JP2006328512A - Wear resistant steel with excellent low-temperature toughness, and its manufacturing method - Google Patents
Wear resistant steel with excellent low-temperature toughness, and its manufacturing method Download PDFInfo
- Publication number
- JP2006328512A JP2006328512A JP2005157094A JP2005157094A JP2006328512A JP 2006328512 A JP2006328512 A JP 2006328512A JP 2005157094 A JP2005157094 A JP 2005157094A JP 2005157094 A JP2005157094 A JP 2005157094A JP 2006328512 A JP2006328512 A JP 2006328512A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- less
- toughness
- resistant steel
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、産業機械や運搬機器等に用いられる耐摩耗鋼およびその製造方法に関し、特に低温靭性に優れるものに関する。 The present invention relates to wear-resistant steel used for industrial machines, transportation equipment, and the like, and a method for producing the same, and particularly relates to one having excellent low-temperature toughness.
建設、土木、鉱山等の分野で使用される産業機械、部品、運搬機器等(例えば、パワーショベル、ブルドーザー、ホッパー、バケット等)には、それらの寿命を確保するため、耐摩耗性に優れた鋼が用いられる。 Industrial machinery, parts, transport equipment, etc. used in the fields of construction, civil engineering, mining, etc. (for example, excavators, bulldozers, hoppers, buckets, etc.) have excellent wear resistance to ensure their life. Steel is used.
耐摩耗性を向上させるには、鋼の表面を焼入れ組織にすることで表面硬度を高くする必要がある。一般に鋼の焼入れ硬さはC量を増加することで確保できるが、一方で硬度が増すと材質が脆くなって低温靭性が劣化する。 In order to improve the wear resistance, it is necessary to increase the surface hardness by making the steel surface into a quenched structure. In general, the quenching hardness of steel can be ensured by increasing the amount of C. On the other hand, when the hardness increases, the material becomes brittle and the low temperature toughness deteriorates.
−40℃前後の低温域での作業を考えると、耐摩耗性は良くても低温靭性が低いと、脆性破壊を生じ作業に重大な支障をきたす。このため、耐摩耗性を有するとともに低温靭性にも優れる耐摩耗鋼が望まれていた。 Considering work in a low temperature range of around −40 ° C., if the wear resistance is good but the low temperature toughness is low, brittle fracture occurs and the work is seriously hindered. For this reason, there has been a demand for a wear-resistant steel having wear resistance and excellent low-temperature toughness.
このような要求に対して、いくつかの方法が検討されている。例えば、特許文献1や特許文献2、特許文献3などではCrやMoなどの合金元素を多量に添加することで耐磨耗鋼板の靭性を向上させる技術が開示されている。 Several methods have been examined for such a requirement. For example, Patent Document 1, Patent Document 2, Patent Document 3, and the like disclose a technique for improving the toughness of a wear-resistant steel sheet by adding a large amount of an alloy element such as Cr or Mo.
これらの技術においてCrは焼入れ性向上目的で、またMoは焼入れ性を向上させると同時に粒界強度を改善する目的で添加されている。一方、製造プロセスを工夫した技術として特許文献4があり、熱間圧延工程でオースフォームを利用することで旧γ粒を展伸させて靭性を改善することが開示されている。
しかしながら特許文献1や特許文献2、特許文献3などのように合金元素多量添加により粒界強度を強化して靭性を向上させる場合、合金元素添加コストが大きくなるという問題がある。また特許文献4のように熱間圧延工程でオースフォームを利用する場合、安定製造のために工夫が必要であり、実製造上必ずしも容易なプロセスではない。 However, as in Patent Document 1, Patent Document 2, Patent Document 3, and the like, when the grain boundary strength is enhanced by adding a large amount of alloy elements to improve toughness, there is a problem that the alloy element addition cost increases. Moreover, when utilizing an ausfoam in a hot rolling process like patent document 4, a device is needed for stable manufacture and it is not necessarily an easy process on actual manufacture.
このように従来技術では、熱間圧延ままで、低温靭性に優れた耐磨耗鋼を安価に製造することは極めて困難であり、熱間圧延後、オフラインでの再加熱焼入れ-焼もどしにより製造せざるを得なった。 In this way, it is extremely difficult to produce wear-resistant steel with excellent low-temperature toughness at low cost with the conventional technology, and after hot rolling, it is manufactured by offline reheating quenching and tempering. I'm sorry.
本発明は、これらの問題点を解決し、強度および耐摩耗性を安定に確保した上で、低温靭性に優れた耐摩耗鋼、望ましくは表面硬度がブリネル硬さで450以上の耐摩耗鋼をオフライン熱処理を行うことなく熱間圧延ままでに提供することを目的にする。 The present invention solves these problems and stably secures strength and wear resistance, and further provides wear-resistant steel having excellent low-temperature toughness, preferably wear-resistant steel having a surface hardness of 450 or more in Brinell hardness. It aims at providing hot rolling without performing off-line heat processing.
本発明は、低温靭性に優れた耐摩耗鋼を安価に提供すべく鋭意検討を重ね、鋼中にREM(O,S)を生成させると、この非金属介在物が熱間圧延前の加熱時のオーステナイト粒成長を顕著に抑制し、熱間圧延-加速冷却後の靭性向上に極めて有用であることを見出した。 In the present invention, when REM (O, S) is generated in the steel, the non-metallic inclusions are heated during hot rolling before hot rolling, in order to provide wear resistant steel excellent in low temperature toughness at low cost. It has been found that the austenite grain growth is significantly suppressed and is extremely useful for improving toughness after hot rolling and accelerated cooling.
発明は得られた知見を基に更に検討を加えてなされたもので、すなわち、本発明は、
1.質量%で、C:0.23〜0.35%、Si:0.05〜1.0%、Mn:0.1〜2.0%、P:0.020%以下、S:0.001〜0.005%、Nb:0.005〜0.03%、Ti:0.005〜0.1%、B:0.0003〜0.002%、REM:0.001〜0.015%、更に、Cu:0.1〜2.0%、Ni:0.03〜2.0%、Cr:0.03〜2.0%、Mo:0.03〜1.0%、V:0.01〜0.1%の1種または2種以上を含有し、(1)式で示される成分指標値Haが2.5以上であり、残部がFeおよび不可避的不純物からなり、粒径25μm以下の焼入れままのマルテンサイトが90%以上の微視組織を有することを特徴とする低温靭性に優れた耐磨耗鋼。
Ha=C×(1+3×Mn)×(1+0.5×Cu)×(1+2×Ni)×(1+3×Cr)×(1+2×Mo)×(1+V)×(1+300×B)---------------(1)
2.質量%で、C:0.23〜0.35%、Si:0.05〜1.0%、Mn:0.1〜2.0%、P:0.020%以下、S:0.001〜0.005%、Nb:0.005〜0.03%、Ti:0.005〜0.1%、B:0.0003〜0.002%、REM:0.001〜0.015%、更に、Cu:0.1〜2.0%、Ni:0.03〜2.0%、Cr:0.03〜2.0%、Mo:0.03〜1.0%、V:0.01〜0.1%の1種または2種以上を含有し、(1)式で示される成分指標値Haが2.5以上であり、残部がFeおよび不可避的不純物からなる鋼を、
1100〜1300℃の温度に加熱し、Ar3温度以上の圧延終了温度で熱間圧延した後、10℃/S以上の冷却速度で300℃以下まで加速冷却を行うことを特徴とする低温靭性に優れた耐磨耗鋼の製造方法。
Ha=C×(1+3×Mn)×(1+0.5×Cu)×(1+2×Ni)×(1+3×Cr)×(1+2×Mo)×(1+V)×(1+300×B)---------------(1)
The invention has been made based on further studies based on the obtained knowledge.
1. In mass%, C: 0.23-0.35%, Si: 0.05-1.0%, Mn: 0.1-2.0%, P: 0.020% or less, S: 0.001 -0.005%, Nb: 0.005-0.03%, Ti: 0.005-0.1%, B: 0.0003-0.002%, REM: 0.001-0.015%, Furthermore, Cu: 0.1-2.0%, Ni: 0.03-2.0%, Cr: 0.03-2.0%, Mo: 0.03-1.0%, V: 0.00. It contains one or two or more of 01 to 0.1%, the component index value Ha represented by the formula (1) is 2.5 or more, the balance is made of Fe and inevitable impurities, and the particle size is 25 μm or less A wear-resistant steel excellent in low-temperature toughness, characterized in that the as-quenched martensite has a microstructure of 90% or more.
Ha = C × (1 + 3 × Mn) × (1 + 0.5 × Cu) × (1 + 2 × Ni) × (1 + 3 × Cr) × (1 + 2 × Mo) × (1 + V) × (1 + 300 × B) ----- ---------- (1)
2. In mass%, C: 0.23-0.35%, Si: 0.05-1.0%, Mn: 0.1-2.0%, P: 0.020% or less, S: 0.001 -0.005%, Nb: 0.005-0.03%, Ti: 0.005-0.1%, B: 0.0003-0.002%, REM: 0.001-0.015%, Furthermore, Cu: 0.1-2.0%, Ni: 0.03-2.0%, Cr: 0.03-2.0%, Mo: 0.03-1.0%, V: 0.00. A steel containing 01 to 0.1% of one or more, the component index value Ha represented by the formula (1) is 2.5 or more, and the balance is Fe and inevitable impurities,
Heating to a temperature of 1100 to 1300 ° C., hot rolling at a rolling end temperature of Ar 3 temperature or higher, and then performing accelerated cooling to 300 ° C. or lower at a cooling rate of 10 ° C./S or higher. An excellent method for producing wear-resistant steel.
Ha = C × (1 + 3 × Mn) × (1 + 0.5 × Cu) × (1 + 2 × Ni) × (1 + 3 × Cr) × (1 + 2 × Mo) × (1 + V) × (1 + 300 × B) ----- ---------- (1)
本発明により、硬度および耐摩耗性を安定に確保した上で、低温靭性に優れた耐摩耗鋼を容易に製造、かつ廉価で提供することが可能となり、工業的に非常に有意である。 According to the present invention, it is possible to easily manufacture and provide a wear-resistant steel excellent in low-temperature toughness at a low price while ensuring hardness and wear resistance stably, which is very significant industrially.
以下、本発明の化学成分、微視組織および製造方法の限定理由について述べる。
[化学成分]
C:0.23〜0.35%
鋼の硬度を高めるのに重要な元素であるため、0.23%以上必要である。しかし、Cを大量に添加すると、溶接性、靭性、および加工性を劣化させるため、上限を0.35%とする。
Hereinafter, the reasons for limitation of the chemical component, microscopic structure and production method of the present invention will be described.
[Chemical composition]
C: 0.23-0.35%
Since it is an important element for increasing the hardness of steel, 0.23% or more is necessary. However, when a large amount of C is added, the weldability, toughness, and workability are deteriorated, so the upper limit is made 0.35%.
Si:0.05〜1.0%
脱酸元素として有効な元素であり、このため0.05%以上の添加が必要である。また、固溶強化に対しても有効な元素であるが、1.0%を超える添加量では、延靭性が低下したり、介在物が増加したりする等の問題がある。このため0.05〜1.0%と規定する。
Si: 0.05-1.0%
It is an effective element as a deoxidizing element, and therefore 0.05% or more must be added. Moreover, although it is an element effective also for solid solution strengthening, when the addition amount exceeds 1.0%, there are problems such as a decrease in ductility and an increase in inclusions. For this reason, it is defined as 0.05 to 1.0%.
Mn:0.1〜2.0%
Mnは焼入れ性確保の観点から有効な元素であり、0.1%以上の添加が必要である。一方、2.0%を超えて添加すると溶接性が劣化する。このため、0.1〜2.0%と規定する。
Mn: 0.1 to 2.0%
Mn is an effective element from the viewpoint of ensuring hardenability, and it is necessary to add 0.1% or more. On the other hand, when it exceeds 2.0%, weldability deteriorates. For this reason, it is specified as 0.1 to 2.0%.
P:0.020%以下
多量に含有すると靭性劣化を招くため、上限を0.020%とする。
P: 0.020% or less If contained in a large amount, toughness deterioration is caused, so the upper limit is made 0.020%.
S:0.001〜0.005%以下
鋼中においてMnSとして析出すると介在物として高強度鋼の破壊発生起点となり靭性の劣化を招くため、上限を0.005%とする。但し、0.001%未満までSを低減するとREM(O、S)の生成が不十分となり、加熱段階のオーステナイト粒が粗大化し、低温靭性が劣化するため0.001%以上とする。
S: 0.001 to 0.005% or less Precipitation as MnS in steel becomes a fracture starting point of high-strength steel as inclusions and causes toughness deterioration, so the upper limit is made 0.005%. However, if S is reduced to less than 0.001%, generation of REM (O, S) becomes insufficient, austenite grains in the heating stage become coarse, and low temperature toughness deteriorates, so the content is made 0.001% or more.
Nb:0.005〜0.03%
Nbは焼入性向上に有用な元素であるが、0.005%未満ではその効果に乏しく、0.03%を超えて添加すると粗大なNb(C、N)を形成し、脆性破壊の起点となり靭性を劣化させるので上限を0.03%とする。
Nb: 0.005 to 0.03%
Nb is an element useful for improving hardenability, but if less than 0.005%, the effect is poor, and if added over 0.03%, coarse Nb (C, N) is formed, and the origin of brittle fracture And toughness is deteriorated, so the upper limit is made 0.03%.
Ti:0.005〜0.1%
靭性に有害な固溶NをTiNとして固定することにより靭性を向上させるとともに、焼入れ性の向上に有効な固溶Bを確保する効果を有しているが、0.005%未満ではこの効果を発揮することができず、0.1%を超える添加では靭性が劣化するので、0.005〜0.1%とする。
Ti: 0.005 to 0.1%
While fixing solid solution N harmful to toughness as TiN, it has the effect of improving toughness and ensuring solid solution B effective in improving hardenability, but this effect is less than 0.005% Since the toughness deteriorates when added over 0.1%, it is made 0.005 to 0.1%.
B:0.0003〜0.002%
微量添加で焼入れ性を高める元素であるが0.0003%未満ではこの効果を発揮することができず、0.002%を超える添加では靭性が劣化するので、0.0003〜0.002%とする。
B: 0.0003 to 0.002%
Although it is an element that enhances hardenability by adding a small amount, if less than 0.0003%, this effect cannot be exhibited, and if added over 0.002%, toughness deteriorates, so 0.0003-0.002% To do.
REM:0.001〜0.015%
鋼中にREM(O、S)を形成し、加熱段階でのオーステナイト粒成長を抑制することにより、熱間圧延ままの組織を微細化し、靭性を向上させるので本発明において必須の元素である。0.001%未満ではその効果に乏しく、また、0.015%を超えて添加すると粗大な酸化物系非金属介在物を形成し、脆性破壊の起点となり、靭性が低下するので、上限を0.015%に限定する。
REM: 0.001 to 0.015%
By forming REM (O, S) in the steel and suppressing austenite grain growth in the heating stage, the structure as it is hot-rolled is refined and the toughness is improved, so it is an essential element in the present invention. If less than 0.001%, the effect is poor, and if added over 0.015%, coarse oxide-based non-metallic inclusions are formed, which becomes the starting point of brittle fracture and the toughness is reduced. Limited to .015%.
更に、本発明では、Cu,Ni,Cr,Mo,Vの1種または2種以上を添加する。
Cu:0.1〜2.0%
焼入れ性を高める元素であるが、0.1%未満ではこの効果を発揮することができず、2.0%を超える添加では熱間加工性が低下するとともに、コストも上昇するので、添加する場合は、0.1〜2.0%とする。
Furthermore, in the present invention, one or more of Cu, Ni, Cr, Mo, and V are added.
Cu: 0.1 to 2.0%
Although it is an element that enhances hardenability, if it is less than 0.1%, this effect cannot be exhibited, and if it exceeds 2.0%, hot workability decreases and the cost also increases. In the case, it is 0.1 to 2.0%.
Ni:0.03〜2.0%
焼入れ性を高めるとともに、低温靭性を向上させる元素であるが、0.03%未満ではこの効果を発揮することができず、2.0%を超える添加ではコストが上昇するので、添加する場合は、0.03〜2.0%とする。
Ni: 0.03-2.0%
Although it is an element that enhances hardenability and improves low temperature toughness, if less than 0.03%, this effect cannot be exhibited, and if it exceeds 2.0%, the cost increases, so when adding 0.03 to 2.0%.
Cr:0.03〜2.0%
焼入れ性を高める元素であるが、0.03%未満ではこの効果を発揮することができず、2.0%を超える添加では、溶接性が劣化するとともに、コストが上昇するので、添加する場合は、0.03〜2.0%とする。
Cr: 0.03-2.0%
Although it is an element that enhances hardenability, if less than 0.03%, this effect cannot be exerted, and if it exceeds 2.0%, weldability deteriorates and costs increase. Is 0.03 to 2.0%.
Mo:0.03〜1.0%
焼入れ性を高める元素であるが、0.03%未満ではこの効果を発揮することができず、1.0%を超える添加では、溶接性が劣化するとともに、コストが上昇するので、添加する場合は、0.03〜1.0%とする。
Mo: 0.03-1.0%
Although it is an element that enhances hardenability, if less than 0.03%, this effect cannot be exhibited, and if it exceeds 1.0%, weldability deteriorates and costs increase, so when adding Is 0.03 to 1.0%.
V:0.01〜0.1%
析出強化に有効な元素であり、鋼の硬度を上昇させる効果を有しているが、0.01%未満ではこの効果を発揮することができず、0.1%を超える添加では溶接性が劣化するので、添加する場合は、0.01〜0.1%とする。
V: 0.01 to 0.1%
It is an element effective for precipitation strengthening and has the effect of increasing the hardness of steel. However, if it is less than 0.01%, this effect cannot be exhibited. When it is added, the content is made 0.01 to 0.1%.
成分指標値Ha
成分指標値Ha=C×(1+3×Mn)×(1+0.5×Cu)×(1+2×Ni)×(1+3×Cr)×(1+2×Mo)×(1+V)×(1+300×B)---------(1)
但し,各元素含有量(mass%)は焼入れ後の組織と関係があり、その結果、鋼の硬さに大きな影響を与える。成分指標値Haが2.5未満であると、組織自体が完全な焼入れ組織とならず、あるいは、表面の組織が完全な焼入れ組織となっていても、表層から板厚中心部にかけて完全な焼入れ組織とならず硬さが低下するため、成分指標値Haを2.5以上と規定する。
Component index value Ha
Component index value Ha = C × (1 + 3 × Mn) × (1 + 0.5 × Cu) × (1 + 2 × Ni) × (1 + 3 × Cr) × (1 + 2 × Mo) × (1 + V) × (1 + 300 × B) − ------- (1)
However, the content of each element (mass%) is related to the structure after quenching, and as a result, it greatly affects the hardness of the steel. When the component index value Ha is less than 2.5, even if the structure itself is not a completely quenched structure, or even if the surface structure is a completely quenched structure, it is completely quenched from the surface layer to the center of the plate thickness. The component index value Ha is defined as 2.5 or more because hardness does not become a structure and decreases.
[微視組織]
本発明に係る耐摩耗鋼は、優れた低温靭性を得るため、粒径25μm以下の焼入れままのマルテンサイトが90%以上の微視組織に規定する。
[Microscopic organization]
In order to obtain excellent low-temperature toughness, the wear-resistant steel according to the present invention is defined as a microstructure with an as-quenched martensite having a particle size of 25 μm or less and 90% or more.
[製造条件]
熱間圧延前の加熱温度は、1100〜1300℃とする。1100℃未満では、NbがNb(C,N)の形態で存在し、焼入性に有効な固溶Nbを確保することが困難なためである。また、1300℃を超えて加熱すると鋼板表面に表面疵が発生するとともにREM(O,S)によるオーステナイト粒成長抑制効果が低減し、目標とする25μm以下のマルテンサイト組織が得られないため加熱温度の上限を1300℃と規定する。
[Production conditions]
The heating temperature before hot rolling shall be 1100-1300 degreeC. When the temperature is lower than 1100 ° C., Nb exists in the form of Nb (C, N), and it is difficult to secure solid solution Nb effective for hardenability. Further, heating above 1300 ° C. generates surface flaws on the steel sheet surface and reduces the effect of suppressing austenite grain growth by REM (O, S), and the target martensite structure of 25 μm or less cannot be obtained. Is defined as 1300 ° C.
熱間圧延は、圧延終了温度をAr3温度以上とする。Ar3点を下回ると軟質なフェライトが生成し、鋼組織が目標とするマルテンサイト主体組織が得られない。熱間圧延後、10℃/s以上の冷却速度にて、300℃以下まで冷却する。10℃/s未満では、90%以上のマルテンサイト組織が得られず、300℃を超える温度で冷却を停止するとマルテンサイト組織が得られない。 In hot rolling, the rolling end temperature is set to Ar 3 temperature or higher. If Ar is less than 3 points, soft ferrite is generated, and the martensite main structure targeted by the steel structure cannot be obtained. After hot rolling, it is cooled to 300 ° C. or lower at a cooling rate of 10 ° C./s or higher. If it is less than 10 ° C / s, a martensite structure of 90% or more cannot be obtained, and if cooling is stopped at a temperature exceeding 300 ° C, a martensite structure cannot be obtained.
表1に示す化学組成(mass%)を有する鋼を用い、No.1〜30の鋼片(厚さ100mm)を製造し、供試材とした。鋼A〜Cは、化学組成が本発明の要件を満足している。鋼Dは、B無添加系で、Haが本発明の規定を下回っている。 Steel having the chemical composition (mass%) shown in Table 1 was used. 1 to 30 steel pieces (thickness 100 mm) were produced and used as test materials. Steels A to C satisfy the requirements of the present invention in chemical composition. Steel D is a B-free system, and Ha is below the provisions of the present invention.
また、鋼Eは、REMが無添加である。さらに、鋼中Sが本発明の規定よりも低く、鋼Gは、REMが本発明の規定を超えて添加されている。これらの鋼を表2に示す製造条件で板厚50mmまで熱間圧延-加速冷却し、得られた鋼板について、組織観察を実施しマルテンサイト分率と粒径を測定した。また、特性値として、表面硬度、低温靭性を調べた。 Steel E does not contain REM. Furthermore, S in steel is lower than the prescription | regulation of this invention, and as for steel G, REM is added exceeding the prescription | regulation of this invention. These steels were hot-rolled and accelerated cooled to a sheet thickness of 50 mm under the production conditions shown in Table 2, and the obtained steel sheets were subjected to structure observation to measure the martensite fraction and particle size. In addition, surface hardness and low temperature toughness were examined as characteristic values.
硬度は、JIS規格Z2243に準拠し、鋼板表面でランダムに選んだ5点の平均値を用いた。低温靭性は、JIS規格Z2242に準拠し、破面遷移温度を測定した。得られた硬度(HB)、低温靭性(vTs:[℃])を表2に併せて示す。 The hardness was based on JIS standard Z2243, and an average value of 5 points randomly selected on the steel sheet surface was used. The low temperature toughness was measured in accordance with JIS standard Z2242, and the fracture surface transition temperature was measured. The obtained hardness (HB) and low temperature toughness (vTs: [° C.]) are also shown in Table 2.
実施例No.1〜5、9〜13および17〜21は、熱間圧延-冷却条件が本発明の要件を満たしていない場合であり、表面硬度および破面遷移温度のどちらかまたは両者が著しく劣化している。 Example No. 1-5, 9-13 and 17-21 are cases where the hot rolling-cooling conditions do not meet the requirements of the present invention, and either or both of the surface hardness and the fracture surface transition temperature are significantly degraded. .
実施例No.6〜8、14〜16および22〜24は本発明に適合する例であり、表面硬度と破面遷移温度の 両者ともに優れ、特に破面遷移温度は−40℃以下の優れた値となっている。 Example No. Examples 6 to 8, 14 to 16, and 22 to 24 are examples suitable for the present invention. Both surface hardness and fracture surface transition temperature are excellent. Particularly, the fracture surface transition temperature is an excellent value of −40 ° C. or less. Yes.
実施例No.30〜32は、熱間圧延-冷却条件が本発明の範囲内であるが、Haが低いために硬さが顕著に低下している。
実施例No.33〜35は、REM量が本発明の範囲を下回る場合であり、生成されるREM(O、S)が少なくなったために圧延-冷却条件が本発明範囲内にあっても破面遷移温度が極めて高い。
実施例No.36〜38は、S量が本発明の範囲を下回る場合であり、生成されるREM(O、S)が少なくなったために圧延-冷却条件が本発明範囲内にあっても破面遷移温度が極めて高い。
Example No. In Nos. 30 to 32, the hot rolling-cooling conditions are within the scope of the present invention, but the hardness is significantly reduced due to the low Ha.
Example No. Nos. 33 to 35 are cases where the amount of REM falls below the range of the present invention, and since the amount of REM (O, S) produced is small, even when the rolling-cooling condition is within the range of the present invention, the fracture surface transition temperature is Extremely expensive.
Example No. 36 to 38 are cases in which the amount of S is less than the range of the present invention, and since the generated REM (O, S) is reduced, the fracture surface transition temperature is not limited even if the rolling-cooling condition is within the range of the present invention. Extremely expensive.
実施例No.39は、REM量が本発明の範囲を上回る場合であり、REM(O、S)以外に粗大な酸化物系非金属介在物が増大した結果、圧延-冷却条件が本発明範囲内あり、粒径も本発明範囲内にあるにも係わらず破面遷移温度が極めて高い。 Example No. 39 is a case where the amount of REM exceeds the range of the present invention, and as a result of the increase in coarse oxide-based nonmetallic inclusions other than REM (O, S), the rolling-cooling conditions are within the range of the present invention, Although the diameter is within the range of the present invention, the fracture surface transition temperature is extremely high.
Claims (2)
Ha=C×(1+3×Mn)×(1+0.5×Cu)×(1+2×Ni)×(1+3×Cr)×(1+2×Mo)×(1+V)×(1+300×B)---------------(1) In mass%, C: 0.23-0.35%, Si: 0.05-1.0%, Mn: 0.1-2.0%, P: 0.020% or less, S: 0.001 -0.005%, Nb: 0.005-0.03%, Ti: 0.005-0.1%, B: 0.0003-0.002%, REM: 0.001-0.015%, Furthermore, Cu: 0.1-2.0%, Ni: 0.03-2.0%, Cr: 0.03-2.0%, Mo: 0.03-1.0%, V: 0.00. It contains one or two or more of 01 to 0.1%, the component index value Ha represented by the formula (1) is 2.5 or more, the balance is made of Fe and inevitable impurities, and the particle size is 25 μm or less A wear-resistant steel excellent in low-temperature toughness, characterized in that the as-quenched martensite has a microstructure of 90% or more.
Ha = C × (1 + 3 × Mn) × (1 + 0.5 × Cu) × (1 + 2 × Ni) × (1 + 3 × Cr) × (1 + 2 × Mo) × (1 + V) × (1 + 300 × B) ----- ---------- (1)
1100〜1300℃の温度に加熱し、Ar3温度以上の圧延終了温度で熱間圧延した後、10℃/S以上の冷却速度で300℃以下まで加速冷却を行うことを特徴とする低温靭性に優れた耐磨耗鋼の製造方法。
Ha=C×(1+3×Mn)×(1+0.5×Cu)×(1+2×Ni)×(1+3×Cr)×(1+2×Mo)×(1+V)×(1+300×B)---------------(1) In mass%, C: 0.23-0.35%, Si: 0.05-1.0%, Mn: 0.1-2.0%, P: 0.020% or less, S: 0.001 -0.005%, Nb: 0.005-0.03%, Ti: 0.005-0.1%, B: 0.0003-0.002%, REM: 0.001-0.015%, Furthermore, Cu: 0.1-2.0%, Ni: 0.03-2.0%, Cr: 0.03-2.0%, Mo: 0.03-1.0%, V: 0.00. A steel containing 01 to 0.1% of one or more, the component index value Ha represented by the formula (1) is 2.5 or more, and the balance is Fe and inevitable impurities,
Heating to a temperature of 1100 to 1300 ° C., hot rolling at a rolling end temperature of Ar 3 temperature or higher, and then performing accelerated cooling to 300 ° C. or lower at a cooling rate of 10 ° C./S or higher. An excellent method for producing wear-resistant steel.
Ha = C × (1 + 3 × Mn) × (1 + 0.5 × Cu) × (1 + 2 × Ni) × (1 + 3 × Cr) × (1 + 2 × Mo) × (1 + V) × (1 + 300 × B) ----- ---------- (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005157094A JP4645307B2 (en) | 2005-05-30 | 2005-05-30 | Wear-resistant steel with excellent low-temperature toughness and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005157094A JP4645307B2 (en) | 2005-05-30 | 2005-05-30 | Wear-resistant steel with excellent low-temperature toughness and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006328512A true JP2006328512A (en) | 2006-12-07 |
JP4645307B2 JP4645307B2 (en) | 2011-03-09 |
Family
ID=37550507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005157094A Expired - Fee Related JP4645307B2 (en) | 2005-05-30 | 2005-05-30 | Wear-resistant steel with excellent low-temperature toughness and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4645307B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012133911A1 (en) * | 2011-03-29 | 2012-10-04 | Jfeスチール株式会社 | Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same |
CN104313485A (en) * | 2014-11-08 | 2015-01-28 | 江苏天舜金属材料集团有限公司 | Corrosion-resistant alloy material for prestressed steel strand and processing process of corrosion-resistant alloy material |
CN104831189A (en) * | 2015-04-16 | 2015-08-12 | 河北钢铁股份有限公司 | HB600 grade wear-resistant non-quenched and tempered steel plate and making method thereof |
US9982331B2 (en) | 2012-09-19 | 2018-05-29 | Jfe Steel Corporation | Abrasion resistant steel plate having excellent low-temperature toughness and excellent corrosive wear resistance |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5966730B2 (en) | 2012-07-30 | 2016-08-10 | Jfeスチール株式会社 | Abrasion resistant steel plate with excellent impact wear resistance and method for producing the same |
EP3446810B1 (en) | 2016-04-19 | 2020-06-10 | JFE Steel Corporation | Abrasion-resistant steel plate and method for producing abrasion-resistant steel plate |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09118950A (en) * | 1995-10-24 | 1997-05-06 | Nippon Steel Corp | Thick high hardness and high toughness wear resistant steel and method for producing the same |
JP2001049387A (en) * | 1999-08-03 | 2001-02-20 | Nippon Steel Corp | High toughness high temperature wear resistant steel |
JP2004270001A (en) * | 2003-03-11 | 2004-09-30 | Jfe Steel Kk | Wear resistant steel having excellent low temperature toughness, and production method therefor |
-
2005
- 2005-05-30 JP JP2005157094A patent/JP4645307B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09118950A (en) * | 1995-10-24 | 1997-05-06 | Nippon Steel Corp | Thick high hardness and high toughness wear resistant steel and method for producing the same |
JP2001049387A (en) * | 1999-08-03 | 2001-02-20 | Nippon Steel Corp | High toughness high temperature wear resistant steel |
JP2004270001A (en) * | 2003-03-11 | 2004-09-30 | Jfe Steel Kk | Wear resistant steel having excellent low temperature toughness, and production method therefor |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012133911A1 (en) * | 2011-03-29 | 2012-10-04 | Jfeスチール株式会社 | Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same |
JP2012214890A (en) * | 2011-03-29 | 2012-11-08 | Jfe Steel Corp | Wear resistant steel plate excellent in stress corrosion cracking resistance and method for manufacturing the same |
US9938599B2 (en) | 2011-03-29 | 2018-04-10 | Jfe Steel Corporation | Abrasion resistant steel plate or steel sheet excellent in resistance to stress corrosion cracking and method for manufacturing the same |
US9982331B2 (en) | 2012-09-19 | 2018-05-29 | Jfe Steel Corporation | Abrasion resistant steel plate having excellent low-temperature toughness and excellent corrosive wear resistance |
CN104313485A (en) * | 2014-11-08 | 2015-01-28 | 江苏天舜金属材料集团有限公司 | Corrosion-resistant alloy material for prestressed steel strand and processing process of corrosion-resistant alloy material |
CN104831189A (en) * | 2015-04-16 | 2015-08-12 | 河北钢铁股份有限公司 | HB600 grade wear-resistant non-quenched and tempered steel plate and making method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4645307B2 (en) | 2011-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2013297928B2 (en) | Wear resistant steel plate and manufacturing process therefor | |
JP6573033B2 (en) | Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet | |
CN101835918B (en) | High-strength steel plate and process for producing same | |
CN110100034B (en) | High-hardness wear-resistant steel and method for manufacturing same | |
JP5145805B2 (en) | Wear-resistant steel plate with excellent gas cut surface properties and low-temperature tempering embrittlement cracking resistance | |
JP5145804B2 (en) | Abrasion-resistant steel plate with excellent low-temperature tempering embrittlement cracking properties | |
JP5145803B2 (en) | Wear-resistant steel plate with excellent low-temperature toughness and low-temperature tempering embrittlement cracking properties | |
EP2695960A1 (en) | Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same | |
WO2014156078A1 (en) | Abrasion resistant steel plate having low-temperature toughness and hydrogen embrittlement resistance, and manufacturing method therefor | |
JP2014194042A (en) | Abrasion resistant steel plate having low-temperature toughness, and manufacturing method thereof | |
WO2011061812A1 (en) | High-toughness abrasion-resistant steel and manufacturing method therefor | |
JP2007302974A (en) | High strength steel plate having excellent delayed fracture resistance and method for producing the same | |
JP2008297571A (en) | Abrasion resistant steel sheet having excellent workability, and its production method | |
WO2018215600A1 (en) | High-strength, hot rolled abrasive wear resistant steel strip | |
JP4650013B2 (en) | Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same | |
JP2018059187A (en) | Abrasion resistant steel sheet and manufacturing method of abrasion resistant steel sheet | |
JP2020503450A (en) | High hardness wear-resistant steel and method for producing the same | |
JP5458624B2 (en) | Wear-resistant steel plate with excellent workability and method for producing the same | |
JP6394378B2 (en) | Abrasion resistant steel plate and method for producing the same | |
JP5348392B2 (en) | Wear resistant steel | |
JP5217191B2 (en) | Wear-resistant steel plate with excellent workability and method for producing the same | |
JP2005240135A (en) | Method for manufacturing wear-resistant steel having excellent bendability, and wear-resistant steel | |
JP4645307B2 (en) | Wear-resistant steel with excellent low-temperature toughness and method for producing the same | |
JP4645306B2 (en) | Wear-resistant steel with excellent low-temperature toughness and method for producing the same | |
JP2004270001A (en) | Wear resistant steel having excellent low temperature toughness, and production method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060921 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080304 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100318 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100406 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100601 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101109 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101122 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131217 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |