[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006317470A - Biosensor - Google Patents

Biosensor Download PDF

Info

Publication number
JP2006317470A
JP2006317470A JP2006236396A JP2006236396A JP2006317470A JP 2006317470 A JP2006317470 A JP 2006317470A JP 2006236396 A JP2006236396 A JP 2006236396A JP 2006236396 A JP2006236396 A JP 2006236396A JP 2006317470 A JP2006317470 A JP 2006317470A
Authority
JP
Japan
Prior art keywords
substrate
counter electrode
working electrode
electrode
electrode substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006236396A
Other languages
Japanese (ja)
Other versions
JP4036883B2 (en
Inventor
Makoto Ikeda
信 池田
Kiichi Watanabe
基一 渡邊
Toshihiko Yoshioka
俊彦 吉岡
Shiro Nankai
史朗 南海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006236396A priority Critical patent/JP4036883B2/en
Publication of JP2006317470A publication Critical patent/JP2006317470A/en
Application granted granted Critical
Publication of JP4036883B2 publication Critical patent/JP4036883B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biosensor which yields high reliability and accurate measurement values by using a trace amount of sample. <P>SOLUTION: The biosensor comprises a working electrode substrate 11, a counter electrode substrate 14, and a reagent layer including at least an enzyme and an electron carrier. In the biosensor, a working electrode 12 disposed on the working electrode substrate and a counter electrode 15 disposed on the counter electrode substrate are arranged facing each other, and terminals of a measuring instrument can be made to come into contact with terminals 13, 16 of both the electrodes from through-holes 25, 24. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、試料中に含まれる基質を迅速かつ高精度に定量するためのバイオセンサに関する。   The present invention relates to a biosensor for quickly and accurately quantifying a substrate contained in a sample.

スクロース、グルコースなど糖類の定量分析法として、施光度計法、比色法、還元滴定法および各種クロマトグラフィーを用いた方法等が開発されている。しかし、これらの方法は、いずれも糖類に対する特異性があまり高くないので精度が悪い。これらの方法のうち施光度計法によれば、操作は簡便ではあるが、操作時の温度の影響を大きく受ける。従って、施光度計法は、一般の人々が家庭などで簡易に糖類を定量する方法としては適切でない。
ところで、近年、酵素の有する特異的触媒作用を利用した種々のタイプのバイオセンサが開発されている。
As a quantitative analysis method for saccharides such as sucrose and glucose, a photometric method, a colorimetric method, a reduction titration method, a method using various chromatographies, and the like have been developed. However, none of these methods have low accuracy because the specificity for saccharides is not so high. Among these methods, the photometer method is easy to operate, but is greatly affected by the temperature during operation. Therefore, the photometry method is not appropriate as a method for ordinary people to quantify saccharides easily at home.
By the way, in recent years, various types of biosensors utilizing specific catalytic action of enzymes have been developed.

以下に、試料液中の基質の定量法の一例としてグルコースの定量法について説明する。電気化学的なグルコースの定量法としては、グルコースオキシダーゼ(EC1.1.3.4:以下GODと略す)と酸素電極あるいは過酸化水素電極とを使用して行う方法が一般に知られている(例えば、非特許文献1)。
GODは、酸素を電子伝達体として、基質であるβ−D−グルコースをD−グルコノ−δ−ラクトンに選択的に酸化する。酸素の存在下で、GODによる酸化反応過程において、酸素が過酸化水素に還元される。酸素電極によって、この酸素の減少量を計測するか、あるいは過酸化水素電極によって過酸化水素の増加量を計測する。酸素の減少量および過酸化水素の増加量は、試料液中のグルコースの含有量に比例するので、酸素の減少量または過酸化水素の増加量からグルコースの定量が行われる。
上記方法では、その反応過程からも推測できるように、測定結果は試料液に含まれる酸素濃度の影響を大きく受ける欠点があり、試料液に酸素が存在しない場合は測定が不可能となる。
Below, the quantitative method of glucose is demonstrated as an example of the quantitative method of the substrate in a sample solution. As an electrochemical glucose determination method, a method using glucose oxidase (EC 1.1.3.4: hereinafter abbreviated as GOD) and an oxygen electrode or a hydrogen peroxide electrode is generally known (for example, Non-Patent Document 1).
GOD selectively oxidizes β-D-glucose, which is a substrate, to D-glucono-δ-lactone using oxygen as an electron carrier. In the presence of oxygen, oxygen is reduced to hydrogen peroxide during the oxidation reaction by GOD. The amount of decrease in oxygen is measured with an oxygen electrode, or the amount of increase in hydrogen peroxide is measured with a hydrogen peroxide electrode. Since the decrease amount of oxygen and the increase amount of hydrogen peroxide are proportional to the glucose content in the sample solution, glucose is quantified from the decrease amount of oxygen or the increase amount of hydrogen peroxide.
In the above method, as can be inferred from the reaction process, the measurement result is greatly affected by the concentration of oxygen contained in the sample liquid, and measurement is impossible when oxygen is not present in the sample liquid.

そこで、酸素を電子伝達体として用いず、フェリシアン化カリウム、フェロセン誘導体、キノン誘導体等の有機化合物や金属錯体を電子伝達体として用いる新しいタイプのグルコースセンサが開発されてきた。このタイプのセンサでは、酵素反応の結果生じた電子伝達体の還元体を電極上で酸化することにより、その酸化電流量から試料液中に含まれるグルコース濃度が求められる。このような有機化合物や金属錯体を酸素の代わりに電子伝達体として用いることにより、既知量のGODとそれらの電子伝達体を安定な状態で正確に電極上に担持させて反応層を形成することが可能となる。この場合、反応層を乾燥状態に近い状態で電極系と一体化させることもできるので、この技術に基づいた使い捨て型のグルコースセンサが近年多くの注目を集めている(例えば、特許文献1参照)。使い捨て型のグルコースセンサにおいては、測定器に着脱可能に接続されたセンサに試料液を導入するだけで容易にグルコース濃度を測定器で測定することができる。このような手法は、グルコースの定量だけに限らず、試料液中に含まれる他の基質の定量にも応用可能である。
鈴木周一編「バイオセンサー」講談社 特許第2517153号公報
Therefore, a new type of glucose sensor has been developed that does not use oxygen as an electron carrier but uses an organic compound or metal complex such as potassium ferricyanide, a ferrocene derivative, or a quinone derivative as an electron carrier. In this type of sensor, the concentration of glucose contained in the sample solution is obtained from the amount of oxidation current by oxidizing the reduced form of the electron carrier generated as a result of the enzyme reaction on the electrode. By using such an organic compound or metal complex as an electron carrier instead of oxygen, a known amount of GOD and those electron carriers are supported on the electrode accurately in a stable state to form a reaction layer. Is possible. In this case, since the reaction layer can be integrated with the electrode system in a state close to a dry state, a disposable glucose sensor based on this technique has attracted much attention in recent years (for example, see Patent Document 1). . In the disposable glucose sensor, the glucose concentration can be easily measured with the measuring instrument simply by introducing the sample solution into the sensor detachably connected to the measuring instrument. Such a method is applicable not only to the determination of glucose but also to the determination of other substrates contained in the sample solution.
Shuichi Suzuki volume "Biosensor" Kodansha Japanese Patent No. 2517153

上記のようなグルコースセンサを用いた測定では、数μlオーダーの試料量で試料中の基質濃度を容易に求めることができる。しかしながら近年、更に微量、特に1μl以下の試料で測定が可能であり、かつ取扱いが簡便で、高性能なバイオセンサの開発が、各方面において切望されている。
しかしながら、従来の電気化学グルコースセンサでは、殆どの場合、一平面上に電極系が配置されている。電極系が一平面上にあり、かつ試料が極微量な場合には、電極間の電荷移動、主にイオンの移動、に対する抵抗が大きくなる。それに伴い、測定結果にばらつきが生ずる場合があった。
In the measurement using the glucose sensor as described above, the substrate concentration in the sample can be easily obtained with a sample amount of the order of several μl. However, in recent years, development of a high-performance biosensor that can be measured with a smaller amount of sample, particularly 1 μl or less, is easy to handle, and is highly desired in various fields.
However, in most conventional electrochemical glucose sensors, the electrode system is arranged on one plane. When the electrode system is on one plane and the sample is extremely small, the resistance to charge transfer between the electrodes, mainly ion transfer, increases. As a result, variations in measurement results may occur.

上記の課題を解決するために本発明のバイオセンサは、作用極基板、対極基板、および少なくとも酵素と電子伝達体を包含する試薬層を具備し、作用極基板上に配置された作用極と対極基板上に配置された対極とが空間部を隔てて相互に対向する位置に配置されていることを特徴とする。
本発明は、作用極基板、対極基板、前記両基板間に介在するスペーサ部材、および少なくとも酵素と電子伝達体を包含する試薬層を具備し、作用極基板上に配置された作用極と対極基板上に配置された対極とがスペーサ部材を介して相互に対向する位置に配置されているバイオセンサを提供する。
ここにおいて、前記作用極基板および対極基板の少なくとも一方が、他方の基板の電極端子を外部に臨ませる貫通孔を有することが好ましい。
前記作用極基板および対極基板の一方が、他方の基板の電極端子を外部に臨ませる切欠部を有し、かつ前記一方の基板の電極に接続されたリードが同基板の側面を経由して当該電極が配置された面の背面側に導出されていることが好ましい。
または、前記作用極基板および対極基板の一方が、他方の基板の電極端子を外部に臨ませる切欠部を有し、かつ前記一方の基板の電極に接続されたリードが同基板の貫通孔に充填された導電性材料を経由して当該電極が配置された面の背面側に導出されていることが好ましい。
本発明は、また、表面に溝を有する絶縁性基板、前記絶縁性基板に接合されて前記溝部に試料を収容する空間部を形成するカバー部材、前記溝内において相対向して配置された作用極と対極、および前記溝内に配置された少なくとも酵素と電子伝達体を包含する試薬層を具備するバイオセンサを提供する。
In order to solve the above problems, a biosensor of the present invention comprises a working electrode substrate, a counter electrode substrate, and a reagent layer including at least an enzyme and an electron carrier, and the working electrode and the counter electrode arranged on the working electrode substrate. The counter electrode arranged on the substrate is arranged at a position facing each other across the space.
The present invention comprises a working electrode substrate, a counter electrode substrate, a spacer member interposed between the two substrates, and a reagent layer including at least an enzyme and an electron carrier, and the working electrode and the counter electrode substrate disposed on the working electrode substrate. Provided is a biosensor in which a counter electrode arranged on the top is arranged at a position facing each other through a spacer member.
Here, it is preferable that at least one of the working electrode substrate and the counter electrode substrate has a through-hole that allows the electrode terminal of the other substrate to face the outside.
One of the working electrode substrate and the counter electrode substrate has a notch that exposes the electrode terminal of the other substrate to the outside, and the lead connected to the electrode of the one substrate passes through the side surface of the substrate. It is preferable to be led out to the back side of the surface on which the electrode is disposed.
Alternatively, one of the working electrode substrate and the counter electrode substrate has a cutout portion that exposes the electrode terminal of the other substrate to the outside, and the lead connected to the electrode of the one substrate fills the through hole of the substrate It is preferable to be led out to the back side of the surface on which the electrode is disposed via the conductive material formed.
The present invention also provides an insulating substrate having a groove on the surface, a cover member which is bonded to the insulating substrate and forms a space for accommodating a sample in the groove, and is disposed opposite to the groove. Provided is a biosensor comprising an electrode and a counter electrode, and a reagent layer including at least an enzyme and an electron carrier disposed in the groove.

本発明によれば、微量の試料で高い信頼性および精度の測定値を与えるバイオセンサが得られる。   According to the present invention, a biosensor that provides a highly reliable and accurate measurement value with a small amount of sample can be obtained.

以下、本発明を実施例によりさらに詳しく説明する。
《実施例1》
図1は、本実施例の、試薬層を除いたグルコースセンサの分解斜視図であり、電極/リード配置の一例を示している。
作用極基板11は、以下の手順にて作製した。まず、ポリエチレンテレフタレ−トからなる絶縁性基板上に、スクリ−ン印刷により銀ペーストを印刷し、リ−ド13を形成した。ついで、樹脂バインダーを含む導電性カーボンペーストを基板上に印刷して作用極12を形成した。この作用極12は、リ−ド13と接触している。さらに、この基板11上に、絶縁性ペ−ストを印刷して絶縁層17を形成した。絶縁層17は、作用極12の外周部を覆っており、これにより作用極12の露出部分の面積を一定に保っている。
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
FIG. 1 is an exploded perspective view of the glucose sensor excluding the reagent layer in this embodiment, and shows an example of an electrode / lead arrangement.
The working electrode substrate 11 was produced by the following procedure. First, a silver paste was printed on an insulating substrate made of polyethylene terephthalate by screen printing to form a lead 13. Next, a conductive carbon paste containing a resin binder was printed on the substrate to form the working electrode 12. The working electrode 12 is in contact with the lead 13. Furthermore, an insulating paste 17 was formed on the substrate 11 by printing an insulating paste. The insulating layer 17 covers the outer periphery of the working electrode 12, thereby keeping the area of the exposed portion of the working electrode 12 constant.

同様の手順にて、対極基板14を作製した。すなわち、絶縁性基板の裏面に銀ペーストを印刷してリード16を形成し、次いで導電性カーボンペーストを印刷して対極15を形成し、さらに絶縁性ペーストを印刷して絶縁層18を形成した。対極基板には、空気孔19を形成した。
作用極基板11と対極基板14との間に挟み込むスペーサ21は、スリット22を有しており、このスリット22は作用極基板と対極基板との間に試料供給路を形成するものである。
A counter electrode substrate 14 was produced in the same procedure. That is, the silver paste was printed on the back surface of the insulating substrate to form the lead 16, the conductive carbon paste was then printed to form the counter electrode 15, and the insulating paste was further printed to form the insulating layer 18. Air holes 19 were formed in the counter electrode substrate.
The spacer 21 sandwiched between the working electrode substrate 11 and the counter electrode substrate 14 has a slit 22, and this slit 22 forms a sample supply path between the working electrode substrate and the counter electrode substrate.

GODと、電子伝達体であるフェリシアン化カリウムとを含有する水溶液を作用極基板11の作用極12上に滴下し、乾燥して試薬層を作製した。この後、作用極基板11、対極基板14、およびスペーサ21を図1中の一点鎖線で示すような位置関係をもって接着することにより、バイオセンサを作製した。対極および試薬層を有する作用極は、スペーサ21のスリット22の部分に形成される試料供給路内で向き合うこととなる。対極基板の空気孔19は、この試料供給路に連通しているから、スリットの解放端に形成される試料供給口23に試料液を接触させれば、毛管現象により試料液は容易に試料供給路内の試薬層に達する。
次いで、一定量のグルコースを含む溶液を試料としてセンサの試料供給路に供給し、一定時間経過後に、対極15を基準にして作用極12に500mVの電圧を印加することによりグルコースの測定を行った。
両基板間にスペーサを介在させることにより、基板に対して働く物理的圧力に対してセンサの強度が増加する。よって、試料供給路の容積が一定に保たれやすく、センサ応答に与える物理的圧力等の影響が軽減される。
測定の結果、液中のグルコース濃度に比例した電流応答が観察され、応答のばらつきが低減した。
An aqueous solution containing GOD and potassium ferricyanide as an electron carrier was dropped onto the working electrode 12 of the working electrode substrate 11 and dried to prepare a reagent layer. Thereafter, the working electrode substrate 11, the counter electrode substrate 14, and the spacer 21 were bonded with a positional relationship as indicated by a one-dot chain line in FIG. 1 to produce a biosensor. The working electrode having the counter electrode and the reagent layer faces each other in the sample supply path formed in the slit 22 portion of the spacer 21. Since the air hole 19 of the counter electrode substrate communicates with the sample supply path, if the sample solution is brought into contact with the sample supply port 23 formed at the open end of the slit, the sample solution is easily supplied by capillary action. Reach the reagent layer in the road.
Next, a solution containing a certain amount of glucose was supplied as a sample to the sample supply path of the sensor, and after a predetermined time had elapsed, glucose was measured by applying a voltage of 500 mV to the working electrode 12 with reference to the counter electrode 15. .
By interposing a spacer between the two substrates, the strength of the sensor increases with respect to the physical pressure acting on the substrate. Therefore, the volume of the sample supply path is easily kept constant, and the influence of physical pressure or the like on the sensor response is reduced.
As a result of the measurement, a current response proportional to the glucose concentration in the liquid was observed, and the variation in response was reduced.

《実施例2》
図2は、本実施例の、試薬層を除いたグルコースセンサの分解斜視図である。
作用極基板11および対極基板14にそれぞれ端子を外部に臨ませるための貫通孔24および25を設けた以外は、実施例1と同じ構成である。
貫通孔を両基板に設けることにより、作用極基板11の貫通孔24からは対極基板14のリード/端子16の一部が露出する。一方、対極基板14の貫通孔25からは作用極基板11のリード/端子13の一部が露出する。スペーサ21が端子部まで延在している場合には、対応する貫通孔をスペーサにも設ければよい。
これにより、貼り合わせ型センサチップの測定器への装着、すなわちセンサチップと測定器との電気的接続がより確実なものになり、測定精度が向上する。
Example 2
FIG. 2 is an exploded perspective view of the glucose sensor excluding the reagent layer according to the present embodiment.
The configuration is the same as that of the first embodiment, except that the working electrode substrate 11 and the counter electrode substrate 14 are provided with through holes 24 and 25 for facing terminals to the outside.
By providing the through holes in both substrates, a part of the lead / terminal 16 of the counter electrode substrate 14 is exposed from the through hole 24 of the working electrode substrate 11. On the other hand, a part of the lead / terminal 13 of the working electrode substrate 11 is exposed from the through hole 25 of the counter electrode substrate 14. When the spacer 21 extends to the terminal portion, a corresponding through hole may be provided in the spacer.
Thereby, the attachment of the bonded sensor chip to the measuring instrument, that is, the electrical connection between the sensor chip and the measuring instrument becomes more reliable, and the measurement accuracy is improved.

《実施例3》
図3は、本実施例の、試薬層を除いたグルコースセンサの分解斜視図である。
作用極基板11およびスペーサ21は、実施例1と同じ構成である。
一方、対極基板34は、作用極基板11の端子部13に対応する部分を切り欠いた切欠部36を有する絶縁性基板に、側面も含めた全面にパラジウムをスパッタリングして作製した。従って、対極基板34の下面に形成されたパラジウム層35が対極として働き、この対極は基板の側面から上面に形成されたパラジウム層の端子部に導通している。
GODと、電子伝達体であるフェリシアン化カリウムとを含有する水溶液を作用極基板11の作用極12上に滴下し、乾燥して試薬層を作製した。この後、作用極基板11、空気孔39を備えた対極基板34、およびスペーサ21を図3中の一点鎖線で示すような位置関係をもって接着し、バイオセンサを作製した。
切欠部36を対極基板34に設けることにより、切欠部36からは作用極基板11のリード/端子の一部が露出する。スペーサ21が端子部まで延在している場合には、対応する切欠部をスペーサ21にも設ければよい。一方、対極35に電気的に接続されているリードは、対極基板34の側面を経由して、上面に導出される。
これにより、片面のみに両端子部が露出されていることとなる。従って、このような構造のセンサに対しては、従来一般的に用いられてきた測定器側の接続端子を、そのまま適用することができるから、製造コストの低減に効果がある。
シート状の基板の側面部に配置されたリード部は、上面部、下面部に比べて物理的強度に問題がある場合がある。そのような場合は、図4に示すように、対極基板34に貫通孔37を設け、そこに、例えば銀ペーストやカーボンペーストのような導電性材料を充填してもよい。その場合には、基板の下面に配置された電極のリードは、この導電性材料を経由して基板上面の端子部に接続される。
Example 3
FIG. 3 is an exploded perspective view of the glucose sensor excluding the reagent layer in the present embodiment.
The working electrode substrate 11 and the spacer 21 have the same configuration as in the first embodiment.
On the other hand, the counter electrode substrate 34 was produced by sputtering palladium on the entire surface including the side surface on an insulating substrate having a cutout portion 36 in which a portion corresponding to the terminal portion 13 of the working electrode substrate 11 was cut out. Therefore, the palladium layer 35 formed on the lower surface of the counter electrode substrate 34 functions as a counter electrode, and this counter electrode is electrically connected to the terminal portion of the palladium layer formed on the upper surface from the side surface of the substrate.
An aqueous solution containing GOD and potassium ferricyanide as an electron carrier was dropped onto the working electrode 12 of the working electrode substrate 11 and dried to prepare a reagent layer. Thereafter, the working electrode substrate 11, the counter electrode substrate 34 provided with the air holes 39, and the spacers 21 were bonded together in a positional relationship as indicated by a one-dot chain line in FIG. 3 to produce a biosensor.
By providing the notch 36 in the counter electrode substrate 34, a part of the lead / terminal of the working electrode substrate 11 is exposed from the notch 36. If the spacer 21 extends to the terminal portion, a corresponding notch may be provided in the spacer 21 as well. On the other hand, the lead electrically connected to the counter electrode 35 is led to the upper surface via the side surface of the counter electrode substrate 34.
As a result, both terminal portions are exposed only on one side. Therefore, for the sensor having such a structure, the connection terminal on the measuring instrument side that has been generally used in the past can be applied as it is, which is effective in reducing the manufacturing cost.
The lead portion disposed on the side surface portion of the sheet-like substrate may have a problem in physical strength as compared with the upper surface portion and the lower surface portion. In such a case, as shown in FIG. 4, a through hole 37 may be provided in the counter electrode substrate 34, and a conductive material such as silver paste or carbon paste may be filled therein. In that case, the lead of the electrode arranged on the lower surface of the substrate is connected to the terminal portion on the upper surface of the substrate via this conductive material.

本実施例においては、対極基板34に切欠部36、あるいはさらに貫通孔37を設けた例について述べたが、これら切欠部や貫通孔を、作用極基板11に設けた場合においても同様の効果が得られる。しかしながらその場合は、絶縁層等を用いて作用極面積を規定する必要がある。   In this embodiment, the example in which the notched portion 36 or the through hole 37 is provided in the counter electrode substrate 34 has been described. can get. However, in that case, it is necessary to define the working electrode area using an insulating layer or the like.

《実施例4》
図5は、本実施例の試薬層を除いたグルコースセンサの分解斜視図である。
絶縁性基板40は、先端面および上面を解放した溝41を有し、溝41の互いに対向する側壁から上面にまたがってパラジウムをスパッタリングし、次にレーザでトリミングすることにより、作用極42、対極45、および各電極に対応したリード部/端子部43、46を形成した。また、前記のリード部を部分的に覆うように絶縁層47を形成した。次に、GODとフェリシアン化カリウムを含む水溶液を溝41に滴下し、乾燥して試薬層を形成した。そして、溝41の奥側と対応する位置に空気孔49を有するカバー48を、図5中の一点鎖線で示すような位置関係をもって基板40に接着し、バイオセンサを作製した。
このバイオセンサにおいては、基板の溝41の部分が試料収容部であり、基板の端面の溝41の解放部に試料液を接触させれば、毛管現象により試料液は容易に空気孔側へ移動し、両電極に接触する。
前記実施例のように、電極を有する基板同志を貼り合わせて組み立てられるセンサでは、その貼り合わせ工程において電極間の位置ずれが生ずる場合がある。本実施例のセンサでは、溝41の内壁面に電極系を形成するために、貼り付け工程に伴う電極間の位置ずれがなく、従って電極間の位置ずれに起因する測定精度の低下は生じない。
Example 4
FIG. 5 is an exploded perspective view of the glucose sensor excluding the reagent layer of the present embodiment.
The insulating substrate 40 has a groove 41 with a free end surface and an upper surface. Sputtering palladium across the upper surface from the opposite side walls of the groove 41, and then trimming with a laser, the working electrode 42 and the counter electrode 45 and lead / terminal portions 43 and 46 corresponding to the respective electrodes were formed. Further, an insulating layer 47 was formed so as to partially cover the lead portion. Next, an aqueous solution containing GOD and potassium ferricyanide was dropped into the groove 41 and dried to form a reagent layer. And the cover 48 which has the air hole 49 in the position corresponding to the back | inner side of the groove | channel 41 was adhere | attached on the board | substrate 40 with the positional relationship as shown by the dashed-dotted line in FIG. 5, and the biosensor was produced.
In this biosensor, the portion of the groove 41 of the substrate is the sample accommodating portion, and the sample solution easily moves to the air hole side by capillary action if the sample solution is brought into contact with the open portion of the groove 41 on the end face of the substrate. In contact with both electrodes.
In a sensor assembled by bonding substrates having electrodes as in the above-described embodiment, there may be a positional shift between the electrodes in the bonding process. In the sensor of the present embodiment, since the electrode system is formed on the inner wall surface of the groove 41, there is no positional deviation between the electrodes in the attaching process, and therefore the measurement accuracy is not lowered due to the positional deviation between the electrodes. .

以上の実施例では、電極系への印加電圧を500mVとしたが、これに限定されることはない。酵素反応に伴い還元された電子伝達体が酸化される電圧であればよい。
反応層に含有される酸化還元酵素としては、試料液に含まれる測定対象の基質に対応したものが用いられる。酸化還元酵素としては、例えば、フルクトースデヒドロゲナーゼ、グルコースオキシダーゼ、アルコールオキシダーゼ、乳酸オキシダーゼ、コレステロールオキシダーゼ、キサンチンオキシダーゼ、アミノ酸オキシダーゼなどがあげられる。
電子伝達体としては、フェリシアン化カリウム、p−ベンゾキノン、フェナジンメトサルフェート、メチレンブルー、フェロセン誘導休などがあげられる。また、酸素を電子伝達体とした場合にも電流応答が得られる。電子伝達体は、これらの一種または二種以上が使用される。
試薬層は、これを作用極に固定化することによって、酵素あるいは電子伝達体を不溶化させてもよい。固定化する場合は、架橋固定法あるいは吸着法が好ましい。また、電極材料中に混合させてもよい。
In the above embodiment, the voltage applied to the electrode system is 500 mV, but the present invention is not limited to this. Any voltage may be used as long as the electron carrier reduced with the enzyme reaction is oxidized.
As the oxidoreductase contained in the reaction layer, one corresponding to the substrate to be measured contained in the sample solution is used. Examples of the oxidoreductase include fructose dehydrogenase, glucose oxidase, alcohol oxidase, lactate oxidase, cholesterol oxidase, xanthine oxidase, and amino acid oxidase.
Examples of the electron carrier include potassium ferricyanide, p-benzoquinone, phenazine methosulfate, methylene blue, and ferrocene induction. A current response can also be obtained when oxygen is used as an electron carrier. One or more of these electron carriers are used.
The reagent layer may be immobilized on the working electrode to insolubilize the enzyme or electron carrier. In the case of immobilization, a cross-linking immobilization method or an adsorption method is preferable. Moreover, you may mix in electrode material.

上記実施例では、特定の電極系、リード/端子、および測定器側の接続端子を前記の端子に接触させるために基板に設ける貫通孔や切欠部を示したが、それらの形状、配置等は実施例のものに限定されるものではない。
また、上記実施例では、電極材料としてカーボンあるいはパラジウムについて述べたが、これに限定されることはない。作用極材料としては、電子伝達体を酸化する際にそれ自身が酸化されない導電性材料であれば使用できる。また、対極材料としては、銀、白金等の一般的に用いられる導電性材料であれば使用できる。
In the above embodiment, the through holes and notches provided in the substrate are shown in order to bring the specific electrode system, lead / terminal, and measuring instrument side connection terminal into contact with the terminal. The present invention is not limited to the examples.
Moreover, in the said Example, although carbon or palladium was described as an electrode material, it is not limited to this. As the working electrode material, any conductive material that does not oxidize itself when the electron carrier is oxidized can be used. As the counter electrode material, any commonly used conductive material such as silver or platinum can be used.

本発明のバイオセンサは、家庭などで簡易に糖類を定量するセンサなどとして有用である。   The biosensor of the present invention is useful as a sensor for easily quantifying saccharides at home and the like.

本発明の一実施例におけるグルコースセンサの分解斜視図である。It is a disassembled perspective view of the glucose sensor in one Example of this invention. 本発明の他の実施例のグルコースセンサの分解斜視図である。It is a disassembled perspective view of the glucose sensor of the other Example of this invention. 本発明のさらに他の実施例のグルコースセンサの分解斜視図である。It is a disassembled perspective view of the glucose sensor of other Example of this invention. 本発明のさらに他の実施例のグルコースセンサの分解斜視図である。It is a disassembled perspective view of the glucose sensor of other Example of this invention. 本発明のさらに他の実施例のグルコースセンサの分解斜視図である。It is a disassembled perspective view of the glucose sensor of other Example of this invention.

符号の説明Explanation of symbols

11 作用極基板
12 作用極
13、16 端子
14、34 対極基板
15、35 対極
17、18 絶縁層
19、39 空気孔
21 スペーサ
22 スリット
23 試料供給口
24、25、37 貫通孔
36 切欠部
DESCRIPTION OF SYMBOLS 11 Working electrode board 12 Working electrode 13, 16 Terminal 14, 34 Counter board 15, 35 Counter electrode 17, 18 Insulating layer 19, 39 Air hole 21 Spacer 22 Slit 23 Sample supply port 24, 25, 37 Through-hole 36 Notch

Claims (2)

作用極基板、対極基板、および少なくとも酵素および電子伝達体を包含する試薬層を具備し、
作用極基板上に配置された作用極と対極基板上に配置された対極とが空間部を隔てて相互に対向する位置に配置されており、
前記作用極基板および対極基板の一方が、他方の基板の電極端子を外部に臨ませる切欠部を有し、
かつ前記一方の基板の電極に接続されたリードが、同基板の側面を経由または同基板の貫通孔に充填された導電性材料を経由して、当該電極が配置された面の背面側に導出されていることを特徴とするバイオセンサ。
A working electrode substrate, a counter electrode substrate, and a reagent layer including at least an enzyme and an electron carrier,
The working electrode disposed on the working electrode substrate and the counter electrode disposed on the counter electrode substrate are disposed at positions facing each other across the space portion,
One of the working electrode substrate and the counter electrode substrate has a notch for facing the electrode terminal of the other substrate to the outside,
In addition, the lead connected to the electrode of the one substrate is led out to the back side of the surface on which the electrode is disposed via the side surface of the substrate or the conductive material filled in the through hole of the substrate. The biosensor characterized by being made.
作用極基板、対極基板、前記両基板間に介在するスペーサ部材、および少なくとも酵素と電子伝達体を包含する試薬層を具備し、
作用極基板上に配置された作用極と対極基板上に配置された対極とがスペーサ部材を介して相互に対向する位置に配置されており、
前記作用極基板および対極基板の一方が、他方の基板の電極端子を外部に臨ませる切欠部を有し、
かつ前記一方の基板の電極に接続されたリードが、同基板の側面を経由または同基板の貫通孔に充填された導電性材料を経由して、当該電極が配置された面の背面側に導出されていることを特徴とするバイオセンサ。

A working electrode substrate, a counter electrode substrate, a spacer member interposed between the two substrates, and a reagent layer including at least an enzyme and an electron carrier,
The working electrode arranged on the working electrode substrate and the counter electrode arranged on the counter electrode substrate are arranged at positions facing each other through the spacer member,
One of the working electrode substrate and the counter electrode substrate has a notch for facing the electrode terminal of the other substrate to the outside,
In addition, the lead connected to the electrode of the one substrate is led out to the back side of the surface on which the electrode is disposed via the side surface of the substrate or the conductive material filled in the through hole of the substrate. The biosensor characterized by being made.

JP2006236396A 2006-08-31 2006-08-31 Biosensor Expired - Lifetime JP4036883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006236396A JP4036883B2 (en) 2006-08-31 2006-08-31 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006236396A JP4036883B2 (en) 2006-08-31 2006-08-31 Biosensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16324398A Division JP3874321B2 (en) 1998-06-11 1998-06-11 Biosensor

Publications (2)

Publication Number Publication Date
JP2006317470A true JP2006317470A (en) 2006-11-24
JP4036883B2 JP4036883B2 (en) 2008-01-23

Family

ID=37538232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006236396A Expired - Lifetime JP4036883B2 (en) 2006-08-31 2006-08-31 Biosensor

Country Status (1)

Country Link
JP (1) JP4036883B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049094A1 (en) * 2009-10-20 2011-04-28 ニプロ株式会社 Biosample detection device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017344A (en) * 1983-05-05 1985-01-29 メディセンス・インコーポレーテッド Sensor device for selectively detecting, measuring or monitoring predetermined molten substrate
JPS63238549A (en) * 1987-03-27 1988-10-04 Masao Karube Microbiosensor
JPH0354447A (en) * 1989-04-18 1991-03-08 Matsushita Electric Ind Co Ltd Biosensor and manufacture thereof
JPH0572171A (en) * 1991-09-12 1993-03-23 Omron Corp Enzyme electrode
JPH05312761A (en) * 1992-05-12 1993-11-22 Toto Ltd Biosensor and its manufacture
JPH06324015A (en) * 1993-05-12 1994-11-25 Toto Ltd Bio sensor and its manufacture
JPH08285814A (en) * 1995-04-14 1996-11-01 Casio Comput Co Ltd Biosensor
JPH09159642A (en) * 1995-12-04 1997-06-20 Dainippon Printing Co Ltd Bio sensor and its manufacturing method
JPH09166571A (en) * 1995-12-14 1997-06-24 Dainippon Printing Co Ltd Biosensor and manufacture thereof
JPH09509740A (en) * 1994-02-22 1997-09-30 ベーリンガー マンハイム コーポレーション Method for manufacturing sensor electrode
JPH1151985A (en) * 1997-08-04 1999-02-26 Mitsubishi Electric Corp Power failure detecting device, and processor
JP2000509507A (en) * 1997-02-06 2000-07-25 イー.ヘラー アンド カンパニー Small volume in vitro analyte sensor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017344A (en) * 1983-05-05 1985-01-29 メディセンス・インコーポレーテッド Sensor device for selectively detecting, measuring or monitoring predetermined molten substrate
JPS63238549A (en) * 1987-03-27 1988-10-04 Masao Karube Microbiosensor
JPH0354447A (en) * 1989-04-18 1991-03-08 Matsushita Electric Ind Co Ltd Biosensor and manufacture thereof
JPH0572171A (en) * 1991-09-12 1993-03-23 Omron Corp Enzyme electrode
JPH05312761A (en) * 1992-05-12 1993-11-22 Toto Ltd Biosensor and its manufacture
JPH06324015A (en) * 1993-05-12 1994-11-25 Toto Ltd Bio sensor and its manufacture
JPH09509740A (en) * 1994-02-22 1997-09-30 ベーリンガー マンハイム コーポレーション Method for manufacturing sensor electrode
JPH08285814A (en) * 1995-04-14 1996-11-01 Casio Comput Co Ltd Biosensor
JPH09159642A (en) * 1995-12-04 1997-06-20 Dainippon Printing Co Ltd Bio sensor and its manufacturing method
JPH09166571A (en) * 1995-12-14 1997-06-24 Dainippon Printing Co Ltd Biosensor and manufacture thereof
JP2000509507A (en) * 1997-02-06 2000-07-25 イー.ヘラー アンド カンパニー Small volume in vitro analyte sensor
JPH1151985A (en) * 1997-08-04 1999-02-26 Mitsubishi Electric Corp Power failure detecting device, and processor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049094A1 (en) * 2009-10-20 2011-04-28 ニプロ株式会社 Biosample detection device
JP2011089781A (en) * 2009-10-20 2011-05-06 Nipro Corp Biological sample detector

Also Published As

Publication number Publication date
JP4036883B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
JP3874321B2 (en) Biosensor
JP4177662B2 (en) Biosensor
JP3267936B2 (en) Biosensor
JP3690683B2 (en) Biosensor
JP3842989B2 (en) Biosensor with chromatographic porous thin film
KR100475634B1 (en) Biosensor equipped with sample introducing part which enables quick introduction of a small amount of sample
JP2001183330A (en) Biosensor
US5985116A (en) Biosensor
CA2470465C (en) Improved biosensor and method
JP3389106B2 (en) Electrochemical analysis element
JPH1142098A (en) Quantitative determination of substrate
JPH0777511A (en) Biosensor for gas measurement and preparation thereof
JP2001330581A (en) Substrate concentration determination method
JP3267933B2 (en) Substrate quantification method
EP1357194A2 (en) Adapter for the connection of a biosensor to a measuring device
US7648624B2 (en) Oxygen sensor
JP2001249103A (en) Biosensor
JP4036883B2 (en) Biosensor
JPH0943189A (en) Biosensor and method for determining substrate using it
JP2004226358A (en) Biosensor
JPH11101771A (en) Biosensor and determination of substrate using the same
JP2004004057A (en) Biosensor, adapter used for the same and measuring apparatus
KR100739865B1 (en) Bio-sensor
JPH08338824A (en) Biosensor, manufacture for biosensor and method for determining specific compound
JPH11101770A (en) Biosensor and quantification of substrate using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060831

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term