[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006512275A - Glass ceramic material and manufacturing method thereof - Google Patents

Glass ceramic material and manufacturing method thereof Download PDF

Info

Publication number
JP2006512275A
JP2006512275A JP2004566596A JP2004566596A JP2006512275A JP 2006512275 A JP2006512275 A JP 2006512275A JP 2004566596 A JP2004566596 A JP 2004566596A JP 2004566596 A JP2004566596 A JP 2004566596A JP 2006512275 A JP2006512275 A JP 2006512275A
Authority
JP
Japan
Prior art keywords
solid
mol
connecting member
glass
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004566596A
Other languages
Japanese (ja)
Inventor
ドン−サン キム
ケリー ディー. メインハート
ブラドリー アール. ジョンソン
マイケル ジェイ. シュバイガー
Original Assignee
バッテル メモリアル インスティチュート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バッテル メモリアル インスティチュート filed Critical バッテル メモリアル インスティチュート
Publication of JP2006512275A publication Critical patent/JP2006512275A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/025Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/04Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Fuel Cell (AREA)
  • Ceramic Products (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

本発明は、固体セラミック部品と、少なくとも1つの他の固体部品とを接合する際に有用なガラスセラミック材料およびその製造方法である。この材料は、M1-M2-M3-M4を配合したもので、M1は、BaO、SrO、CaO、MgO、またはそれらの組み合わせであり、M2は、Al2O3であり、配合物中に2〜15 mol%の量で存在し、M3は、50 mol%以下のB2O3を有するSiO2であり、かつLa2O3、Y2O3、Nd2O3、もしくはその組み合わせからなる群より選択される金属酸化物、または0.1〜7.5 mol%のK2Oである。La2O3、Y2O3、Nd2O3またはそれらの組み合わせの群からの金属酸化物の場合には、組成物は、0.1〜3 mol%のCuOをさらに含有することが好ましい。全ての場合において、結晶相のガラスセラミック材料は、25℃〜1000℃で測定した時に、熱膨張係数が12 x 10-6-1である固体電解質の熱膨張係数と実質的に一致し、この熱膨張係数は、熱サイクルを繰り返しても低下しない。本発明に従って、M1-Al2O3-M3-M4系の一連のガラスセラミックを、筒状および平面状両方の固体酸化物燃料電池、酸素電気分解装置、および合成ガス、汎用化学製品および他の製品を製造するための膜反応装置を接合またはシールする際に使用することができる。The present invention is a glass-ceramic material useful for joining a solid ceramic part and at least one other solid part, and a method for producing the same. This material is formulated with M1-M2-M3-M4, M1 is BaO, SrO, CaO, MgO, or combinations thereof, M2 is Al 2 O 3 and 2 in the formulation. Present in an amount of ˜15 mol%, M3 is SiO 2 with 50 mol% or less of B 2 O 3 and consists of La 2 O 3 , Y 2 O 3 , Nd 2 O 3 , or combinations thereof metal oxide selected from the group, or 0.1 to 7.5 mol% of K 2 O. In the case of metal oxides from the group of La 2 O 3 , Y 2 O 3 , Nd 2 O 3 or combinations thereof, the composition preferably further contains 0.1 to 3 mol% CuO. In all cases, the glass-ceramic material in the crystalline phase substantially matches the thermal expansion coefficient of the solid electrolyte with a thermal expansion coefficient of 12 × 10 −6 ° C. −1 when measured at 25 ° C. to 1000 ° C. This thermal expansion coefficient does not decrease even when the thermal cycle is repeated. In accordance with the present invention, a series of glass ceramics based on M1-Al 2 O 3 -M3-M4 can be applied to both cylindrical and planar solid oxide fuel cells, oxygen electrolyzers, and syngas, general chemicals and other It can be used in joining or sealing membrane reactors for manufacturing products.

Description

本発明は、米国エネルギー省による契約DE-AC0676RL01830の下で、政府の助成を受けて完成されたものである。政府は、本発明に対してある程度の権利を有する。   This invention was completed with government support under the contract DE-AC0676RL01830 by the US Department of Energy. The government has certain rights to the invention.

本出願は、米国特許出願第09/562,583号(2000年5月1日出願)の一部継続出願である。この米国特許出願第09/562,583号もまた、現在では米国特許6,430,966号となっている米国特許出願第09/365,343号(1999年7月30日出願)の一部継続出願である。   This application is a continuation-in-part of US patent application Ser. No. 09 / 562,583 (filed May 1, 2000). US patent application Ser. No. 09 / 562,583 is also a continuation-in-part of US patent application Ser. No. 09 / 365,343 (filed Jul. 30, 1999), now US Pat. No. 6,430,966.

発明の分野
本発明は、ガラスセラミック材料およびその製造方法、より詳細には、燃料電池、ガスセンサー、酸素または水素のポンプ/セパレータなどの電気化学装置に用いるか、または熱膨張係数がシール材料(sealing material)に近似した任意の材料をシールするための、ガラスセラミック材料およびその製造方法である。
FIELD OF THE INVENTION The present invention relates to glass ceramic materials and methods for their production, and more particularly to use in electrochemical devices such as fuel cells, gas sensors, oxygen or hydrogen pumps / separators, or seal materials having a coefficient of thermal expansion ( A glass-ceramic material and its manufacturing method for sealing any material close to sealing material).

本明細書で使用される、「固体電解質」または「固体酸化物イオン導電性電解質」という用語は、互換的である。   As used herein, the terms “solid electrolyte” or “solid oxide ion conducting electrolyte” are interchangeable.

本明細書で使用される、「接続部材」という用語は、「シール」という用語を含む。これは、このガラス-セラミックの分野では、「シール」が少なくとも2つの部分を接続しているためである。しかしながら、「接続部材」は、断続的でありうり、この場合には、「シール」の役目は果たさない。   As used herein, the term “connecting member” includes the term “seal”. This is because in this glass-ceramic field, a “seal” connects at least two parts. However, the “connecting member” may be intermittent, and in this case, it does not serve as a “seal”.

発明の背景
セラミック材料は、自動車のターボチャージャ(turbochargers)から実験用の燃料電池に至るまで、各所で多用されている。しかし、セラミック部品を他のセラミック部品、金属部品、またはそれらの組み合わせ(たとえばサーメット部品)に、接続部材が稼動中に一体性を保持するように接続および/またはシールすることの問題が残っている。たとえば、固体酸化物イオン導電性電解質は、酸素の分離および高温燃料電池に有用である。こうした材料の開発に際しては多くの技術的課題が克服されてきたものの、シーリングの問題が残っている。平面的な設計の場合には、気密シールによって部品を一緒に接続し、固体酸化物イオン導電性電解質の両側のガス種が混ざりあうことを防止する必要がある。
Background of the Invention Ceramic materials are used extensively in everything from automotive turbochargers to experimental fuel cells. However, there remains the problem of connecting and / or sealing ceramic parts to other ceramic parts, metal parts, or combinations thereof (eg, cermet parts) so that the connecting member remains integral during operation. . For example, solid oxide ion conducting electrolytes are useful for oxygen separation and high temperature fuel cells. Although many technical challenges have been overcome in the development of these materials, the problem of sealing remains. In the case of a planar design, it is necessary to connect the parts together by an airtight seal to prevent the gas species on both sides of the solid oxide ion conducting electrolyte from mixing together.

固体酸化物イオン導電性電解質として適当な物質は限られている。もっとも一般的に使用されている材料は、イットリア安定化ジルコニア(yttria stabilized zirconia, YSZ)、ドープセリア(doped ceria)、ドープビスマス酸化物(doped bismuth oxide)、およびドープ没食子酸ランタン(doped lanthanum gallate)である。これらの材料の熱膨張係数(TEC)は、ドープ剤の種類と濃度に応じて、10.1 x 10-6〜14.3 x 10-6-1の範囲とすることができる。特に重要なのは、TECが12 x 10-6-1以上であるような材料である。稼働温度も、電解質にどの材料を選んだかに応じて、700℃〜1000℃の範囲とすることができる。したがって、シール材料は、電解質の熱膨張と一致し、200℃〜1200℃の範囲の温度で気密シールを保ち、燃料電池の各種の部品と有害な相互化学反応を生じないよう調整する必要がある。シール材料は、また、稼働温度(800〜1000℃)で長時間(> 9,000 hr)にわたって安定で、電気絶縁性である必要がある。固体酸化物燃料電池については、シールは、極度に還元的な環境に耐えうるものとする必要がある。 There are limited materials suitable as solid oxide ion conducting electrolytes. The most commonly used materials are yttria stabilized zirconia (YSZ), doped ceria, doped bismuth oxide, and doped lanthanum gallate. is there. The coefficient of thermal expansion (TEC) of these materials can range from 10.1 × 10 −6 to 14.3 × 10 −6 ° C. −1 depending on the type and concentration of the dopant. Of particular importance are materials whose TEC is greater than or equal to 12 × 10 −6 ° C. −1 . The operating temperature can also range from 700 ° C. to 1000 ° C., depending on which material is selected for the electrolyte. Therefore, the sealing material must be adjusted to match the thermal expansion of the electrolyte, maintain a hermetic seal at temperatures in the range of 200 ° C. to 1200 ° C., and avoid harmful interchemical reactions with various fuel cell components. . The sealing material must also be stable and electrically insulating at operating temperatures (800-1000 ° C.) for extended periods (> 9,000 hr). For solid oxide fuel cells, the seal must be able to withstand an extremely reducing environment.

固体酸化物イオン導電性装置のシールをする各種の試みが行われてきており、それらの試みの成功の程度もまちまちである。固体酸化物燃料電池用のシール材としては、シリカ、ホウ素、およびリン酸塩ガラスおよびガラスセラミックの評価が行われている(1-4)。P.H. Larsenら(1)が行った実験では、ガラス形成剤としてリン酸塩のみに基づいたガラスには、重大な問題があることが示された。リン酸塩は、ある温度で揮発し、陽極と反応して、リン化ニッケルおよびオキシリン酸ジルコニウムを形成した。また、こうしたリン酸塩ガラスは、大抵、結晶化して、メタリン酸またはピロリン酸を生じ、このメタリン酸またはピロリン酸は、稼働温度の加湿燃料ガスでは、低い安定性を示した。   Various attempts have been made to seal solid oxide ion conducting devices, and the degree of success of these attempts varies. Silica, boron, phosphate glass and glass ceramic have been evaluated as sealing materials for solid oxide fuel cells (1-4). Experiments conducted by P.H. Larsen et al. (1) have shown that there are significant problems with glasses based solely on phosphate as the glass former. The phosphate volatilized at a certain temperature and reacted with the anode to form nickel phosphide and zirconium oxyphosphate. Also, such phosphate glasses often crystallized to yield metaphosphoric acid or pyrophosphoric acid, which showed low stability in humidified fuel gases at operating temperatures.

ホウケイ酸ガラスとガラスセラミックも、潜在的なシール材料として考えられてきた。これらのガラスの固体酸化物燃料電池への使用に関しては、C. Guntherら2およびK.L. Leyら3によって研究が行われている。しかし、ホウ素は稼働温度では、加湿水素雰囲気と反応してしまい、B2(OH)2およびB2(OH)3のガス種を形成してしまう2。したがって、ホウ素シールは、いずれも、加湿水素環境では経時的に腐食してしまう。ガラス形成剤としてB2O3から成るガラスは、加湿水素環境中で20%以下の重量減少を示し、また、空気中および湿潤燃料ガス中の双方で、燃料電池の部品材料と広範な相互作用を生じた1Borosilicate glass and glass ceramic have also been considered as potential sealing materials. For the use in solid oxide fuel cells of these glasses, C. Studied by Gunther et al 2 and KL Ley et al 3 is performed. However, at operating temperatures, boron reacts with a humidified hydrogen atmosphere and forms B 2 (OH) 2 and B 2 (OH) 3 gas species 2 . Accordingly, all boron seals corrode over time in a humidified hydrogen environment. Glass composed of B 2 O 3 as a glass former exhibits a weight loss of less than 20% in a humidified hydrogen environment and has extensive interaction with fuel cell component materials both in air and in wet fuel gas Produced 1 .

最も有望とされるのは、シリカガラスおよびガラスセラミックである。これらの材料は、通常、化学耐性が高く、燃料電池の部品材料と最小の相互作用を示す1。残念なことに、これらのガラスは、シール材料に必要とされる範囲より小さい熱膨張を示す傾向がある。 Most promising are silica glass and glass ceramic. These materials are usually highly chemical resistant and show minimal interaction with fuel cell component materials 1 . Unfortunately, these glasses tend to exhibit thermal expansion that is less than that required for sealing materials.

稼働温度では、大半のガラスが時間の経過とともに結晶化する。したがって、結晶化した後の熱膨張係数が、固体酸化物イオン導電性電解質と適合性があるようなガラス組成物を有することが必須である。ガラスは、完全に結晶化してしまうと、通常、時間が経過しても極めて安定である。加えて、結晶化したガラスは、稼働温度では、力学的により強固な傾向を示し、シール性能を向上させる。   At operating temperatures, most glasses crystallize over time. Therefore, it is essential to have a glass composition whose thermal expansion coefficient after crystallization is compatible with the solid oxide ion conductive electrolyte. Once glass is completely crystallized, it is usually very stable over time. In addition, crystallized glass tends to be mechanically stronger at operating temperatures and improves sealing performance.

当業者が直面する更なる別の問題は、ガラスのTECは、時間の経過と共に減少する傾向があることである。   Yet another problem faced by those skilled in the art is that glass TEC tends to decrease over time.

従って、当技術分野では、約900℃以下の稼働温度で作動可能で、経時的に減少しない、結晶相における12 x 10-6-1以上のTECを有し、かつ部品と有害な化学的相互作用を生じないようなシール材料が必要とされている。 Thus, the art has a TEC of 12 x 10 -6 ° C -1 or higher in the crystalline phase that can operate at operating temperatures of about 900 ° C or less, does not decrease over time, and has components and harmful chemicals What is needed is a seal material that does not cause interaction.

背景文献

Figure 2006512275
Background literature
Figure 2006512275

発明の概要
本発明は、セラミック部品を、他のセラミック部品、ガラス部品、金属部品、またはそれらの組み合わせ(たとえばサーメット部品)に接合またはシールするにあたって有用なガラスセラミック化合物、およびその製造方法に関する。より詳細には、本発明は、少なくとも1つの固体電解質を備え、その第一の側および第二の側が、第一のガス種および第二のガス種にそれぞれ曝されている電気化学電池の接続/シールを行う上で有用である。このシールは、第一および第二のガス種を分離するうえで必要とされるものである。
SUMMARY OF THE INVENTION The present invention relates to glass ceramic compounds useful in joining or sealing ceramic parts to other ceramic parts, glass parts, metal parts, or combinations thereof (eg, cermet parts), and methods of making the same. More particularly, the present invention comprises an electrochemical cell connection comprising at least one solid electrolyte, the first side and the second side of which are exposed to a first gas species and a second gas species, respectively. / Useful for sealing. This seal is required to separate the first and second gas species.

このガラスセラミック化合物は、少なくとも4種の金属酸化物、M1-M2-M3-M4を含む。M1は、BaO、SrO、CaO、MgO、またはそれらの組み合わせである。M2は、Al2O3であり、化合物中に2〜15 mol%の量で存在している。M3は、50 mol%以下のB2O3を有するSiO2である。M4は、0.1〜7.5 mol%間の、La2O3、Y2O3、Nd2O3、もしくはそれらの組み合わせからなる群より選択される金属酸化物、または0.1〜7.5 mol%間のK2Oのいずれかである。La2O3、Y2O3、Nd2O3またはそれらの組み合わせからなる群より選択される金属酸化物の場合には、組成物が、ガラスの結合を補助する湿潤剤として、0.1〜3 mol%のCuOをさらに含有することが好ましい。 This glass ceramic compound contains at least four metal oxides, M1-M2-M3-M4. M1 is BaO, SrO, CaO, MgO, or a combination thereof. M2 is Al 2 O 3, and present in an amount of 2 to 15 mol% in the compound. M3 is SiO 2 having 50 mol% or less of B 2 O 3 . M4 is 0.1 to 7.5 between mol% of, La 2 O 3, Y 2 O 3, Nd 2 O 3, or metal oxide selected from the group consisting a combination thereof, or 0.1 to 7.5 mol% among the K Either 2 O. In the case of a metal oxide selected from the group consisting of La 2 O 3 , Y 2 O 3 , Nd 2 O 3 or combinations thereof, the composition may be used as a wetting agent to assist in bonding of the glass as 0.1 to 3 It is preferable to further contain mol% CuO.

固体セラミック部品および、セラミック、金属、またはそれらの組み合わせのいずれかである少なくとも1つの他の固体部品が、25℃〜1000℃で測定した際の結晶相で膨張係数が、12または12 x 10-6-1より大きいものとして選択された場合には、この化合物は、これらの部品と熱膨張係数が実質的に一致している。 Solid ceramic component and a ceramic, metal, or at least one other solid component is either a combination thereof, the expansion coefficient of the crystal phase when measured at 25 ° C. to 1000 ° C.,, 12 or 12 x 10 - When selected as greater than 6 ° C. −1 , this compound has a substantially consistent thermal expansion coefficient with these parts.

本発明では、M1-Al2O3-M3-M4系の一連のガラスセラミックを、筒状および平面状の両方のセラミック固体酸化物燃料電池、酸素電気分解装置の接続またはシールに使用したり、高温触媒反応に使用される触媒粒子の支持体として使用される金属基体の保護コーティングとして、断熱コーティングとして、使用したり、高温超合金での用途(この用途では、金属部分をセラミック材料で被覆して、その耐酸化性を改善することが望ましい)に使用したり、合成ガスや汎用化学製品および他の製品を製造する際に用いる膜反応装置で使用したりすることができる。 In the present invention, a series of glass ceramics based on M1-Al 2 O 3 -M3-M4 can be used to connect or seal both cylindrical and planar ceramic solid oxide fuel cells, oxygen electrolyzers, Used as a protective coating on metal substrates used as a support for catalyst particles used in high temperature catalytic reactions, as a thermal barrier coating, or in high temperature superalloys (in this application, the metal part is coated with a ceramic material. It is desirable to improve its oxidation resistance), and it can be used in membrane reactors used when producing synthesis gas, general-purpose chemical products and other products.

高温超合金の用途では、金属部分をセラミック材料でコーティングして、耐酸化性を改善する必要があることが多い。たとえば、航空宇宙産業では、タービンブレード(turbine blades)および他の部品をコーティングする際に、断熱コーティングを使用している。通常、多層コーティングを使用して、酸素の拡散および熱膨張のミスマッチといった問題に対処している。本発明は、この用途に極めて適している。高温触媒反応も、金属表面の保護コーティングの使用を必要とする。触媒粒子の支持体としては、薄い金属基体が使用されることが多いものの、高温高圧では、薄い金属基体は酸化され崩壊してしまう。薄い金属箔に保護用酸化物コーティングを適用して使用すると、金属基体の使用期間を延ばすことができ、また、全セラミック部分よりは、安くかつ容易に製造出来る。その際、これらの酸化物の表面が、触媒粒子を保持する基体となる。本発明は、こうした様式での使用に極めて適している。   In high temperature superalloy applications, it is often necessary to coat metal parts with a ceramic material to improve oxidation resistance. For example, the aerospace industry uses thermal barrier coatings when coating turbine blades and other parts. Multi-layer coatings are typically used to address problems such as oxygen diffusion and thermal expansion mismatch. The present invention is very suitable for this application. High temperature catalysis also requires the use of a protective coating on the metal surface. A thin metal substrate is often used as a support for the catalyst particles, but at a high temperature and high pressure, the thin metal substrate is oxidized and collapses. When a protective oxide coating is applied to a thin metal foil, the service life of the metal substrate can be extended, and it can be manufactured cheaper and easier than the entire ceramic part. At that time, the surface of these oxides becomes a substrate for holding the catalyst particles. The present invention is very suitable for use in such a manner.

本発明は、照明業界で使用されているようなガラス材料の表面をシールする際にも極めて適している。高性能、特殊用途電球では、フィラメントとガラス球との接続部を提供するために、ガラスから金属へのシール(glass to metal seals)が必要である。こうした電球中のガスには腐食性が高いものがあり、また、電球は極めて高温となるので、フィラメントの電気的接点とガラス壁との間の熱膨張の不一致という問題があり、これらの電球の一般的な不良部位をもたらす。本発明は、この問題を解決するのに極めて適している。   The present invention is also well suited for sealing glass material surfaces such as those used in the lighting industry. High performance, special purpose light bulbs require glass to metal seals to provide a connection between the filament and the glass bulb. Some of the gases in these bulbs are highly corrosive, and the bulbs are very hot, causing the problem of thermal expansion mismatch between the electrical contacts of the filament and the glass wall. Causes a general bad site. The present invention is very suitable for solving this problem.

La2O3、Y2O3、Nd2O3、またはそれらの組み合わせからなる群より選択される金属酸化物を使用する本発明の用途は、電気抵抗が望まれる固体酸化物燃料電池の利用に特に適しており、K2Oを使用する本発明の用途は、電気抵抗が最優先事項ではない、酸素センサーのような用途に特に適している。 The application of the present invention using a metal oxide selected from the group consisting of La 2 O 3 , Y 2 O 3 , Nd 2 O 3 , or combinations thereof is the use of solid oxide fuel cells where electrical resistance is desired The application of the present invention using K 2 O is particularly suitable for applications such as oxygen sensors where electrical resistance is not a top priority.

本発明の目的は、固体電解質または固体酸化物イオン導電性電解質を接合またはシールする際に有用な化合物を提供することにある。   An object of the present invention is to provide a compound useful in joining or sealing a solid electrolyte or a solid oxide ion conductive electrolyte.

M1-Al2O3-M3-M4の化合物を用いて製造した接続部材/シールの利点は、ガラス相から結晶相まで実質的に一定の熱膨張係数が保たれることである。 The advantage of the connecting member / seal produced using the M1-Al 2 O 3 -M3-M4 compound is that a substantially constant thermal expansion coefficient is maintained from the glass phase to the crystalline phase.

本発明の主題については、本明細書の結論部分で詳細に指摘し、請求の範囲で明確に記載する。しかし、本発明の構成や作動方法の両方は、それらの更なる利点および目的と合わせて、以下の記載を参照することにより最も良く理解されうる。   The subject matter of the present invention is pointed out in detail in the concluding portion of the specification and is clearly stated in the claims. However, both the configuration and method of operation of the present invention, together with their further advantages and purposes, can best be understood by reference to the following description.

好ましい態様の説明
本発明は、ガラスセラミック化合物、およびガラスセラミック化合物の製造方法である。本発明は、少なくとも2つの固体セラミック部品を接合またはシールする際に、(たとえば、少なくとも1つの固体電解質の第一の側および第二の側が第一および第二のガス種にそれぞれ曝されている電気化学電池のシールとして)有用である。本発明は、固体セラミック部品と金属部品またはサーメット部品とを接合またはシールする際にも有用である。シールは、通常、高温で実施される稼働時に、第一および第二のガス種を分離しておくために必要である。
DESCRIPTION OF PREFERRED EMBODIMENTS The present invention is a glass ceramic compound and a method for producing the glass ceramic compound. The present invention relates to the joining or sealing of at least two solid ceramic components (for example, the first side and the second side of at least one solid electrolyte are exposed to the first and second gas species, respectively). Useful as a seal for electrochemical cells). The present invention is also useful when joining or sealing solid ceramic parts and metal parts or cermet parts. Seals are necessary to keep the first and second gas species separated during operation, usually performed at high temperatures.

本発明は、固体セラミック部品と、少なくとも1つの他の固体部品、好ましくは、固体セラミック部品、金属部品、またはサーメット部品のようなそれらの組み合わせとの接続部材を含む。この接続部材は、少なくとも4種の金属酸化物M1-M2-M3-M4を有している。M1は、BaO、SrO、CaO、MgO、またはそれらの組み合わせである。M2は、Al2O3である。M3は、50 mol%以下のB2O3を有するSiO2である。M4は、0.1〜7.5 mol%の、La2O3、Y2O3、Nd2O3、またはそれらの組み合わせからなる群より選択される金属酸化物であるか、0.1〜7.5 mol%のK2Oであるかのいずれかである。La2O3、Y2O3、Nd2O3、またはそれらの組み合わせからなる群より選択された金属酸化物である場合には、組成物が、さらに、0.1〜3 mol%のCuOを含有することが好ましい(これは、濡れ性を提供することが示されており、従って結合を補助すると同時に、経時的なTEC低下を改善するか、少なくとも低下させない)。接続部材は、接続部材を含む各部品の熱膨張係数と実質的に一致する。接続部材の熱膨張係数は、25℃〜1000℃で測定した場合、12 x 10-6-1以上である。 The present invention includes a connection member between a solid ceramic component and at least one other solid component, preferably a combination thereof, such as a solid ceramic component, a metal component, or a cermet component. This connecting member has at least four metal oxides M1-M2-M3-M4. M1 is BaO, SrO, CaO, MgO, or a combination thereof. M2 is Al 2 O 3 . M3 is SiO 2 having 50 mol% or less of B 2 O 3 . M4 is a 0.1 to 7.5 mol%, or a La 2 O 3, Y 2 O 3, Nd 2 O 3 or a metal oxide selected from the group consisting a combination thereof,, 0.1 to 7.5 mol% of K It is either 2 O. When the metal oxide is selected from the group consisting of La 2 O 3 , Y 2 O 3 , Nd 2 O 3 , or combinations thereof, the composition further contains 0.1-3 mol% CuO (This has been shown to provide wettability, thus assisting the binding while improving, or at least not reducing, TEC degradation over time). The connecting member substantially matches the thermal expansion coefficient of each component including the connecting member. The thermal expansion coefficient of the connecting member is 12 × 10 −6 ° C. −1 or more when measured at 25 ° C. to 1000 ° C.

接続部材/シールの組成物は、M1が約20 mol%〜約55 mol%の量で存在し、Al2O3が約2 mol%〜約15 mol%の量で存在し、M3が約40 mol%〜約70 mol%の量で存在するような範囲とすることが好ましい。M4は0.1〜7.5 mol%のLa2O3、Y2O3、Nd2O3、もしくはそれらの組み合わせからなる群より選択される金属酸化物であるか、または0.1〜7.5 mol%のK2Oである。La2O3、Y2O3、Nd2O3、またはそれらの組み合わせの群からの金属酸化物である場合には、組成物が、組成物の濡れ性改善のために、0.1〜3 mol%のCuOをさらに含有することが好ましい。 The composition of the connecting member / seal, M1 is present in an amount of about 20 mol% ~ about 55 mol%, Al 2 O 3 is present in an amount of about 2 mol% ~ about 15 mol%, M3 is approximately 40 It is preferred that the range be present in an amount from mol% to about 70 mol%. M4 is 0.1 to 7.5 mol% of La 2 O 3, Y 2 O 3, Nd 2 O 3 or or a metal oxide selected from the group consisting a combination thereof, or 0.1 to 7.5 mol% of K 2, O. When it is a metal oxide from the group of La 2 O 3 , Y 2 O 3 , Nd 2 O 3 , or combinations thereof, the composition is 0.1-3 mol to improve the wettability of the composition It is preferable to further contain% CuO.

本明細書では、「実質的に同じ熱膨張係数」とは、シールされる材料の熱膨張係数の、約30%以内、好ましくは約16%以内、より好ましくは約5%以内のシール材料の熱膨張係数と定義される。   As used herein, “substantially the same coefficient of thermal expansion” means within about 30%, preferably within about 16%, more preferably within about 5% of the thermal expansion coefficient of the material being sealed. Defined as coefficient of thermal expansion.

接続部材は、試験用の電気化学電池で、酸素イオンポンプと試験材料を接合する際に使用することができる。接続部材は、また、酸素発生装置または燃料電池で、酸素イオン伝導性電解質、たとえば、ジルコニア電解質と、インターコネクト材、たとえば、マンガナイト、クロマイト、金属、およびそれらの組み合わせとを接合する際に使用してもよい。La2O3、Y2O3、Nd2O3またはそれらの組み合わせの群からの金属酸化物を利用する本発明のそれらの局面に関して、好ましい用途としては、固体酸化物燃料電池のような電気抵抗が望まれる用途がある。K2Oを利用する本発明のそれらの局面に関して、好ましい用途としては、酸素発生装置のような電気抵抗が必須ではない用途がある。 The connecting member is a test electrochemical cell and can be used when the oxygen ion pump and the test material are joined. Connection members are also used in oxygen generators or fuel cells to join oxygen ion conducting electrolytes, such as zirconia electrolytes, and interconnect materials, such as manganite, chromite, metals, and combinations thereof. May be. With regard to those aspects of the present invention that utilize metal oxides from the group of La 2 O 3 , Y 2 O 3 , Nd 2 O 3 or combinations thereof, preferred applications include electricity such as solid oxide fuel cells. There are applications where resistance is desired. With respect to those aspects of the present invention that utilize K 2 O, preferred applications include applications where electrical resistance is not essential, such as oxygen generators.

本発明のガラスセラミック材料について実証するために実験を行った。表1に示す組成を有するガラスを製造した。   Experiments were conducted to demonstrate the glass ceramic material of the present invention. Glasses having the compositions shown in Table 1 were produced.

Figure 2006512275
Figure 2006512275

その後、表1のガラスを試験して、結晶化の前および後、ならびに熱サイクルを繰り返す前および後の熱膨張係数を測定した。結果を、下記の表2に示す。(TEC x 10-6-1は、25℃〜1000℃で測定した)。 Thereafter, the glasses in Table 1 were tested to determine the coefficient of thermal expansion before and after crystallization and before and after repeating the thermal cycle. The results are shown in Table 2 below. (TEC x 10-6 ° C- 1 was measured from 25 ° C to 1000 ° C).

Figure 2006512275
Figure 2006512275

表2に示したように、全てのガラスは、25℃〜1000℃で測定したTECが12 x 10-6-1以上であるという基準を満たした。次に、各ガラスを試験し、熱サイクルを繰り返した後に、結晶化後のTECが低下するかどうかを判定した。各場合とも、実施例のガラスのTECは、繰り返しの熱サイクルに耐え、25℃〜1000℃で測定した場合に12 x 10-6-1以上でとどまると判定された。 As shown in Table 2, all glasses met the criteria that the TEC measured at 25 ° C. to 1000 ° C. was 12 × 10 −6 ° C. −1 or higher. Each glass was then tested and after repeated thermal cycles, it was determined if the TEC after crystallization decreased. In each case, the TEC of the glass of the example was determined to withstand repeated thermal cycles and remain above 12 × 10 −6 ° C. −1 when measured at 25 ° C. to 1000 ° C.

結語
本発明の好ましい態様を示し、かつ記載してきたが、当業者には、本発明からその広義の局面において逸脱することなく、多くの変更および改変を加えることができることが明らかであると考えられる。したがって、付随する請求の範囲は、本発明の真の趣旨および範囲内のそのような変更および改変のすべてを含むものである。
CONCLUSION While preferred embodiments of the invention have been shown and described, it will be apparent to those skilled in the art that many changes and modifications can be made without departing from the invention in its broader aspects. . Accordingly, the appended claims are intended to cover all such changes and modifications as fall within the true spirit and scope of this invention.

Claims (16)

固体セラミック部品と少なくとも1つの他の固体部品との間の接続部材であって、
接続部材が、共に組合わせたM1-M2-M3-M4の少なくとも4種の金属酸化物を含み、M1が、BaO、SrO、CaO、MgO、およびそれらの組み合わせから群より選択され、M2がAl2O3であって、M2が2〜15mol%の量で存在し、M3が、50 mol%以下のB2O3を有するSiO2であり、M4がK2Oであって、M4が0.1〜7.5 mol%の量で存在し、該接続部材が、該固体セラミック部品および該少なくとも1つの他の固体部品の熱膨張係数と実質的に一致する、接続部材。
A connecting member between a solid ceramic part and at least one other solid part,
The connecting member includes at least four metal oxides of M1-M2-M3-M4 combined together, M1 is selected from the group from BaO, SrO, CaO, MgO, and combinations thereof, and M2 is Al. a 2 O 3, M2 is present in an amount of 2~15mol%, M3 is a SiO 2 having a 50 mol% or less of B 2 O 3, M4 is a K 2 O, M4 0.1 A connecting member that is present in an amount of ˜7.5 mol%, wherein the connecting member substantially matches the coefficient of thermal expansion of the solid ceramic component and the at least one other solid component.
少なくとも1つの他の固体部品がセラミックである、請求項1記載の接続部材。   The connecting member according to claim 1, wherein the at least one other solid component is ceramic. 少なくとも1つの他の固体部品が金属である、請求項1記載の接続部材。   The connecting member according to claim 1, wherein the at least one other solid component is a metal. 少なくとも1つの他の固体部品がサーメットである、請求項1記載の接続部材。   2. The connection member according to claim 1, wherein the at least one other solid part is a cermet. 少なくとも1つの他の固体部品がガラスである、請求項1記載の接続部材。   The connecting member according to claim 1, wherein the at least one other solid component is glass. シール(seal)である、請求項1記載の接続部材。   2. The connection member according to claim 1, wherein the connection member is a seal. 結晶後の熱膨張係数が、25℃〜1000℃で測定すると、12 x 10-6-1より大きい、請求項1記載の接続部材。 2. The connection member according to claim 1, wherein the coefficient of thermal expansion after crystallization is greater than 12 × 10 −6 ° C. −1 when measured at 25 ° C. to 1000 ° C. 固体セラミック部品と少なくとも1つの他の固体部品との間の接続部材であって、接続部材が、共に組合わせたM1-M2-M3-M4-M5の少なくとも5種の金属酸化物を含み、M1が、BaO、SrO、CaO、MgO、およびそれらの組み合わせからなる群より選択され、M2がAl2O3であって、M2が2〜15mol%の量で存在し、M3が、50 mol%以下のB2O3を有するSiO2であり、M4が、La2O3、Y2O3、Nd2O3、またはそれらの組み合わせからなる群より選択される金属酸化物であり、M5は0.1および3mol%CuOの間から選択され、該接続部材が、該固形セラミック部品および該少なくとも1つの他の固体部品の熱膨張係数と実質的に適合する、接続部材。 A connecting member between the solid ceramic component and at least one other solid component, the connecting member comprising at least five metal oxides of M1-M2-M3-M4-M5 combined together, M1 but, BaO, SrO, CaO, MgO , and is selected from the group consisting of, M2 is an Al 2 O 3, M2 is present in an amount of 2~15mol%, M3 is, 50 mol% or less SiO 2 having B 2 O 3 and M4 is a metal oxide selected from the group consisting of La 2 O 3 , Y 2 O 3 , Nd 2 O 3 , or combinations thereof, and M5 is 0.1 And 3 mol% CuO, the connecting member being substantially compatible with the coefficient of thermal expansion of the solid ceramic component and the at least one other solid component. 少なくとも1つの他の固体部品がセラミックである、請求項8記載の接続部材。   9. The connection member according to claim 8, wherein the at least one other solid part is ceramic. 少なくとも1つの他の固体部品が金属である、請求項8記載の接続部材。   9. The connection member according to claim 8, wherein the at least one other solid part is a metal. 少なくとも1つの他の固体部品がサーメットである、請求項8記載の接続部材。   9. The connection member according to claim 8, wherein the at least one other solid part is a cermet. 少なくとも1つの他の固体部品がガラスである、請求項8記載の接続部材。   9. The connecting member according to claim 8, wherein at least one other solid part is glass. シールである、請求項8記載の接続部材。   9. The connection member according to claim 8, which is a seal. 結晶後の熱膨張係数が、25℃〜1000℃で測定すると、12 x 10-6-1より大きい、請求項8記載の接続部材。 9. The connection member according to claim 8, wherein a coefficient of thermal expansion after crystallization is greater than 12 × 10 −6 ° C. −1 when measured at 25 ° C. to 1000 ° C. 固体セラミック部品と少なくとも1つの他の固体部品が、固体酸化物燃料電池中における酸素イオン導体およびインターコネクト材(interconnect)である、請求項8記載の方法。   9. The method of claim 8, wherein the solid ceramic component and the at least one other solid component are an oxygen ion conductor and an interconnect in a solid oxide fuel cell. 固体セラミック部品と少なくとも1つの他の固体部品が、酸素発生装置中における酸素イオン導体およびインターコネクト材である、請求項8記載の接続部材。   9. The connecting member according to claim 8, wherein the solid ceramic component and at least one other solid component are an oxygen ion conductor and an interconnect material in the oxygen generator.
JP2004566596A 2003-01-03 2003-12-23 Glass ceramic material and manufacturing method thereof Pending JP2006512275A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US33629703A 2003-01-03 2003-01-03
PCT/US2003/041230 WO2004063110A2 (en) 2003-01-03 2003-12-23 Glass-ceramic material and method of making

Publications (1)

Publication Number Publication Date
JP2006512275A true JP2006512275A (en) 2006-04-13

Family

ID=32710932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004566596A Pending JP2006512275A (en) 2003-01-03 2003-12-23 Glass ceramic material and manufacturing method thereof

Country Status (5)

Country Link
EP (1) EP1578700A2 (en)
JP (1) JP2006512275A (en)
AU (1) AU2003299892A1 (en)
CA (1) CA2512083A1 (en)
WO (1) WO2004063110A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100905217B1 (en) 2007-11-21 2009-07-01 명지대학교 산학협력단 A sealing materials contained alumina particle for solid oxide fuel cell
US7968200B2 (en) 2008-02-25 2011-06-28 Noritake Co., Ltd Ceramic product and ceramic member bonding method
JP2011519113A (en) * 2007-12-21 2011-06-30 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Multilayer glass-ceramic seal for fuel cells
JP2015063456A (en) * 2013-09-20 2015-04-09 ショット アクチエンゲゼルシャフトSchott AG Feed-through element for harsh environments
KR101608736B1 (en) 2008-04-07 2016-04-04 할도르 토프쉐 에이/에스 Fuel cell stack
JP2018172261A (en) * 2016-06-29 2018-11-08 株式会社オハラ Optical glass, preform and optical element
CN111423119A (en) * 2020-04-26 2020-07-17 佛山科学技术学院 High-temperature-resistant glaze

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7581765B2 (en) 2005-11-17 2009-09-01 Air Products And Chemicals, Inc. Seal assembly for materials with different coefficients of thermal expansion
JP5679657B2 (en) * 2006-04-11 2015-03-04 コーニング インコーポレイテッド Glass ceramic seals for use in solid oxide fuel cells
US7781120B2 (en) * 2007-05-16 2010-08-24 Corning Incorporated Thermo-mechanical robust solid oxide fuel cell device assembly
FR2958283B1 (en) * 2010-04-01 2014-07-04 Commissariat Energie Atomique VITROCERAMIC GLASS COMPOSITIONS FOR JOINTS OF APPLIANCES OPERATING AT HIGH TEMPERATURES AND METHOD OF ASSEMBLY USING SAME.
WO2014100376A1 (en) 2012-12-19 2014-06-26 Praxair Technology, Inc. Method for sealing an oxygen transport membrane assembly
US9296671B2 (en) 2013-04-26 2016-03-29 Praxair Technology, Inc. Method and system for producing methanol using an integrated oxygen transport membrane based reforming system
US9212113B2 (en) 2013-04-26 2015-12-15 Praxair Technology, Inc. Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming and auxiliary heat source
US9938145B2 (en) 2013-04-26 2018-04-10 Praxair Technology, Inc. Method and system for adjusting synthesis gas module in an oxygen transport membrane based reforming system
MX2016004495A (en) 2013-10-07 2016-06-16 Praxair Technology Inc Ceramic oxygen transport membrane array reforming reactor.
US10822234B2 (en) 2014-04-16 2020-11-03 Praxair Technology, Inc. Method and system for oxygen transport membrane enhanced integrated gasifier combined cycle (IGCC)
US10441922B2 (en) 2015-06-29 2019-10-15 Praxair Technology, Inc. Dual function composite oxygen transport membrane
US10118823B2 (en) 2015-12-15 2018-11-06 Praxair Technology, Inc. Method of thermally-stabilizing an oxygen transport membrane-based reforming system
EP3394003A1 (en) * 2015-12-21 2018-10-31 Praxair Technology Inc. Apparatus including a ceramic component, a metal component, and a glass sealing material and a process of forming the apparatus
US9938146B2 (en) 2015-12-28 2018-04-10 Praxair Technology, Inc. High aspect ratio catalytic reactor and catalyst inserts therefor
JP2019513081A (en) 2016-04-01 2019-05-23 プラクスエア・テクノロジー・インコーポレイテッド Catalyst-containing oxygen transport membrane
US10010876B2 (en) 2016-11-23 2018-07-03 Praxair Technology, Inc. Catalyst for high temperature steam reforming
CN108285357B (en) * 2017-12-15 2022-07-01 福建省德化青江商贸有限公司 Ceramic glass cup processing technology
WO2019226435A1 (en) 2018-05-21 2019-11-28 Praxair Technology, Inc. Otm syngas panel with gas heated reformer
CN110342915A (en) * 2019-08-01 2019-10-18 电子科技大学 A kind of high thermal expansion calcium borosilicate base ceramic packaging material and preparation method thereof
CN113185127B (en) * 2021-04-20 2023-05-23 西北工业大学 Ca-Ti-Y-Al-Si-O microcrystalline glass solder and glass packaging method of nuclear cladding tube port

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155550A (en) * 1984-01-24 1985-08-15 Ngk Spark Plug Co Ltd Glaze composition for ceramic substrate
JPS6335465A (en) * 1986-07-25 1988-02-16 日本電気硝子株式会社 Glass for sealing magnetic head
JPS63170241A (en) * 1987-01-08 1988-07-14 Toshiba Glass Co Ltd Glass composition for sealing
JP2000260007A (en) * 1999-03-04 2000-09-22 Matsushita Electric Ind Co Ltd Sealing glass for magnetic head and magnetic head using the same
WO2001009059A1 (en) * 1999-07-30 2001-02-08 Battelle Memorial Institute Glass-ceramic joining material and method of joining

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4060423A (en) * 1976-07-27 1977-11-29 General Electric Company High-temperature glass composition
FR2538370B1 (en) * 1982-12-28 1986-01-24 Ceraver VITREOUS CERAMIC MATERIALS, PROCESS FOR MANUFACTURING SUCH MATERIALS AND APPLICATION THEREOF FOR BONDING CERAMIC PARTS
US4746578A (en) * 1984-01-09 1988-05-24 Ngk Spark Plug Co., Ltd. Glaze compositions for ceramic substrates
GB8816510D0 (en) * 1988-07-12 1988-08-17 Emi Plc Thorn Improvements in/relating to discharge lamp arc tubes
DE19857057C1 (en) * 1998-12-10 2000-04-13 Fraunhofer Ges Forschung Use of an alkali-free silicon, magnesium and heavy alkaline earth metal oxide mixture as a high thermal expansion coefficient glass-ceramic joint material, especially for high temperature fuel cells
US6430966B1 (en) * 1999-07-30 2002-08-13 Battelle Memorial Institute Glass-ceramic material and method of making
DE10122327A1 (en) * 2001-05-08 2002-11-28 Forschungszentrum Juelich Gmbh Glass solder used as a joining material for high temperature fuel cells comprises a barium oxide-calcium oxide-silicon dioxide mixture with an addition of aluminum oxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155550A (en) * 1984-01-24 1985-08-15 Ngk Spark Plug Co Ltd Glaze composition for ceramic substrate
JPS6335465A (en) * 1986-07-25 1988-02-16 日本電気硝子株式会社 Glass for sealing magnetic head
JPS63170241A (en) * 1987-01-08 1988-07-14 Toshiba Glass Co Ltd Glass composition for sealing
JP2000260007A (en) * 1999-03-04 2000-09-22 Matsushita Electric Ind Co Ltd Sealing glass for magnetic head and magnetic head using the same
WO2001009059A1 (en) * 1999-07-30 2001-02-08 Battelle Memorial Institute Glass-ceramic joining material and method of joining

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100905217B1 (en) 2007-11-21 2009-07-01 명지대학교 산학협력단 A sealing materials contained alumina particle for solid oxide fuel cell
JP2011519113A (en) * 2007-12-21 2011-06-30 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Multilayer glass-ceramic seal for fuel cells
US7968200B2 (en) 2008-02-25 2011-06-28 Noritake Co., Ltd Ceramic product and ceramic member bonding method
US8431227B2 (en) 2008-02-25 2013-04-30 Noritake Co., Ltd Ceramic product and ceramic member bonding method
KR101608736B1 (en) 2008-04-07 2016-04-04 할도르 토프쉐 에이/에스 Fuel cell stack
JP2015063456A (en) * 2013-09-20 2015-04-09 ショット アクチエンゲゼルシャフトSchott AG Feed-through element for harsh environments
US9627109B2 (en) 2013-09-20 2017-04-18 Schott Corporation Feed-through element for harsh environments
US9741463B2 (en) 2013-09-20 2017-08-22 Schott Corporation GTMS connector for oil and gas market
US9818500B2 (en) 2013-09-20 2017-11-14 Schott Corporation Feed-through element for harsh environments
JP2018172261A (en) * 2016-06-29 2018-11-08 株式会社オハラ Optical glass, preform and optical element
JP7096648B2 (en) 2016-06-29 2022-07-06 株式会社オハラ Optical glass, preforms and optical elements
CN111423119A (en) * 2020-04-26 2020-07-17 佛山科学技术学院 High-temperature-resistant glaze

Also Published As

Publication number Publication date
WO2004063110A3 (en) 2004-10-21
AU2003299892A8 (en) 2004-08-10
WO2004063110A2 (en) 2004-07-29
EP1578700A2 (en) 2005-09-28
CA2512083A1 (en) 2004-07-29
AU2003299892A1 (en) 2004-08-10
WO2004063110B1 (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP2006512275A (en) Glass ceramic material and manufacturing method thereof
CA2380101C (en) Glass-ceramic joining material and method of joining
JP4892149B2 (en) Glass-ceramic bonding material and bonding method
US5453331A (en) Compliant sealants for solid oxide fuel cells and other ceramics
US8354202B2 (en) Multilayer glass-ceramic seals for fuel cells
CA2537513C (en) Advanced mica based seal and method for making and using
JP6456458B2 (en) Glassy or at least partially crystallized fusing material, joint joint, barrier layer and layer system comprising this fusing material and incorporation into this component
WO1996005626A9 (en) Compliant sealants for solid oxide fuel cells and other ceramics
RU2389110C2 (en) Structure of sealed joint unit for electrochemical device
JP2008516881A (en) Glass and glass ceramic sealant composition
JP2014096277A (en) Seal material for solid oxide type fuel battery use
Reis et al. Designing sealing glasses for solid oxide fuel cells
Kumar et al. Stacking designs and sealing principles for IT-solid oxide fuel cell
JP2012084508A (en) Fuel battery and method for manufacturing the same
JP2936001B2 (en) High temperature fuel cell and method of manufacturing the same
JP5656044B2 (en) High expansion crystalline glass composition
JP5684887B2 (en) Connecting material for solid oxide fuel cell and method for manufacturing the connecting material
KR19990049582A (en) Composition, Manufacturing Method and Application Method of Glass Sealant for Solid Electrolyte Fuel Cell
KR20100008264A (en) Manufacturing method of sealing glass for intermediate temperature planar sofc
KR20150019895A (en) Composition for cathode of fuel cell, manufacturing method for the same
CN110556542A (en) Cathode material of solid oxide fuel cell and preparation method thereof
KR20210078009A (en) Solid Oxide Co-Electrolysis cell containing LCNFO as air electrode
Singh Proton-Conducting Solid Oxide Electrolysis Cells for Large-scale Hydrogen Production at Intermediate Temperatures
Bieberle GLASS SEALS A. BIEBERLE, LJ GAUCKLER
JPH09120828A (en) Sealing material for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091028

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100128

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100226

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100621

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100917

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101220