JP2006524813A - Thin film evaluation method - Google Patents
Thin film evaluation method Download PDFInfo
- Publication number
- JP2006524813A JP2006524813A JP2006506458A JP2006506458A JP2006524813A JP 2006524813 A JP2006524813 A JP 2006524813A JP 2006506458 A JP2006506458 A JP 2006506458A JP 2006506458 A JP2006506458 A JP 2006506458A JP 2006524813 A JP2006524813 A JP 2006524813A
- Authority
- JP
- Japan
- Prior art keywords
- film
- medium
- signal waveform
- refractive index
- excitation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title description 12
- 238000011156 evaluation Methods 0.000 title description 4
- 238000000034 method Methods 0.000 claims abstract description 41
- 239000002184 metal Substances 0.000 claims abstract description 29
- 229910052751 metal Inorganic materials 0.000 claims abstract description 29
- 239000000523 sample Substances 0.000 claims abstract description 26
- 230000005284 excitation Effects 0.000 claims abstract description 20
- 239000007788 liquid Substances 0.000 claims abstract description 12
- 239000012528 membrane Substances 0.000 claims description 14
- 238000009792 diffusion process Methods 0.000 claims description 7
- 230000000737 periodic effect Effects 0.000 claims description 7
- 238000010521 absorption reaction Methods 0.000 claims description 5
- 238000004458 analytical method Methods 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 5
- 238000012937 correction Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 230000031700 light absorption Effects 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims description 2
- 239000007787 solid Substances 0.000 abstract description 4
- 238000000691 measurement method Methods 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 53
- 239000003570 air Substances 0.000 description 25
- 238000005259 measurement Methods 0.000 description 14
- 238000010897 surface acoustic wave method Methods 0.000 description 12
- 229910008482 TiSiN Inorganic materials 0.000 description 8
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000010949 copper Substances 0.000 description 4
- 230000001052 transient effect Effects 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000000790 scattering method Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005279 excitation period Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000391 spectroscopic ellipsometry Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/4409—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
- G01N29/4418—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a model, e.g. best-fit, regression analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
- G01B11/0616—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
- G01B11/0666—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating using an exciting beam and a detection beam including surface acoustic waves [SAW]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/02—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
- G01B21/08—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
- G01B21/085—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness using thermal means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/1717—Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/8422—Investigating thin films, e.g. matrix isolation method
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
- G01N29/2418—Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/4409—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
- G01N29/4427—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/449—Statistical methods not provided for in G01N29/4409, e.g. averaging, smoothing and interpolation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/46—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/01—Indexing codes associated with the measuring variable
- G01N2291/015—Attenuation, scattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/023—Solids
- G01N2291/0237—Thin materials, e.g. paper, membranes, thin films
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/042—Wave modes
- G01N2291/0423—Surface waves, e.g. Rayleigh waves, Love waves
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Mathematical Physics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Acoustics & Sound (AREA)
- Probability & Statistics with Applications (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本発明は、レーザーにより、膜(22)と接する気体または液体媒体中に屈折率回折格子を生じさせて、極めて薄い固体膜(22)を評価する新しい測定法を提供する。第1の実施例では、気体または液体媒体中の励起弾性波(25)が回折プローブビームの強度を変調し、固体試料で励起される弾性モードの周波数よりも低い周波数に信号成分が得られる。この低周波成分の振幅は、膜(22)によって吸収されるエネルギー量、すなわち膜厚と相関があるため、下地誘電体層上の金属膜の膜厚を測定したり、金属膜を検出したりする方法が提供される。The present invention provides a new measurement method for evaluating very thin solid films (22) by generating a refractive index grating in a gas or liquid medium in contact with the film (22) by means of a laser. In the first embodiment, the excitation elastic wave (25) in the gas or liquid medium modulates the intensity of the diffractive probe beam, and a signal component is obtained at a frequency lower than the frequency of the elastic mode excited by the solid sample. The amplitude of this low frequency component has a correlation with the amount of energy absorbed by the film (22), that is, the film thickness, so the thickness of the metal film on the underlying dielectric layer can be measured, or the metal film can be detected. A method is provided.
Description
本願は、2003年4月16日に出願された米国仮出願第60/463,259号の利益を主張するものであり、その内容は、ここでは参照文献として取り入れられている。 This application claims the benefit of US Provisional Application No. 60 / 463,259, filed Apr. 16, 2003, the contents of which are hereby incorporated by reference.
本発明は、例えば薄膜構造の試料の特性を評価する光測定技術に関する。 The present invention relates to an optical measurement technique for evaluating characteristics of a sample having a thin film structure, for example.
例えばシリコン基板や誘電体層上に成膜された金属薄膜の特性を評価する非接触式光測定法には、産業用プロセスモニタリングやプロセス制御に対する大きな需要がある。プロセス制御を行う上での最も重要なパラメータの一つに、金属薄膜の厚さ測定がある。現在、超小型電子機器に用いられる金属薄膜の厚さは、通常100−200Åから数ミクロンの範囲にあり、さらに最先端技術では、100Åまたはそれ未満のより薄い膜を用いることが必要となる。100Åよりも薄い金属薄膜の評価が要求される一つの用途は、銅の相互接続用の最新拡散バリアの成形加工である。別の想定される用途は、誘電体層上部の金属残留物の検出であり、この残留物は、銅の相互接続処理プロセスでの研磨ステップ後に残留し、回路の電気特性を不安定にする。 For example, a non-contact optical measurement method for evaluating the characteristics of a metal thin film formed on a silicon substrate or a dielectric layer has a great demand for industrial process monitoring and process control. One of the most important parameters for process control is the measurement of the thickness of the metal thin film. Currently, the thickness of metal thin films used in microelectronics is typically in the range of 100-200 mm to a few microns, and the state of the art requires the use of thinner films of 100 mm or less. One application that requires the evaluation of metal films thinner than 100 mm is the fabrication of advanced diffusion barriers for copper interconnects. Another envisaged application is the detection of metal residues on top of the dielectric layer, which remains after a polishing step in the copper interconnect processing process, destabilizing the electrical characteristics of the circuit.
レーザー誘起過渡回折格子法またはインパルス励起熱散乱法(以降ISTSという)と呼ばれる、ある既知の方法では、図1に示すように、第1の励起レーザーパルス3、3’が表面弾性波(SAW)を生じさせ、このSAWは、膜の平面方向に伝搬する(拡大部8参照)。第2のプローブレーザーパルス6、6’は、膜1の表面で回折し、センサ7がSAWの周波数を測定する。SAW周波数は、膜厚に依存する。ISTSは、例えば米国特許第5,633,711号(題目;光誘起フォノンによる材料特性の評価)および米国特許第5,812,261号(題目;不透明および透明膜の厚さ計測の方法と装置)に記載されており、それらの内容は、ここでは参照文献として取り入れられている。
In one known method, called laser-induced transient grating method or impulse-excited heat scattering method (hereinafter referred to as ISTS), the first excitation laser pulse 3, 3 'is a surface acoustic wave (SAW) as shown in Figure 1 This SAW propagates in the plane direction of the film (see the enlarged portion 8). The second
上記の技術は、100Å−10μmの範囲の金属膜の厚さ測定には、支障なく用いられている。しかしながら、この方法による測定を極めて薄い膜(<100Å)に拡張して適用することは、難しいことが明らかとなっている。主な問題は、通常のSAW波長は数ミクロンであり、数十Åの膜厚は、SAW波長の1/1000程度に過ぎないことである。このため、膜はSAWの伝搬に対してほとんど影響を及ぼさず、SAWの周波数に基づいて膜厚測定を正確に行うことは難しい。 The above technique is used without any trouble for the measurement of the thickness of the metal film in the range of 100 to 10 μm. However, it has been found difficult to apply this method to very thin films (<100 mm). The main problem is that the normal SAW wavelength is several microns, and the film thickness of several tens of millimeters is only about 1/1000 of the SAW wavelength. For this reason, the film has little influence on the SAW propagation, and it is difficult to accurately measure the film thickness based on the SAW frequency.
ISTSによって固体表面に生じる信号波形は、励起光の吸収によって生じた異なる物理的プロセスによるいくつかの成分を有する。通常、信号に対して最も大きな影響を及ぼす成分は、表面の「リップル」からのプローブビームの回折によるものである。表面弾性波による表面変位は、信号の高周波数成分に影響を及ぼし、温度分布に関連する変位は、遅い側に減衰成分を生じさせる。 The signal waveform produced by ISTS on a solid surface has several components due to different physical processes caused by absorption of excitation light. Usually, the component that has the greatest effect on the signal is due to diffraction of the probe beam from the surface “ripple”. Surface displacement due to surface acoustic waves affects the high frequency component of the signal, and displacement associated with the temperature distribution causes an attenuation component on the slow side.
信号の別の成分は、試料表面上部の空気の屈折率の変化によるものである。試料表面での励起パルスの吸収の際に、発生した熱の一部が熱拡散により空気に伝達される。この結果、空気の温度が空間的に、周期的に上昇する。この瞬間的な空気温度の上昇は、さらに弾性波の励起につながる。これらの弾性波は、プローブパルスの屈折率に周期的変化を生じさせ、プローブパルスの回折にも影響を及ぼす。空気中の音速は比較的低速度のため、空気中の弾性波の周波数は、通常、同じ波長のSAW周波数よりも小さな値となる。この低周波数のため、空気中の波の影響は、信号中の他の成分から容易に区別することができる。 Another component of the signal is due to the change in the refractive index of the air above the sample surface. When absorbing the excitation pulse on the sample surface, a part of the generated heat is transferred to the air by thermal diffusion. As a result, the temperature of the air rises spatially and periodically. This instantaneous increase in air temperature further leads to excitation of elastic waves. These elastic waves cause a periodic change in the refractive index of the probe pulse and also affect the diffraction of the probe pulse. Since the speed of sound in air is relatively low, the frequency of elastic waves in air is usually smaller than the SAW frequency of the same wavelength. Because of this low frequency, the effects of waves in the air can be easily distinguished from other components in the signal.
空気中の弾性波による過渡回折格子信号の成分は、従来より注目されており、例えばヤングらの、題目「C-N膜の弾性率と熱拡散の光測定」(J. Mater. Res.、10巻、1号、1995年1月)に示されているが、この信号成分から有益な情報を取り出すことは、全く行われていない。従って、ISTS信号に含まれる、このようなこれまで未使用の付随的情報を利用することが望まれている。
本発明は、試料と接する気体または液体媒体の屈折率攪乱部によって生じる過渡回折格子信号成分を用いて、極めて薄い金属膜を検出し、その厚さを評価することを課題とする。 An object of the present invention is to detect a very thin metal film using a transient diffraction grating signal component generated by a refractive index perturbation part of a gas or liquid medium in contact with a sample, and evaluate its thickness.
ある態様では、本発明は、膜を励起させて膜を評価する方法を有し、本方法は、
空間周期的な光励起場で前記膜を照射して、熱回折格子を生じさせるステップと、
前記膜と接する気体または液体媒体中に、前記膜から前記媒体への熱伝達により、空間周期的な屈折率攪乱部を生じさせるステップと、
前記媒体中の前記屈折率攪乱部でプローブレーザービームを回折させ、信号ビームを形成するステップと、
時間の関数として前記信号ビームを検出して、信号波形を生じさせるステップと、
前記信号波形に基づいて、前記膜の少なくとも一つの特性を決定するステップと、
を有する。
In one aspect, the invention comprises a method of exciting a membrane to evaluate the membrane, the method comprising:
Irradiating the film with a spatially periodic optical excitation field to produce a thermal diffraction grating;
Creating a spatially periodic refractive index perturbation in a gas or liquid medium in contact with the film by heat transfer from the film to the medium;
Diffracting a probe laser beam at the refractive index perturbation in the medium to form a signal beam;
Detecting the signal beam as a function of time to produce a signal waveform;
Determining at least one characteristic of the membrane based on the signal waveform;
Have
本発明のある実施例では、前記膜は金属膜である。別の実施例では、前記膜は、100Å未満の厚さの金属膜である。別の実施例では、前記膜は、励起放射線に対して透明な下地層を覆うように設置される。さらに別の実施例では、励起周波数での下地層の光吸収係数は、前記膜の材料の吸収係数よりも小さい。 In an embodiment of the present invention, the film is a metal film. In another embodiment, the film is a metal film having a thickness of less than 100 mm. In another embodiment, the membrane is placed so as to cover an underlying layer that is transparent to excitation radiation. In yet another embodiment, the light absorption coefficient of the underlayer at the excitation frequency is smaller than the absorption coefficient of the material of the film.
別の実施例では、前記膜と接する前記気体媒体は空気である。 In another embodiment, the gaseous medium in contact with the membrane is air.
別の実施例では、前記試料と接する気体および液体中の前記屈折率攪乱部は、媒体中の弾性波によって生じる。 In another embodiment, the refractive index perturbation in the gas and liquid in contact with the sample is caused by elastic waves in the medium.
別の実施例では、前記媒体中の前記弾性波は、前記信号波形の低周波変調を生じさせる。 In another embodiment, the elastic wave in the medium causes a low frequency modulation of the signal waveform.
別の実施例では、前記決定するステップは、前記信号波形の前記低周波成分の解析に基づいて行われる。 In another embodiment, the determining step is performed based on an analysis of the low frequency component of the signal waveform.
別の実施例では、前記決定するステップは、実験的補正により前記信号波形を解析するステップを有する。 In another embodiment, the determining step comprises analyzing the signal waveform with experimental correction.
さらに別の実施例では、前記決定するステップは、理論モデルで前記信号波形を解析するステップを有する。 In yet another embodiment, the determining step comprises analyzing the signal waveform with a theoretical model.
別の実施例では、前記少なくとも一つの特性は、前記膜の厚さに関する。 In another embodiment, the at least one characteristic relates to the thickness of the film.
さらに別の実施例では、前記少なくとも一つの特性は、前記膜の有無に関する。 In yet another embodiment, the at least one characteristic relates to the presence or absence of the film.
本発明は多くの利点を有し、これらは以下の記載、図面および特許請求の範囲から明らかであろう。 The present invention has many advantages, which will be apparent from the following description, drawings and claims.
本発明は、添付の図面を参照することにより、より理解されよう。 The invention will be better understood with reference to the following drawings.
本発明の新しい方法では、波動信号を用いて、通常、シリコンウェハ上の誘電体層を覆うように成膜される金属薄膜が検出され、その厚さが測定される。 In the new method of the present invention, a metal thin film formed so as to cover a dielectric layer on a silicon wafer is usually detected using a wave signal, and the thickness thereof is measured.
図2には、シリコン基板24上の透明誘電体層23(例えばSiO2)層を覆うように成膜された、極めて薄い半透明金属膜22を有する試料21を示す。2本の短レーザーパルス26、26’は、従来技術の方法と同様に、周期27を有する空間周期的な光強度パターンを形成する。金属薄膜22がない場合、励起光26、26’の吸収は、Si基板24においてのみ生じる。通常、相互接続誘電体の熱伝導度は、シリコンに比べて十分に低いため、空気側にはほとんど熱は伝達されない。従って、空気中に弾性波は発生しない。
FIG. 2 shows a
図3には、シリコンウェハ上に熱成長させた0.55μm厚さのSiO2膜を有する試料で測定された信号波形を示す。励起周期は8.86μmである。この波形は、空気中に生じる弾性波による寄与分を含まない。試料には金属膜22が設けられていないからである。
FIG. 3 shows signal waveforms measured on a sample having a 0.55 μm thick SiO 2 film thermally grown on a silicon wafer. The excitation period is 8.86 μm. This waveform does not include a contribution due to elastic waves generated in the air. This is because the
試料21の表面に金属薄膜22がある場合、励起パルス26、26’のエネルギーの一部は、膜22に吸収され、熱拡散により空気側に伝達される。図2には、この伝達が矢印25で示されている。この結果、瞬間的な空気の熱膨張および弾性波の励起が生じ、空気の屈折率が変化する。得られる空気の屈折率の空間周期的な変化は、回折格子としてプローブビーム6に影響を及ぼし、回折信号ビーム6’が得られる。
When the metal
図4には、図3に示した波形と同じ条件で測定された信号波形を示す。試料には、Siウェハ上の0.55μmのSiO2に46ÅのTiSiN膜が化学蒸着されている。従って、図3と図4の測定では、後者の場合、極めて薄いTiSiN膜22があることだけが異なっている。信号波形は変調され、遅い振動200が生じていることがわかる。励起パターンの空間周期によって定められる8.86μmの弾性波を、遅い振動200の周期25.4nsで割ると、349m/sの速度、すなわち通常の条件での空気の音速が得られる。従って遅い振動200は、TiSiN膜22から膜の上部の空気への熱伝達により生じる、空気中の弾性波による信号成分に対応する。その低周波数のため、空気中の弾性波の信号への寄与は、他の信号成分(例えば、波形の高周波数振動100に影響するSAW成分)から容易に区別することができる。
FIG. 4 shows signal waveforms measured under the same conditions as the waveforms shown in FIG. In the sample, a 46-Si TiSiN film is chemically deposited on 0.55 μm SiO 2 on a Si wafer. Therefore, the measurements in FIGS. 3 and 4 differ only in that the latter has an extremely
金属膜の厚さがゼロの場合、空気中の弾性波による信号成分は存在しないため、この信号成分の振幅は、ある厚さの範囲では、膜厚の増大とともに増大する。膜が厚くなると、膜はより多くの励起エネルギーを吸収し、結果的により多くのエネルギーが空気中に伝達される。この傾向は、膜がほぼ透明な場合、すなわち材質にもよるが、100乃至300Åまでの厚さである限り観測され得る。厚く、不透明な膜の場合、この傾向は逆になる。これは、膜が厚い場合、膜の厚み方向を横断する熱が膜の表面に至るまでに冷却され、空気にまで伝達される熱量が少なくなるからである。 When the thickness of the metal film is zero, there is no signal component due to elastic waves in the air. Therefore, the amplitude of this signal component increases as the film thickness increases within a certain thickness range. As the membrane becomes thicker, the membrane absorbs more excitation energy and consequently more energy is transferred into the air. This tendency can be observed when the film is almost transparent, that is, depending on the material, as long as the thickness is between 100 and 300 mm. This trend is reversed for thick, opaque films. This is because when the film is thick, the heat traversing in the thickness direction of the film is cooled down to the surface of the film, and the amount of heat transferred to the air is reduced.
従って、膜厚が100Å未満の場合、信号中の遅い振動200の振幅と膜厚との間には相関がある。これにより、遅い振動200の振幅を用いて膜厚の測定を行うことが可能となる。
Therefore, when the film thickness is less than 100 mm, there is a correlation between the amplitude of the
前記振幅の識別のため、信号波形の「尾部」が、指数関数的に減衰する関数、減衰振動および一定のオフセットの総和からなる以下の関数でフィッティングされる。 In order to identify the amplitude, the “tail” of the signal waveform is fitted with the following function consisting of a sum of an exponentially damped function, a damped oscillation and a constant offset.
図6には、1組のTiSiN膜試料において得られた信号の遅い振動成分の測定振幅を示す。この図には、低角入射x線反射法(XRR)という別の既知の方法によって測定された結果も示されている。図6においてシンボル60は、実験的に測定されたデータを表し、シンボル60をつなぐ線61は、その後の測定において校正曲線として使用される、内挿多項式曲線を表す。本発明の方法による測定とXRRの間には、良好な相関が得られている。内挿曲線がx軸とゼロではなく、約13Åに相当する点で交差していることは、成膜と測定の期間内に、膜が周囲の空気にさらされて、部分的に酸化されたことを示している。通常金属酸化物は、金属に比べて十分に小さい吸収係数を示すため、本発明の方法では、金属膜22の非酸化残留部分に対してのみ感度がある。
FIG. 6 shows the measured amplitude of the slow vibration component of the signal obtained in one set of TiSiN film samples. The figure also shows the results measured by another known method called low angle incident x-ray reflection (XRR). In FIG. 6, a
図7には、0.55μmの熱成長SiO2を有する直径200mmのSiウェハ上に成膜された2種類のTiSiN膜の半径方向のプロファイルを示す。上述の手法により信号中の遅い振動200の振幅を測定して、図6のような実験値補正を行ったデータが示されている。信号対ノイズ比を改善するため、データは、半径方向の走査により連続的に測定された10箇所以上の値で平均化されている。上記の測定例は、実験値補正を用いているが、本方法は、以下のステップを有する理論モデルを用いることで、精度をより高め得ることに留意する必要がある。そのステップは、
(1)多層構造上に成膜された測定膜での光吸収の算定。これは従来技術による方法で行うことができる。
(2)熱拡散問題を解いて、試料と接する気体または液体媒体の温度上昇を決定するステップ、および、
(3)気体または液体媒体に生じる弾性波の振幅を算定するステップ、
を有する。
FIG. 7 shows radial profiles of two types of TiSiN films formed on a 200 mm diameter Si wafer having 0.55 μm thermally grown SiO 2 . FIG. 6 shows data obtained by measuring the amplitude of the
(1) Calculation of light absorption in a measurement film formed on a multilayer structure. This can be done by methods according to the prior art.
(2) solving the thermal diffusion problem to determine the temperature rise of the gas or liquid medium in contact with the sample; and
(3) calculating the amplitude of the elastic wave generated in the gas or liquid medium;
Have
固体試料と接する液体の熱拡散および音響問題(2)、(3)を解くために用いられるモデルおよび方法は、従来技術である。 The models and methods used to solve the thermal diffusion and acoustic problems (2), (3) of the liquid in contact with the solid sample are prior art.
図7に示すデータは、本発明の方法の実際的な利用の一例を表しており、本方法は、化学蒸着されたCuの相互接続(厚さ〜50Å)のバリア膜の厚さおよび均一性の評価に利用される。 The data shown in FIG. 7 represents an example of the practical application of the method of the present invention, which is the thickness and uniformity of the barrier film of a chemical vapor deposited Cu interconnect (thickness ~ 50 mm). Used for evaluation.
上述のXRR技術および分光偏光解析法のような他の技術を用いることにより、100Åおよびより薄い金属膜でも測定を行うことができることに留意する必要がある。本発明の方法の利点は、その高い感度にあり、これは、空気中の弾性波による過渡回折格子信号の成分が、ほぼ完全に金属膜の存在に起因するためである。金属膜の有無を検出する必要がある場合、例えば、銅の相互接続構造部の化学的機械的研磨(CMP)後の金属残留物の検出に、この方法を利用することは特に有意である。別の利点は、本測定を、標準的な市販のISTS機器を用いて行うことができることであり、極めて薄い膜の測定は本発明によって、またより厚い膜の測定は従来技術のISTS技術によって、単一の機器で行うことが可能となる。 It should be noted that by using other techniques such as the XRR technique and spectroscopic ellipsometry described above, measurements can be performed on 100 mm and thinner metal films. The advantage of the method of the present invention lies in its high sensitivity, because the component of the transient diffraction grating signal due to elastic waves in air is almost completely due to the presence of the metal film. When it is necessary to detect the presence or absence of a metal film, it is particularly significant to use this method for detecting metal residues after, for example, chemical mechanical polishing (CMP) of copper interconnect structures. Another advantage is that this measurement can be performed using standard commercial ISTS instruments, with extremely thin membrane measurements according to the present invention and thicker membrane measurements according to prior art ISTS technology. This can be done with a single device.
空気中の弾性波励起に関する上述の機構は、試料と接する別の気体または液体媒体にも等しく適用できることに留意する必要がある。液体中に浸漬された試料での測定は、CMPプロセスのその場制御のような潜在的用途に利用し得る。本発明は、多くの付随的な利点を有し、それらの利点は、本記述、図面および特許請求の範囲から明らかである。 It should be noted that the mechanism described above for acoustic wave excitation in air is equally applicable to other gas or liquid media in contact with the sample. Measurements on samples immersed in liquid can be used for potential applications such as in situ control of the CMP process. The present invention has many attendant advantages, which will be apparent from the description, drawings, and claims.
上述の表現および例示は、一例に過ぎず、請求項の範囲を限定するものと解することはできない。 The above expressions and illustrations are only examples and cannot be construed as limiting the scope of the claims.
Claims (13)
空間周期的な光励起場で前記膜を照射して、熱回折格子を生じさせるステップと、
前記膜と接する気体または液体媒体中に、前記膜から前記媒体への熱伝達により、空間周期的な屈折率攪乱部を生じさせるステップと、
前記媒体中の前記屈折率攪乱部でプローブレーザービームを回折させ、信号ビームを形成するステップと、
時間の関数として前記信号ビームを検出して、信号波形を生じさせるステップと、
前記信号波形に基づいて、前記膜の少なくとも一つの特性を決定するステップと、
を有する方法。 A method for evaluating a membrane comprising:
Irradiating the film with a spatially periodic optical excitation field to produce a thermal diffraction grating;
Creating a spatially periodic refractive index perturbation in a gas or liquid medium in contact with the film by heat transfer from the film to the medium;
Diffracting a probe laser beam at the refractive index perturbation in the medium to form a signal beam;
Detecting the signal beam as a function of time to produce a signal waveform;
Determining at least one characteristic of the membrane based on the signal waveform;
Having a method.
前記膜と接する前記気体または液体媒体中に温度上昇を生じさせる熱拡散の解析と、
前記温度上昇によって生じる前記弾性波の励起の解析と、
前記温度上昇および前記媒体中の弾性波によって生じる、前記屈折率攪乱部で回折される前記プローブビームの解析と、
を有することを特徴とする請求項1に記載の方法。 The step of determining comprises analyzing the signal waveform with a theoretical model having a calculation of light absorption by the film;
Analysis of thermal diffusion causing a temperature rise in the gas or liquid medium in contact with the membrane;
An analysis of the excitation of the elastic waves caused by the temperature rise;
Analysis of the probe beam diffracted by the refractive index perturbation caused by the temperature rise and elastic waves in the medium;
The method of claim 1, comprising:
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US46325903P | 2003-04-16 | 2003-04-16 | |
US48962903P | 2003-07-24 | 2003-07-24 | |
PCT/IB2004/001107 WO2004092714A1 (en) | 2003-04-16 | 2004-04-12 | Method for measuring thin films |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006524813A true JP2006524813A (en) | 2006-11-02 |
Family
ID=33303117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006506458A Pending JP2006524813A (en) | 2003-04-16 | 2004-04-12 | Thin film evaluation method |
Country Status (5)
Country | Link |
---|---|
US (1) | US20070109540A1 (en) |
EP (1) | EP1618366A1 (en) |
JP (1) | JP2006524813A (en) |
KR (1) | KR20050123156A (en) |
WO (1) | WO2004092714A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007250879A (en) * | 2006-03-16 | 2007-09-27 | Hamamatsu Photonics Kk | Pulse compressor and laser generator |
JP2008020329A (en) * | 2006-07-13 | 2008-01-31 | Japan Atomic Energy Agency | Remote non-contact sonic speed/heat conductivity measuring method based on measurement of reflected light of pulse laser induced elastic wave attenuation process |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9234843B2 (en) | 2011-08-25 | 2016-01-12 | Alliance For Sustainable Energy, Llc | On-line, continuous monitoring in solar cell and fuel cell manufacturing using spectral reflectance imaging |
US10480935B2 (en) | 2016-12-02 | 2019-11-19 | Alliance For Sustainable Energy, Llc | Thickness mapping using multispectral imaging |
CN112595696B (en) * | 2020-12-11 | 2021-10-15 | 中国科学院西安光学精密机械研究所 | In situ characterization method for bonding interface state under irradiation conditions |
CN113587866B (en) * | 2021-07-12 | 2022-10-28 | 西安交通大学 | Method for nondestructive measurement of thickness of thin film coating based on grating laser ultrasonic acoustic spectrum |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4666308A (en) * | 1984-10-30 | 1987-05-19 | Stanford University | Method and apparatus for non-destructive testing using acoustic-optic laser probe |
US4683750A (en) * | 1984-11-07 | 1987-08-04 | The Board Of Trustees Of The Leland Stanford Junior University | Thermal acoustic probe |
US5633711A (en) * | 1991-07-08 | 1997-05-27 | Massachusettes Institute Of Technology | Measurement of material properties with optically induced phonons |
US5812261A (en) * | 1992-07-08 | 1998-09-22 | Active Impulse Systems, Inc. | Method and device for measuring the thickness of opaque and transparent films |
US6795198B1 (en) * | 1998-05-28 | 2004-09-21 | Martin Fuchs | Method and device for measuring thin films and semiconductor substrates using reflection mode geometry |
AU1521201A (en) * | 1999-11-12 | 2001-05-30 | Thomas Bende | Non-contact photoacoustic spectroscopy for photoablation control |
EP1573267B1 (en) * | 2002-12-13 | 2008-08-06 | Advanced Metrology Systems LLC | Method of determining properties of patterned thin film metal structures using transient thermal response |
-
2004
- 2004-04-12 US US10/553,146 patent/US20070109540A1/en not_active Abandoned
- 2004-04-12 JP JP2006506458A patent/JP2006524813A/en active Pending
- 2004-04-12 KR KR1020057019386A patent/KR20050123156A/en not_active Withdrawn
- 2004-04-12 WO PCT/IB2004/001107 patent/WO2004092714A1/en not_active Application Discontinuation
- 2004-04-12 EP EP04726878A patent/EP1618366A1/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007250879A (en) * | 2006-03-16 | 2007-09-27 | Hamamatsu Photonics Kk | Pulse compressor and laser generator |
JP2008020329A (en) * | 2006-07-13 | 2008-01-31 | Japan Atomic Energy Agency | Remote non-contact sonic speed/heat conductivity measuring method based on measurement of reflected light of pulse laser induced elastic wave attenuation process |
Also Published As
Publication number | Publication date |
---|---|
KR20050123156A (en) | 2005-12-29 |
EP1618366A1 (en) | 2006-01-25 |
WO2004092714A1 (en) | 2004-10-28 |
US20070109540A1 (en) | 2007-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4393585B2 (en) | Improved optical stress generator and detector | |
US6348967B1 (en) | Method and device for measuring the thickness of opaque and transparent films | |
US6069703A (en) | Method and device for simultaneously measuring the thickness of multiple thin metal films in a multilayer structure | |
JPS5985908A (en) | Method of measuring thickness of thin film using heat-wave detecting system and depth profile method | |
Thomsen et al. | Picosecond acoustics as a non-destructive tool for the characterization of very thin films | |
JP4106400B2 (en) | Thickness measuring device and thickness measuring method | |
US8537363B2 (en) | Picosecond ultrasonic system incorporating an optical cavity | |
JP2006513418A (en) | Film thickness measuring apparatus and method using improved high-speed Fourier transform | |
JP2006510019A (en) | Method and apparatus for measuring thin film thickness by transient thermal reflectivity | |
US6393915B1 (en) | Method and device for simultaneously measuring multiple properties of multilayer films | |
JP4025369B2 (en) | Optical method for discriminating mechanical properties of materials | |
JP2006524813A (en) | Thin film evaluation method | |
US6587794B1 (en) | Method for measuring thin metal films | |
CN106441124A (en) | Novel method for measuring film thickness by time response based on laser-induced thermoelectricity voltage | |
KR101215362B1 (en) | Apparatus and method for detecting photothermal effect | |
CN1774624A (en) | Method for measuring thin films | |
JP4496164B2 (en) | Thermoelastic property measuring device, thermoelastic property measuring method | |
JP2007521476A (en) | Method for evaluating submicron groove structures | |
Ma et al. | Wafer-level metal thin film thickness scanning based on multiple probe wavelengths nanosecond transient thermoreflectance | |
JP7413429B2 (en) | OPTO acousto-optic measurement of transparent film laminate | |
Imano | Detection of Unbonded Defect under Surface of Material Using Phase Information of Rayleigh and A0 Mode Lamb Waves. | |
JP2006258641A (en) | Optical measuring method | |
Yang | An automatic on-line thin-film thickness monitoring technique | |
CN1809740A (en) | Method of measuring sub-micron trench structures | |
JPH09127065A (en) | Method and apparatus for measurement of adsorption characteristic |