[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006336924A - Vacuum dryer - Google Patents

Vacuum dryer Download PDF

Info

Publication number
JP2006336924A
JP2006336924A JP2005161065A JP2005161065A JP2006336924A JP 2006336924 A JP2006336924 A JP 2006336924A JP 2005161065 A JP2005161065 A JP 2005161065A JP 2005161065 A JP2005161065 A JP 2005161065A JP 2006336924 A JP2006336924 A JP 2006336924A
Authority
JP
Japan
Prior art keywords
cold air
hot air
high temperature
heated
air inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005161065A
Other languages
Japanese (ja)
Other versions
JP4598605B2 (en
Inventor
Michihisa Tsutahara
道久 蔦原
Shinichi Enomura
眞一 榎村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M Technique Co Ltd
Original Assignee
M Technique Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M Technique Co Ltd filed Critical M Technique Co Ltd
Priority to JP2005161065A priority Critical patent/JP4598605B2/en
Publication of JP2006336924A publication Critical patent/JP2006336924A/en
Application granted granted Critical
Publication of JP4598605B2 publication Critical patent/JP4598605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum dryer with high versatility capable of increasing drying speed with respect to a heating object A without causing vibration or noise, and without intrusion of lubricant or the like into a dryer interior. <P>SOLUTION: The vacuum dryer is provided with a low pressure chamber 3, and a heater 1 arranged in the low pressure chamber 3. The heater 1 has a cold air inlet 13 introducing cold air, a hot air outlet 12 facing the object A to be heated, a plurality of high temperature plates 14 extending from the cold air inlet 13 toward the hot air outlet 12 and arranged in parallel with each other, and a heating body 16 heating the high temperature plates 14. In the high temperature plate 14, an edge 15 is formed on an end in a cold air inlet 13 side. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、食品や医薬品などの被加熱物を真空乾燥する真空乾燥装置に関するものである。   The present invention relates to a vacuum drying apparatus that vacuum-drys an object to be heated such as food or medicine.

従来から、凍結した食品や医薬品などの被加熱物を真空中で加熱器からの熱伝達および熱伝導により加熱して水分を昇華させ、この昇華水分を外部に排出して、被加熱物を乾燥するようにした真空乾燥装置が知られている( 特許文献1) 。真空(低圧)中では昇華温度が低いので、被加熱物を高温にさらすことで傷めるおそれなく、乾燥できる。
特開2001―317869号公報
Conventionally, frozen foods and pharmaceuticals to be heated are heated in a vacuum by heat transfer and heat conduction from a heater to sublimate moisture, and the sublimated moisture is discharged outside to dry the heated object. A vacuum drying apparatus is known (Patent Document 1). Since the sublimation temperature is low in vacuum (low pressure), the object to be heated can be dried without being damaged by being exposed to a high temperature.
JP 2001-317869 A

ところが、以上の真空乾燥装置は、被加熱物に対する水分の昇華速度、つまり乾燥速度が遅い。   However, the vacuum drying apparatus described above has a low water sublimation rate with respect to the object to be heated, that is, a drying rate.

そこで、送風ポンプを介して加熱器からの熱風を被加熱物に積極的に供給することにより、被加熱物に対する乾燥速度を速めることが考えられる。   Therefore, it is conceivable to increase the drying speed of the object to be heated by positively supplying hot air from the heater to the object to be heated via the blower pump.

しかし、通常の送風ポンプを用いると、その可動部分により振動や騒音が発生する。しかも可動部分に潤滑油として用いられる油が装置内部に入り込む恐れがあるため、特に食品や医薬品などの真空乾燥には不向きである。   However, when a normal blower pump is used, vibration and noise are generated by the movable part. In addition, since oil used as lubricating oil in the movable part may enter the inside of the apparatus, it is particularly unsuitable for vacuum drying of foods and pharmaceuticals.

このような問題に対処するには、可動部分がないクヌッセンポンプを用いることが考えられる。このクヌッセンポンプは、熱勾配のある減圧環境下において発生する気体の熱遷移流を熱輸送に利用する。しかし、このクヌッセンポンプのように熱遷移流だけを利用する場合、被加熱物の乾燥速度を十分に高めることができないだけではなく、クヌッセンポンプの熱遷移流は比較的大きなクヌッセン数(Kn数)領域、つまり高真空領域において発生し、小さなクヌッセン数領域では発生しにくいので、汎用性に乏しい。   To deal with such a problem, it is conceivable to use a Knudsen pump having no moving parts. This Knudsen pump uses a thermal transition flow of a gas generated in a reduced pressure environment with a thermal gradient for heat transport. However, when only the thermal transition flow is used as in this Knudsen pump, not only the drying speed of the object to be heated cannot be sufficiently increased, but the thermal transition flow of the Knudsen pump has a relatively large Knudsen number (Kn number). Since it occurs in the region, that is, in the high vacuum region and hardly occurs in the small Knudsen number region, the versatility is poor.

そこで、本発明者は、クヌッセンポンプについての研究を重ねた結果、減圧環境下においてエッジを有する平板を配置し、平板に熱勾配を与えて、エッジを低温側(外部空間よりは高温)とすれば、そのエッジ効果により低温側から高温側に向かって気体の流れが発生し、この気体の流れは熱遷移流の場合に比べて小さなクヌッセン数(Kn数)領域においても発生することを見い出した。つまり、減圧環境下においてエッジ外部側空間の分子温度がエッジ内部側空間の分子温度よりも高いとき、エッジ内部側に向かう気体の流れが発生する。   Therefore, as a result of repeated research on the Knudsen pump, the present inventor arranges a flat plate having an edge in a reduced pressure environment, gives a thermal gradient to the flat plate, and sets the edge to a low temperature side (higher than the external space). For example, it was found that a gas flow is generated from the low temperature side to the high temperature side due to the edge effect, and this gas flow is also generated in a Knudsen number (Kn number) region smaller than that in the case of a thermal transition flow. . That is, when the molecular temperature in the outer space on the edge is higher than the molecular temperature in the inner space on the edge in a reduced pressure environment, a gas flow toward the inner side of the edge is generated.

本発明は、このようなエッジ効果による気体の流れと前記熱遷移流による気体の流れとをともに熱輸送として利用することにより、振動や騒音の発生を招くことなく、しかも潤滑油などが装置内部に入り込むおそれもなく、食品や医薬品などの被加熱物に対する乾燥速度を速めることができる、汎用性の高い真空乾燥装置を提供することを目的とする。   The present invention uses both the gas flow due to the edge effect and the gas flow due to the thermal transition flow as heat transport, so that vibration and noise are not generated, and the lubricating oil or the like is generated inside the apparatus. It is an object of the present invention to provide a highly versatile vacuum drying apparatus that can increase the drying speed of an object to be heated such as a food or a pharmaceutical without entering the room.

上記目的を達成するために、本発明の真空乾燥装置は、低圧室と、前記低圧室内に配置された加熱器とを備え、前記加熱器は、冷風を導入する冷風入口と、被加熱物に対向する熱風出口と、前記冷風入口から熱風出口に向かって延びる互いに平行に配置された複数の高温板と、前記高温板を加熱する加熱体とを有し、前記高温板は、冷風入口側の端部にエッジが形成されている。ここで、エッジとは、板をその主面と直交する方向または斜め方向に沿って切断した場合に生じる、丸みのない角部であって、分子の平均自由行程よりも小さい曲率半径を持つものを言う。   In order to achieve the above object, a vacuum drying apparatus of the present invention includes a low-pressure chamber and a heater disposed in the low-pressure chamber, and the heater includes a cold air inlet for introducing cold air, and an object to be heated. Opposing hot air outlets, a plurality of high temperature plates arranged in parallel to each other extending from the cold air inlet toward the hot air outlet, and a heating body for heating the high temperature plate, the high temperature plate on the cold air inlet side Edges are formed at the ends. Here, an edge is a non-rounded corner that occurs when a plate is cut along a direction perpendicular to or oblique to the principal surface, and has a radius of curvature smaller than the mean free path of the molecule. Say.

凍結された被加熱物を乾燥するときには、低圧室内に被加熱物が収容されて低圧状態に保持され、この被加熱物が加熱器からの熱風により加熱され、被加熱物中の水分が昇華されて、被加熱物は多孔質状態に乾燥される。この多孔質の被加熱物は、鮮度が落ちずに料理するようなときに戻りが早い。このとき、低圧室内には加熱器が配置され、この加熱器の内部には、その冷風入口から熱風出口に向かって延びる複数の高温板が配設されており、高温板の冷風入口側の端部にはエッジが形成されているので、減圧環境下におけるエッジ効果により、エッジ内部側に向かう、つまり冷風入口側から熱風出口側に向かう気体の流れが発生する。そのメカニズムについては後述する。これにより、加熱器の熱風出口から熱風が積極的に吹き出され、この熱風によって被加熱物の乾燥速度が速められる。   When drying a frozen object to be heated, the object to be heated is stored in a low-pressure chamber and kept in a low pressure state, and the object to be heated is heated by hot air from a heater, and moisture in the object to be heated is sublimated. Thus, the object to be heated is dried in a porous state. This porous object to be heated quickly returns when cooking without lowering the freshness. At this time, a heater is disposed in the low-pressure chamber, and a plurality of high temperature plates extending from the cold air inlet toward the hot air outlet are disposed in the heater, and the end of the high temperature plate on the cold air inlet side is disposed. Since the edge is formed in the part, a gas flow toward the inside of the edge, that is, from the cold air inlet side to the hot air outlet side is generated due to the edge effect in the reduced pressure environment. The mechanism will be described later. Thereby, hot air is actively blown out from the hot air outlet of the heater, and the drying speed of the object to be heated is increased by this hot air.

しかも、本発明では、ポンプが不要であるから、振動や騒音の発生を招くことがなく、また、潤滑油などを低圧室内に入り込ませたりすることもなく、食品や医薬品などを汚染されることなく乾燥させることができる。さらに、前記エッジ効果による気体の流れは熱遷移流の場合に比べ広いクヌッセン数( Kn数) 領域において発生するので、真空乾燥装置の汎用性が高められる。   In addition, in the present invention, since a pump is not required, the occurrence of vibrations and noises is not caused, and there is no entry of lubricating oil or the like into the low-pressure chamber, which can contaminate foods or pharmaceuticals. Can be dried. Furthermore, since the gas flow due to the edge effect is generated in a wider Knudsen number (Kn number) region as compared with the case of the heat transition flow, the versatility of the vacuum drying apparatus is enhanced.

前記高温板は、前記冷風入口から熱風出口に向かって温度が上昇する温度勾配を持つのが好ましい。この温度勾配により、減圧環境下で熱遷移流が発生して、冷風入口側から熱風出口側に向かう気体の流れが発生する。 そのメカニズムについては後述する。これにより、加熱器の熱風出口から吹き出される熱風の速度が高まり、被加熱物の乾燥速度がさらに速められる。   The hot plate preferably has a temperature gradient in which the temperature rises from the cold air inlet toward the hot air outlet. Due to this temperature gradient, a thermal transition flow is generated under a reduced pressure environment, and a gas flow from the cold air inlet side toward the hot air outlet side is generated. The mechanism will be described later. Thereby, the speed of the hot air blown from the hot air outlet of the heater is increased, and the drying speed of the object to be heated is further increased.

前記熱風出口は冷風入口の上方に配置するのが好ましい。これにより、温度が高くなり密度が小さくなったことにより熱風に上昇力が付加されるので、被加熱物に向かう熱風の速度が大きくなって、被加熱物の乾燥速度を速めることができる。   The hot air outlet is preferably arranged above the cold air inlet. As a result, the rising force is added to the hot air as the temperature increases and the density decreases, so that the speed of the hot air toward the object to be heated increases and the drying speed of the object to be heated can be increased.

また、本発明の好ましい実施形態では、前記加熱体が前記高温板における熱風出口付近に装着されている。この構成によれば、高温板に、冷風入口から熱風出口に向かって温度が上昇する温度勾配を容易に与えて、前記熱遷移流を発生させることができる。また、前記加熱体が熱風出口付近に位置する被加熱物に接近するので、加熱体からの輻射熱によっても被加熱体を効果的に加熱できる。   Moreover, in preferable embodiment of this invention, the said heating body is mounted | worn with the hot-air exit vicinity in the said high temperature board. According to this configuration, the thermal transition flow can be generated by easily giving the high temperature plate a temperature gradient in which the temperature rises from the cold air inlet to the hot air outlet. Moreover, since the said heating body approaches the to-be-heated object located in the hot-air exit vicinity, a to-be-heated body can be effectively heated also by the radiant heat from a heating body.

本発明の真空乾燥装置によれば、振動や騒音の発生を招くことなく、しかも潤滑油などを低圧室内に入り込ませたりすることなく、食品や医薬品などを安全に乾燥させることができる。また、真空乾燥装置の汎用性を高めることもできる。   According to the vacuum drying apparatus of the present invention, food, medicines, and the like can be safely dried without causing vibration and noise and without allowing lubricating oil or the like to enter the low-pressure chamber. Moreover, the versatility of a vacuum dryer can also be improved.

以下,本発明の好ましい実施形態を図面に基づいて説明する。
図1は本発明の一実施形態である真空乾燥装置の簡略的な配置図である。この真空乾燥装置は、加熱器1と、その上部に対向状に設けられ、被加熱物Aを載せる多孔板からなるトレイ2とを内装した低圧室3を備え、この低圧室3の一側方に前記加熱器1の電源4を配置するとともに、低圧室3の他側方には排気室5と真空ポンプ6を前記低圧室3の内部と連通状に設けている。前記排気室5内には外部の冷却装置7に接続されたコールドトラップ8が設置されている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a simplified layout diagram of a vacuum drying apparatus according to an embodiment of the present invention. The vacuum drying apparatus includes a low-pressure chamber 3 provided with a heater 1 and a tray 2 made of a porous plate on which an object A to be heated is placed, facing one side of the low-pressure chamber 3. In addition, the power source 4 of the heater 1 is disposed, and an exhaust chamber 5 and a vacuum pump 6 are provided in communication with the inside of the low pressure chamber 3 on the other side of the low pressure chamber 3. A cold trap 8 connected to an external cooling device 7 is installed in the exhaust chamber 5.

図2は前記加熱器1の拡大断面図である。この加熱器1は、内部に風道10を形成する鉛直方向に延びる2枚の平行な平板11,11を有し、これら平板11の上部側に前記トレイ2と対向する熱風出口12が、下部側に冷風を導入する冷風入口13が形成されている。両平板11,11に直交する2つの開口(図2の手前と奥の開口)は別の平板21,21で閉塞する。前記熱風出口12と冷風入口13との間には、後者13から前者12に向かって鉛直方向に延びる複数の高温板14が、互いに平行に配置されている。ただし、本発明が前提とする低圧状態では、温度が高く密度の低い分子が上方へ流動する「対流」による被加熱物Aへの熱伝達量は大きくないと考えられるので、高温板14は鉛直に設定する必要はなく、水平ないし傾斜していても、被加熱物Aへ向かう十分な熱風を形成できる。   FIG. 2 is an enlarged cross-sectional view of the heater 1. The heater 1 has two parallel flat plates 11 and 11 extending in the vertical direction forming an air passage 10 therein, and a hot air outlet 12 facing the tray 2 is provided on the lower side of the flat plate 11 at a lower portion. A cold air inlet 13 for introducing cold air to the side is formed. Two openings (front and back openings in FIG. 2) perpendicular to both the flat plates 11 and 11 are closed by other flat plates 21 and 21. Between the hot air outlet 12 and the cold air inlet 13, a plurality of high temperature plates 14 extending in the vertical direction from the latter 13 toward the former 12 are arranged in parallel to each other. However, in the low pressure state premised on the present invention, the amount of heat transferred to the object A to be heated by “convection” in which molecules having high temperature and low density flow upward is considered to be not large. It is not necessary to set to, and even if it is horizontal or inclined, it is possible to form sufficient hot air toward the heated object A.

図3は前記高温板14を示す拡大断面図である。この高温板14は真鍮または銅のような金属板からなり、その冷風入口13側の下端部には、板の切断端縁のような、丸みのない直角部からなるエッジ15が形成されている。また、前記高温板14のエッジ15とは反対側の上端部には、ニクロム線などからなる加熱体16が取り付けられている。この実施形態では、前記高温板14の熱風出口12側の上端部を丸めてループ部14aを形成し、このループ部14aに前記加熱体16を挿通して保持させている。こうして、加熱体16を高温板14の熱風出口12付近に位置させている。前記エッジ15は、図5の断面図で示すように、板の角部を斜めに切断したような切断端面としてもよい。   FIG. 3 is an enlarged sectional view showing the high temperature plate 14. The hot plate 14 is made of a metal plate such as brass or copper, and an edge 15 made of a right-angled portion without roundness, such as a cut edge of the plate, is formed at the lower end of the cold air inlet 13 side. . A heating body 16 made of nichrome wire or the like is attached to the upper end of the high temperature plate 14 opposite to the edge 15. In this embodiment, the upper end portion of the hot plate 14 on the hot air outlet 12 side is rounded to form a loop portion 14a, and the heating body 16 is inserted and held in the loop portion 14a. Thus, the heating body 16 is positioned near the hot air outlet 12 of the high temperature plate 14. As shown in the sectional view of FIG. 5, the edge 15 may be a cut end face obtained by obliquely cutting a corner portion of a plate.

図2のように、高温板14の熱風出口12側の端部である上端部を加熱体16で加熱することにより、高温板14の全体を加熱器1の周囲の気体よりも高温に保つとともに、高温板14に冷風入口13から熱風出口12に向かって温度が上昇する温度勾配を与えている。これにより、冷風入口13から熱風出口12に向かう気体の流れFを発生させる。この流れFの発生メカニズムについて、以下に説明する。   As shown in FIG. 2, by heating the upper end, which is the end of the hot plate 14 on the hot air outlet 12 side, with the heater 16, the entire hot plate 14 is kept at a higher temperature than the gas around the heater 1. The high temperature plate 14 is given a temperature gradient in which the temperature rises from the cold air inlet 13 toward the hot air outlet 12. As a result, a gas flow F from the cold air inlet 13 toward the hot air outlet 12 is generated. The generation mechanism of this flow F is demonstrated below.

まず、エッジ効果について説明すると、図5において、高温板14が丸みのないエッジ15を持ち、外部の温度よりも高温である場合、等温線TEがエッジ15を取り囲む楕円に近い形状となる。そのために、エッジ付近での気体温度の違いから、エッジ15に入射する分子の速度Viに違いがあり、低温の外部気体の分子P1の入射速度Vi1は、高温板14の内側に存在する高温の内部気体の分子P2の入射速度Vi2よりも小さい。他方、高温板14におけるエッジ近傍から気体に跳ね返る分子は、高温板14の温度になじんで、ほぼ一様な速度Vr0で跳ね返る。これにより、気体はエッジ15に図5の右向きの運動量を与え、その反作用としてエッジ15は気体に左向きの運動量を与える。その結果、エッジ効果による左向きの流れF1が生じる。   First, the edge effect will be described. In FIG. 5, when the high-temperature plate 14 has an unrounded edge 15 and is hotter than an external temperature, the isothermal line TE has a shape close to an ellipse surrounding the edge 15. Therefore, there is a difference in the velocity Vi of the molecules incident on the edge 15 due to the difference in gas temperature in the vicinity of the edge, and the incident velocity Vi1 of the low-temperature external gas molecule P1 is a high temperature existing inside the high temperature plate 14. The incident velocity Vi2 of the internal gas molecule P2 is smaller. On the other hand, molecules that bounce off the gas from the vicinity of the edge of the high-temperature plate 14 rebound at a substantially uniform speed Vr0 in accordance with the temperature of the high-temperature plate 14. As a result, the gas gives the edge 15 the momentum in the right direction in FIG. 5, and the edge 15 gives the gas a momentum in the left direction as a reaction. As a result, a leftward flow F1 due to the edge effect is generated.

高温板14の端部が円弧状のように丸みを帯びている場合、二点鎖線で示すように等温線TE0が端部を中心とする同心円に近い形状となるために、端部近郷の高温板14に入射する分子の温度差が小さくなる結果、エッジ効果が発生しない。   When the end of the hot plate 14 is rounded like an arc, the isothermal line TE0 has a shape close to a concentric circle centered on the end as shown by a two-dot chain line. As a result of the temperature difference between the molecules incident on the plate 14 being reduced, the edge effect does not occur.

つぎに、熱遷移流について説明する。熱遷移流の発生原理は前記エッジ効果と同じである。図6において、概ね100Pa以下の希薄気体中に低温部と高温部を持つ、つまり温度勾配を持つ2枚の高温板14,14を対向させて配置したとき、等温線TEはほぼ高温板14と垂直な線状になる。低温部の気体分子P3の平均の分子速度Vi3が高温部の気体分子P4の平均の分子速度Vi4よりも小さい一方で、高温板14から跳ね返る分子は、高温板14の温度になじんで、ほぼ一様な速度Vr1で跳ね返る。これにより、気体は高温板14に図6の右向きの運動量を与え、その反作用として高温板14は気体に左向きの運動量を与える。その結果、左向きの流れF2(熱遷移流)が生じる。   Next, the thermal transition flow will be described. The generation principle of the thermal transition flow is the same as the edge effect. In FIG. 6, when two high temperature plates 14, 14 having a low temperature portion and a high temperature portion, that is, having a temperature gradient, are arranged facing each other in a rare gas of approximately 100 Pa or less, the isotherm TE is substantially equal to the high temperature plate 14. It becomes a vertical line. While the average molecular velocity Vi3 of the gas molecules P3 in the low temperature portion is smaller than the average molecular velocity Vi4 of the gas molecules P4 in the high temperature portion, the molecules bouncing off from the high temperature plate 14 become almost equal to the temperature of the high temperature plate 14. Rebounds at a different speed Vr1. Thus, the gas gives the hot plate 14 a momentum in the right direction in FIG. 6, and as a reaction, the hot plate 14 gives the gas a left momentum. As a result, a leftward flow F2 (thermal transition flow) is generated.

図7は、前記低圧室3の内部に次のような加熱器1を配置したときに、エッジ効果によって気体の流れF1が発生することについての確認試験の様子を示す模式図である。この試験では、加熱器1として、縦横の長さが2Dの正四角形の平板11,11を図7の表裏方向に対向させて並べ、これら平板11の間で中央位置に、上下長さがDで上下端部に直角のエッジ15が形成された高温板14を直交状に配置した。そして、前記低圧室3内を減圧したところ、図の矢印で示すように、高温板14の上下両側に形成されるエッジ15から高温板14に沿ってその中央位置へと向う気体の流れF1が発生した。この流れFはクヌッセン数Kn=0.002〜0.000242の広い領域において発生することが、可視化することによって確認された。高温板14と壁面11の絶対温度比は1.7対1であった。ここで、クヌッセン数はKn=λ/Dで算出され、λは分子の平均自由行程、Dは流れ場の代表長さである。前記クヌッセン数Knの領域は、Dが50mmである場合、圧力は70〜700Paに相当する。   FIG. 7 is a schematic diagram showing a state of a confirmation test regarding the generation of the gas flow F1 due to the edge effect when the following heater 1 is disposed inside the low-pressure chamber 3. In this test, regular square plates 11, 11 having a vertical and horizontal length of 2D are arranged facing each other in the front and back direction of FIG. 7 as the heater 1, and the vertical length is D between these flat plates 11 at the center position. Then, the high-temperature plate 14 having the right and left edges 15 formed on the upper and lower end portions was arranged orthogonally. When the inside of the low-pressure chamber 3 is depressurized, as shown by arrows in the figure, the gas flow F1 from the edges 15 formed on the upper and lower sides of the hot plate 14 toward the center position along the hot plate 14 is obtained. Occurred. It was confirmed by visualizing that this flow F occurs in a wide region of Knudsen number Kn = 0.002 to 0.000242. The absolute temperature ratio between the hot plate 14 and the wall surface 11 was 1.7 to 1. Here, the Knudsen number is calculated by Kn = λ / D, where λ is the mean free path of the molecule, and D is the representative length of the flow field. In the region of the Knudsen number Kn, when D is 50 mm, the pressure corresponds to 70 to 700 Pa.

図8は前記高温板14にニクロム線などからなる加熱体16を取り付けたときに気体の流れFが発生することについて確認試験を行ったときの状態を示す模式図である。この試験では、概略L形に屈曲された2つの通路壁17の間に風道10を形成し、この風道10の内部で熱風出口12と冷風入口13との間に、互いに平行に2つの高温板14を、その加熱体16を熱風出口12側に向けて配置するとともに、前記風道10の熱風出口12側にピラニゲージ18を配置した。前記加熱体16を加熱しつつ低圧室3内を徐々に減圧したところ、図9で示す結果を得た。前記加熱体16の加熱温度は250℃、低圧室3内の減圧は90〜530(Pa(パスカル)) の範囲で行った。   FIG. 8 is a schematic view showing a state when a confirmation test is performed on the generation of the gas flow F when the heating body 16 made of nichrome wire or the like is attached to the high-temperature plate 14. In this test, an air passage 10 is formed between two passage walls 17 bent in an approximately L shape, and two air passages 10 are formed in parallel between the hot air outlet 12 and the cold air inlet 13 inside the air passage 10. The hot plate 14 was disposed with the heating element 16 facing the hot air outlet 12 side, and a Pirani gauge 18 was disposed on the hot air outlet 12 side of the air passage 10. When the pressure inside the low pressure chamber 3 was gradually reduced while heating the heating body 16, the result shown in FIG. 9 was obtained. The heating temperature of the heating body 16 was 250 ° C., and the pressure in the low-pressure chamber 3 was reduced in the range of 90 to 530 (Pa (Pascal)).

図9は、横軸に低圧室3内の圧力P0(Pa) を、縦軸に前記ピラニゲージ18で計測される風道出口側の圧力P1 の上昇P1−P0(Pa)をとった、低圧室3内の圧力変化に基づく風道出口側の圧力上昇を示すグラフである。図9のように、低圧室3内の圧力P0 の広い範囲にわたって、風道出口側の圧力P1 の上昇が見られた。このように低圧室3内の圧力P0 と風道出口側の圧力P1 との間に圧力差があれば、この圧力差により風道10の冷風入口13側から熱風出口12側に向かって気体の流れFが発生していることが理解できる。   FIG. 9 shows a low-pressure chamber in which the horizontal axis represents the pressure P0 (Pa) in the low-pressure chamber 3, and the vertical axis represents the increase P1-P0 (Pa) of the pressure P1 on the airway outlet side measured by the Pirani gauge 18. 3 is a graph showing an increase in pressure on the airway outlet side based on a pressure change in 3. As shown in FIG. 9, an increase in the pressure P1 on the outlet side of the air passage was observed over a wide range of the pressure P0 in the low pressure chamber 3. Thus, if there is a pressure difference between the pressure P0 in the low pressure chamber 3 and the pressure P1 on the airway outlet side, the pressure difference causes the gas to flow from the cold air inlet 13 side to the hot air outlet 12 side of the airway 10. It can be understood that the flow F is generated.

以上の真空乾燥装置において,被加熱物Aの真空乾燥を行うときには、まず、図1のトレイ2上に被加熱物Aを載せて、真空ポンプ6により低圧室3内の真空引きを行うとともに、電源4のオン動作により、図2の加熱器1内に配置された高温板14の加熱体16を加熱する。このとき、高温板14の冷風入口13側にエッジ15が形成されているので、このエッジ効果により加熱器1内の風道10の内部に冷風入口13側から熱風出口12側に向かう気体の流れF1が発生する。さらに、高温板14の熱風出口12付近に加熱体14が設けられ、この高温板1 4が加熱体16で加熱されるので、減圧環境下で高温板14に熱勾配が生じる結果、高温側へ向かう熱遷移流F2が発生して、この熱遷移流F2と前記エッジ効果による気体の流れF1とにより、前記加熱体16による熱風Fが熱風出口12から被加熱物Aに向かって吹出される。このため、前記熱風出口12から吹き出される熱風Fと前記加熱体16による輻射熱とにより、トレイ2上に載せられた被加熱物Aが真空乾燥される。なお、図2の実施形態では、前記高温板14の上端部に加熱体16を設け、この加熱体16の輻射熱を利用して被加熱物Aの真空乾燥を行うようにしたが、本発明では前記加熱体16によることなく、低圧室3の外部に設けた別の熱源により被加熱物Aを加熱して真空乾燥を行うにしてもよい。   In the above vacuum drying apparatus, when performing vacuum drying of the heated object A, first, the heated object A is placed on the tray 2 in FIG. When the power source 4 is turned on, the heating body 16 of the high temperature plate 14 disposed in the heater 1 of FIG. 2 is heated. At this time, since the edge 15 is formed on the cold air inlet 13 side of the hot plate 14, the gas flow from the cold air inlet 13 side to the hot air outlet 12 side inside the air passage 10 in the heater 1 by this edge effect. F1 occurs. Further, a heating element 14 is provided in the vicinity of the hot air outlet 12 of the high temperature plate 14, and the high temperature plate 14 is heated by the heating element 16. As a result, a thermal gradient is generated in the high temperature plate 14 in a reduced pressure environment. A heading heat transition flow F2 is generated, and the hot air F by the heating body 16 is blown out from the hot air outlet 12 toward the object A to be heated by the heat transition flow F2 and the gas flow F1 due to the edge effect. Therefore, the heated object A placed on the tray 2 is vacuum-dried by the hot air F blown from the hot air outlet 12 and the radiant heat from the heating body 16. In the embodiment of FIG. 2, the heating body 16 is provided at the upper end of the high-temperature plate 14, and the object A is vacuum-dried using the radiant heat of the heating body 16. The object to be heated A may be heated and vacuum dried by another heat source provided outside the low pressure chamber 3 without using the heating body 16.

また,前記真空ポンプ6により低圧室3内の真空引きを行うときには、排気室5に内装したコールドトラップ8が外部の冷却装置7で冷却されることにより、被加熱物Aか昇華した水分がコールドトラップ8で凝縮して除去され、水分の殆どない気体が真空ポンプ6により外部排出される。   Further, when the inside of the low pressure chamber 3 is evacuated by the vacuum pump 6, the cold trap 8 provided in the exhaust chamber 5 is cooled by the external cooling device 7, so that the heated object A or the sublimated moisture is cold. The gas which is condensed and removed by the trap 8 and has almost no moisture is exhausted to the outside by the vacuum pump 6.

次に、図2に示す加熱器1を用いて、被加熱物Aの真空乾燥を一定時間行った場合のデータを表1に示す。このとき、比較例として加熱器1の内部にエッジ15を形成することなく、端部に丸みを持たせた、図10に示す高温板14Aを配置したもののデータを併せて示す。   Next, Table 1 shows data when the object A to be heated is vacuum-dried for a certain period of time using the heater 1 shown in FIG. At this time, as a comparative example, data of the arrangement of the high-temperature plate 14A shown in FIG. 10 in which the edge 15 is rounded without forming the edge 15 inside the heater 1 is also shown.

Figure 2006336924
Figure 2006336924

以上の表1から明らかなように、本発明を採用することにより被加熱物Aの時間あたりの昇華量、つまり乾燥量を増大させて、被加熱物Aに対する乾燥速度を速めることができる。   As is apparent from Table 1 above, by employing the present invention, the amount of sublimation per unit time of the heated object A, that is, the dry amount can be increased, and the drying rate for the heated object A can be increased.

本発明の一実施形態にかかる真空乾燥装置の簡略配置図である。1 is a simplified layout diagram of a vacuum drying apparatus according to an embodiment of the present invention. 加熱器の拡大断面図である。It is an expanded sectional view of a heater. 高温板の拡大断面図である。It is an expanded sectional view of a hot plate. 高温板の別の実施形態を示す断面図である。It is sectional drawing which shows another embodiment of a high temperature board. エッジ効果を説明する高温板の側面図である。It is a side view of the high temperature board explaining an edge effect. 熱遷移流を説明する高温板の要部の側面図である。It is a side view of the principal part of the hot plate explaining a heat transition flow. 低圧室内に加熱器を配置したときに気体の流れが発生することについての確認試験を行ったときの模式図である。It is a schematic diagram when the confirmation test about a gas flow generate | occur | producing when a heater is arrange | positioned in a low pressure room | chamber interior is performed. 高温板に加熱体を取り付けたときに気体の流れが発生することについての確認試験を行ったときの模式図である。It is a schematic diagram when the confirmation test about a gas flow generate | occur | produced when a heating body is attached to a high temperature board. 低圧室内の圧力変化に基づく風道出口側の圧力変化を示すグラフである。It is a graph which shows the pressure change by the side of a windway based on the pressure change in a low-pressure chamber. 端部に丸みを持つ高温板を含む比較例を示す断面図である。It is sectional drawing which shows the comparative example containing the high temperature board which has a roundness in an edge part.

符号の説明Explanation of symbols

1 加熱器
12 熱風出口
13 冷風入口
14 高温板
15 エッジ
16 加熱体
A 被加熱物
DESCRIPTION OF SYMBOLS 1 Heater 12 Hot-air exit 13 Cold-air inlet 14 Hot plate 15 Edge 16 Heating object A Heated object

Claims (4)

低圧室と、前記低圧室内に配置された加熱器とを備え、
前記加熱器は、冷風を導入する冷風入口と、被加熱物に対向する熱風出口と、前記冷風入口から熱風出口に向かって延びる互いに平行に配置された複数の高温板と、前記高温板を加熱する加熱体とを有し、
前記高温板は、冷風入口側の端部がエッジを形成している真空乾燥装置。
A low-pressure chamber, and a heater disposed in the low-pressure chamber,
The heater includes a cold air inlet for introducing cold air, a hot air outlet facing the object to be heated, a plurality of high temperature plates extending in parallel from the cold air inlet toward the hot air outlet, and heating the high temperature plate. And a heating body that
The high-temperature plate is a vacuum drying apparatus in which an end on the cold air inlet side forms an edge.
請求項1において、前記高温板は、前記冷風入口から熱風出口に向かって温度が上昇している真空乾燥装置。   2. The vacuum drying apparatus according to claim 1, wherein the temperature of the high-temperature plate increases from the cold air inlet toward the hot air outlet. 請求項1または2において、前記熱風出口は冷風入口の上方に配置されている真空乾燥装置。   3. The vacuum drying apparatus according to claim 1, wherein the hot air outlet is disposed above the cold air inlet. 請求項2または3において、前記加熱体は、前記高温板における熱風出口付近に装着されている真空乾燥装置。

4. The vacuum drying apparatus according to claim 2, wherein the heating body is mounted near a hot air outlet in the high temperature plate.

JP2005161065A 2005-06-01 2005-06-01 Vacuum drying equipment Active JP4598605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005161065A JP4598605B2 (en) 2005-06-01 2005-06-01 Vacuum drying equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005161065A JP4598605B2 (en) 2005-06-01 2005-06-01 Vacuum drying equipment

Publications (2)

Publication Number Publication Date
JP2006336924A true JP2006336924A (en) 2006-12-14
JP4598605B2 JP4598605B2 (en) 2010-12-15

Family

ID=37557629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161065A Active JP4598605B2 (en) 2005-06-01 2005-06-01 Vacuum drying equipment

Country Status (1)

Country Link
JP (1) JP4598605B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370205C (en) * 2006-12-31 2008-02-20 山东东岳高分子材料有限公司 Drying method for teflon dispersed resin
CN115342599A (en) * 2022-08-18 2022-11-15 中国矿业大学 Low-temperature heat drying and freeze drying combined system and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148972A (en) * 1984-08-16 1986-03-10 Seiko Epson Corp Semiconductor image memory device
JPS6356431B2 (en) * 1983-09-05 1988-11-08 Mitsutoshi Kashiwajima
JPH03142027A (en) * 1989-10-30 1991-06-17 Netsuken Sangyo Kk Manufacture of element blank body for heat exchanger and its element blank body and assembled element block thereof
JPH0690795A (en) * 1992-01-24 1994-04-05 Toagosei Chem Ind Co Ltd Probe for detecting campylobacter jejuni and method for detecting the same
JP2001317869A (en) * 2000-05-02 2001-11-16 Abe Jimusho:Kk Vacuum freezing drying device
JP2003317869A (en) * 2002-04-19 2003-11-07 Tdk Corp Connector with lock mechanism
JP2005188791A (en) * 2003-12-25 2005-07-14 Sharp Manufacturing System Corp Vacuum drying device
JP2006218421A (en) * 2005-02-10 2006-08-24 Kyoto Univ Method for separating gas mixture and apparatus for the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627985A (en) * 1985-07-02 1987-01-14 Ulvac Corp Cryopump capable of continuously exhausting helium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356431B2 (en) * 1983-09-05 1988-11-08 Mitsutoshi Kashiwajima
JPS6148972A (en) * 1984-08-16 1986-03-10 Seiko Epson Corp Semiconductor image memory device
JPH03142027A (en) * 1989-10-30 1991-06-17 Netsuken Sangyo Kk Manufacture of element blank body for heat exchanger and its element blank body and assembled element block thereof
JPH0690795A (en) * 1992-01-24 1994-04-05 Toagosei Chem Ind Co Ltd Probe for detecting campylobacter jejuni and method for detecting the same
JP2001317869A (en) * 2000-05-02 2001-11-16 Abe Jimusho:Kk Vacuum freezing drying device
JP2003317869A (en) * 2002-04-19 2003-11-07 Tdk Corp Connector with lock mechanism
JP2005188791A (en) * 2003-12-25 2005-07-14 Sharp Manufacturing System Corp Vacuum drying device
JP2006218421A (en) * 2005-02-10 2006-08-24 Kyoto Univ Method for separating gas mixture and apparatus for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370205C (en) * 2006-12-31 2008-02-20 山东东岳高分子材料有限公司 Drying method for teflon dispersed resin
CN115342599A (en) * 2022-08-18 2022-11-15 中国矿业大学 Low-temperature heat drying and freeze drying combined system and method
CN115342599B (en) * 2022-08-18 2024-04-19 中国矿业大学 Low-temperature heat drying and freeze drying combined system and method

Also Published As

Publication number Publication date
JP4598605B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP6485881B2 (en) Dehumidifying system for dry rooms
JP2016130611A (en) Dryer
JP4598605B2 (en) Vacuum drying equipment
WO2015121994A1 (en) Electronic-apparatus cooling device and case for cooling
CN103774397A (en) Clothe treating apparatus with heat pump and control method thereof
JP2008224192A (en) Continuous type kiln
JP2017032233A (en) Hot blast drying furnace
JP6140264B1 (en) Industrial furnace
RU2005138018A (en) FURNACE (OPTIONS)
CN101303151B (en) Boil cooling device
JP6571063B2 (en) Web heat treatment equipment
US9191999B2 (en) Method and apparatus for venting a cooking device
KR101252329B1 (en) Condenser housing comprising at least one thin wall and condenser tumble-drier comprising said condenser housing
CN116481312A (en) Heating furnace
JP4355079B2 (en) Cooler for heat-resistant panel
JP5336917B2 (en) Thermal insulation box and environmental test equipment
JP5603560B2 (en) heating furnace
JP5582665B2 (en) Thermal insulation box and environmental test equipment
WO2019198387A1 (en) Cooling device
KR20150063916A (en) Cold trap
JP2007322642A (en) Exhaust device and image forming apparatus with the same
JP2019184081A (en) Hot air dryer, and its method
JP7356323B2 (en) environmental test equipment
KR101031540B1 (en) An agricultural and marine products drying apparatus using a heat-pipe
JP2006009686A (en) Evacuation device with gas cooling mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100924

R150 Certificate of patent or registration of utility model

Ref document number: 4598605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250