JP2006317329A - Detection method for microbial contamination of blood infusion preparation using inclination of concentration consumption curve of dissolved oxygen in blood infusion preparation as index - Google Patents
Detection method for microbial contamination of blood infusion preparation using inclination of concentration consumption curve of dissolved oxygen in blood infusion preparation as index Download PDFInfo
- Publication number
- JP2006317329A JP2006317329A JP2005141197A JP2005141197A JP2006317329A JP 2006317329 A JP2006317329 A JP 2006317329A JP 2005141197 A JP2005141197 A JP 2005141197A JP 2005141197 A JP2005141197 A JP 2005141197A JP 2006317329 A JP2006317329 A JP 2006317329A
- Authority
- JP
- Japan
- Prior art keywords
- infusion preparation
- blood infusion
- dissolved oxygen
- blood
- microbial contamination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
本発明は輸血製剤の微生物汚染を示す指標としての輸血製剤中の溶存酸素濃度消費曲線の傾きと輸血製剤の微生物汚染を示す指標としての輸血製剤中の溶存酸素濃度消費曲線の傾きを検出する方法に関するものである。 The present invention is a method for detecting the slope of a dissolved oxygen concentration consumption curve in a blood transfusion preparation as an indicator of microbial contamination of a blood transfusion preparation and the slope of a dissolved oxygen concentration consumption curve in a blood transfusion preparation as an indicator of microbial contamination of the blood transfusion preparation. It is about.
輸血製剤での細菌汚染は輸血を受ける患者にとって致命的な危険をもたらす。日本では、MAP製剤の冷蔵保存で5日間、血小板製剤では20〜24℃の常温保存で期限は3日間である。この保存期間中に細菌に汚染されていた場合には、例えば、4℃で発育するYersinia enterocoliticaが汚染していた場合は輸血された後に、受血者に菌血症を惹起し、死に至らしめる事故がある。また、血小板製剤では常温保存であるので、多くの細菌が同様に汚染し、重篤な感染症を引き起こす事故がある。そのため、輸血製剤内の細菌汚染に関して早期の検出が必要である。 Bacterial contamination with transfusion products poses a fatal risk for patients receiving blood transfusions. In Japan, the MAP preparation is stored for 5 days in a refrigerated state, and the platelet preparation is stored at a normal temperature of 20-24 ° C. for a period of 3 days. If it is contaminated with bacteria during this storage period, for example, if Yersinia enterocolitica that grows at 4 ° C is contaminated, it will cause bacteraemia to the recipient after blood transfusion, leading to death There is an accident. In addition, since platelet preparations are stored at room temperature, there are accidents in which many bacteria are similarly contaminated and cause serious infections. Therefore, early detection is necessary for bacterial contamination in transfusion products.
日本ポール株式会社(アメリカのPALL社)は血液製剤バックから4mLを分取して常温で24時間静置したのち、培地タブレット(tripticase soy)と補体阻害剤を混合し、35℃で24時間培養して、バックの気相部分に酸素ガス検知管を差し込んで、BDS Oxygen Analyserで酸素濃度減を測定するシステムを完成させ、商品化(eBDS)している。ただし、輸血製剤内の溶存酸素を測定していない。一人の献血者に小型バックを用意し血液を分取し、密閉状態でガス状の酸素を測定する。アメリカFDAの承認時に機材開発が間に合わなかった。日本ビオメリュー(フランス、アメリカのbioMerieux)は商品名Bactalartで輸血製剤を5mL採取して増菌用液体培地に接種し、高感度CO2検出器で細菌呼吸による生産を検知するシステムを開発し、アメリカFDAの承認をとっている。もともと、菌欠症の患者血液の細菌検出装置として商品になっているものを使用した。 Nippon Pall Co., Ltd. (PALL, USA) took 4 mL from the blood product bag and left it at room temperature for 24 hours, and then mixed the medium tablet (tripticase soy) and complement inhibitor at 35 ° C for 24 hours. After culturing, an oxygen gas detector tube is inserted into the gas phase part of the bag, and a system that measures the decrease in oxygen concentration with the BDS Oxygen Analyzer is completed and commercialized (eBDS). However, dissolved oxygen in transfusion products is not measured. A small bag is prepared for one blood donor, blood is collected, and gaseous oxygen is measured in a sealed state. Equipment development was not in time when the US FDA approved. BioMerieux (Japan, France, USA) developed a system that collects 5 mL of a blood transfusion product under the trade name Bactalart, inoculates it into a liquid medium for enrichment, and detects production due to bacterial respiration with a highly sensitive CO 2 detector. Approved by the FDA. Originally, a commercial product was used as a bacteria detection device for blood of patients with bacteriophage deficiency.
ダイキン工業株式会社は食品における汚染細菌検出装置DOXTMを開発し、商品化した。今回この酸素電極装置を使用して輸血製剤の溶液中の酸素濃度消費を測定し、細菌汚染を検出する。非特許文献1では培地中で細菌の増殖を酸素消費を指標として観察しているが、輸血製剤中での細菌の増殖を溶存酸素消費曲線の傾きで観察したものはない。
解決しようとする問題点は、新規の輸血製剤微生物汚染の測定方法、新規の輸血製剤微生物汚染指標の提供とその検出方法である。 Problems to be solved are a method for measuring microbial contamination of a new blood transfusion product, a method for providing a microbial contamination index for a new blood transfusion product, and a method for detecting the same.
本発明は、輸血製剤に人為的に細菌を接種し、連続培養を行い、溶存酸素消費曲線の傾きを見いだすことができたことを最も主要な特徴とする。 The most important feature of the present invention is that the blood transfusion preparation is artificially inoculated with bacteria, continuously cultured, and the slope of the dissolved oxygen consumption curve can be found.
本発明によれば、溶存酸素濃度測定法を用いて輸血製剤製造時または製剤使用施設への搬入時である製造24時間後に一部を採取し溶存酸素濃度を連続測定することで約20時間後には検出可能である。輸血される一般的な標準時間とされる製造48時間後には、輸血製剤の微生物汚染状況を前もって知ることができる。これによって、輸血時の事故を未然に回避できる可能性が大きい。微生物汚染を検出できる方法として、迅速、自動化、低コストな実用システムである。溶存酸素濃度測定法を用いた自己血輸血を含めた、血液製剤の微生物汚染検出は有用である。 According to the present invention, a dissolved oxygen concentration measurement method is used to collect a part 24 hours after production, which is the time of manufacture of a blood transfusion preparation or at the time of delivery to a facility where the preparation is used, and continuously measure the dissolved oxygen concentration after about 20 hours. Is detectable. After 48 hours of production, which is a typical standard time for blood transfusion, the state of microbial contamination of the transfusion product can be known in advance. As a result, there is a high possibility that an accident during blood transfusion can be avoided. A rapid, automated, low-cost practical system for detecting microbial contamination. Detection of microbial contamination of blood products, including autologous blood transfusion using dissolved oxygen concentration measurement, is useful.
微生物の検出を迅速かつ自動化、低コストで実現した。 The detection of microorganisms was realized quickly and automatically at a low cost.
アフェレーシス(血液成分分画採取)血小板製剤において予め用意された3菌種を接種してDOXTMの有用性を確認した。Serratia marcescens(セラチア菌), Staphylococcus aureus(黄色ブドウ球菌),Staphylococcus epidermidis(表皮ブドウ球菌)を日赤から供給されたシングルドナー(単一供血者)由来の血小板製剤に接種し(100, 101, 102 CFU/mL)(CFUはcolony forming unitの略で菌数を表す)、常温(20〜24℃)で48時間培養した。血小板製剤は、その血小板の機能を保持するため常温で保存する必要性がある。菌接種直後にバック内から検体を1mL分取し、溶存酸素測定装置(DOX-30F)のセルに分注し、35℃、24時間連続で製剤内の溶存酸素濃度測定を行った。菌接種を行わない同一ロットの血小板製剤内容を1mL同様に装置にセットし陰性コントロールとした。溶存酸素消費の判定は傾きに変化がみられた時点で判断した。図1に輸血製剤への菌接種直後から24時間の溶存酸素濃度連続測定成績を表したグラフを、表1に輸血製剤への菌接種直後と48時間20〜24℃培養後の菌数計測成績を示す。 The usefulness of DOX ™ was confirmed by inoculating three bacterial species prepared in advance in apheresis (blood component fraction collection) platelet preparations. Serratia marcescens, Staphylococcus aureus (Staphylococcus aureus), Staphylococcus epidermidis (Staphylococcus epidermidis) is inoculated into a platelet preparation derived from a single donor (single blood donor) from Japan Red (10 0 , 10 1 , 10 2 CFU / mL) (CFU is an abbreviation for colony forming unit) and cultured at room temperature (20-24 ° C.) for 48 hours. Platelet preparations need to be stored at room temperature in order to retain their platelet functions. Immediately after bacterial inoculation, 1 mL of a sample was taken from the bag and dispensed into a cell of a dissolved oxygen measuring device (DOX-30F), and the dissolved oxygen concentration in the preparation was measured continuously at 35 ° C. for 24 hours. The platelet preparation content of the same lot without bacterial inoculation was set in the apparatus in the same manner as 1 mL, and used as a negative control. The determination of dissolved oxygen consumption was made when a change in the slope was observed. Fig. 1 is a graph showing the results of continuous measurement of dissolved oxygen concentration for 24 hours immediately after inoculation of bacteria into a blood transfusion preparation. Table 1 shows the results of counting the number of bacteria immediately after inoculation of blood transfusion preparations and after incubation at 20-24 ° C for 48 hours. Indicates.
S. marcescens (102 CFU/mL) を汚染させた試験血小板製剤は溶存酸素濃度測定法を用いると、グラフに溶存酸素消費を示す傾きが現れ、760分で検出可能であった。同時に、その試験バックを48時間、常温培養後に試験血小板製剤を1mL採取し、従来法で菌数を計測すると107 CFU/mLを確認した。101 CFU/mLでは24時間以内に検出不可能であった。48時間後の従来法でも菌数は検出されなかった。おそらく、血小板製剤が有する殺菌能によって、接種菌が死滅したものと思われる。S. aureus (101、102 CFU/mL) を汚染させた試験血小板製剤は溶存酸素濃度測定法を用いると、それぞれ1200分、500分で検出可能であった(グラフ1)。48時間後の従来法では、いずれも菌数は107 CFU/mLであった。S. epidermidis では101、102 CFU/mLの、いずれの接種濃度でも酸素電極法および菌数計測法ともに検出不可能であった。 When the test platelet preparation contaminated with S. marcescens (10 2 CFU / mL) was used for measuring dissolved oxygen concentration, a slope indicating dissolved oxygen consumption appeared on the graph and was detectable at 760 minutes. At the same time, 1 mL of the test platelet preparation was collected after incubation at room temperature for 48 hours and the number of bacteria was measured by a conventional method, and 10 7 CFU / mL was confirmed. 10 1 CFU / mL was not detectable within 24 hours. The number of bacteria was not detected by the conventional method after 48 hours. Probably the inoculum was killed by the bactericidal ability of the platelet preparation. Test platelet preparations contaminated with S. aureus (10 1 , 10 2 CFU / mL) were detectable at 1200 minutes and 500 minutes, respectively, using the dissolved oxygen concentration measurement method (Graph 1). In all the conventional methods after 48 hours, the number of bacteria was 10 7 CFU / mL. In S. epidermidis, neither the oxygen electrode method nor the bacterial count method was detectable at any inoculation concentration of 10 1 , 10 2 CFU / mL.
血小板製剤の製造時にS. marcrscens , S. aureus が102 CFU/mL汚染として存在した場合、約20時間以内で細菌汚染の存在を検出できると考えられる。その汚染製剤は常温で保存され、輸血される一般的な標準時間とされる48時間後には、菌数が107 CFU/mLに達していた。受血者はこの汚染製剤を輸血されると、重篤な菌血症に陥る。 S. epidermidis では溶存酸素濃度測定法および菌数計測法の両者で検出されず、新鮮血の持つ殺菌能により接種菌は消滅したものと考えられた。以上より、溶存酸素濃度測定法を用いて血小板製造時または製剤使用施設への搬入時である製造24時間後に一部を採取し溶存酸素濃度を連続測定することでその後約20時間後には検出可能と考えられた。これによって、輸血時の事故を未然に回避できる可能性が大きい。この装置は既に食品の細菌汚染に対して迅速に検出できる装置として市販化されており、迅速、自動化、低コストな実用システムとして自己血輸血を含め、血液製剤の細菌汚染検出装置として有用であると考えられた。 If S. marcrscens, S. aureus was present as 10 2 CFU / mL contamination during the production of the platelet preparation, it is considered that the presence of bacterial contamination can be detected within about 20 hours. The contaminated preparation was stored at room temperature, and the number of bacteria reached 10 7 CFU / mL after 48 hours, which is a general standard time for blood transfusion. When recipients are transfused with this contaminated product, they will experience severe bacteremia. In S. epidermidis, it was not detected by both dissolved oxygen concentration measurement method and bacterial count measurement method, and the inoculum was thought to have disappeared due to the bactericidal ability of fresh blood. From the above, using the dissolved oxygen concentration measurement method, it is possible to detect about 20 hours later by sampling a portion 24 hours after manufacture, which is the time of platelet production or delivery to the drug product use facility, and continuously measuring the dissolved oxygen concentration. It was considered. As a result, there is a high possibility that an accident during blood transfusion can be avoided. This device has already been commercialized as a device that can quickly detect bacterial contamination of food, and is useful as a device for detecting bacterial contamination of blood products, including autotransfusion as a rapid, automated, low-cost practical system. It was considered.
微生物汚染を検出できる指標として、輸血時の事故を未然に回避できる可能性が大きい。迅速、自動化、低コストな実用システムである、溶存酸素濃度測定法を用いた自己血輸血を含め、血液製剤の微生物汚染検出は有用である。 As an indicator for detecting microbial contamination, there is a high possibility of avoiding accidents during blood transfusion. Detection of microbial contamination of blood products is useful, including autologous blood transfusion using dissolved oxygen concentration measurement method, which is a rapid, automated and low-cost practical system.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005141197A JP2006317329A (en) | 2005-05-13 | 2005-05-13 | Detection method for microbial contamination of blood infusion preparation using inclination of concentration consumption curve of dissolved oxygen in blood infusion preparation as index |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005141197A JP2006317329A (en) | 2005-05-13 | 2005-05-13 | Detection method for microbial contamination of blood infusion preparation using inclination of concentration consumption curve of dissolved oxygen in blood infusion preparation as index |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006317329A true JP2006317329A (en) | 2006-11-24 |
Family
ID=37538125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005141197A Pending JP2006317329A (en) | 2005-05-13 | 2005-05-13 | Detection method for microbial contamination of blood infusion preparation using inclination of concentration consumption curve of dissolved oxygen in blood infusion preparation as index |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006317329A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010537650A (en) * | 2007-09-04 | 2010-12-09 | エスアイアールエス‐ラブ ゲーエムベーハー | Method for detecting bacteria and fungi |
JPWO2013035400A1 (en) * | 2011-09-09 | 2015-03-23 | コニカミノルタ株式会社 | probe |
CN105843121A (en) * | 2016-04-08 | 2016-08-10 | 南京上元分析仪器有限公司 | Building material oxygen index test control system and control method and tester |
-
2005
- 2005-05-13 JP JP2005141197A patent/JP2006317329A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010537650A (en) * | 2007-09-04 | 2010-12-09 | エスアイアールエス‐ラブ ゲーエムベーハー | Method for detecting bacteria and fungi |
JPWO2013035400A1 (en) * | 2011-09-09 | 2015-03-23 | コニカミノルタ株式会社 | probe |
CN105843121A (en) * | 2016-04-08 | 2016-08-10 | 南京上元分析仪器有限公司 | Building material oxygen index test control system and control method and tester |
CN105843121B (en) * | 2016-04-08 | 2018-01-30 | 南京上元分析仪器有限公司 | Test control system of building material oxygen index, control method and test instrument |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Blajchman et al. | Improving the bacteriological safety of platelet transfusions | |
Wagner et al. | Evaluation of swirling, pH, and glucose tests for the detection of bacterial contamination in platelet concentrates | |
Greco et al. | Staphylococcus epidermidis forms biofilms under simulated platelet storage conditions | |
Miglio et al. | Stored canine whole blood units: what is the real risk of bacterial contamination? | |
Fournier‐Wirth et al. | Evaluation of the enhanced bacterial detection system for screening of contaminated platelets | |
EP2514829B1 (en) | Detection of bacteria in biological fluids | |
Khuu et al. | Comparison of automated culture systems with a CFR/USP-compliant method for sterility testing of cell-therapy products | |
JP2006317329A (en) | Detection method for microbial contamination of blood infusion preparation using inclination of concentration consumption curve of dissolved oxygen in blood infusion preparation as index | |
Sheppard et al. | Bacterial contamination of platelets for transfusion: recent advances and issues | |
Mohr et al. | Sterility testing of platelet concentrates prepared from deliberately infected blood donations | |
Larrea et al. | Quality control of bacterial contamination in autologous peripheral blood stem cells for transplantation | |
Ezuki et al. | Survival and recovery of apheresis platelets stored in a polyolefin container with high oxygen permeability | |
Kessler et al. | Pseudomonas fluorescens contamination of a feline packed red blood cell unit and studies of canine units | |
Braathen et al. | Effect of leukoreduction and temperature on risk of bacterial growth in CPDA‐1 whole blood: a study of Escherichia coli | |
Barker et al. | Multiple pH measurement during storage may detect bacterially contaminated platelet concentrates | |
Störmer et al. | pH value promotes growth of Staphylococcus epidermidis in platelet concentrates | |
Park et al. | Bacterial contamination of blood products | |
Gojkov et al. | Sterility testing of platelets concentrate within quality control: experiences and opportunities to extend the application | |
Yomtovian | Novel methods for detection of platelet bacterial contamination. | |
Walther-Wenke | Bacterial contamination of blood components–incidence and significance for homologous and autologous transfusion Bakterielle Kontamination von Blutkomponenten–Inzidenz und Signifikanz für die allogene und autologe Transfusion | |
Rodriguez et al. | Comparison of a biphasic system and a non-radiometric system for blood culture | |
Razjou et al. | Evaluation of the sensitivity and specificity of use of glucose and pH for bacterial screening of platelet concentrates compared to the Bact/Alert | |
Yehorov et al. | STERILITY MONITORING OF CANINE PACKED RED BLOOD CELLS. | |
NZ599093B (en) | Detection of bacteria in biological fluids | |
McKane et al. | Analysis of Bacterial Detection in Whole Blood–Derived Platelets by Quantitative Glucose Testing at a University Medical Center |