[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006330851A - Improved pressure type flow rate controller - Google Patents

Improved pressure type flow rate controller Download PDF

Info

Publication number
JP2006330851A
JP2006330851A JP2005150057A JP2005150057A JP2006330851A JP 2006330851 A JP2006330851 A JP 2006330851A JP 2005150057 A JP2005150057 A JP 2005150057A JP 2005150057 A JP2005150057 A JP 2005150057A JP 2006330851 A JP2006330851 A JP 2006330851A
Authority
JP
Japan
Prior art keywords
flow rate
signal
control device
pressure type
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005150057A
Other languages
Japanese (ja)
Other versions
JP4572139B2 (en
Inventor
Takashi Hirose
隆 廣瀬
Ryosuke Doi
亮介 土肥
Koji Nishino
功二 西野
Tsutomu Shinohara
努 篠原
Shinichi Ikeda
信一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikin Inc
Original Assignee
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikin Inc filed Critical Fujikin Inc
Priority to JP2005150057A priority Critical patent/JP4572139B2/en
Publication of JP2006330851A publication Critical patent/JP2006330851A/en
Application granted granted Critical
Publication of JP4572139B2 publication Critical patent/JP4572139B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0623Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the set value given to the control element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Flow Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and accurately measure any real gas other than nitrogen by using a pressure type flow rate controller calibrated based on nitrogen gas, and be easily replaced with a thermal type flow rate controller(mass flow controller). <P>SOLUTION: This pressure flow rate controller for calculating the flow rate of fluid flowing through an orifice 8 using Qc=KP<SB>1</SB>(K is proportional constant) or Q<SB>c</SB>=KP<SB>2</SB><SP>m</SP>(P<SB>1</SB>-P<SB>2</SB>)<SP>n</SP>(K is proportional constant, m and n are constant) by using an orifice upstream side pressure P<SB>1</SB>and an orifice downstream pressure P<SB>2</SB>is configured to adjust a conversion rate(Qe'/Qer) as the rate of a set flow rate signal Qer and a set input signal Qe' of an input/output converter 25 and a conversion rate(Qo'/Qor') as the rate of the flow rate output signal Qor and the control flow rate output Qo'. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は圧力式流量制御装置の改良に関するものであり、圧力式流量制御装置の構造の簡素化が図れると共に、ガス種の変更にも簡単に対応することができ、更に熱式質量流量制御装置(マスフローコントローラMFC)とも容易に交換をすることができるようにした圧力式流量制御装置に関するものである。   The present invention relates to an improvement of a pressure type flow rate control device, which can simplify the structure of the pressure type flow rate control device and can easily cope with a change in gas type, and further, a thermal mass flow rate control device. The present invention relates to a pressure type flow rate control device that can be easily replaced with (mass flow controller MFC).

圧力式流量制御装置は、マスフローコントローラに代表される熱式質量流量制御装置(MFC)に比較して、応答性や制御精度、製造コスト、制御の安定性、メンテナンス性等の点で勝る優れた特性を備えており、そのため半導体製造の技術分野等において広く実用に供されている。   The pressure type flow control device is superior to the thermal type mass flow control device (MFC) represented by the mass flow controller in terms of responsiveness, control accuracy, manufacturing cost, control stability, maintainability, etc. Therefore, it is widely used in the technical field of semiconductor manufacturing.

図5(a)及び図5(b)は、前記従前の圧力式流量制御装置FCSの基本構成の一例を示すものであり、コントロール弁2、圧力検出器6、27、オリフィス8、流量演算回路13・31、流量設定回路14、演算制御回路16、流量出力回路12等から圧力式流量制御装置FCSの要部が形成されている。
尚、図5(a)及び図5(b)において、3はオリフィス上流側配管、4は弁駆動部、5はオリフィス下流側配管、9はバルブ、15は流量変換回路、10、11、22、28は増幅器、7は温度検出器、17、18、29はA/D変換器、19は温度補正回路、20、30は演算回路、21は比較回路、Qcは演算流量信号、Qfは切換演算流量信号、Qeは流量設定信号、Qoは流量出力信号、Qyは流量制御信号、P1はオリフィス上流側気体圧力、P2オリフィス下流側気体圧力、kは流量変換率である。
5 (a) and 5 (b) show an example of the basic configuration of the conventional pressure type flow rate control device FCS. The control valve 2, the pressure detectors 6, 27, the orifice 8, the flow rate calculation circuit 13 and 31, the flow rate setting circuit 14, the calculation control circuit 16, the flow rate output circuit 12, and the like form a main part of the pressure type flow rate control device FCS.
5A and 5B, 3 is an orifice upstream pipe, 4 is a valve drive section, 5 is an orifice downstream pipe, 9 is a valve, 15 is a flow rate conversion circuit, 10, 11, 22 , 28 is an amplifier, 7 is a temperature detector, 17, 18 and 29 are A / D converters, 19 is a temperature correction circuit, 20 and 30 are arithmetic circuits, 21 is a comparison circuit, Qc is an arithmetic flow rate signal, and Qf is switching An arithmetic flow rate signal, Qe is a flow rate setting signal, Qo is a flow rate output signal, Qy is a flow rate control signal, P 1 is an orifice upstream gas pressure, P 2 orifice downstream gas pressure, and k is a flow rate conversion rate.

前記図5(a)の圧力式流量制御装置FCSは、オリフィス上流側気体圧力P1とオリフィス下流側気体圧力P2との比P1/P2が流体の臨界値に等しいか若しくはこれより低い場合(所謂気体の流れが臨界状態下にあるとき)に、主として用いられるものであり、オリフィス8を流通する気体流量Qcは、Qc=KP1(但し、Kは比例定数)で与えられる。
また、前記図5(b)の圧力式流量制御装置FCSは、臨界状態と非臨界状態の両方の流れ状態となる気体の流量制御に主として用いられるものであり、オリフィス8を流れる気体の流量は、Qc=KP2 m(P1−P2)n(Kは比例定数、mとnは定数)として与えられる。
In the pressure type flow rate control device FCS of FIG. 5A, the ratio P 1 / P 2 of the orifice upstream gas pressure P 1 and the orifice downstream gas pressure P 2 is equal to or lower than the critical value of the fluid. In this case (so-called gas flow is in a critical state), the gas flow rate Qc flowing through the orifice 8 is given by Qc = KP 1 (where K is a proportional constant).
Further, the pressure type flow rate control device FCS of FIG. 5B is mainly used for the flow rate control of the gas in both the critical state and the non-critical state, and the flow rate of the gas flowing through the orifice 8 is as follows. , Q c = KP 2 m (P 1 −P 2 ) n (K is a proportional constant, m and n are constants).

また、前記図5(a)の圧力式流量制御装置において、流量値の設定値は、流量設定信号Qeとして電圧値で与えられ、例えば上流側圧力P1の圧力制御範囲0〜3(kgf/cm2 abs)を電圧範囲0〜5vで表示したとすると、Qe=5v(フルスケール値)は、3(kgf/cm2 abs)の圧力P1における流量Qcに相当することとなる。 5A, the set value of the flow rate value is given as a voltage value as the flow rate setting signal Qe. For example, the pressure control range 0 to 3 (kgf / kg) of the upstream pressure P 1 is used. Assuming that cm 2 abs) is displayed in a voltage range of 0 to 5 v, Qe = 5 v (full scale value) corresponds to a flow rate Qc at a pressure P 1 of 3 (kgf / cm 2 abs).

例えば、いま流量変換回路15の変換率kが1に設定されているときに、流量設定信号Qe=5vが入力されると、切換演算流量信号Qf(Qf=kQc)は5vとなり、上流側圧力P1が3(kgf/cm2 abs)になるまでコントロール弁2が開閉操作されることになり、P1=3(kgf/cm2 abs)に対応する流量Qc=KP1の気体がオリフィス8を流通することになる。 For example, when the conversion rate k of the flow rate conversion circuit 15 is set to 1 and the flow rate setting signal Qe = 5v is input, the switching calculation flow rate signal Qf (Qf = kQc) becomes 5v, and the upstream pressure The control valve 2 is opened and closed until P 1 reaches 3 (kgf / cm 2 abs), and the gas having a flow rate Qc = KP 1 corresponding to P 1 = 3 (kgf / cm 2 abs) is supplied to the orifice 8. Will be distributed.

また、制御すべき圧力範囲を0〜2(kgf/cm2 abs)に切換え、この圧力範囲を0〜5(v)の流量設定信号Qeで表示する場合(即ち、フルスケール値5vが2(kgf/cm2 abs)を与える場合)には、前記流量変換率kが2/3に設定される。 Further, when the pressure range to be controlled is switched to 0 to 2 (kgf / cm 2 abs) and this pressure range is displayed by the flow rate setting signal Qe of 0 to 5 (v) (that is, the full scale value 5v is 2 ( In the case of (kgf / cm 2 abs)), the flow rate conversion rate k is set to 2/3.

その結果、流量設定信号Qe=5(v)が入力されたとすると、Qf=kQcから、切換演算流量信号QfはQf=5×2/3(v)となり、上流側圧力P1が3×2/3=2
(kgf/cm2 abs)になるまで、コントロール弁2が開閉操作される。
即ち、Qe=5vが、P1=2(kgf/cm2 abs)に相当する流量Qc=KP1を表すようにフルスケールの流量が変換される。
尚、前記図5(b)の圧力式流量制御装置においても同様であり、オリフィス8を流通する気体の流量Qcは、Qc=KP2 m(P1−P2)n(Kは比例定数、mとnは定数)として与えられ、ガス種が変われば前記比例定数Kが変化する。
As a result, if the flow rate setting signal Qe = 5 (v) is input, the switching calculation flow rate signal Qf becomes Qf = 5 × 2/3 (v) from Qf = kQc, and the upstream pressure P 1 is 3 × 2 / 3 = 2
The control valve 2 is opened and closed until (kgf / cm 2 abs) is reached.
That is, the full-scale flow rate is converted so that Qe = 5v represents a flow rate Qc = KP 1 corresponding to P 1 = 2 (kgf / cm 2 abs).
The same applies to the pressure type flow rate control device of FIG. 5B, and the flow rate Qc of the gas flowing through the orifice 8 is Q c = KP 2 m (P 1 −P 2 ) n (K is a proportional constant) , M and n are constants), and the proportional constant K changes if the gas species changes.

更に、臨界状態下においては、オリフィス8を流通する気体流量Qcは、前述の通りQc=KP1なる式で与えられるが、流量制御すべきガス種が変れば、同一オリフィス8を使用している場合には、前記比例定数Kが変化する。 Further, under the critical condition, the gas flow rate Qc flowing through the orifice 8 is given by the equation Qc = KP 1 as described above, but the same orifice 8 is used if the gas type to be controlled is changed. In this case, the proportionality constant K changes.

いま、水素、酸素、窒素に対する前記比例定数KをKh(H2の場合)、Ko(O2の場合)、Kn(N2の場合)で表すと、このKh、Ko、Knは、一般に窒素ガスを基準とするフローファクタF.F.を用いて表すことができる。
尚、当該フローファクタF.F.は、オリフィス8及び上流側圧力P1が同一の場合に、O2やH2等の実ガス流量がN2流量に対して何倍になるかを示す量であり、フローファクタF.F.=実ガスの流量/N2流量で定義される。またこのF.F.の具体的な値は表1のような値となり、ガスの比熱比等を用いて理論式から演算することができ、この演算値は実測値と高精度で一致することが実証されている(特開2000−322130号、特開2004−199109号等)。
Now, when the proportionality constant K with respect to hydrogen, oxygen, and nitrogen is expressed by Kh (in the case of H 2 ), Ko (in the case of O 2 ), and Kn (in the case of N 2 ), this Kh, Ko, and Kn are generally represented by nitrogen. Gas based flow factor F.R. F. Can be used.
The flow factor F.I. F. Is an amount indicating how many times the actual gas flow rate of O 2 , H 2, etc. is larger than the N 2 flow rate when the orifice 8 and the upstream pressure P 1 are the same. F. = Definition of actual gas flow rate / N 2 flow rate. This F.D. F. The specific values of are as shown in Table 1 and can be calculated from a theoretical formula using the specific heat ratio of the gas, etc., and it has been proved that this calculated value matches the measured value with high accuracy ( JP, 2000-322130, JP, 2004-199109, etc.).

Figure 2006330851
Figure 2006330851

例えば、前記H2ガスのフローファクタをF.Fh、O2ガスのフローファクタをF.Foとすると、F.Fh=Kh/Kn、F.Fo=Ko/Knで表現され、N2ガスのフローファクタは、勿論F.Fn=Kn/Kn=1となる。
図5(a)の圧力式流量制御装置FCSを参照して、いまこれにN2ガスを流通させてその流量測定を行っているとする。この時の流量変換率はk=1であるから、切換演算流量信号QfはQf=kQcとなり、流量指令信号Qeに等しくなる。
For example, the flow factor of the H 2 gas is F.D. Fh, O 2 gas flow factor If Fo, F. Fh = Kh / Kn, F.I. Fo = Ko / Kn, and the flow factor of N 2 gas is, of course, F.R. Fn = Kn / Kn = 1.
Referring to the pressure type flow rate control device FCS in FIG. 5A, it is assumed that N 2 gas is circulated through the pressure flow rate control device FCS and the flow rate is being measured. Since the flow rate conversion rate at this time is k = 1, the switching calculation flow rate signal Qf is Qf = kQc, which is equal to the flow rate command signal Qe.

また、図5(a)の圧力式流量制御装置FCSにH2ガスを送るには、流量変換回路15において流量変換率kがKh=3.731843に設定され、切換演算流量信号Qfは、Qf=kQcからQf=KhQeとなる。即ち、切換演算流量信号QfはN2ガスに対する流量設定信号QeのKh倍となり、オリフィス上流側圧力P1がN2ガスの場合のKh倍になるように、コントロール弁2の開閉操作が行われることになる。
尚、上記説明は、何れも図5(a)に基ずいて説明をしたが、図5(b)の圧力式流量制御装置であっても、基本的には同一である。
Further, in order to send the H 2 gas to the pressure type flow control device FCS of FIG. 5A, the flow rate conversion rate k is set to Kh = 3.731843 in the flow rate conversion circuit 15, and the switching calculation flow rate signal Qf is set to Qf = KQc to Qf = KhQe. That is, the opening / closing operation of the control valve 2 is performed so that the switching calculation flow signal Qf is Kh times the flow rate setting signal Qe for N 2 gas and the orifice upstream pressure P 1 is Kh times that for N 2 gas. It will be.
In addition, although the above description was based on FIG. 5 (a), even the pressure type flow control device of FIG. 5 (b) is basically the same.

特開平8−338546JP-A-8-338546 特開2000−66732JP 2000-66732 A 特開2003−195948JP2003-195948 特開2000−322130JP 2000-322130 A 特開2004−199109JP 2004-199109 A

ところで、従前のこの種圧力式流量制御装置FCSにおいては、前述の通り窒素ガスN2を基準として制御装置FCSの目盛校正がされており(具体的には、流量設定回路14の流量設定信号Qeが最大5vのときの流量値Vmを実測し(例えばVm=105sccm)、この流量値Vm=105sccmが設定流量Vs(例えばVs=100sccm)となるように前記Qeを調整して、この調整後の流量設定信号値を演算制御回路16へ入力するようにしたり、或いは、流量演算回路13の流量設定変換回路15で変換率kを調整し、流量設定回路14からの設定入力5vのときに、N2の設定流量値がフルスケール値FS(設定流量Vs=100sccm)となるように校正し、その後この時の変換率kを固定して、k=Kn=1とすることにより、目盛校正がされている。)、N2以外の実ガス(例えばガス種を酸素に変更したような場合)を制御する場合には、予め流量演算回路13内に組み込みしたフローファクタF.F.の記憶装置(図示省略)から酸素O2に対するフローファクタF.Foを読み出し、このフローファクタF.Fo値(即ち、流量変換率ko)をN2を基準とした演算流量信号Qcに乗じて、Qf=koQcなる切替演算流量信号が演算制御回路16へ出力することになる。 Incidentally, in this conventional pressure type flow rate control device FCS, as described above, the calibration of the control device FCS is performed with reference to the nitrogen gas N 2 (specifically, the flow rate setting signal Qe of the flow rate setting circuit 14). Measure the flow rate value Vm when the maximum is 5 V (for example, Vm = 105 sccm), adjust the Qe so that the flow rate value Vm = 105 sccm becomes the set flow rate Vs (for example, Vs = 100 sccm), When the flow rate setting signal value is input to the calculation control circuit 16 or the conversion rate k is adjusted by the flow rate setting conversion circuit 15 of the flow rate calculation circuit 13 and the setting input 5v from the flow rate setting circuit 14 is N The set flow rate value of 2 is calibrated so as to be the full scale value FS (set flow rate Vs = 100 sccm), and then the conversion rate k at this time is fixed, and k = Kn = 1. In order to control an actual gas other than N 2 (for example, when the gas type is changed to oxygen), the flow factor F incorporated in the flow rate calculation circuit 13 in advance is controlled. . F. The flow factor for oxygen O 2 from the storage device (not shown) of F.F. Fo is read out and the flow factor F.F. By multiplying the Fo value (that is, the flow rate conversion rate ko) by the calculated flow rate signal Qc based on N 2 , a switching calculated flow rate signal of Qf = koQc is output to the calculation control circuit 16.

換言すれば、圧力式流量制御装置FCSは、その制御部に必ず各種の実ガスに対するフローファクタF.F.値のテーブルを備える必要があり、当該F.F.値のテーブルを備えない限りガス種の変更に対応できないと云う構成になっている。
尚、このことは、マスフローコントローラ等の熱式流量制御装置においても同様であり、一般には、圧力式流量制御装置FCSのフローファクタF.F.に対応するコンバートファクタCFのテーブルを備えておき、これを用いて実ガスの変更に対処するよう構成されている。
In other words, the pressure type flow control device FCS always has a flow factor F.F. F. Need to have a table of values. F. Unless a value table is provided, the gas type cannot be changed.
This also applies to a thermal flow control device such as a mass flow controller. In general, the flow factor F. F. A conversion factor CF table corresponding to the above is prepared, and this is used to cope with changes in actual gas.

勿論、N2ガスを基準ガスとせずに、制御対象とする実ガスを基準として圧力式流量制御装置FCSを校正することも可能であるが、その場合には、(実ガスの種類×流量レンジグループ)の数だけの多種類の圧力式流量制御装置FCSを製作する必要があり、製造コストの削減が困難になるだけでなく生産管理や販売管理が複雑化すると云う問題を生ずることになる。 Of course, it is also possible to calibrate the pressure type flow rate control device FCS with reference to the actual gas to be controlled without using the N 2 gas as the reference gas, but in that case, (actual gas type × flow rate range) It is necessary to manufacture as many types of pressure type flow rate control devices FCS as the number of groups), which not only makes it difficult to reduce the manufacturing cost, but also causes problems such as complicated production management and sales management.

また、窒素ガスN2を基準として校正された圧力式流量制御装置FCSにおいて、実ガス(酸素O2)のF.F.値(例えばF.Fo=0.935237)を流量設定信号Qe=5vに乗じて目盛校正をする場合、Qf=F.FoQeには当然に端数が含まれることになり、出力信号Qo=Qfの方も端数を含む値となる。
その結果、切換演算流量信号Qfや出力信号Qoの電圧値の取り扱いがやっかいとなり、結果として流量制御精度の低下を招く等の問題がある。
Further, in the pressure type flow rate control device FCS calibrated with reference to the nitrogen gas N 2 , the actual gas (oxygen O 2 ) F.V. F. When scale calibration is performed by multiplying the flow rate setting signal Qe = 5v by a value (for example, F.Fo = 0.935237), Qf = F. FoQe naturally includes a fraction, and the output signal Qo = Qf also has a value including the fraction.
As a result, it is difficult to handle the voltage values of the switching calculation flow signal Qf and the output signal Qo, resulting in problems such as a decrease in flow control accuracy.

更に、近年既設の熱式流量制御装置MFCに替えて圧力式流量制御装置FCSを使用するケースが増えて来ている。このような場合、前者の設定流量信号Qe値と設定流量Q(sccm)との関係が、後者の設定流量信号Qe値と設定流量Q(sccm)との関係に夫々完全に一致している場合には、制御系の他の部分に大きな改修を加えることなしに、簡単に熱式質量流量制御装置MFCを圧力式(質量)流量制御装置FCSに取り替えすることができる。   Further, in recent years, there are increasing cases of using the pressure type flow rate control device FCS instead of the existing thermal type flow rate control device MFC. In such a case, the relationship between the former set flow signal Qe value and the set flow rate Q (sccm) completely matches the relationship between the latter set flow signal Qe value and the set flow rate Q (sccm). The thermal mass flow controller MFC can be easily replaced with the pressure (mass) flow controller FCS without major modifications to other parts of the control system.

しかし、両者の設定流量信号値Qe値と設定流量Q(sccm)との何れかが相互に異なっている場合(例えば、設定流量Qの方はQ=100sccmで同一であるが、これに対応する設定流量信号Qeの方がQe=5.000v(MFCの場合)とQe=4.439v(FCSの場合)のように夫々異なっているとき)には、従前の圧力式流量制御装置FCSにおいては、内部のフローファクタデータテーブルそのものを取り替え(又は書き替え)しなければ、現実に熱式質量流量制御装置MFCを圧力式流量制御装置FCSに取り替え出来ず、極めて煩雑な作業を必要とすると云う問題がある。   However, when either of the set flow signal value Qe value and the set flow rate Q (sccm) is different from each other (for example, the set flow rate Q is the same at Q = 100 sccm, this corresponds to this. When the set flow rate signal Qe is different between Qe = 5.000v (in the case of MFC) and Qe = 4.439v (in the case of FCS), in the conventional pressure type flow rate control device FCS, If the internal flow factor data table itself is not replaced (or rewritten), the thermal mass flow controller MFC cannot be actually replaced with the pressure flow controller FCS, and a very complicated operation is required. There is.

本発明は、従前の圧力式流量制御装置FCSにおける上述の如き問題、即ちイ.窒素ガスN2を基準として校正した流量設定信号Qeに実ガスのフローファクタF.F.を乗じたものを切換演算流量信号Qfや流量出力信号Qoとしているため、必然的に信号値Qf、Qoが端数を含んだ数値となり、電圧値の取り扱いが極めてやっかいなものになること、ロ.各種の実ガスに対応したフローファクタF.F.のデータテーブルを制御部に必要とすること、ハ.熱式質量流量制御装置MFCに替えて圧力式流量制御装置FCSを簡単に使用することができず、流量設定信号Qeと設定流量(制御流量)Qcとの相互関係によっては圧力式流量制御装置FCSの使用が困難となること等の問題を解決せんとするものであり、切換演算流量信号Qfや流量出力信号Qoを端数の無い数値に変換でき、しかも熱式質量流量制御装置MFCとも簡単に交換して使用することができるようにした改良された圧力式流量制御装置FCSを提供することを発明の主目的とするものである。 The present invention has the above-described problems in the conventional pressure type flow rate control device FCS, namely, a. The flow rate setting signal Qe calibrated on the basis of the nitrogen gas N 2 is added to the flow factor F. F. Since the switching calculation flow signal Qf and the flow output signal Qo are multiplied by the above, the signal values Qf and Qo inevitably become numerical values including fractions, and the handling of voltage values becomes extremely troublesome. Flow factor F. corresponding to various real gas F. A data table is required for the control unit, c. The pressure type flow control device FCS cannot be easily used in place of the thermal mass flow control device MFC, and the pressure type flow control device FCS depends on the correlation between the flow setting signal Qe and the set flow (control flow) Qc. It is intended to solve problems such as the difficulty of use, and can change the switching calculation flow rate signal Qf and flow rate output signal Qo to numerical values with no fractions, and it can be easily replaced with the thermal mass flow controller MFC It is a main object of the present invention to provide an improved pressure type flow rate control device FCS which can be used as a product.

請求項1の発明は、オリフィス上流側圧力P1とオリフィス下流側圧力P2を用いて、オリフィス8を流通する流体の流量をQc=KP1(Kは比例定数)又はQc=KP2 m(P1−P2)n(Kは比例定数、mとnは定数)として演算するようにした圧力式流量制御装置において、当該圧力式流量制御装置を流量演算装置23と、流量演算装置23へ設定流量信号Qerに関連する設定出力信号Qe′を入力すると共に流量演算装置23から制御流量出力信号Qo′に関連する制御流量信号Qorを出力する入出力コンバータ25と、オリフィス8の上流側に設けられ、流量演算装置23からの流量制御信号Qyにより開閉制御されるコントロール弁2とから構成すると共に、前記入出力コンバータ25の前記設定流量信号Qerと設定入力信号Qe′との比である変換率(Qe′/Qer)及び前記流量出力信号Qorと制御流量出力Qo′との比である変換率(Qo′/Qor)を調整可能な構成としたことを発明の基本構成とするものである。 In the first aspect of the invention, the flow rate of the fluid flowing through the orifice 8 is set to Qc = KP 1 (K is a proportional constant) or Q c = KP 2 m using the orifice upstream pressure P 1 and the orifice downstream pressure P 2. (P 1 −P 2 ) n (K is a proportional constant, m and n are constants) In the pressure type flow rate control device, the pressure type flow rate control device includes the flow rate calculation device 23 and the flow rate calculation device 23. An input / output converter 25 that inputs a set output signal Qe ′ related to the set flow rate signal Qer and outputs a control flow rate signal Qor related to the control flow rate output signal Qo ′ from the flow rate calculation device 23, and upstream of the orifice 8. The control valve 2 is provided and controlled to be opened and closed by a flow rate control signal Qy from the flow rate calculation device 23, and the set flow rate signal Qer and the set input signal of the input / output converter 25. The invention is configured such that the conversion rate (Qe '/ Qer) which is a ratio with Qe' and the conversion rate (Qo '/ Qor) which is a ratio between the flow rate output signal Qor and the control flow rate output Qo' can be adjusted. The basic configuration is as follows.

請求項2の発明は、請求項1の発明において、入出力コンバータ25の前記変換率(Qe′/Qer)及び(Qo′/Qor)を適用する実ガスのフローファクタF.F.とするようにしたものである。   According to a second aspect of the present invention, in the first aspect of the present invention, the actual gas flow factor F.F. applied to the conversion ratios (Qe ′ / Qer) and (Qo ′ / Qor) of the input / output converter 25. F. It is made to do.

請求項3の発明は、請求項1の発明において、入出力コンバータ25を圧力式流量制御装置本体1へ着脱自在に設けると共に、入出力コンバータ25の前記変換率(Qe′/Qer)及び(Qo′/Qor)の設定値を一種の実ガスのフローファクタF.F.のみとするようにしたものである。   According to a third aspect of the present invention, in the first aspect of the present invention, the input / output converter 25 is detachably provided to the main body of the pressure type flow rate control device 1, and the conversion rate (Qe '/ Qer) and (Qo) of the input / output converter 25 are '/ Qor) is set to a kind of actual gas flow factor F. F. It is intended to be only.

請求項4の発明は、請求項1の発明において、入出力コンバータ25を、複数の実ガスに対する複数の変換率を設けた構成とすると共に、複数の流量測定範囲に切換え可能な流量切換機構を設けた構成としたものである。   According to a fourth aspect of the present invention, in the first aspect of the present invention, the input / output converter 25 is provided with a plurality of conversion rates for a plurality of actual gases, and a flow rate switching mechanism capable of switching to a plurality of flow rate measurement ranges. The configuration is provided.

本発明においては、圧力式流量制御装置本体1に入出力コンバータ25を着脱自在に取り付けると共に、入出力コンバータ25に設定流量信号Qerと設定入力信号Qe′との比である変換率(Qe′/Qer)及び流量出力信号Qorと制御流量出力信号Qo′との比である変換率(Qo′/Qor)を調整可能に設け、ガス種に応じて前記変換率を調整する構成としている。
その結果、ガス種が変っても、入出力コンバータ25の変換率を変えるだけで、窒素ガスに基づいて較正をした圧力式流量制御装置をそのまま容易に当該ガス種の流量制御に適用することができると共に、設定流量信号Qer及び制御流量出力信号Qorの電圧値に端数が含まれないようにすることができ、電圧信号の取り扱いが容易になる。
In the present invention, the input / output converter 25 is detachably attached to the pressure type flow control device main body 1, and the conversion rate (Qe '/ R) is a ratio between the set flow signal Qer and the set input signal Qe'. Qer) and a conversion rate (Qo ′ / Qor) which is a ratio between the flow rate output signal Qor and the control flow rate output signal Qo ′ is adjustable, and the conversion rate is adjusted according to the gas type.
As a result, even if the gas type changes, the pressure type flow rate control device calibrated based on nitrogen gas can be easily applied to the flow rate control of the gas type simply by changing the conversion rate of the input / output converter 25. In addition, the voltage values of the set flow rate signal Qer and the control flow rate output signal Qor can be excluded from fractions, and the handling of the voltage signals is facilitated.

また、入出力コンバータ25の適用により、ガス種の変更に際して必要となる従前の圧力式流量制御装置の制御部に設けたフローファクタテーブルが不要となり、圧力式流量制御装置の構造の簡素化が可能となる。   In addition, the application of the input / output converter 25 eliminates the need for a flow factor table provided in the control unit of a conventional pressure type flow rate control device required for changing the gas type, and simplifies the structure of the pressure type flow rate control device. It becomes.

更に、入出力コンバータ25の変換率の調整により、熱式質量流量制御装置MFCに換えて本発明の圧力式流量制御装置を容易に適用することが可能となる。   Furthermore, by adjusting the conversion rate of the input / output converter 25, the pressure type flow rate control device of the present invention can be easily applied instead of the thermal mass flow rate control device MFC.

以下、図面に基づいて本発明の実施形態を説明する。
図1は、本発明に係る圧力式流量制御装置の基本構成を示すブロック図であり、図において、1は圧力式流量制御装置本体、25は入出力コンバータ(I/Oコンバータ)、25aはコンバータ本体部、25bは流量設定部、25cは流量出力部、Qerは実ガス流量設定信号、Qorは実ガス流量出力信号であり、入出力コンバータ25はコンバータ本体25aと流量設定部25bと流量出力部25cとから形成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a basic configuration of a pressure type flow rate control device according to the present invention. In the figure, 1 is a pressure type flow rate control device body, 25 is an input / output converter (I / O converter), and 25a is a converter. Main unit 25b is a flow rate setting unit, 25c is a flow rate output unit, Qer is an actual gas flow rate setting signal, Qor is an actual gas flow rate output signal, and the input / output converter 25 is a converter main body 25a, a flow rate setting unit 25b, and a flow rate output unit. 25c.

図2は、本発明に係る改良型圧力式流量制御装置の概要を示す斜面図であり、流量圧力制御装置本体1と、当該本体1へ着脱自在に固定した入出力コンバータ25と、コネクター26等から本発明に係る改良型圧力式流量制御装置は構成されている。   FIG. 2 is a perspective view showing an outline of the improved pressure type flow rate control device according to the present invention. The flow rate pressure control device main body 1, an input / output converter 25 detachably fixed to the main body 1, a connector 26, etc. Thus, an improved pressure type flow rate control device according to the present invention is configured.

前記圧力式流量制御装置本体1は、基本的には前記図5(a)及び図5(b)に示した圧力式流量制御装置FCSと同様の構成を有するものである。しかし、図5(a)及び図5(b)の圧力式流量制御装置FCSが具備している各種ガス種に対するフローファクタテーブル等(即ち、図5(a)及び図5(b)の流量変換回路15等)は具備していない。   The pressure type flow control device main body 1 basically has the same configuration as the pressure type flow control device FCS shown in FIGS. 5 (a) and 5 (b). However, the flow factor table or the like for various gas types provided in the pressure type flow rate control device FCS of FIGS. 5A and 5B (that is, the flow rate conversion of FIGS. 5A and 5B). Circuit 15 etc.) is not provided.

図3(a)及び図3(b)は、圧力式流量制御装置本体1の回路構成を示すブロック図である。図3(a)及び図3(b)を参照して、1は圧力式流量制御装置本体、2はコントロール弁、3はオリフィス上流側配管、4はコントロール弁の駆動装置、5はオリフィス下流側配管、6、27は圧力検出器、7は温度検出器、8はオリフィス、10、11、22、28は増幅器、17、18、29はAD変換器、19は温度補正回路、20、30は演算回路、21は比較回路、23は流量演算装置である。
また、Qerは実ガス流量設定信号、Qorは実ガス流量出力信号、Qcは演算流量信号、Qyは流量制御信号である。
FIG. 3A and FIG. 3B are block diagrams showing a circuit configuration of the pressure type flow control device main body 1. 3 (a) and 3 (b), 1 is a pressure type flow rate control device body, 2 is a control valve, 3 is an orifice upstream piping, 4 is a control valve drive device, and 5 is an orifice downstream. Piping, 6 and 27 are pressure detectors, 7 is a temperature detector, 8 is an orifice, 10, 11, 22, and 28 are amplifiers, 17, 18, and 29 are AD converters, 19 is a temperature correction circuit, and 20 and 30 are An arithmetic circuit, 21 is a comparison circuit, and 23 is a flow rate arithmetic unit.
Qer is an actual gas flow rate setting signal, Qor is an actual gas flow rate output signal, Qc is a calculated flow rate signal, and Qy is a flow rate control signal.

オリフィス8を流通する実ガスGが音速下にある場合(即ち、所謂実ガスが臨界条件下にあるとき)には、オリフィス8を流通する実ガスGの制御流量Qcは、Qc=KP1(但しKはオリフィス8により定まる定数)として演算され、この演算された制御流量(演算流量)Qcに対応する制御流量信号と、I/Oコンバータ25からの設定流量信号Qerに対応する設定入力信号(電圧値)Qe′とが比較器21で比較され、その差に相当する流量制御信号Qyに相当する出力がコントロールバルブ2の駆動装置4へ入力される。これによってコントロール弁2が開閉操作され、オリフィス上流側管路3内の圧力P1がオリフィス8を流通する実ガスGの流量が設定流量信号Qerに対応する設定流量になるように調整される。
同様に、図3(b)の圧力式流量制御装置FCSでは、実ガスGの流れの状態に拘らず、流量QcはQc=KP2 m(P1−P2)nなる式を適用して演算されることになる(但し、Kはオリフィス8により定まる比例定数、mとnは流体流量の実測値から求められた定数である)。
When the actual gas G flowing through the orifice 8 is at the speed of sound (that is, when the so-called actual gas is in a critical condition), the control flow rate Qc of the actual gas G flowing through the orifice 8 is Qc = KP 1 ( However, K is calculated as a constant determined by the orifice 8, and a control flow signal corresponding to the calculated control flow rate (calculated flow rate) Qc and a set input signal corresponding to the set flow rate signal Qer from the I / O converter 25 ( The voltage value Qe ′ is compared with the comparator 21, and an output corresponding to the flow rate control signal Qy corresponding to the difference is input to the drive device 4 of the control valve 2. Thus, the control valve 2 is opened and closed, and the pressure P 1 in the orifice upstream side pipe 3 is adjusted so that the flow rate of the actual gas G flowing through the orifice 8 becomes a set flow rate corresponding to the set flow rate signal Qer.
Similarly, in the pressure type flow rate control device FCS of FIG. 3B, the flow rate Qc applies the equation Qc = KP 2 m (P 1 −P 2 ) n regardless of the flow state of the actual gas G. (Where K is a proportionality constant determined by the orifice 8, and m and n are constants obtained from actual measured values of the fluid flow rate).

前記流量設定部25bへは、各実ガスの制御流量に対応する実ガス設定流量信号Qerが設定される。例えばN2(5v・FS〜1v・20%FS)、O2(5v・FS〜1v・20%FS)、He(5v・FS〜1v・20%FS)及びH2(5v・FS〜1v・20%FS)の如く、各種の実ガスGに対する設定流量信号Qerが設定される。尚、各信号Qerは現実には電圧値で入力される。 In the flow rate setting unit 25b, an actual gas set flow rate signal Qer corresponding to the control flow rate of each actual gas is set. For example, N 2 (5v · FS to 1v · 20% FS), O 2 (5v · FS to 1v · 20% FS), He (5v · FS to 1v · 20% FS) and H 2 (5v · FS to 1v The set flow rate signal Qer for various actual gases G is set as in (20% FS). Each signal Qer is actually input as a voltage value.

上記流量設定部25bへ入力された実ガスGの各設定流量信号Qerは、直接にI/Oコンバーター25のコンバーター本体25aへ入力され、ここでオリフィス8の各規格及び各実ガス種毎に予め定められた設定入力信号Qe′(電圧値)に変換される。   Each set flow rate signal Qer of the actual gas G input to the flow rate setting unit 25b is directly input to the converter main body 25a of the I / O converter 25, where it is previously stored for each standard of the orifice 8 and each actual gas type. It is converted into a predetermined setting input signal Qe '(voltage value).

例えば、フルスケール1000SCCMの圧力式流量制御装置であって、実ガスGがN2の場合には、Qer=5vのときに、オリフィス8の制御(流通)流量QcがQc=1000SCCMとなる圧力P1が得られるようにコントロール弁2を調整するための設定入力信号Qe′が、I/Oコンバータ本体25aから流量演算装置23の比較回路21へ出力される。尚、実ガスGが窒素N2の場合には、当該設定入力信号Qe′は約5vとなるように、流量演算装置23の増幅器10、11等が調整されている。 For example, in a full-scale 1000 SCCM pressure-type flow control device, when the actual gas G is N 2 , the pressure P at which the control (circulation) flow rate Qc of the orifice 8 becomes Qc = 1000 SCCM when Qer = 5v. A setting input signal Qe ′ for adjusting the control valve 2 so as to obtain 1 is output from the I / O converter body 25a to the comparison circuit 21 of the flow rate calculation device 23. When the actual gas G is nitrogen N 2 , the amplifiers 10, 11 and the like of the flow rate calculation device 23 are adjusted so that the setting input signal Qe ′ is about 5v.

同様に、流量演算装置23の流量演算回路20からは、演算流量(Qc、即ち制御流量Qc)に対応する制御流量信号と同じ制御流量出力信号(電圧値)Qo′(=Qc)がI/Oコンバータ本体25aへ入力され、例えば制御流量Qcが定格流量であるときの制御流量出力信号Qo′が4.9890vであれば、この制御流量出力信号Qo′がここでフルスケールに対応する5vに変換されたあと、流量出力信号Qor=5vとして出力される。   Similarly, from the flow rate calculation circuit 20 of the flow rate calculation device 23, the same control flow rate output signal (voltage value) Qo ′ (= Qc) as the control flow rate signal corresponding to the calculated flow rate (Qc, that is, the control flow rate Qc) is I / O. For example, if the control flow rate output signal Qo ′ is 4.9890v when the control flow rate Qc is the rated flow rate and is input to the O converter body 25a, the control flow rate output signal Qo ′ is now 5v corresponding to the full scale. After the conversion, the flow rate output signal Qor = 5v is output.

尚、N2の場合には、前記コンバート比Qe′/Qer及びQo′/Qorは夫々1に極めて近い値となるが、厳密には1でない値となる。
また、ガス種がO2やAr、He、H2等の場合には、前記設定流量信号Qer側のコンバート比Qe′/Qer及び制御流量出力信号Qor側のコンバート比Qo′/Qorは、夫々圧力式流量制御装置本体1の型式毎に定まる一定値となる。
In the case of N 2, the conversion ratios Qe ′ / Qer and Qo ′ / Qor are extremely close to 1, but are not strictly 1.
When the gas type is O 2 , Ar, He, H 2 or the like, the conversion ratio Qe ′ / Qer on the set flow rate signal Qer side and the conversion ratio Qo ′ / Qor on the control flow rate output signal Qor side are respectively It is a constant value determined for each model of the pressure type flow control device main body 1.

また、実ガスN2の流量制御範囲を1/2流量(例えば、フルスケール1000sccmを0〜500sccm)に切換えする場合には、前記流量設定信号Qerが5v(フルスケールFS)のときにオリフィス8の制御(流通)流量Qcが500sccmとなるようにオリフィス上流側管路3の圧力P1を調整するための設定入力信号Qe′が、流量演算装置23へ入力される。
尚、この時のI/Oコンバータ本体25aのコンバート比Qe′/Qer及びQo′/Qorは、オリフィス8の規格毎に異なった値となるために、予めオリフィス8の規格毎に実測により求めておく必要があることは勿論である。
また、流量出力信号Qorについてのコンバート比Qo′/Qorは、前記設定入力信号Qerについてのコンバート比Qe′/Qerと同じ値となる。
When the flow control range of the actual gas N 2 is switched to a ½ flow rate (for example, full scale 1000 sccm is 0 to 500 sccm), the orifice 8 is set when the flow rate setting signal Qer is 5 v (full scale FS). A setting input signal Qe ′ for adjusting the pressure P 1 of the upstream pipe line 3 of the orifice so that the control (circulation) flow rate Qc becomes 500 sccm is input to the flow rate calculation device 23.
Note that the conversion ratios Qe '/ Qer and Qo' / Qor of the I / O converter main body 25a at this time are different values for each standard of the orifice 8, and are obtained by actual measurement for each standard of the orifice 8 in advance. Of course, it is necessary to keep it.
Further, the conversion ratio Qo ′ / Qor for the flow rate output signal Qor has the same value as the conversion ratio Qe ′ / Qer for the setting input signal Qer.

前記入出力コンバータ25としては、複数の実ガス(例えば、水素やHe、Ar、O2等)の流量制御にも適応可能とするために、夫々異なる実ガスに対して前記コンバート比Qe′/Qer及びQo′/Qorを個別に設定できるように構成するのが望ましいが、一種類の実ガス(例えばArガス)のみに対するコンバート比Qe′/Qer、Qo′/Qorを設定した入出力コンバータ25を各ガス種について準備しておき、ガス種が切り換わる毎に、入出力コンバータ25を取り替えするようにすることも可能である。
又、圧力式流量制御装置本体1への入出力コンバータ25の取付け位置や取付け姿勢等は自由に選択可能であり、前記図2に示したものに限定されないことは勿論である。
The input / output converter 25 can be adapted to flow control of a plurality of actual gases (for example, hydrogen, He, Ar, O 2, etc.), so that the conversion ratio Qe ′ / It is desirable that Qer and Qo '/ Qor can be individually set. However, the input / output converter 25 in which the conversion ratios Qe' / Qer and Qo '/ Qor for only one kind of actual gas (for example, Ar gas) are set. Can be prepared for each gas type, and the input / output converter 25 can be replaced each time the gas type is switched.
Further, the mounting position and mounting posture of the input / output converter 25 to the pressure type flow control device main body 1 can be freely selected, and needless to say, they are not limited to those shown in FIG.

窒素ガス用の定格制御流量(フルスケール流量・1000SCCM)の圧力式流量制御装置をガス種Arに適用する場合、入出力コンバータ25を下記の各値に設定する。
・ 設定流量信号 Qer=5v(DC)
・ 設定入力信号 Qe′=4.4391(Qer×F.F.=5×0.88781
4)
・ コンバート比 Qe′/Qer=0.8878
・ 流量出力信号 Qor=5v(DC)
・ 制御流量出力信号 Qo′=4.4391v
・ コンバート比 Qo′=Qor=0.8878
具体的には、圧力式流量制御装置本体1のフルスケール流量(FS)及び使用ガス種を確認し、工場出荷時に入出力コンバータ25をセットすると共に、入・出力側の各種電圧値をガス種毎に予め定められたコンバート比に設定する。
When the pressure type flow rate control device with the rated control flow rate for nitrogen gas (full scale flow rate / 1000 SCCM) is applied to the gas type Ar, the input / output converter 25 is set to the following values.
・ Set flow rate signal Qer = 5v (DC)
Setting input signal Qe ′ = 4.4391 (Qer × FF = 5 × 0.88781
4)
・ Conversion ratio Qe '/ Qer = 0.8878
・ Flow rate output signal Qor = 5v (DC)
・ Control flow rate output signal Qo '= 4.4391v
・ Conversion ratio Qo '= Qor = 0.8878
Specifically, the full-scale flow rate (FS) of the pressure type flow control device body 1 and the gas type used are confirmed, the input / output converter 25 is set at the time of shipment from the factory, and various voltage values on the input / output side are set to the gas type. A predetermined conversion ratio is set for each time.

図4に示す如く定格流量(FS流量)100sccm・流量出力信号5,000v(100sccm)のAr用の熱式質量流量制御装置(MFC)を、F130型圧力式流量制御装置FCS(130sccm・N2)を取り替えする場合を想定する。 As shown in FIG. 4, a thermal mass flow controller (MFC) for Ar having a rated flow rate (FS flow rate) of 100 sccm and a flow rate output signal of 5,000 v (100 sccm) is replaced with an F130 type pressure flow rate control device FCS (130 sccm · N 2 ) Is assumed to be replaced.

先ず、F130型圧力式流量制御装置のガス種をアルゴンAr(フローファクタF.F.=0.887814)とした場合のArの最大流量は、115.4(sccm)となる(N2130sccm×F.F.=130×0.887814=115.4(sccm))。
また、Arの制御流量100(sccm)の時の設定入力信号は、5v×100/115.4=4.3327vとなる。
即ち、入出力コンバータ25では、設定入力信号Qe′=4.3327vを5.000vの設定流量信号Qerに、また、制御流量出力信号Qo′=4.3327vを5.000vの流量出力信号Qorに夫々変換すればよい。
設定入力信号 Qe′=4.3327v
設定流量信号 Qer=5.0000v
コンバート比 Qe′/Qer=0.887814
流量出力信号 Qor=5.0000v
制御流量出力信号 Qo′=4.3327v
コンバート比 Qo′/Qor=0.887814
となる。
First, the maximum flow rate of Ar when the gas type of the F130 type pressure type flow rate control device is Argon Ar (flow factor FF = 0.887814) is 115.4 (sccm) (N 2 130 sccm × FF = 130 × 0.887814 = 15.4 (sccm)).
Further, the setting input signal at the Ar control flow rate of 100 (sccm) is 5v × 100 / 115.4 = 4.3327v.
That is, in the input / output converter 25, the set input signal Qe ′ = 4.3327v is set to the 5.000v set flow rate signal Qer, and the control flow rate output signal Qo ′ = 4.3327v is set to the 5.000v flow rate output signal Qor. You only need to convert each one.
Setting input signal Qe '= 4.3327v
Set flow rate signal Qer = 5.0000v
Conversion ratio Qe ′ / Qer = 0.887814
Flow rate output signal Qor = 5.0000v
Control flow rate output signal Qo '= 4.3327v
Conversion ratio Qo ′ / Qor = 0.887814
It becomes.

即ち、入出力コンバータ25の各コンバート比を前記のQe′/Qer、Qo′/Qorの値となるように設定すれば、Ar100sccmの熱式質量流量制御装置(MFC)をF130型(N2基準で、定格流量が130sccm)圧力式流量制御装置FCSと交換することができ、しかも、制御流量出力Qorをフルスケール5vで表示することができると共に、フルスケール(定格流量)100sccmArガスを流量制御することが可能となる。 That is, if the respective conversion ratios of the input / output converter 25 are set to the values of Qe ′ / Qer and Qo ′ / Qor, an Ar100 sccm thermal mass flow controller (MFC) is an F130 type (N 2 standard). The rated flow rate is 130 sccm) and can be replaced with a pressure type flow control device FCS. Moreover, the control flow rate output Qor can be displayed in full scale 5v, and the full scale (rated flow rate) 100 sccm Ar gas is controlled. It becomes possible.

本発明に係る改良型圧力式流量制御装置は、半導体製造装置の分野におけるガス体のみならず、あらゆる流体の流量制御装置や流量計として利用可能なものである。   The improved pressure type flow control device according to the present invention can be used not only as a gas body in the field of semiconductor manufacturing equipment but also as a flow control device and flow meter for all fluids.

本発明に係る改良型圧力式流量制御装置の基本構成を示すブロック線図である。It is a block diagram which shows the basic composition of the improved type pressure type flow control apparatus which concerns on this invention. 改良型圧力式流量制御装置の概要を示す斜面図である。It is a perspective view which shows the outline | summary of an improved pressure type flow control apparatus. (a)は圧力式流量制御装置本体1の回路構成を示すブロック図であり、(b)は圧力式流量制御装置本体1の他の回路構成の例を示すブロック図である。(A) is a block diagram showing a circuit configuration of the pressure type flow control device main body 1, and (b) is a block diagram showing an example of another circuit configuration of the pressure type flow control device main body 1. 本発明の圧力式流量制御装置を熱式質量流量制御装置と取り替えする場合の入出力コンバータ25の設定例を示すものである。The example of the setting of the input-output converter 25 in the case of replacing the pressure type flow control device of the present invention with a thermal mass flow control device is shown. (a)は従前のフローファクタテーブルを利用した圧力式流量制御装置のブロック構成図であり、(b)は従前のフローファクタテーブルを利用した圧力式流量制御装置の他の例を示すブロック構成図である。(A) is a block configuration diagram of a pressure type flow control device using a conventional flow factor table, and (b) is a block configuration diagram showing another example of a pressure type flow control device using a conventional flow factor table. It is.

符号の説明Explanation of symbols

FCSは圧力式流量制御装置、MFCは熱式質量流量制御装置、Qerは実ガス流量設定信号、Qorは実ガス流量出力信号、Qcは演算流量信号、Qyは流量制御信号、Qe′は設定入力信号、Qo′は制御流量出力信号、FSはフルスケール、1は圧力式流量制御装置本体、2はコントロール弁、3はオリフィス上流側配管、4はコントロール弁駆動装置、5はオリフィス下流側配管、6,27は圧力検出器、7は温度検出器、8はオリフィス、9はバルブ、10,11,28は増幅器、12は流量出力回路、13は流量演算装置、14は流量設定回路、15は流量変換回路、16は流量制御回路、17・18,29はA/D変換器、19は温度補正回路、20,30は演算回路、21は比較回路、22は増幅器、25は入出力コンバータ(I/oコンバータ)、25aはコンバータ本体、25bは流量設定部、25cは流量出力部、26はコネクター。 FCS is a pressure flow control device, MFC is a thermal mass flow control device, Qer is an actual gas flow rate setting signal, Qor is an actual gas flow rate output signal, Qc is an arithmetic flow rate signal, Qy is a flow rate control signal, and Qe 'is a setting input Signal, Qo ′ is a control flow rate output signal, FS is full scale, 1 is a pressure type flow rate control device body, 2 is a control valve, 3 is an orifice upstream piping, 4 is a control valve driving device, 5 is an orifice downstream piping, 6, 27 is a pressure detector, 7 is a temperature detector, 8 is an orifice, 9 is a valve, 10, 11 and 28 are amplifiers, 12 is a flow rate output circuit, 13 is a flow rate calculation device, 14 is a flow rate setting circuit, 15 is Flow rate conversion circuit, 16 is a flow rate control circuit, 17, 18 and 29 are A / D converters, 19 is a temperature correction circuit, 20 and 30 are arithmetic circuits, 21 is a comparison circuit, 22 is an amplifier, and 25 is an input / output converter (I / o converters), 25a converter body, 25b are flow rate setting unit, 25c are flow rate output unit, 26 connectors.

Claims (4)

オリフィス上流側圧力P1とオリフィス下流側圧力P2を用いて、オリフィス8を流通する流体の流量をQc=KP1(Kは比例定数)又はQc=KP2 m(P1−P2)n(Kは比例定数、mとnは定数)として演算するようにした圧力式流量制御装置において、当該圧力式流量制御装置を流量演算装置23と、流量演算装置23へ設定流量信号Qerに関連する設定出力信号Qe′を入力すると共に流量演算装置23から制御流量出力信号Qo′に関連する制御流量信号Qorを出力する入出力コンバータ25と、オリフィス8の上流側に設けられ、流量演算装置23からの流量制御信号Qyにより開閉制御されるコントロール弁2とから構成すると共に、前記入出力コンバータ25の前記設定流量信号Qerと設定入力信号Qe′との比である変換率(Qe′/Qer)及び前記流量出力信号Qorと制御流量出力Qo′との比である変換率(Qo′/Qor)を調整可能な構成としたことを特徴とする改良型圧力式流量制御装置。 Using the orifice upstream pressure P 1 and the orifice downstream pressure P 2 , Qc = KP 1 (K is a proportional constant) or Q c = KP 2 m (P 1 −P 2 ) In a pressure type flow rate control device that calculates as n (K is a proportional constant, m and n are constants), the pressure type flow rate control device is connected to the flow rate calculation device 23 and the flow rate calculation device 23 in relation to the set flow rate signal Qer. An input / output converter 25 for inputting a set output signal Qe ′ to be output and a control flow rate signal Qor related to the control flow rate output signal Qo ′ from the flow rate calculation device 23, and an upstream side of the orifice 8. The control valve 2 is controlled to be opened and closed by a flow rate control signal Qy from the input / output converter 25, and is a ratio between the set flow rate signal Qer and the set input signal Qe 'of the input / output converter 25. Improved pressure type flow rate characterized in that the conversion rate (Qe '/ Qer) and the conversion rate (Qo' / Qor) which is the ratio of the flow rate output signal Qor and the control flow rate output Qo 'can be adjusted. Control device. 入出力コンバータ25の前記変換率(Qe′/Qer)及び(Qo′/Qor)を適用する実ガスのフローファクタF.F.とするようにした請求項1に記載の改良型圧力式流量制御装置。   The actual gas flow factor to which the conversion rates (Qe ′ / Qer) and (Qo ′ / Qor) of the input / output converter 25 are applied F.F. F. The improved pressure type flow rate control device according to claim 1. 入出力コンバータ25を圧力式流量制御装置本体1へ着脱自在に設けると共に、入出力コンバータ25の前記変換率(Qe′/Qer)及び(Qo′/Qor)の設定値を一種の実ガスのフローファクタF.F.のみとするようにした請求項1に記載の改良型圧力式流量制御装置。   The input / output converter 25 is detachably attached to the pressure type flow control device main body 1, and the set values of the conversion rates (Qe '/ Qer) and (Qo' / Qor) of the input / output converter 25 are used as a kind of actual gas flow. Factor F. F. The improved pressure type flow rate control device according to claim 1, wherein the pressure type flow rate control device is only. 入出力コンバータ25を、複数の実ガスに対する複数の変換率を設けた構成とすると共に、複数の流量測定範囲に切換え可能な流量切換機構を設けた構成とした請求項1に記載の改良型圧力式流量制御装置。   The improved pressure according to claim 1, wherein the input / output converter 25 is configured to have a plurality of conversion rates for a plurality of actual gases, and further includes a flow rate switching mechanism capable of switching to a plurality of flow rate measurement ranges. Type flow control device.
JP2005150057A 2005-05-23 2005-05-23 Improved pressure flow controller Expired - Fee Related JP4572139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005150057A JP4572139B2 (en) 2005-05-23 2005-05-23 Improved pressure flow controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005150057A JP4572139B2 (en) 2005-05-23 2005-05-23 Improved pressure flow controller

Publications (2)

Publication Number Publication Date
JP2006330851A true JP2006330851A (en) 2006-12-07
JP4572139B2 JP4572139B2 (en) 2010-10-27

Family

ID=37552510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005150057A Expired - Fee Related JP4572139B2 (en) 2005-05-23 2005-05-23 Improved pressure flow controller

Country Status (1)

Country Link
JP (1) JP4572139B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140053397A (en) 2011-09-30 2014-05-07 가부시키가이샤 후지킨 Gas supply device
JP2015503134A (en) * 2011-09-29 2015-01-29 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method for in-situ calibration of flow controller
WO2015064035A1 (en) * 2013-10-31 2015-05-07 株式会社フジキン Pressure-type flow rate control device
WO2015111391A1 (en) * 2014-01-21 2015-07-30 株式会社フジキン Pressure-type flow control device and method for preventing overshooting at start of flow control performed by said device
KR20160028474A (en) 2013-12-05 2016-03-11 가부시키가이샤 후지킨 Pressure-type flow rate control device
KR20160114705A (en) 2014-07-23 2016-10-05 가부시키가이샤 후지킨 Pressure-type flow rate control device
US9471065B2 (en) 2012-11-02 2016-10-18 Fujikin Incorporated Integrated type gas supplying apparatus
US9772629B2 (en) 2011-09-29 2017-09-26 Applied Materials, Inc. Methods for monitoring a flow controller coupled to a process chamber

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9188989B1 (en) 2011-08-20 2015-11-17 Daniel T. Mudd Flow node to deliver process gas using a remote pressure measurement device
US9958302B2 (en) 2011-08-20 2018-05-01 Reno Technologies, Inc. Flow control system, method, and apparatus
US10838437B2 (en) 2018-02-22 2020-11-17 Ichor Systems, Inc. Apparatus for splitting flow of process gas and method of operating same
US11144075B2 (en) 2016-06-30 2021-10-12 Ichor Systems, Inc. Flow control system, method, and apparatus
US10679880B2 (en) 2016-09-27 2020-06-09 Ichor Systems, Inc. Method of achieving improved transient response in apparatus for controlling flow and system for accomplishing same
US10303189B2 (en) 2016-06-30 2019-05-28 Reno Technologies, Inc. Flow control system, method, and apparatus
US10663337B2 (en) 2016-12-30 2020-05-26 Ichor Systems, Inc. Apparatus for controlling flow and method of calibrating same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421512A (en) * 1987-07-16 1989-01-24 Nec Corp Gas mass flow rate control device
JPH0894410A (en) * 1994-09-22 1996-04-12 Oval Corp Flow-rate arithmetic device
JP2000066732A (en) * 1998-08-24 2000-03-03 Tadahiro Omi Fluid variable-type flow rate controller
JP2000323464A (en) * 1999-04-22 2000-11-24 Tokyo Electron Ltd Apparatus and method for supplying gas for semiconductor manufacturing apparatus
JP2000322130A (en) * 1999-05-10 2000-11-24 Fujikin Inc Method for variable fluid flow rate control by flow factor and its device
JP2003195948A (en) * 2001-12-28 2003-07-11 Tadahiro Omi Improved pressure type flow control device
JP2004132891A (en) * 2002-10-11 2004-04-30 Yazaki Corp Flow meter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421512A (en) * 1987-07-16 1989-01-24 Nec Corp Gas mass flow rate control device
JPH0894410A (en) * 1994-09-22 1996-04-12 Oval Corp Flow-rate arithmetic device
JP2000066732A (en) * 1998-08-24 2000-03-03 Tadahiro Omi Fluid variable-type flow rate controller
JP2000323464A (en) * 1999-04-22 2000-11-24 Tokyo Electron Ltd Apparatus and method for supplying gas for semiconductor manufacturing apparatus
JP2000322130A (en) * 1999-05-10 2000-11-24 Fujikin Inc Method for variable fluid flow rate control by flow factor and its device
JP2003195948A (en) * 2001-12-28 2003-07-11 Tadahiro Omi Improved pressure type flow control device
JP2004132891A (en) * 2002-10-11 2004-04-30 Yazaki Corp Flow meter

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015503134A (en) * 2011-09-29 2015-01-29 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method for in-situ calibration of flow controller
KR102062596B1 (en) 2011-09-29 2020-01-06 어플라이드 머티어리얼스, 인코포레이티드 Methods for in-situ calibration of a flow controller
US10222810B2 (en) 2011-09-29 2019-03-05 Applied Materials, Inc. Methods for monitoring a flow controller coupled to a process chamber
US9772629B2 (en) 2011-09-29 2017-09-26 Applied Materials, Inc. Methods for monitoring a flow controller coupled to a process chamber
US9556966B2 (en) 2011-09-30 2017-01-31 Fujikin Incorporated Gas supplying apparatus
KR20140053397A (en) 2011-09-30 2014-05-07 가부시키가이샤 후지킨 Gas supply device
US9471065B2 (en) 2012-11-02 2016-10-18 Fujikin Incorporated Integrated type gas supplying apparatus
WO2015064035A1 (en) * 2013-10-31 2015-05-07 株式会社フジキン Pressure-type flow rate control device
US10386863B2 (en) 2013-10-31 2019-08-20 Fuiikin Incorporated Pressure-type flow controller
KR20180108851A (en) 2013-12-05 2018-10-04 가부시키가이샤 후지킨 Pressure-type flow rate control device
KR20160028474A (en) 2013-12-05 2016-03-11 가부시키가이샤 후지킨 Pressure-type flow rate control device
US10372145B2 (en) 2013-12-05 2019-08-06 Fujikin Incorporated Pressure-type flow rate control device
KR20160040285A (en) 2014-01-21 2016-04-12 가부시키가이샤 후지킨 Pressure-type flow control device and method for preventing overshooting at start of flow control performed by said device
JP2015138338A (en) * 2014-01-21 2015-07-30 株式会社フジキン Pressure type flow rate control apparatus, and preventing method for overshooting of the same upon starting flow rate control
WO2015111391A1 (en) * 2014-01-21 2015-07-30 株式会社フジキン Pressure-type flow control device and method for preventing overshooting at start of flow control performed by said device
KR20160114705A (en) 2014-07-23 2016-10-05 가부시키가이샤 후지킨 Pressure-type flow rate control device
KR20180108906A (en) 2014-07-23 2018-10-04 가부시키가이샤 후지킨 Pressure-type flow rate control device
US10261522B2 (en) 2014-07-23 2019-04-16 Fujikin Incorporated Pressure-type flow rate control device

Also Published As

Publication number Publication date
JP4572139B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP4572139B2 (en) Improved pressure flow controller
JP5635160B2 (en) Discontinuous flow rate switching control method for fluid using pressure type flow rate control device
JP4204400B2 (en) Differential pressure type flow meter and differential pressure type flow control device
JP2010216807A (en) Mass flow meter, mass flow controller, mass flow meter system including these, and mass flow controller system
JP4856905B2 (en) Flow rate variable type flow control device
KR100537445B1 (en) Pressure sensor, pressure controller and temperature drift corrector of pressure type flow controller
TW455751B (en) Fluid-switchable flow rate controller
KR100427563B1 (en) Parallel bypass type fluid feeding device, and method and device for controlling fluid variable type pressure system flow rate used for the device
JP4585035B2 (en) Flow rate ratio controller
CN101636641B (en) Controller gain scheduling for mass flow controllers
JP5091821B2 (en) Mass flow controller
JP5175965B2 (en) Flow rate variable type flow control device
TW201506567A (en) Mass flow controller and method for improved performance across fluid types
JP2000323464A (en) Apparatus and method for supplying gas for semiconductor manufacturing apparatus
JP6754648B2 (en) Inspection method of gas supply system, calibration method of flow controller, and calibration method of secondary reference device
WO2006065528A1 (en) System and method for measuring flow
KR20120093788A (en) Fluid control device and pressure control device
JP4977669B2 (en) Differential pressure type flow meter
JP3910139B2 (en) Fluid flow control method using pressure type flow control device
JP4300846B2 (en) Flow sensor, flow meter and flow controller
US20210303007A1 (en) Flow Rate Control System, Control Method of FlowRate Control System, and Control Program of FlowRate Control System
US11841720B2 (en) Flow rate controller, flow rate control method, and program recording medium for flow rate controller
US10884435B2 (en) Pressure type flow rate control device, and flow rate calculating method and flow rate control method for same
JP5110006B2 (en) Flow sensor, flow meter and flow controller
JP2009116904A (en) Pressure type flow control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4572139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees