[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006329341A - Hydraulic control unit of working machine - Google Patents

Hydraulic control unit of working machine Download PDF

Info

Publication number
JP2006329341A
JP2006329341A JP2005154632A JP2005154632A JP2006329341A JP 2006329341 A JP2006329341 A JP 2006329341A JP 2005154632 A JP2005154632 A JP 2005154632A JP 2005154632 A JP2005154632 A JP 2005154632A JP 2006329341 A JP2006329341 A JP 2006329341A
Authority
JP
Japan
Prior art keywords
traveling
travel
pressure
valve
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005154632A
Other languages
Japanese (ja)
Inventor
Hiroshi Taji
浩 田路
Yoichiro Yamazaki
洋一郎 山▲崎▼
Hidekazu Oka
秀和 岡
Koji Ueda
浩司 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Construction Machinery Co Ltd
Original Assignee
Kobelco Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Construction Machinery Co Ltd filed Critical Kobelco Construction Machinery Co Ltd
Priority to JP2005154632A priority Critical patent/JP2006329341A/en
Priority to US11/414,380 priority patent/US20060265915A1/en
Priority to AT06113452T priority patent/ATE401464T1/en
Priority to DE602006001783T priority patent/DE602006001783D1/en
Priority to EP06113452A priority patent/EP1726723B1/en
Priority to CNA2006100878172A priority patent/CN1869344A/en
Publication of JP2006329341A publication Critical patent/JP2006329341A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2253Controlling the travelling speed of vehicles, e.g. adjusting travelling speed according to implement loads, control of hydrostatic transmission
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Soil Working Implements (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control a communication path for preventing an abrupt speed reduction by applying a part of the oil on the working side to a traveling side, into a desired state (open state or closed state) depending on situations at compound operation in which traveling operation is simultaneously performed with working operation. <P>SOLUTION: A communication path 35 and a control valve 36 that opens/closes it are provided in a travel linear motion valve 32. At compound operation, working pressure and traveling pressure are taken in as both-side pilot pressure. So the communication path 35 is closed without condition at travel minute operation which shows a small travel operation amount, the communication path 35 is opened when the working pressure is higher than the traveling pressure at travel major operation which shows a large amount of traveling operation, and the communication path 35 is closed when the working pressure is lower than the traveling pressure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は油圧ショベル等の作業機械の油圧制御装置に関するものである。   The present invention relates to a hydraulic control device for a work machine such as a hydraulic excavator.

油圧ショベルを例にとって背景技術を説明する。   The background art will be described using a hydraulic excavator as an example.

油圧ショベルは、図5に示すように、クローラ式の下部走行体1上に上部旋回体2が縦軸まわりに旋回自在に搭載され、この上部旋回体2に、ブーム3、アーム4、バケット5、それにブーム起伏用、アーム作動用、バケット作動用の各シリンダ6,7,8から成る作業(掘削)アタッチメント9が装着されて構成される。   As shown in FIG. 5, the hydraulic excavator has an upper swing body 2 mounted on a crawler type lower traveling body 1 so as to be rotatable around a vertical axis. The upper swing body 2 has a boom 3, an arm 4, and a bucket 5. In addition, a work (excavation) attachment 9 composed of cylinders 6, 7, 8 for raising and lowering the boom, operating the arm, and operating the bucket is mounted.

また、下部走行体1を走行駆動する左右の走行モータ10,11(図6参照)と、上部旋回体2を旋回駆動する旋回モータ12(同)が設けられている。   In addition, left and right traveling motors 10 and 11 (see FIG. 6) for driving the lower traveling body 1 and a turning motor 12 (same as above) for rotating the upper rotating body 2 are provided.

図6は油圧ショベルの油圧制御装置を示す。   FIG. 6 shows a hydraulic control device of a hydraulic excavator.

油圧アクチュエータ群は、右走行モータ11、バケットシリンダ8、ブームシリンダ6を備えた第1グループG1と、左走行モータ10、旋回モータ12、アームシリンダ7を備えた第2グループG2とに分けられている。   The hydraulic actuator group is divided into a first group G1 including a right traveling motor 11, a bucket cylinder 8, and a boom cylinder 6, and a second group G2 including a left traveling motor 10, a turning motor 12, and an arm cylinder 7. Yes.

この両グループG1,G2の各油圧アクチュエータは、それぞれ走行モータ11,10を最上流側にしてセンターバイパスラインC1,C2によりタンデムに接続される一方、走行モータ以外の各油圧アクチュエータ(作業アクチュエータ)6,7,8,12については、センターバイパスラインC1,C2とは別に設けられた圧油供給管路Lにパラレルに接続されている。Tはタンクである。   The hydraulic actuators of the two groups G1 and G2 are connected in tandem by center bypass lines C1 and C2 with the traveling motors 11 and 10 on the most upstream side, respectively, while the hydraulic actuators (working actuators) 6 other than the traveling motors 6 , 7, 8, and 12 are connected in parallel to a pressure oil supply line L provided separately from the center bypass lines C1 and C2. T is a tank.

また、油圧アクチュエータごとに、作動を制御する油圧パイロット式のコントロールバルブ13〜18と、これらを切換操作する操作手段としてのリモコン弁19〜24が設けられている。   For each hydraulic actuator, hydraulic pilot type control valves 13 to 18 for controlling the operation and remote control valves 19 to 24 as operation means for switching these are provided.

一方、油圧アクチュエータ群に対する圧油供給源として第1、第2両ポンプ25,26が設けられ、この両ポンプ25,26の吐出油が油圧パイロット式の走行直進弁(以下、一般的な略称に従って走直弁という)27を介して両グループG1,G2に供給される。   On the other hand, first and second pumps 25 and 26 are provided as pressure oil supply sources for the hydraulic actuator group, and the oil discharged from both pumps 25 and 26 is a hydraulic pilot type traveling straight valve (hereinafter referred to as a general abbreviation). (Referred to as a straight running valve) 27 and supplied to both groups G1, G2.

走直弁27は、中立位置イと走行直進位置ロとを有し、かつ、二つのポンプポートP1,P2と、二つのアクチュエータポートA,Bを備えた二位置4ポート切換弁として構成され、コントローラ28からの指令に基づく電磁比例式の切換制御弁29の二次圧によって切換制御される。30は切換制御弁29の一次油圧源である。   The straight travel valve 27 has a neutral position A and a straight travel position B, and is configured as a two-position four-port switching valve having two pump ports P1 and P2 and two actuator ports A and B. The switching is controlled by the secondary pressure of the electromagnetic proportional switching control valve 29 based on a command from the controller 28. Reference numeral 30 denotes a primary hydraulic source of the switching control valve 29.

コントローラ28には、各リモコン弁19〜24の操作量に応じた操作信号(たとえばリモコン弁パイロット圧を検出する圧力センサからの信号)が入力され、走行操作と、作業操作(作業アクチュエータ6,7,8,12の操作)が別々に行なわれる単独操作時には走直弁27が図示の中立位置イとなる。   An operation signal (for example, a signal from a pressure sensor for detecting the remote control valve pilot pressure) corresponding to the operation amount of each remote control valve 19 to 24 is input to the controller 28, and a travel operation and a work operation (work actuators 6, 7) are input. , 8, and 12) are performed separately, the straight running valve 27 is in the neutral position a shown in the figure.

この状態では、第1ポンプ25の吐出油が、走直弁27の通路P1−Bを通って第1グループG1に、第2ポンプ26の吐出油が直接、第2グループG2にそれぞれ供給される(この状態を第1圧油供給状態という)。   In this state, the discharge oil of the first pump 25 is supplied to the first group G1 through the passage P1-B of the straight travel valve 27, and the discharge oil of the second pump 26 is directly supplied to the second group G2. (This state is referred to as a first pressure oil supply state).

一方、走行操作と作業操作が同時に行なわれる複合操作時には、走直弁27が中立位置イから走行直進位置ロに切換えられる。   On the other hand, during the combined operation in which the traveling operation and the work operation are performed simultaneously, the straight travel valve 27 is switched from the neutral position a to the travel straight travel position b.

この状態では、第1ポンプ25の吐出油が走直弁27の通路P1−A及び圧油供給管路Lを通って両走行モータ10,11以外の油圧アクチュエータ6,7,8,12に供給される一方、第2ポンプ26の吐出油が両走行モータ10,11に分配供給される(この状態を第2圧油供給状態という)。   In this state, the oil discharged from the first pump 25 is supplied to the hydraulic actuators 6, 7, 8, 12 other than the travel motors 10, 11 through the passage P 1 -A of the straight valve 27 and the pressure oil supply pipe L. On the other hand, the oil discharged from the second pump 26 is distributed and supplied to both travel motors 10 and 11 (this state is referred to as a second pressure oil supply state).

この第2圧油供給状態で、両走行モータ10,11が共通の第2ポンプ26によって駆動されるため、左右同量ずつ走行操作されれば両走行モータ5,6に同量の油が供給されてこれらが同速で回転する。すなわち、走行直進性が確保される。   In this second pressure oil supply state, both the traveling motors 10 and 11 are driven by the common second pump 26, so that the same amount of oil is supplied to both the traveling motors 5 and 6 when the traveling operation is performed by the same amount left and right. These rotate at the same speed. That is, traveling straightness is ensured.

この場合、両走行モータ10,11に対する圧油供給量が第1圧油供給状態と比べて半減するため、速度も半減(急減速)してショックが発生する。   In this case, since the amount of pressure oil supplied to both travel motors 10 and 11 is halved compared to the first pressure oil supply state, the speed is also halved (rapidly decelerated) and a shock is generated.

そこで、このショックを緩和する手段として、走直弁27に連通路31を設け、第2圧油供給状態で両ポンプ25,26のポンプラインをこの連通路31で連通させることにより、第1ポンプ25の吐出油の一部を走行側に送るように構成している(特許文献1参照)。
特開2000−17693号公報
Therefore, as a means for alleviating this shock, the first straight pump 27 is provided with a communication passage 31 and the pump lines of both pumps 25 and 26 are communicated through the communication passage 31 in the second pressure oil supply state. A part of the 25 discharged oil is sent to the traveling side (see Patent Document 1).
JP 2000-17893 A

ところが、公知技術によると、連通路31を設けたことに伴って次のような問題が生じていた。   However, according to the publicly known technology, the following problems have occurred with the provision of the communication path 31.

(i) 低速走行中(走行用リモコン弁19,22を微操作する所謂ハーフレバーでの走行中)に作業操作が行なわれた場合。   (i) When a work operation is performed during low speed travel (during travel by a so-called half lever that finely operates the travel remote control valves 19 and 22).

この場合、作業アクチュエータ6,7,8,12の作動圧力(作業圧力)が走行モータ10,11の圧力(走行圧力)よりも高いと、第1ポンプ25の吐出油(作業側の油)が走行側に流入し、オペレータの意に反して増速されてしまう。   In this case, when the operating pressure (working pressure) of the work actuators 6, 7, 8, and 12 is higher than the pressure (running pressure) of the travel motors 10 and 11, the discharge oil (work side oil) of the first pump 25 is reduced. It flows into the traveling side and is accelerated against the operator's will.

逆に、作業圧力が走行圧力よりも低いと、第2ポンプ26の吐出油(走行側の油)が作業側に流入し、走行がさらに減速または停止してしまう。   Conversely, when the working pressure is lower than the traveling pressure, the oil discharged from the second pump 26 (running side oil) flows into the working side, and traveling further slows down or stops.

従って、こういう状況では連通路31はむしろ閉じているのが望ましい。   Therefore, in this situation, it is desirable that the communication path 31 is closed.

(ii) 高速走行中(走行用リモコン弁19,22を大きく操作する所謂フルレバーでの走行中)に作業操作が行なわれた場合。   (ii) When a work operation is performed during high speed traveling (traveling with a so-called full lever that greatly operates the travel remote control valves 19 and 22).

この場合、作業圧力が走行圧力よりも高い状況では、本来の目的通り、作業側の油の一部が走行側に供給されるため、急減速を防止することができる。しかし、逆に作業圧力が走行圧力よりも低い状況では、走行側の油が作業側に回り、より以上に急減速してしまう。   In this case, in a situation where the working pressure is higher than the traveling pressure, a part of the working-side oil is supplied to the traveling side as originally intended, so that sudden deceleration can be prevented. However, on the contrary, when the working pressure is lower than the traveling pressure, the oil on the traveling side turns to the working side and decelerates more rapidly.

つまり、連通路31は、上記(i)のケースでは無条件に閉じ、(ii)のケースでは作業圧力及び走行圧力に応じて開閉するのが望ましいが、連通路31が常に開いた公知技術ではこのような要請に応えることができなかった。   That is, the communication path 31 is unconditionally closed in the case (i), and is preferably opened and closed in accordance with the working pressure and the traveling pressure in the case (ii). However, in the known technique in which the communication path 31 is always open. It was not possible to meet such a request.

そこで本発明は、連通路を、状況に応じて望ましい状態(開または閉状態)に制御することができる作業機械の油圧制御装置を提供するものである。   Therefore, the present invention provides a hydraulic control device for a work machine that can control the communication path to a desired state (open or closed state) according to the situation.

請求項1の発明は、下部走行体上に搭載された上部旋回体に作業アタッチメントが装着され、この作業アタッチメントを作動させる作業アクチュエータと左右の走行モータを備えた油圧アクチュエータ群が、左右いずれか一方の走行モータを含む第1グループと、他方の走行モータを含む第2グループとに分けられるとともに、油圧源としての第1及び第2両ポンプと、ポンプ吐出油の流路を切換える走行直進弁とが設けられ、この走行直進弁は、走行操作と作業操作を別々に行う単独操作時には中立位置にあって上記第1及び第2両グループに別々のポンプの吐出油を供給し、走行操作と作業操作を同時に行う複合操作時には走行直進位置に切換わって上記両走行モータと作業アクチュエータに別々のポンプの吐出油を供給するように構成され、かつ、上記走行直進弁が中立位置から走行直進位置に切換わる過程で両ポンプのポンプラインを連通路によって連通させるように構成された作業機械の油圧制御装置において、上記連通路を開閉する制御弁を設け、複合操作時にこの制御弁により、走行直進弁の位置と、作業アクチュエータの作動圧力である作業圧力と、走行モータの作動圧力である走行圧力とに応じて上記連通路を次のパターンで制御するように構成したものである。   According to the first aspect of the present invention, a work attachment is mounted on an upper swing body mounted on a lower traveling body, and a hydraulic actuator group including a work actuator for operating the work attachment and left and right traveling motors is either left or right. A first group including a traveling motor and a second group including the other traveling motor, both first and second pumps as hydraulic pressure sources, and a traveling straight valve that switches a flow path of pump discharge oil This straight traveling valve is in a neutral position during independent operation for separately performing the traveling operation and the work operation, and supplies the pump oil discharged to the first and second groups separately. It is configured to switch to the straight travel position and supply the oil discharged from the separate pumps to both the travel motor and the work actuator at the time of combined operation in which operations are performed simultaneously. In addition, in the hydraulic control device for a work machine configured to connect the pump lines of both pumps through the communication path in the process in which the travel straight valve is switched from the neutral position to the travel straight position, the communication path is opened and closed. A control valve is provided, and at the time of combined operation, the control valve allows the following passage to be routed according to the position of the travel straight valve, the working pressure that is the working pressure of the work actuator, and the running pressure that is the working pressure of the travel motor. It is configured to be controlled by a pattern.

(I) 走行操作量が小さい走行微操作時には連通路を無条件で閉じる。   (I) The communication path is unconditionally closed during a fine travel operation with a small travel operation amount.

(II) 走行操作量が大きい走行大操作時において、作業圧力が走行圧力よりも高いときは連通路を開き、作業圧力が走行圧力よりも低いときは連通路を閉じる。   (II) During a large travel operation with a large travel operation amount, the communication path is opened when the work pressure is higher than the travel pressure, and the communication path is closed when the work pressure is lower than the travel pressure.

請求項2の発明は、請求項1の構成において、走行直進弁が走行直進位置に切換わった状態で、連通路を無条件で閉じるように構成したものである。   According to a second aspect of the present invention, in the configuration of the first aspect, the communication passage is closed unconditionally in a state where the traveling straight valve is switched to the traveling straight position.

請求項3の発明は、請求項1または2の構成において、制御弁を油圧パイロット弁として構成し、この制御弁の一方のパイロット室に作業圧力、反対側のパイロット室に走行圧力を導入するように構成したものである。   According to a third aspect of the present invention, in the configuration of the first or second aspect, the control valve is configured as a hydraulic pilot valve, and working pressure is introduced into one pilot chamber of the control valve, and traveling pressure is introduced into the pilot chamber on the opposite side. It is configured.

請求項4の発明は、請求項3の構成において、走行直進弁のスプールであるメインスプール内に、連通路とサブスプールとを設け、このサブスプールの両側にパイロット室を形成するとともに、上記メインスプールに、作業圧力を一方のパイロット室に導入する作業側パイロットポートと、走行圧力を反対側のパイロット室に導入する走行側パイロットポートを設けて制御弁を構成したものである。   According to a fourth aspect of the present invention, in the configuration of the third aspect, a communication path and a sub spool are provided in a main spool which is a spool of a travel straight valve, a pilot chamber is formed on both sides of the sub spool, and the main spool is formed. A control valve is configured by providing a working side pilot port for introducing working pressure into one pilot chamber and a traveling side pilot port for introducing running pressure into the opposite pilot chamber.

本発明によると、連通路を開閉する制御弁を設け、この制御弁により、走行操作量が小さい走行微操作時(ハーフレバー走行時=低速走行時)には連通路を無条件で閉じ、走行操作量が大きい走行大操作時(フルレバー走行時=高速走行時)において、作業圧力が走行圧力よりも高いときは連通路を開き、低いときは連通路を閉じるように構成したから、次の効果を得ることができる。   According to the present invention, the control valve for opening and closing the communication path is provided, and this control valve closes the communication path unconditionally when the travel operation amount is small (half lever travel = low speed travel). The following effects are obtained because the communication path is opened when the working pressure is higher than the traveling pressure and the communication path is closed when the working pressure is higher than the traveling pressure during a large travel operation with a large operation amount (during full lever travel = high speed travel). Can be obtained.

(1) ハーフレバー走行時に、作業側の油が走行側に流入して増速されたり、走行側の油が作業側に流入して走行がさらに減速または停止してしまったりする弊害が生じない。   (1) During the half-lever travel, there will be no adverse effects such as the work-side oil flowing into the travel side to increase the speed, or the travel-side oil flowing into the work side to further decelerate or stop the travel. .

(2) フルレバー走行時に、作業圧力が走行圧力よりも高い状況では、本来の目的通り、作業側の油が走行側に供給されるため、急減速を防止することができる。しかし、逆の状況では、走行側と作業側の油の流通が阻止されるため、より以上に急減速してしまう弊害を防止することができる。   (2) In a situation where the working pressure is higher than the running pressure during full lever running, the working side oil is supplied to the running side as intended, so that sudden deceleration can be prevented. However, in the opposite situation, since the oil flow on the traveling side and the working side is blocked, it is possible to prevent the adverse effect of more rapid deceleration.

こうして、連通路を状況に応じて望ましい状態(開または閉状態)に制御し、複合操作性を向上させることができる。   Thus, the communication path can be controlled to a desired state (open or closed state) according to the situation, and the combined operability can be improved.

また、請求項2の発明によると、走行直進位置では走行操作が作業操作に対して完全に独立する走行独立機能が得られるため、たとえば吊荷走行時の荷振れを防止することができる。   According to the second aspect of the present invention, since the traveling independent function is obtained in which the traveling operation is completely independent of the work operation at the straight traveling position, for example, it is possible to prevent the swinging of the load during traveling.

さらに、請求項3,4の発明によると、制御弁を油圧パイロット弁として構成し、この制御弁の一方のパイロット室に作業圧力、反対側のパイロット室に走行圧力をそれぞれ導入するように構成したから、フルレバー走行時の制御弁の開閉を自動的に、そして作業圧力及び走行圧力に応じて的確に行わせることができる。   Furthermore, according to the inventions of claims 3 and 4, the control valve is configured as a hydraulic pilot valve, and the working pressure is introduced into one pilot chamber of the control valve and the running pressure is introduced into the pilot chamber on the opposite side. Therefore, the control valve can be opened and closed automatically during full lever travel and accurately according to the working pressure and travel pressure.

ところで、請求項3の構成を具現化する方法として、連通路を走行直進弁の外部に引き出して制御弁を設け、この制御弁を外部で上記のように作動させることは可能である。   By the way, as a method for realizing the configuration of claim 3, it is possible to provide a control valve by pulling out the communication path to the outside of the straight traveling valve, and to operate this control valve as described above.

ただし、この外部制御弁方式によると、制御弁を新たに外部に設置しなければならないため、その制御回路を増設することと合わせて大幅なコストアップとなるとともに、限られたスペース内に制御弁スペースを作り出さなければならない等の問題が生じる。   However, according to this external control valve method, since a control valve must be newly installed outside, adding a control circuit increases the cost significantly, and the control valve is limited within a limited space. Problems such as having to create space arise.

この点、請求項4の発明によると、走行直進弁のスプールであるメインスプール内に、連通路とサブスプールとを設け、このサブスプールの両側パイロット室に作業圧力、走行圧力を導入する構成、すなわち走行直進弁に制御弁を内蔵する構成としたから、制御弁用のスペース及び制御回路を増設する必要がない。このため、制御弁を搭載し易く、かつ、コストを安くすることができる。   In this regard, according to the invention of claim 4, a configuration in which a communication path and a sub spool are provided in a main spool that is a spool of a traveling straight valve, and working pressure and traveling pressure are introduced into both side pilot chambers of the sub spool, That is, since the control valve is built in the straight traveling valve, there is no need to add a space for the control valve and a control circuit. For this reason, it is easy to mount the control valve and the cost can be reduced.

本発明の実施形態を図1〜図4によって説明する。   An embodiment of the present invention will be described with reference to FIGS.

図1にこの油圧制御装置の全体構成を示す。図1において、図6に示す従来の油圧制御装置と同一部分には同一符号を付して示し、その重複説明を省略する。   FIG. 1 shows the overall configuration of the hydraulic control apparatus. In FIG. 1, the same parts as those of the conventional hydraulic control apparatus shown in FIG.

実施形態において、走直弁32は、図左端の中立位置イと同右端の走行直進位置ニ、それに中間第1及び第2位置ロ,ハとを有し、かつ、二つのポンプポートP1,P2と、二つのアクチュエータポートA,Bを備えた四位置4ポート切換弁として構成され、操作信号等に基づくコントローラ33からの指令に応じて、電磁比例式の切換制御弁29の二次圧によって切換制御される。   In the embodiment, the straight travel valve 32 has a neutral position (i) at the left end in the figure and a straight travel position (d) at the right end, and intermediate first and second positions (b) and (c), and two pump ports P1, P2. And a four-position four-port switching valve having two actuator ports A and B, which are switched by the secondary pressure of the electromagnetic proportional switching control valve 29 in response to a command from the controller 33 based on an operation signal or the like. Be controlled.

すなわち、走直弁32は、走行/作業の単独操作時には中立位置イにセットされる。   That is, the straight travel valve 32 is set to the neutral position a when traveling / working is operated alone.

この状態(第1圧油供給状態)では、図6における走直弁27の中立位置イと同様に、第1ポンプ25の吐出油が、走直弁27の通路P1−Bを通って第1グループG1に、第2ポンプ26の吐出油が直接、第2グループG2にそれぞれ供給される。   In this state (first pressure oil supply state), the discharge oil of the first pump 25 passes through the passage P1-B of the straight valve 27 and is first, as in the neutral position A of the straight valve 27 in FIG. The oil discharged from the second pump 26 is directly supplied to the second group G2 to the group G1.

一方、走行独立スイッチ34が操作されると、走直弁32が走行直進位置ニに切換わる。   On the other hand, when the travel independent switch 34 is operated, the travel straight valve 32 is switched to the travel straight travel position D.

この状態(第2圧油供給状態)では、第1ポンプ25の吐出油が走直弁32の通路P1−A及び圧油供給管路Lを通って作業アクチュエータ6,7,8,12に供給される一方、第2ポンプ26の吐出油が両走行モータ10,11に分配供給され、走行直進性が確保される。   In this state (second pressure oil supply state), the discharge oil of the first pump 25 is supplied to the work actuators 6, 7, 8, 12 through the passage P1-A and the pressure oil supply pipe L of the straight valve 32. On the other hand, the oil discharged from the second pump 26 is distributed and supplied to both the traveling motors 10 and 11, and traveling straightness is ensured.

また、走行系が作業系から完全に切り離されて独立走行状態が得られるため、たとえば吊荷走行時の荷振れを防止することができる。   Further, since the traveling system is completely separated from the working system and an independent traveling state is obtained, it is possible to prevent, for example, a load swing during suspended traveling.

この場合、上記第1圧油供給状態から第2圧油供給状態にいきなり切換える構成をとると、両走行モータ10,11に対する圧油供給量が急減して急減速され、ショックが発生する。   In this case, if the first pressure oil supply state is suddenly switched to the second pressure oil supply state, the amount of pressure oil supplied to both travel motors 10 and 11 is suddenly reduced and suddenly decelerated, causing a shock.

この点の対策として、走直弁32に、従来の走直弁27と同様に、第1ポンプ25の吐出油の一部を走行側に供給するための連通路35が設けられている。   As a countermeasure against this point, like the conventional straight valve 27, the straight valve 32 is provided with a communication passage 35 for supplying a part of the oil discharged from the first pump 25 to the traveling side.

ただし、連通路35が常時開通していると、前記のようにハーフレバー走行中及びフルレバー走行中に作業圧力と走行圧力の関係によっては好ましくない事態が発生する。   However, if the communication path 35 is always open, an undesired situation may occur depending on the relationship between the working pressure and the traveling pressure during the half lever traveling and the full lever traveling as described above.

そこで、連通路35を開閉制御するための制御弁36が走直弁32内に組み込まれている。   Therefore, a control valve 36 for opening and closing the communication path 35 is incorporated in the straight running valve 32.

図2(a)〜(d)は、この制御弁36付きの走直弁32の構成を油圧記号として各位置イ〜ニ別に拡大して示す。   2 (a) to 2 (d) show the configuration of the straight valve 32 with the control valve 36 in an enlarged manner for each position A to D as a hydraulic symbol.

図3はこの走直弁32の具体的弁構造(半部断面)を示す。同図に示すように、走直弁32のスプールであるメインスプール37内にサブスプール38が図の左右方向にストローク作動し得る状態で設けられている。   FIG. 3 shows a specific valve structure (half section) of the straight valve 32. As shown in the figure, a sub spool 38 is provided in a main spool 37, which is a spool of the straight valve 32, in a state where the stroke can be operated in the left-right direction in the figure.

このサブスプール38は、図示のように中間部が左右両端部(図3の左右両端部。以下にいう各部の左右の方向性について同じ)よりも小径とされ、このサブスプール中間部とメインスプール37の内周面との間に連通路35が形成されている。39,40はこの連通路35をポンプポートP1,P2に連通させるための連通口である。   As shown in the figure, the sub spool 38 has a smaller diameter than the left and right end portions (the left and right end portions in FIG. 3; the same applies to the left and right direction of each portion described below). A communication path 35 is formed between the inner peripheral surface of 37. Reference numerals 39 and 40 are communication ports for communicating the communication path 35 with the pump ports P1 and P2.

また、サブスプール38の右側に作業側パイロット室41、左側に走行側パイロット室42が設けられるとともに、メインスプール37に、作業圧力(第1ポンプ25の圧力)を作業側パイロット室41に導入する作業側パイロットポート43,44と、走行圧力(第2ポンプ26の圧力)を走行側パイロット室42に導入する走行側パイロットポート45とが設けられている。図3中、Tpはタンクポート、Drはドレンポートである。   In addition, a work side pilot chamber 41 is provided on the right side of the sub spool 38 and a travel side pilot chamber 42 is provided on the left side, and work pressure (pressure of the first pump 25) is introduced into the work side pilot chamber 41 into the main spool 37. Work side pilot ports 43 and 44 and a travel side pilot port 45 for introducing a travel pressure (pressure of the second pump 26) into the travel side pilot chamber 42 are provided. In FIG. 3, Tp is a tank port and Dr is a drain port.

なお、二つの作業側パイロットポート43,44を設けたのは、図2,3(a)の走直弁中立状態、及び同(b)の複合操作時におけるハーフレバー走行操作状態で作業側パイロット室41をタンクポートTpまたはドレンポートDrに連通させる一方で、同(c)のフルレバー走行操作状態では同パイロット室41をポンプポートP1に連通させるためである。   The two working side pilot ports 43 and 44 are provided in the working side pilots in the neutral state of the straight valve in FIGS. 2 and 3 (a) and in the half lever traveling operation state in the combined operation of FIG. 2 (b). This is because the chamber 41 communicates with the tank port Tp or the drain port Dr, while the pilot chamber 41 communicates with the pump port P1 in the full lever traveling operation state of FIG.

46は走行側パイロット室42内に設けられたバネで、サブスプール38は、このバネ46の力と走行側パイロット室42に導入される走行圧力とを合わせた力によって図3の右方向(連通路35を閉じる方向)に押され、作業側パイロット室41に導入される作業圧力によって左方向(同、開く方向)に押される。   46 is a spring provided in the traveling side pilot chamber 42, and the sub spool 38 is moved in the right direction of FIG. 3 (reamed) by a force obtained by combining the force of the spring 46 and the traveling pressure introduced into the traveling side pilot chamber 42. It is pushed in the direction of closing the passage 35 and pushed in the left direction (the opening direction) by the working pressure introduced into the work side pilot chamber 41.

こうして、サブスプール38、両側パイロット室41,42、パイロットポート43〜45、バネ46等によって制御弁36が構成され、この制御弁36により、連通路35が走直弁32の位置と作業圧力及び走行圧力とに応じて次のように開閉制御される。   In this way, the control valve 36 is constituted by the sub spool 38, the pilot chambers 41 and 42 on both sides, the pilot ports 43 to 45, the spring 46, and the like. Opening / closing control is performed as follows according to the running pressure.

走直弁32が中立位置イにあるときは、図3(a)に示すように作業側パイロット室41はタンク、ドレン両ポートTp,Drに連通し、走行側パイロット室42は走行側パイロットポート45を介して走行側ポンプポートP2に連通している。   When the straight valve 32 is in the neutral position a, as shown in FIG. 3 (a), the work side pilot chamber 41 communicates with the tank and drain ports Tp, Dr, and the travel side pilot chamber 42 has a travel side pilot port. Communicating with the travel side pump port P2 through 45.

従って、走行側パイロット室42のみに圧力(走行圧力)が導入されるため、サブスプール38が右側に押されて連通路35(制御弁36)が閉じた状態となる。このため、両ポンプポートP1,P2間が遮断され、第1ポンプ25の吐出油が第1グループG1に、第2ポンプ26の吐出油が第2グループG2に別々に供給される第1圧油供給状態となる。   Accordingly, since pressure (traveling pressure) is introduced only into the traveling-side pilot chamber 42, the sub spool 38 is pushed to the right and the communication path 35 (control valve 36) is closed. For this reason, between the two pump ports P1 and P2, the first pressure oil in which the discharge oil of the first pump 25 is supplied separately to the first group G1 and the discharge oil of the second pump 26 is supplied separately to the second group G2. Supply state.

この状態から複合操作が行なわれると、走行操作量に応じて図3(b)または(c)の状態に移行する。   When a composite operation is performed from this state, the state shifts to the state shown in FIG. 3B or 3C depending on the travel operation amount.

まず、走行操作量が小さいハーフレバー走行段階では、図3(b)に示すように作業側パイロット室41はドレンポートDrに連通し、走行側パイロット室42は走行側パイロットポート44を通じてポンプポートP2につながった状態のままとなるため、依然として連通路35が閉じている。   First, in the half lever travel stage in which the travel operation amount is small, as shown in FIG. 3B, the work side pilot chamber 41 communicates with the drain port Dr, and the travel side pilot chamber 42 passes through the travel side pilot port 44 to the pump port P2. Therefore, the communication path 35 is still closed.

つまり、ハーフレバー走行時には、連通路35は作業圧力及び走行圧力に関係なく無条件に閉じる。   That is, when the half lever travels, the communication path 35 is unconditionally closed regardless of the working pressure and the traveling pressure.

従って、作業圧力が走行圧力よりも高い場合に、第1ポンプ25の吐出油が走行側に流入し、低速で走行したいというオペレータの意に反して増速されてしまったり、逆に走行圧力が作業圧力よりも高い場合に第2ポンプ26の吐出油(走行側の油)が作業側に流入して走行がさらに減速または停止してしまったりする好ましくない事態の発生を防止することができる。   Therefore, when the working pressure is higher than the traveling pressure, the oil discharged from the first pump 25 flows into the traveling side and is accelerated against the operator's intention to travel at a low speed. When the pressure is higher than the working pressure, it is possible to prevent an undesired situation in which the oil discharged from the second pump 26 (running side oil) flows into the working side and the running is further decelerated or stopped.

次に、このハーフレバー走行状態から、オペレータが高速走行するという意思を持ってフルレバー走行操作すると、図3(c)に示すように、走行圧力が走行側パイロット室42に導入される一方で、作業圧力がポンプポートP1、作業側パイロットポート43を介して作業側パイロット室41に導入され、この両側パイロット室41,42の圧力の拮抗作用によってサブスプール38の位置が決まる。   Next, when the full lever traveling operation is performed with the intention of traveling at a high speed from the half lever traveling state, traveling pressure is introduced into the traveling side pilot chamber 42 as shown in FIG. The working pressure is introduced into the working side pilot chamber 41 through the pump port P1 and the working side pilot port 43, and the position of the sub spool 38 is determined by the antagonistic action of the pressures of the pilot chambers 41 and 42 on both sides.

すなわち、走行圧力が作業圧力よりも高ければ、サブスプール38が右側に押され、逆に走行圧力が作業圧力よりも低ければサブスプール38が左側に押されるため、連通路35は、走行圧力の方が高いときに閉じ、低いときに開く。   That is, if the traveling pressure is higher than the working pressure, the sub spool 38 is pushed to the right side. Conversely, if the running pressure is lower than the working pressure, the sub spool 38 is pushed to the left side. Closes when higher and opens when lower.

こうして、走行圧力が低い状況では連通路35が開くため、連通路35を設けた本来の目的通り、作業側の油の一部が走行側に供給され、これによって走行急減速を防止することができる。   Thus, since the communication path 35 opens in a situation where the traveling pressure is low, a part of the oil on the work side is supplied to the traveling side as the original purpose for which the communication path 35 is provided, thereby preventing sudden deceleration of the traveling. it can.

一方、走行圧力の方が高い状況では連通路35が閉じるため、走行側の油が作業側に回ってより以上に急減速してしまうという弊害を防止することができる。   On the other hand, since the communication path 35 is closed in a situation where the traveling pressure is higher, it is possible to prevent the adverse effect that traveling-side oil turns to the working side and decelerates more rapidly.

なお、図1中に示す走行独立スイッチ34のON操作によって走直弁32が走行直進位置ニに切換わると、図3(d)に示すようにポンプ吐出油の流路がP1−A、P2−Bに切換わると同時に連通路35が遮断され、前記の走行直進状態(走行独立状態)となる。   When the travel straight valve 32 is switched to the travel straight travel position D by the ON operation of the travel independent switch 34 shown in FIG. 1, the flow path of the pump discharge oil is P1-A, P2 as shown in FIG. 3 (d). At the same time as switching to -B, the communication path 35 is blocked, and the vehicle travels straight (travel independent state).

このように、連通路35を状況(ハーフレバー走行とフルレバー走行の別、及びフルレバー走行時の作業圧力と走行圧力)に応じて制御弁36で開閉制御することにより、複合操作時の油の流れを望ましい状態とし、複合操作性を向上させることができる。   In this way, the flow of oil during composite operation is controlled by controlling the opening and closing of the communication path 35 with the control valve 36 in accordance with the situation (separate half lever travel and full lever travel, and working pressure and travel pressure during full lever travel). It is possible to improve the composite operability.

しかも、走行直進弁32に制御弁36を内蔵した構成、すなわち、走行直進弁32のスプールであるメインスプール37内に、連通路35と、この連通路35を開閉するサブスプール38とを設け、このサブスプール38を作業圧力及び走行圧力によって作動させる構成としたから、制御弁用のスペース及び制御回路を増設する必要がない。このため、制御弁36を搭載し易く、かつ、コストを安くすることができる。   Moreover, a configuration in which the control valve 36 is built in the traveling straight valve 32, that is, a main spool 37 that is a spool of the traveling straight valve 32, a communication path 35 and a sub spool 38 that opens and closes the communication path 35 are provided. Since the sub-spool 38 is operated by the working pressure and the traveling pressure, it is not necessary to add a control valve space and a control circuit. For this reason, it is easy to mount the control valve 36 and the cost can be reduced.

他の実施形態
図4に示すように、複合操作時のフルレバー走行状態で両側パイロット室41,42をポンプポートP1,P2に連通させるパイロットポート43,45をそれぞれ絞り付きとするとともに、作業側及び走行側双方にタンクポートTpに通じる絞り付きのパイロットポート47,48を追加してもよい。
Other Embodiments As shown in FIG. 4, the pilot ports 43 and 45 that connect the pilot chambers 41 and 42 to the pump ports P1 and P2 in the full lever traveling state at the time of combined operation are respectively provided with a throttle, Pilot ports 47 and 48 with a throttle leading to the tank port Tp may be added to both the traveling side.

こうすれば、作業側及び走行側双方においてパイロット室41,42に発生する圧力を、二つのパイロットポート43,47及び45,48の絞りサイズによって任意に設定することができるため、たとえば走行側のバネ46についてサイズ選択の自由度が広がり、また両側パイロット圧力を安定化させることができる等の利点がある。   In this way, the pressure generated in the pilot chambers 41 and 42 on both the working side and the traveling side can be arbitrarily set according to the throttle sizes of the two pilot ports 43, 47 and 45, 48. There are advantages in that the degree of freedom of size selection for the spring 46 is widened and the pilot pressure on both sides can be stabilized.

なお、上記二段絞り式のパイロット構造は作業側と走行側の一方のみに設けてもよい。   The two-stage throttle pilot structure may be provided only on one of the working side and the traveling side.

本発明の実施形態にかかる油圧制御装置の全体構成を示す図である。It is a figure showing the whole oil pressure control device composition concerning an embodiment of the present invention. (a)〜(d)は同装置における走行直進弁の切換わり状況を油圧記号として示す図である。(a)-(d) is a figure which shows the switching condition of the driving | running | working rectilinear valve in the apparatus as a hydraulic symbol. (a)〜(d)は同弁の構造と切換わり状況を示す半部断面図である。(a)-(d) is a half section drawing which shows the structure and switching state of the valve. 本発明の他の実施形態にかかる走行直進弁の構造を示す半部断面図である。It is half sectional drawing which shows the structure of the driving | running | working rectilinear valve concerning other embodiment of this invention. 油圧ショベルの概略側面図である。It is a schematic side view of a hydraulic excavator. 従来の油圧制御装置の全体構成を示す図である。It is a figure which shows the whole structure of the conventional hydraulic control apparatus.

符号の説明Explanation of symbols

1 下部走行体
2 上部旋回体
9 作業アタッチメント
6,7,8,12 作業アクチュエータ
10,11 走行モータ
G1 第1グループ
G2 第2グループ
25 第1ポンプ
26 第2ポンプ
32 走行直進弁
35 連通路
36 制御弁
37 走行直進弁のメインスプール
38 同サブスプール
41 作業側パイロット室
42 走行側パイロット室
43,44 作業側パイロットポート
45 走行側パイロットポート
46 バネ
DESCRIPTION OF SYMBOLS 1 Lower traveling body 2 Upper revolving body 9 Work attachment 6, 7, 8, 12 Work actuator 10,11 Traveling motor G1 1st group G2 2nd group 25 1st pump 26 2nd pump 32 Traveling straight valve 35 Communication path 36 Control Valve 37 Main spool of travel straight valve 38 Sub spool 41 Work side pilot chamber 42 Travel side pilot chamber 43, 44 Work side pilot port 45 Travel side pilot port 46 Spring

Claims (4)

下部走行体上に搭載された上部旋回体に作業アタッチメントが装着され、この作業アタッチメントを作動させる作業アクチュエータと左右の走行モータを備えた油圧アクチュエータ群が、左右いずれか一方の走行モータを含む第1グループと、他方の走行モータを含む第2グループとに分けられるとともに、油圧源としての第1及び第2両ポンプと、ポンプ吐出油の流路を切換える走行直進弁とが設けられ、この走行直進弁は、走行操作と作業操作を別々に行う単独操作時には中立位置にあって上記第1及び第2両グループに別々のポンプの吐出油を供給し、走行操作と作業操作を同時に行う複合操作時には走行直進位置に切換わって上記両走行モータと作業アクチュエータに別々のポンプの吐出油を供給するように構成され、かつ、上記走行直進弁が中立位置から走行直進位置に切換わる過程で両ポンプのポンプラインを連通路によって連通させるように構成された作業機械の油圧制御装置において、上記連通路を開閉する制御弁を設け、複合操作時にこの制御弁により、走行直進弁の位置と、作業アクチュエータの作動圧力である作業圧力と、走行モータの作動圧力である走行圧力とに応じて上記連通路を次のパターンで制御するように構成したことを特徴とする作業機械の油圧制御装置。
(I) 走行操作量が小さい走行微操作時には連通路を無条件で閉じる。
(II) 走行操作量が大きい走行大操作時において、作業圧力が走行圧力よりも高いときは連通路を開き、作業圧力が走行圧力よりも低いときは連通路を閉じる。
A work attachment is mounted on the upper swinging body mounted on the lower traveling body, and a hydraulic actuator group including a work actuator for operating the work attachment and left and right traveling motors includes either a left or right traveling motor. It is divided into a group and a second group including the other traveling motor, and both first and second pumps as hydraulic sources and a traveling straight valve for switching the flow path of pump discharge oil are provided. The valve is in a neutral position during a single operation for separately performing a traveling operation and a work operation, supplying the pump discharge oil to the first and second groups separately, and during a combined operation for simultaneously performing the traveling operation and the work operation. It is configured to switch to the straight travel position and supply the oil discharged from the separate pumps to both the travel motor and the work actuator, and the travel In a hydraulic control device for a work machine configured to connect the pump lines of both pumps through a communication path in the process of switching the straight valve from the neutral position to the traveling straight position, a control valve that opens and closes the communication path is provided. During operation, the control valve is controlled by the following pattern according to the position of the traveling straight valve, the working pressure that is the working pressure of the work actuator, and the running pressure that is the working pressure of the running motor. A hydraulic control device for a work machine, characterized by comprising.
(I) The communication path is unconditionally closed during a fine travel operation with a small travel operation amount.
(II) During a large travel operation with a large travel operation amount, the communication path is opened when the work pressure is higher than the travel pressure, and the communication path is closed when the work pressure is lower than the travel pressure.
走行直進弁が走行直進位置に切換わった状態で、連通路を無条件で閉じるように構成したことを特徴とする請求項1記載の作業機械の油圧制御装置。   2. The hydraulic control device for a working machine according to claim 1, wherein the communication path is unconditionally closed in a state in which the travel straight valve is switched to the travel straight travel position. 請求項1または2記載の作業機械の油圧制御装置において、制御弁を油圧パイロット弁として構成し、この制御弁の一方のパイロット室に作業圧力、反対側のパイロット室に走行圧力を導入するように構成したことを特徴とする作業機械の油圧制御装置。   3. The hydraulic control device for a work machine according to claim 1, wherein the control valve is configured as a hydraulic pilot valve, and the working pressure is introduced into one pilot chamber of the control valve and the traveling pressure is introduced into the pilot chamber on the opposite side. A hydraulic control device for a work machine, characterized by comprising. 請求項3記載の作業機械の油圧制御装置において、走行直進弁のスプールであるメインスプール内に、連通路とサブスプールとを設け、このサブスプールの両側にパイロット室を形成するとともに、上記メインスプールに、作業圧力を一方のパイロット室に導入する作業側パイロットポートと、走行圧力を反対側のパイロット室に導入する走行側パイロットポートを設けて制御弁を構成したことを特徴とする作業機械の油圧制御装置。   4. The hydraulic control device for a work machine according to claim 3, wherein a communication path and a sub spool are provided in a main spool which is a spool of a travel straight valve, a pilot chamber is formed on both sides of the sub spool, and the main spool is provided. The working machine hydraulic pressure is characterized in that a control valve is configured by providing a working side pilot port for introducing working pressure into one pilot chamber and a traveling side pilot port for introducing running pressure into the opposite pilot chamber. Control device.
JP2005154632A 2005-05-26 2005-05-26 Hydraulic control unit of working machine Pending JP2006329341A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005154632A JP2006329341A (en) 2005-05-26 2005-05-26 Hydraulic control unit of working machine
US11/414,380 US20060265915A1 (en) 2005-05-26 2006-05-01 Working machine
AT06113452T ATE401464T1 (en) 2005-05-26 2006-05-03 WORKING MACHINE
DE602006001783T DE602006001783D1 (en) 2005-05-26 2006-05-03 working machine
EP06113452A EP1726723B1 (en) 2005-05-26 2006-05-03 Working machine
CNA2006100878172A CN1869344A (en) 2005-05-26 2006-05-26 Working machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005154632A JP2006329341A (en) 2005-05-26 2005-05-26 Hydraulic control unit of working machine

Publications (1)

Publication Number Publication Date
JP2006329341A true JP2006329341A (en) 2006-12-07

Family

ID=36888907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005154632A Pending JP2006329341A (en) 2005-05-26 2005-05-26 Hydraulic control unit of working machine

Country Status (6)

Country Link
US (1) US20060265915A1 (en)
EP (1) EP1726723B1 (en)
JP (1) JP2006329341A (en)
CN (1) CN1869344A (en)
AT (1) ATE401464T1 (en)
DE (1) DE602006001783D1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501062A (en) * 2007-10-17 2011-01-06 キャタピラー インコーポレイテッド Combiner valve control system and method
JP2015218537A (en) * 2014-05-20 2015-12-07 住友建機株式会社 Construction machine
WO2019069612A1 (en) 2017-10-05 2019-04-11 ヤンマー株式会社 Work vehicle
WO2020262073A1 (en) 2019-06-28 2020-12-30 コベルコ建機株式会社 Hydraulic control device for work machine
WO2020262076A1 (en) 2019-06-28 2020-12-30 コベルコ建機株式会社 Hydraulic control device for work machine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329248A (en) * 2005-05-24 2006-12-07 Kobelco Contstruction Machinery Ltd Hydraulic pressure supply device for working machine
JP4380643B2 (en) * 2006-02-20 2009-12-09 コベルコ建機株式会社 Hydraulic control device for work machine
CN106232905B (en) * 2014-04-15 2018-10-12 沃尔沃建造设备有限公司 Travel controlling system and its control method for engineering equipment
KR101844170B1 (en) * 2014-12-16 2018-03-30 케이와이비 가부시키가이샤 Fluid pressure control device for construction machine
JP7141974B2 (en) * 2019-03-25 2022-09-26 日立建機株式会社 wheel loader
US20220049461A1 (en) * 2020-08-15 2022-02-17 Kubota Corporation Working machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920006520B1 (en) * 1988-06-17 1992-08-07 가부시끼가이샤 고오베세이꼬오쇼 Fluid control system for power shovel
JPH07122276B2 (en) * 1989-07-07 1995-12-25 油谷重工株式会社 Hydraulic pump control circuit for construction machinery
KR960021784A (en) * 1994-12-28 1996-07-18 김무 Straight line driving device of heavy equipment
JP3013225B2 (en) * 1995-01-11 2000-02-28 新キャタピラー三菱株式会社 Hanging work control device
JP4111286B2 (en) * 1998-06-30 2008-07-02 コベルコ建機株式会社 Construction machine traveling control method and apparatus
JP3491600B2 (en) * 2000-04-13 2004-01-26 コベルコ建機株式会社 Hydraulic control circuit for construction machinery
JP3614121B2 (en) * 2001-08-22 2005-01-26 コベルコ建機株式会社 Hydraulic equipment for construction machinery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501062A (en) * 2007-10-17 2011-01-06 キャタピラー インコーポレイテッド Combiner valve control system and method
JP2015218537A (en) * 2014-05-20 2015-12-07 住友建機株式会社 Construction machine
WO2019069612A1 (en) 2017-10-05 2019-04-11 ヤンマー株式会社 Work vehicle
KR20200061332A (en) 2017-10-05 2020-06-02 얀마 가부시키가이샤 Work vehicle
WO2020262073A1 (en) 2019-06-28 2020-12-30 コベルコ建機株式会社 Hydraulic control device for work machine
WO2020262076A1 (en) 2019-06-28 2020-12-30 コベルコ建機株式会社 Hydraulic control device for work machine
JP2021008893A (en) * 2019-06-28 2021-01-28 コベルコ建機株式会社 Hydraulic controller
JP2021008896A (en) * 2019-06-28 2021-01-28 コベルコ建機株式会社 Hydraulic control device
JP7268504B2 (en) 2019-06-28 2023-05-08 コベルコ建機株式会社 hydraulic controller
US11713559B2 (en) 2019-06-28 2023-08-01 Kobelco Construction Machinery Co., Ltd. Hydraulic control device for work machine
JP7342456B2 (en) 2019-06-28 2023-09-12 コベルコ建機株式会社 hydraulic control device
US11885105B2 (en) 2019-06-28 2024-01-30 Kobelco Construction Machinery Co., Ltd. Hydraulic control device for work machine

Also Published As

Publication number Publication date
ATE401464T1 (en) 2008-08-15
US20060265915A1 (en) 2006-11-30
DE602006001783D1 (en) 2008-08-28
EP1726723B1 (en) 2008-07-16
EP1726723A2 (en) 2006-11-29
EP1726723A3 (en) 2007-01-31
CN1869344A (en) 2006-11-29

Similar Documents

Publication Publication Date Title
JP4380643B2 (en) Hydraulic control device for work machine
EP1726723B1 (en) Working machine
US7614225B2 (en) Straight traveling hydraulic circuit
KR101820324B1 (en) Hydraulic circuit for pipe layer
EP1760326B1 (en) Hydraulic controller for working machine
JP2007192344A (en) Hydraulic control device of working machine
JP5293176B2 (en) Hydraulic control equipment for construction machinery
JP4541209B2 (en) Hydraulic circuit
WO2020031816A1 (en) Construction-machinery hydraulic circuit
KR100797315B1 (en) Hydraulic apparatus for controlling complex work mode of travel and front works
JP2015169250A (en) Hydraulic drive system of construction equipment
KR100671750B1 (en) Hydraulic circuit
JP2005221026A (en) Hydraulic circuit of hydraulic working machine
JP4819510B2 (en) Hydraulic control device for work machine
JP5481853B2 (en) Hydraulic circuit for construction machinery
JP2007120004A (en) Hydraulic control device of work machine
JP2019183972A (en) Hydraulic circuit of working vehicle
JP4926627B2 (en) Electric oil system
KR101728596B1 (en) Control valve device for power shovel
JP4946836B2 (en) Hydraulic control device
JP2007120512A (en) Hydraulic control device for working machine
JP2010101448A (en) Hydraulic control device of working machinery
US20240279907A1 (en) Hydraulic control system in working machines
JP7268435B2 (en) Working machine hydraulic drive
JP2008082107A (en) Hydraulic circuit for working machine