鍔側、外輪側は小鍔側に面圧の重心は移動する。 Here, consider the balance of moments related to the tilt of the tapered roller (upper left in FIG. 8). Since the tapered roller is tilted by the saddle load, the center of gravity of the surface pressure moves to the large collar side on the inner ring side and to the small collar side on the outer ring side.
内・外輪のトラクションは、面圧分布にほぼ比例するので(T≒μP)、内輪側は、大鍔側、外輪側は、小鍔側に、トラクションの重心が移動する。 Since the traction of the inner and outer rings is substantially proportional to the surface pressure distribution (T≈μP), the center of gravity of the traction moves to the large collar side on the inner ring side and to the small collar side on the outer ring side.
従って、内輪側のトラクションは、正のスキューモーメント、外輪側のトラクションは、負のスキューモーメントを与える。 Therefore, the traction on the inner ring side gives a positive skew moment, and the traction on the outer ring side gives a negative skew moment.
本実施の形態では、内・外輪の軌道面のどちらか一方が被膜処理してある。すなわち、図10(a)に示すように、外輪2の軌道面2aに、摩擦係数が小さくなる(減少する)被膜処理が施してある。又は、図10(b)に示すように、内輪1の軌道面1aに、摩擦係数が大きくなる(上昇する)被膜処理が施してある。
In the present embodiment, either one of the raceways of the inner and outer rings is coated. That is, as shown in FIG. 10A, the
例えば、リン酸エステル改質膜を処理すると、摩擦係数が減少する(参考文献:特開平2−256920号公報)。また、DLCを被膜処理すると、摩擦係数が減少する(参考文献:特開2000−240667号公報)。なお、図10(a)(b)は、それぞれ、本発明の第5実施の形態に係る円錐ころの模式的断面図である。 For example, when the phosphate ester-modified film is treated, the friction coefficient decreases (reference document: Japanese Patent Laid-Open No. 2-256920). In addition, when the DLC is coated, the coefficient of friction decreases (reference document: Japanese Patent Laid-Open No. 2000-240667). FIGS. 10A and 10B are schematic sectional views of tapered rollers according to the fifth embodiment of the present invention.
従って、正のスキューモーメントが大きくなり、円錐ころのスキューが正方向に移動するため、トルクが下がり、寿命が伸びる。以上から、本実施の形態では、スキュー角が正方向にずれるので、負のスキュー角をとる場合に比べて、摩擦が小になり、寿命が長くなる。 Accordingly, the positive skew moment increases and the skew of the tapered roller moves in the positive direction, so that the torque is reduced and the life is extended. From the above, in the present embodiment, the skew angle is shifted in the positive direction, so that the friction is reduced and the life is extended as compared with the case of taking the negative skew angle.
なお、本発明は、上述した実施の形態に限定されず、種々変形可能である。第1実施の形態に係る粗さによる摩擦係数の制御、第2実施の形態に係るクラウニング加工による摩擦係数の制御制御、第3実施の形態に係るの被膜処理による摩擦係数の制御はそれぞれを2つ以上組合わせることもできる。 In addition, this invention is not limited to embodiment mentioned above, A various deformation | transformation is possible. The friction coefficient control by the roughness according to the first embodiment, the friction coefficient control control by the crowning process according to the second embodiment, and the friction coefficient control by the coating process according to the third embodiment are respectively 2 Two or more can be combined.
1 内輪
1a 軌道面
2 外輪
2a 軌道面
3 円錐ころ
4 大鍔
DESCRIPTION OF
Claims (12)
円錐ころのコーンセンターと、内・外輪のコーンセンターとは、一致し、
回転時に、円錐ころに、正のスキューが生じることを特徴とする円錐ころ軸受。 In a tapered roller bearing having an inner ring, an outer ring, and a plurality of tapered rollers,
The cone center of the tapered roller matches the cone center of the inner and outer rings
A tapered roller bearing in which a positive skew is generated in a tapered roller during rotation.
((σr 2+σo 2)1/2)、
及び、円錐ころの転動面の粗さσrと内輪の軌道面の粗さσiとの合成粗さ
((σr 2+σi 2)1/2)
の少なくとも一方は、大鍔側にいくほど、大きく設定してあることを特徴とする請求項1又は2に記載の円錐ころ軸受。 The combined roughness ((σ r 2 + σ o 2 ) 1/2 ) of the roughness σ r of the rolling surface of the tapered roller and the roughness σ o of the raceway surface of the outer ring,
And the combined roughness of the roughness σ r of the rolling surface of the tapered roller and the roughness σ i of the raceway surface of the inner ring ((σ r 2 + σ i 2 ) 1/2 )
The tapered roller bearing according to claim 1, wherein at least one of the diameters is set to be larger as it goes to the large collar side.
((σr 2+σo 2)1/2)、
及び、円錐ころの転動面の粗さσrと内輪の軌道面の粗さσiとの合成粗さ
((σr 2+σi 2)1/2)
が、((σr 2+σi 2)1/2)>((σr 2+σo 2)1/2)に設定してあることを特徴とする請求項1又は4に記載の円錐ころ軸受。 The combined roughness ((σ r 2 + σ o 2 ) 1/2 ) of the roughness σ r of the rolling surface of the tapered roller and the roughness σ o of the raceway surface of the outer ring,
And the combined roughness of the roughness σ r of the rolling surface of the tapered roller and the roughness σ i of the raceway surface of the inner ring ((σ r 2 + σ i 2 ) 1/2 )
Is set to ((σ r 2 + σ i 2 ) 1/2 )> ((σ r 2 + σ o 2 ) 1/2 ), The tapered roller bearing according to claim 1 or 4, .
その大鍔側のクラウニングの落ち量は、小鍔側のクラウニングの落ち量より小さく設定してあることを特徴とする請求項1に記載の円錐ころ軸受。 Crowning at least one of the rolling surface of the tapered roller, the raceway surface of the outer ring, and the raceway surface of the inner ring,
2. The tapered roller bearing according to claim 1, wherein a drop amount of the crowning on the large collar side is set smaller than a fall amount of the crowning on the small collar side.
その摩擦係数は、大鍔側の方が小鍔側より大きく設定してあることを特徴とする請求項1に記載の円錐ころ軸受。 A coating treatment is applied to at least one of the rolling surface of the tapered roller, the raceway surface of the outer ring, and the raceway surface of the inner ring,
2. The tapered roller bearing according to claim 1, wherein the coefficient of friction is set larger on the large collar side than on the small collar side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006083708A JP2007040520A (en) | 2005-07-01 | 2006-03-24 | Tapered roller bearing |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005194131 | 2005-07-01 | ||
JP2006083708A JP2007040520A (en) | 2005-07-01 | 2006-03-24 | Tapered roller bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007040520A true JP2007040520A (en) | 2007-02-15 |
Family
ID=37798689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006083708A Withdrawn JP2007040520A (en) | 2005-07-01 | 2006-03-24 | Tapered roller bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007040520A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010106974A (en) * | 2008-10-30 | 2010-05-13 | Nsk Ltd | Tapered roller bearing |
WO2017164325A1 (en) * | 2016-03-24 | 2017-09-28 | Ntn株式会社 | Double-row spherical roller bearing |
JP2017180831A (en) * | 2016-03-24 | 2017-10-05 | Ntn株式会社 | Double-row self-aligning roller bearing |
JP2017180832A (en) * | 2016-03-24 | 2017-10-05 | Ntn株式会社 | Double-row self-aligning roller bearing |
US9995341B2 (en) | 2013-04-04 | 2018-06-12 | Nsk Ltd. | Resin cage for tapered roller bearing and tapered roller bearing including the resin cage |
JP2018136027A (en) * | 2017-02-20 | 2018-08-30 | Ntn株式会社 | Comical roller bearing |
CN108884867A (en) * | 2016-03-24 | 2018-11-23 | Ntn株式会社 | Double self-aligning roller bearing |
US10302131B2 (en) | 2012-12-25 | 2019-05-28 | Nsk Ltd. | Tapered roller bearing |
-
2006
- 2006-03-24 JP JP2006083708A patent/JP2007040520A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010106974A (en) * | 2008-10-30 | 2010-05-13 | Nsk Ltd | Tapered roller bearing |
US10302131B2 (en) | 2012-12-25 | 2019-05-28 | Nsk Ltd. | Tapered roller bearing |
US9995341B2 (en) | 2013-04-04 | 2018-06-12 | Nsk Ltd. | Resin cage for tapered roller bearing and tapered roller bearing including the resin cage |
WO2017164325A1 (en) * | 2016-03-24 | 2017-09-28 | Ntn株式会社 | Double-row spherical roller bearing |
JP2017180831A (en) * | 2016-03-24 | 2017-10-05 | Ntn株式会社 | Double-row self-aligning roller bearing |
JP2017180832A (en) * | 2016-03-24 | 2017-10-05 | Ntn株式会社 | Double-row self-aligning roller bearing |
CN108884867A (en) * | 2016-03-24 | 2018-11-23 | Ntn株式会社 | Double self-aligning roller bearing |
US10655674B2 (en) | 2016-03-24 | 2020-05-19 | Ntn Corporation | Double-row self-aligning roller bearing |
JP2018136027A (en) * | 2017-02-20 | 2018-08-30 | Ntn株式会社 | Comical roller bearing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007040520A (en) | Tapered roller bearing | |
WO2013051696A1 (en) | Rolling bearing | |
JP2009121659A (en) | Rolling member | |
JP2007198518A (en) | Roller and roller bearing | |
JP2011094716A (en) | Thrust roller bearing | |
JPS6224025A (en) | Rolling bearing | |
JP2006300133A (en) | Rolling bearing | |
JP2007170418A (en) | Tapered roller bearing | |
JP2008298171A (en) | Flanged cylindrical roller bearing | |
JP2016023707A (en) | Self-aligning roller bearing | |
JP2007085542A (en) | Self-alignment roller bearing with holder and manufacturing method of holder for self-alignment roller bearing | |
JP2004324733A (en) | Cross roller bearing | |
JP2008261458A (en) | Tapered roller bearing | |
JP2009185978A (en) | Retainer for tapered roller bearings and tapered roller bearing | |
JP2009008240A (en) | Tapered roller bearing | |
JP6829522B2 (en) | Self-aligning roller bearing | |
JP2021109545A (en) | Hub unit bearing | |
JP2020159498A (en) | Cross roller bearing | |
JP2007139019A (en) | Conical roller bearing | |
JP6927347B2 (en) | Self-aligning roller bearing | |
JPH04351314A (en) | Conical roller bearing | |
JP2006200672A (en) | Thrust roller bearing | |
JP2023137696A (en) | Cage for rolling bearing, rolling bearing and design method of cage for rolling bearing | |
JP2007120715A (en) | Tapered roller bearing | |
JP2016075316A (en) | Conical roller bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20090602 |