[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006316951A - Power transmission of compressor - Google Patents

Power transmission of compressor Download PDF

Info

Publication number
JP2006316951A
JP2006316951A JP2005142263A JP2005142263A JP2006316951A JP 2006316951 A JP2006316951 A JP 2006316951A JP 2005142263 A JP2005142263 A JP 2005142263A JP 2005142263 A JP2005142263 A JP 2005142263A JP 2006316951 A JP2006316951 A JP 2006316951A
Authority
JP
Japan
Prior art keywords
rotating body
teeth
hole
shaft
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005142263A
Other languages
Japanese (ja)
Inventor
Masanori Amemori
雅典 雨森
Yoshiyuki Ishida
欣之 石田
Daniel Damson
ダムソン ダニエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermal Systems Japan Corp
Original Assignee
Valeo Thermal Systems Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Thermal Systems Japan Corp filed Critical Valeo Thermal Systems Japan Corp
Priority to JP2005142263A priority Critical patent/JP2006316951A/en
Publication of JP2006316951A publication Critical patent/JP2006316951A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D1/108Quick-acting couplings in which the parts are connected by simply bringing them together axially having retaining means rotating with the coupling and acting by interengaging parts, i.e. positive coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D2001/103Quick-acting couplings in which the parts are connected by simply bringing them together axially the torque is transmitted via splined connections

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the fretting wear at a connecting part of each rotor while securing the smooth setting of the first rotor with the second rotor in a power transmission of a compressor having the first and the second rotor that notifies the rotational power each other and inserts the second rotor into the hole which is formed in the first rotor and engaged mutually. <P>SOLUTION: In the constitution having a plurality of inner teeth 13 on the inner peripheral face of the hole 12 formed in a hub 3 which composes the first rotor and engages the hub 3 with a shaft 10 each other by forming a plurality of outer teeth 14 to gear with the inner teeth 13 the outer peripheral face of the shaft 10 which composes the second rotor, a gap is formed between the inner teeth 13 and the outer teeth 14 on the position where the inner teeth 13 and the outer teeth 14 are starting to fit by moving the hub 3 and the shaft 10 relatively toward the shaft of the hole 12 and the tooth surface of the inner teeth 13 and that of the outer teeth 14 are pressure welded on the other part than the fitting start part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、圧縮機に用いられて、相互に連結されて回転動力が伝達される部材、例えば、エンジン等の駆動源から回転動力を受けて回転する駆動側回転体と、この駆動側回転体に形成された孔の内部に挿入されて駆動側回転体から回転動力が伝達されるシャフトとを備えた圧縮機の動力伝達装置に関する。   The present invention is used in a compressor and is connected to each other to transmit rotational power, for example, a driving side rotating body that rotates by receiving rotational power from a driving source such as an engine, and the driving side rotating body It is related with the power transmission device of the compressor provided with the shaft inserted in the inside of the hole formed in this, and a rotational power is transmitted from a drive side rotary body.

例えば、エンジンを動力源とする車載用コンプレッサ等においては、動力源から回転動力を受けて回転する駆動側回転体と、この駆動側回転体に形成された孔の内部に挿入されて前記駆動側回転体の回転が伝達されるシャフトとを備えた動力伝達装置が設けられており、一般的に、駆動側回転体の孔の内周面に複数の内歯が形成され、シャフトの外周面に前記内歯と噛合する複数の外歯が形成されたインボリュートスプライン嵌合構造が採用されている。   For example, in an in-vehicle compressor that uses an engine as a power source, the driving side rotating body that rotates by receiving rotational power from the power source, and the driving side inserted into a hole formed in the driving side rotating body A power transmission device including a shaft to which rotation of the rotating body is transmitted is provided. Generally, a plurality of internal teeth are formed on the inner peripheral surface of the hole of the driving side rotating body, and the outer peripheral surface of the shaft is formed. An involute spline fitting structure in which a plurality of external teeth meshing with the internal teeth is formed is employed.

このような嵌合構造は、駆動側回転体とシャフトとを軸方向に相対移動させて内歯と外歯を嵌合させるようにしているので、組付け性を考慮して内歯と外歯との間に所定のクリアランスが設定されている。   In such a fitting structure, the driving-side rotating body and the shaft are relatively moved in the axial direction so that the inner teeth and the outer teeth are fitted together. A predetermined clearance is set between and.

このため、動力源からの過大なトルク変動が入力された場合には、このクリアランスの存在により、駆動側回転体やシャフトに微小振動が起こり、内歯と外歯との接触面にフレッチング磨耗が発生し、この状態が進行すると、スプラインによる嵌合機能がなくなり、動力が伝達ができなくなる事態になる。   For this reason, when excessive torque fluctuations are input from the power source, the presence of this clearance causes minute vibrations on the drive-side rotating body and shaft, resulting in fretting wear on the contact surfaces between the inner teeth and the outer teeth. When this occurs and this state proceeds, the spline fitting function is lost and power cannot be transmitted.

このため、従来においては、下記する特許文献1に示されるように、複数の外歯のいずれかの波先面と内歯の歯底面とを当接して相互に塑性変形させた第1圧入部と、第1圧入部が形成される外歯以外の外歯の歯面と内歯の歯面とを当接して相互に塑性変形させた第2圧入部を設ける構成などが考えられている。
特開平11−108070号公報
For this reason, in the prior art, as shown in Patent Document 1 described below, the first press-fit portion in which the wave front surface of any of the plurality of external teeth and the tooth bottom surface of the internal teeth are brought into contact with each other and plastically deformed with each other. And the structure etc. which provide the 2nd press-fit part which contact | abutted the tooth surface of external teeth other than the external tooth in which a 1st press-fit part is formed, and the tooth surface of an internal tooth, and mutually plastically deformed are considered.
JP 11-108070 A

しかしながら、駆動側回転体とシャフトとは前述した如く軸方向に相対移動させて内歯と外歯とを嵌合させるため、内歯と外歯との接触面を塑性変形させる従来構成においては、駆動側回転体の孔にシャフトをスムーズに挿入できなくなり、組付け作業に手間取る等の不都合が生じる。   However, since the drive side rotor and the shaft are relatively moved in the axial direction as described above to fit the inner teeth and the outer teeth, in the conventional configuration in which the contact surface between the inner teeth and the outer teeth is plastically deformed, The shaft cannot be smoothly inserted into the hole of the driving-side rotating body, resulting in inconvenience such as troublesome assembly work.

そこで、この発明においては、回転動力が相互に伝達される第1及び第2の回転体を備え、第1の回転体に形成された孔に第2の回転体が挿入されて相互に連結されている圧縮機の動力伝達装置において、第1の回転体と第2の回転体とのスムーズな組付けを確保しつつ、それぞれの回転体の連結部分でのフレッチング磨耗を防止することを主たる課題としている。   Therefore, in the present invention, the first and second rotating bodies that transmit the rotational power to each other are provided, and the second rotating body is inserted into a hole formed in the first rotating body and connected to each other. In the power transmission device of the compressor, the main problem is to prevent fretting wear at the connecting portions of the respective rotating bodies while ensuring smooth assembly of the first rotating body and the second rotating body. It is said.

上記課題を達成するために、この発明にかかる圧縮機の動力伝達装置は、回転動力が相互に伝達される第1及び第2の回転体を備え、前記第1の回転体に形成された孔の内部に前記第2の回転体を挿入し、前記孔の内周面に複数の内歯を形成すると共に前記第2の回転体の外周面に前記内歯と噛合する複数の外歯を形成することで前記第1及び第2の回転体を相互に連結している構成において、前記第1の回転体と前記第2の回転体とを前記孔の軸方向に相対移動させて前記内歯と前記外歯とが軸方向に嵌合し始める部分で前記内歯と前記外歯との間に隙間を形成し、前記嵌合し始める部分以外の部分で前記内歯の歯面と前記外歯の歯面とを圧接させるようにしたことを特徴としている(請求項1)。   In order to achieve the above object, a power transmission device for a compressor according to the present invention includes first and second rotating bodies through which rotational power is transmitted to each other, and a hole formed in the first rotating body. The second rotating body is inserted into the inner surface, a plurality of inner teeth are formed on the inner peripheral surface of the hole, and a plurality of outer teeth are formed on the outer peripheral surface of the second rotating body. Thus, in the configuration in which the first and second rotating bodies are connected to each other, the first rotating body and the second rotating body are relatively moved in the axial direction of the hole to thereby form the internal teeth. A gap is formed between the inner teeth and the outer teeth at the portion where the outer teeth start to fit in the axial direction, and the tooth surfaces of the inner teeth and the outer portions at portions other than the portion where the fitting begins. The tooth surface of the tooth is brought into pressure contact (Claim 1).

したがって、第1の回転体と第2の回転体とを孔の軸方向に相対移動させて第1の回転体の内歯と第2の回転体の外歯とが嵌合し始め部分で内歯と外歯との間に隙間が形成されているので、第1の回転体の孔に第2の回転体をスムーズに挿入することが可能となり、また、内歯と外歯とが嵌合し始め部分以外の部分で内歯の歯面と外歯の歯面とを圧接させるようにしたので、内歯と外歯との間にクリアランスが形成されることがなくなり、クリアランスの存在に起因するそれぞれの回転体の微小振動を無くすことが可能となる。   Therefore, the first rotating body and the second rotating body are moved relative to each other in the axial direction of the hole so that the inner teeth of the first rotating body and the outer teeth of the second rotating body start to be fitted at the inner part. Since a gap is formed between the teeth and the outer teeth, the second rotating body can be smoothly inserted into the hole of the first rotating body, and the inner teeth and the outer teeth are fitted. Because the tooth surface of the internal tooth and the tooth surface of the external tooth are pressed against each other in the part other than the start part, no clearance is formed between the internal tooth and the external tooth. It is possible to eliminate the minute vibration of each rotating body.

本発明に係る圧縮機の動力伝達装置は、回転動力が相互に伝達される第1及び第2の回転体を備え、前記第1の回転体に形成された孔の内部に前記第2の回転体を挿入し、前記孔の内周面に複数の内歯を形成すると共に前記第2の回転体の外周面に前記内歯と噛合する複数の外歯を形成し、且つ、前記第1の回転体と前記第2の回転体とをセンターボルトで軸方向に締結することで前記第1及び第2の回転体を相互に連結している構成において、前記回転軸にすり割を設け、前記センターボルトの基端部の径を先端部に比べて大きく形成し、前記第2の回転体に螺合された前記センタボルトの基端部によって前記孔に挿入された第2の回転体の部分を径方向に拡大させるようにしてもよい(請求項2)。   A power transmission device for a compressor according to the present invention includes first and second rotating bodies that transmit rotational power to each other, and the second rotation is formed in a hole formed in the first rotating body. Inserting a body, forming a plurality of internal teeth on the inner peripheral surface of the hole, forming a plurality of external teeth meshing with the inner teeth on the outer peripheral surface of the second rotating body, and the first In the configuration in which the first and second rotating bodies are connected to each other by fastening the rotating body and the second rotating body in the axial direction with a center bolt, a slit is provided on the rotating shaft, The diameter of the base end of the center bolt is larger than that of the front end, and the portion of the second rotating body inserted into the hole by the base end of the center bolt screwed into the second rotating body May be enlarged in the radial direction (claim 2).

このような構成においては、第1の回転体に形成された孔の内部に第2の回転体を挿入した後にセンタボルトで締結すれば、センタボルトの基端部によってシャフトの径が拡大されて第1の回転体の孔の内面に第2の回転体の外面を圧接させることが可能となるので、第1の回転体の孔に第2の回転体をスムーズに挿入することを確保しつつ、内歯と外歯との間のクリアランスを無くすことが可能となり、クリアランスの存在に起因するそれぞれの回転体の微小振動を無くすことが可能となる。   In such a configuration, if the second rotating body is inserted into the hole formed in the first rotating body and then fastened with the center bolt, the shaft diameter is enlarged by the base end of the center bolt. Since the outer surface of the second rotating body can be brought into pressure contact with the inner surface of the hole of the first rotating body, it is ensured that the second rotating body is smoothly inserted into the hole of the first rotating body. It is possible to eliminate the clearance between the inner teeth and the outer teeth, and it is possible to eliminate the minute vibrations of the respective rotating bodies due to the presence of the clearance.

本発明に係る圧縮機の動力伝達装置は、回転動力が相互に伝達される第1及び第2の回転体を備え、前記第1の回転体に形成された孔の内部に前記第2の回転体を挿入し、前記第1の回転体と前記第2の回転体とをセンターボルトで軸方向に締結することで前記第1及び第2の回転体を相互に連結している構成において、前記孔の断面を多角形状にすると共に、前記第2の回転体の断面を前記孔の断面形状に合わせた多角形状とし、前記第2の回転体にすり割を設けると共に前記センターボルトの基端部の径を先端部に比べて大きく形成し、前記回転軸に螺合された前記センタボルトの基端部によって前記孔に挿入された第2の回転体の部分を径方向に拡大させるようにしてもよい(請求項3)。   A power transmission device for a compressor according to the present invention includes first and second rotating bodies that transmit rotational power to each other, and the second rotation is formed in a hole formed in the first rotating body. In the configuration in which the first and second rotating bodies are connected to each other by inserting a body and fastening the first rotating body and the second rotating body in the axial direction with a center bolt, The hole has a polygonal cross section, the cross section of the second rotating body is a polygonal shape that matches the cross sectional shape of the hole, a slit is provided in the second rotating body, and the base end of the center bolt The diameter of the second rotating body is made larger than the tip end portion, and the portion of the second rotating body inserted into the hole is expanded in the radial direction by the base end portion of the center bolt screwed to the rotating shaft. (Claim 3).

このような構成においては、第1の回転体に形成された孔及び第2の回転体の断面をそれぞれ対応する多角形状とし、第2の回転体にすり割を設けるようにしたので、第1の回転体に形成された孔の内部に第2の回転体を挿入してセンタボルトで締結すれば、センタボルトの基端部で第2の回転体の径が拡大されて第1の回転体の孔の内面に第2の回転体の外面を圧接させることが可能となるので、第1の回転体の孔に第2の回転体をスムーズに挿入することを確保しつつ、孔の内面と第2の回転体の外面との間のクリアランスを無くすことが可能となり、クリアランスの存在に起因するそれぞれの回転体の微小振動を無くすことが可能となる。   In such a configuration, since the hole formed in the first rotating body and the cross section of the second rotating body have corresponding polygonal shapes, and the second rotating body is provided with a slit, the first If the second rotating body is inserted into the hole formed in the rotating body and fastened with the center bolt, the diameter of the second rotating body is enlarged at the base end of the center bolt, and the first rotating body Since the outer surface of the second rotating body can be pressed against the inner surface of the hole, the second rotating body can be smoothly inserted into the hole of the first rotating body, It is possible to eliminate the clearance with the outer surface of the second rotating body, and it is possible to eliminate the minute vibration of each rotating body due to the presence of the clearance.

尚、上述の構成において、孔の内部に配される第2の回転体の部分を前記孔への挿入側から徐々に径を拡大するテーパ形状に形成してもよい(請求項4)。   In the above-described configuration, the portion of the second rotating body disposed inside the hole may be formed in a tapered shape that gradually increases in diameter from the insertion side into the hole.

本発明に係る圧縮機の動力伝達装置は、回転動力が相互に伝達される第1及び第2の回転体を備え、前記第1の回転体に形成された孔の内部に前記第2の回転体を挿入して前記第1及び第2の回転体を相互に連結している構成において、前記孔の内周面に複数の凸部と凹部とからなる角形スプラインを形成し、前記第2の回転体の前記孔に挿入する外周部分に前記角型スプラインと嵌合する凸部と凹起とからなる角型スプライン軸を形成するようにしてよい(請求項5)。   A power transmission device for a compressor according to the present invention includes first and second rotating bodies that transmit rotational power to each other, and the second rotation is formed in a hole formed in the first rotating body. In the configuration in which a body is inserted and the first and second rotating bodies are connected to each other, a square spline comprising a plurality of convex portions and concave portions is formed on the inner peripheral surface of the hole, and the second You may make it form the square-shaped spline axis | shaft which consists of a convex part and concave part which fit with the said square-shaped spline in the outer peripheral part inserted in the said hole of a rotary body (Claim 5).

このような構成においては、インボリュートスプラインに比べて形状が簡易であるため、寸法管理が容易であり、第1の回転体の孔へ第2の回転体を挿入しやすいものとなる。このため、第1の回転体の孔への第2の回転体のスムーズな挿入を確保しつつ、孔の内面と第2の回転体の外面との間のクリアランスを無くすことが可能となり、クリアランスの存在に起因するそれぞれの回転体の微小振動を無くすことが可能となる。   In such a configuration, since the shape is simpler than that of the involute spline, dimensional management is easy, and the second rotating body can be easily inserted into the hole of the first rotating body. For this reason, it becomes possible to eliminate the clearance between the inner surface of the hole and the outer surface of the second rotating body while ensuring smooth insertion of the second rotating body into the hole of the first rotating body. It is possible to eliminate the minute vibrations of the respective rotating bodies due to the presence of the.

本発明に係る圧縮機の動力伝達装置は、回転動力が相互に伝達される第1及び第2の回転体を備え、前記第1の回転体に形成された孔の内部に前記第2の回転体を挿入し、前記孔の内周面に複数の内歯を形成すると共に前記第2の回転体の外周面に前記内歯と噛合する複数の外歯を形成することで前記第1及び第2の回転体を相互に連結している構成において、前記内歯と前記外歯の少なくとも一方を前記孔の軸心に対して所定のリード角を持たせて形成するようにしてもよい(請求項6)。   A power transmission device for a compressor according to the present invention includes first and second rotating bodies that transmit rotational power to each other, and the second rotation is formed in a hole formed in the first rotating body. The first and second teeth are inserted by forming a plurality of internal teeth on the inner peripheral surface of the hole and forming a plurality of external teeth meshing with the inner teeth on the outer peripheral surface of the second rotating body. In the configuration in which the two rotating bodies are connected to each other, at least one of the inner teeth and the outer teeth may be formed with a predetermined lead angle with respect to the axial center of the hole (claim). Item 6).

このような構成においては、第1の回転体と第2の回転体とを孔の軸方向に相対移動させて内歯と外歯とを噛み合わせた後にさらに孔の軸方向に相対移動させると、内歯と外歯の少なくとも一方が孔の軸心に対して所定のリード角を持たせて形成されているので、内歯の歯面と外歯の歯面とが徐々に圧接されることとなる。このため、第1の回転体の孔への第2の回転体のスムーズな挿入を確保しつつ、孔の内面と第2の回転体の外面との間のクリアランスを無くすことが可能となり、クリアランスの存在に起因するそれぞれの回転体の微小振動を無くすことが可能となる。   In such a configuration, when the first rotating body and the second rotating body are relatively moved in the axial direction of the hole and the inner teeth and the outer teeth are engaged with each other, the relative movement is further performed in the axial direction of the hole. Since at least one of the inner tooth and the outer tooth is formed with a predetermined lead angle with respect to the axial center of the hole, the tooth surface of the inner tooth and the tooth surface of the outer tooth are gradually brought into pressure contact with each other. It becomes. For this reason, it becomes possible to eliminate the clearance between the inner surface of the hole and the outer surface of the second rotating body while ensuring smooth insertion of the second rotating body into the hole of the first rotating body. It is possible to eliminate the minute vibrations of the respective rotating bodies due to the presence of the.

本発明に係る圧縮機の動力伝達装置は、回転動力が相互に伝達される第1及び第2の回転体を備え、前記第1の回転体に形成された孔の内部に前記第2の回転体を挿入し、前記孔の内周面に複数の内歯を形成すると共に前記第2の回転体の外周面に前記内歯と噛合する複数の外歯を形成することで前記第1及び第2の回転体を相互に連結している構成において、前記第1の回転体と前記第2の回転体とを前記孔の軸方向に相対移動させて前記内歯と前記外歯とが嵌合し始める部分において前記内歯と前記外歯の少なくとも一方を切り欠き、前記嵌合し始める部分以外の部分において前記内歯と前記外歯の少なくとも一方の歯先面と他方の歯底面とを圧接させるようにしてもよい(請求項7)。   A power transmission device for a compressor according to the present invention includes first and second rotating bodies that transmit rotational power to each other, and the second rotation is formed in a hole formed in the first rotating body. The first and second teeth are inserted by forming a plurality of internal teeth on the inner peripheral surface of the hole and forming a plurality of external teeth meshing with the inner teeth on the outer peripheral surface of the second rotating body. In the configuration in which the two rotating bodies are connected to each other, the first rotating body and the second rotating body are relatively moved in the axial direction of the hole so that the inner teeth and the outer teeth are fitted. At least one of the inner teeth and the outer teeth is cut out at a portion where the inner teeth and the outer teeth begin to be pressed, and the inner teeth, at least one tooth tip surface and the other tooth bottom surface of the inner teeth are pressed against the portions other than the portion where the fitting starts. (Claim 7).

このような構成においては、第1の回転体と第2の回転体とを孔の軸方向に相対移動させて第1の回転体の内歯と第2の回転体の外歯とが嵌合し始め部分で内歯と外歯の少なくとも一方が切り欠かれて内歯と外歯との間に隙間が形成されているので、第1の回転体の孔に第2の回転体をスムーズに挿入することが可能となり、また、内歯と外歯とが嵌合し始め部分以外の部分で内歯と外歯の少なくとも一方の歯先面と他方の歯底面とが圧接させるので、内歯と外歯との間に径方向でクリアランスが形成されることがなくなり、クリアランスの存在に起因するそれぞれの回転体の微小振動を無くすことが可能となる。   In such a configuration, the first rotating body and the second rotating body are relatively moved in the axial direction of the hole so that the inner teeth of the first rotating body and the outer teeth of the second rotating body are fitted. Since at least one of the internal teeth and the external teeth is notched at the beginning of the opening and a gap is formed between the internal teeth and the external teeth, the second rotary body can be smoothly inserted into the hole of the first rotary body. It is possible to insert the inner teeth and the outer teeth, and at least one tooth tip surface of the inner teeth and the outer teeth and the other tooth bottom surface are pressed against each other at a portion other than the portion where the inner teeth and the outer teeth start to be fitted. Clearance is no longer formed between the outer teeth and the outer teeth, and it is possible to eliminate minute vibrations of the respective rotating bodies due to the presence of the clearance.

以上述べたように、この発明によれば、第1の回転体に形成された孔の内部に第2の回転体を挿入して回転動力を相互に伝達するようにしている動力伝達装置において、第1の回転体と第2の回転体とのスムーズな組付けを確保して組付け作業を容易にすることができ、また、それぞれの回転体の連結部分でのフレッチング磨耗を防止することが可能となる。   As described above, according to the present invention, in the power transmission device in which the second rotating body is inserted into the hole formed in the first rotating body to transmit the rotational power to each other. A smooth assembly between the first rotating body and the second rotating body can be ensured to facilitate the assembling work, and fretting wear at the connecting portions of the respective rotating bodies can be prevented. It becomes possible.

以下、この発明の最良の実施形態を添付図面を参照しながら説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS The best embodiment of the present invention will be described below with reference to the accompanying drawings.

図1において、圧縮機の動力伝達装置の一例としてクラッチレス圧縮機の動力伝達装置が示されている。この動力伝達装置1は、プーリ2とハブ3と、ダンパ用内側リング4と、ダンパ用外側リング5と、ダンパーゴム6とを有して構成されている。   In FIG. 1, a power transmission device for a clutchless compressor is shown as an example of a power transmission device for a compressor. The power transmission device 1 includes a pulley 2, a hub 3, a damper inner ring 4, a damper outer ring 5, and a damper rubber 6.

プーリ2は、圧縮機のハウジング7から突設されたボス部7aにラジアル軸受8を介して回転自在に外嵌され、外周面に図示しない駆動ベルト(Vベルト)を取り付けるための溝(V溝)9が形成され、駆動ベルトを介して連結されたエンジン等の動力源からの駆動力により、シャフト10を回転中心として回転するようになっている。   The pulley 2 is rotatably fitted to a boss portion 7a projecting from a housing 7 of the compressor via a radial bearing 8, and a groove (V groove) for attaching a drive belt (V belt) (not shown) to the outer peripheral surface. ) 9 is formed, and is rotated about the shaft 10 as a rotation center by a driving force from a power source such as an engine connected via a driving belt.

シャフト10の先端部は、ハウジング7から突出し、その先端部にはセンタボルト11によりハブ3が軸方向に固定されている。より具体的には、ハブ3は、その中央に孔12が形成された円筒状に形成されているもので、この孔12の内周面に複数の内歯13を形成し、またシャフト10の先端部の外周面に前記内歯13と噛合する複数の外歯14を形成し、内歯13と外歯14とを噛み合わせた状態でハブ3の孔内に係合されたストッパ15を介してセンタボルト11をシャフト10の先端部に形成された雌ねじ16に螺合させることでシャフト10の先端部にハブ3を軸方向に固定するようにしている。このハブ3により第1の回転体が構成され、シャフト10により第2の回転体が構成されている。   The front end portion of the shaft 10 protrudes from the housing 7, and the hub 3 is fixed to the front end portion by a center bolt 11 in the axial direction. More specifically, the hub 3 is formed in a cylindrical shape with a hole 12 formed in the center thereof, and a plurality of internal teeth 13 are formed on the inner peripheral surface of the hole 12, and the shaft 10 A plurality of external teeth 14 that mesh with the internal teeth 13 are formed on the outer peripheral surface of the tip, and the internal teeth 13 and the external teeth 14 are engaged with each other via a stopper 15 that is engaged in the hole of the hub 3. Thus, the hub 3 is fixed to the front end portion of the shaft 10 in the axial direction by screwing the center bolt 11 into a female screw 16 formed at the front end portion of the shaft 10. The hub 3 constitutes a first rotating body, and the shaft 10 constitutes a second rotating body.

ハブ3には、その外側面にダンバ用内側リング4が一体に形成されている。このダンパ用内側リング4は、径方向外側へ延設するフランジ部4aと、このフランジ部4aに一体に形成され、フロント側へ延設する円筒部4bとを有して構成されている。   A hub inner ring 4 is integrally formed on the outer surface of the hub 3. The damper inner ring 4 includes a flange portion 4a extending outward in the radial direction and a cylindrical portion 4b formed integrally with the flange portion 4a and extending to the front side.

ダンバ用内側リング4の円筒部4bには、ダンパゴム6を介してダンパ用外側リング5が保持されている。このダンパ用外側リング5は、ダンパ用内側リング4の円筒部4bより径が大きく形成され、ダンパゴム6を円筒部4bとの間で保持する円筒部5bとこの円筒部5bに一体に形成され径方向外側へ延設するフランジ部5aとを有して構成されている。
そして、ダンパ用外側リング5のフランジ部5aは、ボルト16などの接合手段によってプーリ2に固定されている。
A damper outer ring 5 is held on the cylindrical portion 4 b of the damper inner ring 4 via a damper rubber 6. The damper outer ring 5 is formed to have a larger diameter than the cylindrical portion 4b of the damper inner ring 4, and is formed integrally with the cylindrical portion 5b and the cylindrical portion 5b for holding the damper rubber 6 between the cylindrical portion 4b. And a flange portion 5a extending outward in the direction.
The flange portion 5 a of the damper outer ring 5 is fixed to the pulley 2 by a joining means such as a bolt 16.

したがって、動力源からの回転動力が駆動ベルトを介してプーリ2に伝達されると、ダンパ用外側リング5、ダンパゴム6、ダンパ用内側リング4、及びハブ3を介してシャフト10に伝達されるようになっている。   Therefore, when the rotational power from the power source is transmitted to the pulley 2 through the drive belt, it is transmitted to the shaft 10 through the damper outer ring 5, the damper rubber 6, the damper inner ring 4, and the hub 3. It has become.

ところで、ハブ3とシャフト10との嵌合状態は、ハブ3とシャフト10とをハブ3に形成された孔12の軸方向に相対移動させて前記内歯13と前記外歯14とを軸方向にスライドさせて嵌合させるようにしているが、内歯13と外歯14とが嵌合し始める部分では内歯13と外歯14との間に隙間を形成し、嵌合し始める部分以外の部分で内歯13の歯面と外歯14の歯面とを圧接させる構成となっている(第1の構成例)。   By the way, the fitting state of the hub 3 and the shaft 10 is such that the internal teeth 13 and the external teeth 14 are axially moved by relatively moving the hub 3 and the shaft 10 in the axial direction of the hole 12 formed in the hub 3. However, in the portion where the inner teeth 13 and the outer teeth 14 start to be fitted, a gap is formed between the inner teeth 13 and the outer teeth 14 and the portions other than the portions where the fitting begins. In this part, the tooth surface of the inner tooth 13 and the tooth surface of the outer tooth 14 are pressed against each other (first configuration example).

より具体的には、例えば、内歯13と外歯14とが軸方向で嵌合し始める初期の部分で、図2(a)に示されるように、内歯13の歯溝幅W1を外歯14の歯厚W2より大きく形成し、内歯13と外歯14とが嵌合し始める部分以外の部分で、図2(b)に示されるように、内歯13の歯溝幅W1を外歯の歯厚W2より幾分小さく形成する2段階の異なるスプライン(2段スプライン)に形成されている。   More specifically, for example, in the initial part where the inner teeth 13 and the outer teeth 14 begin to fit in the axial direction, as shown in FIG. As shown in FIG. 2 (b), the tooth gap width W1 of the internal tooth 13 is set to be larger than the tooth thickness W2 of the tooth 14 and the part other than the part where the internal tooth 13 and the external tooth 14 begin to fit. It is formed in two different splines (two-stage splines) formed somewhat smaller than the tooth thickness W2 of the external teeth.

したがって、ハブ3とシャフト10とを孔12の軸方向に相対移動させて内歯13と外歯14とを嵌合させる過程において、内歯13と外歯14とが嵌合し始める初期においては、内歯13と外歯14との間に隙間が形成されるので、シャフト10がハブ3の孔12に嵌入されやすくなり(内歯13に外歯14が軸方向に嵌入されやすくなり)、さらにハブ3とシャフト10とを孔12の軸方向に相対移動させると内歯13の歯面と外歯14の歯面とが圧接されて相互に変形され、クリアランスなく嵌合されることとなる。   Therefore, in the process of relatively moving the hub 3 and the shaft 10 in the axial direction of the hole 12 and fitting the inner teeth 13 and the outer teeth 14, at the initial stage when the inner teeth 13 and the outer teeth 14 start to be fitted. Since a gap is formed between the inner teeth 13 and the outer teeth 14, the shaft 10 is easily inserted into the hole 12 of the hub 3 (the outer teeth 14 are easily inserted into the inner teeth 13 in the axial direction). When the hub 3 and the shaft 10 are further moved relative to each other in the axial direction of the hole 12, the tooth surfaces of the inner teeth 13 and the tooth surfaces of the outer teeth 14 are pressed against each other to be deformed and fitted with no clearance. .

このため、ハブ3とシャフト10とのスムーズな組付けを確保しつつ、クリアランスの存在に起因するハブ3やシャフト4の微小振動を無くすことが可能となり、ハブ3の内歯13やシャフト4の外歯14のフレッチング磨耗を防止することが可能となる。   Therefore, it is possible to eliminate the minute vibrations of the hub 3 and the shaft 4 due to the presence of the clearance while ensuring the smooth assembly of the hub 3 and the shaft 10, and the internal teeth 13 and the shaft 4 of the hub 3 can be eliminated. It becomes possible to prevent the fretting wear of the external teeth 14.

図3及び図4において、ハブ3とシャフト10との嵌合構造の他の構成例が示されている(第2の構成例)。この例においては、孔12の内周面に複数の内歯13が形成され、シャフト10の外周面に内歯13と噛合する複数の外歯14が形成されているが、シャフト10には孔12に挿入する先端部にすり割20が形成され、センターボルト11の基端部11aの径(R1)が先端部の径(R2)に比べて大きく形成され(R1>R2)、センタボルト11をシャフト10に螺合されることで、シャフト10の先端部をセンタボルト11の基端部11aによって径方向に拡大させるようにしている。
その他の構成については、図3の構成と同様であるので、同一箇所に同一符号を付して説明を省略する。
3 and 4 show another configuration example of the fitting structure between the hub 3 and the shaft 10 (second configuration example). In this example, a plurality of inner teeth 13 are formed on the inner peripheral surface of the hole 12, and a plurality of outer teeth 14 that mesh with the inner teeth 13 are formed on the outer peripheral surface of the shaft 10. A slit 20 is formed at the distal end portion inserted into the center bolt 11, the diameter (R1) of the base end portion 11a of the center bolt 11 is formed larger than the diameter (R2) of the distal end portion (R1> R2), and the center bolt 11 Is screwed onto the shaft 10 so that the distal end portion of the shaft 10 is expanded in the radial direction by the proximal end portion 11a of the center bolt 11.
Since other configurations are the same as the configurations in FIG. 3, the same portions are denoted by the same reference numerals, and description thereof is omitted.

したがって、このような構成においては、ハブ3の孔12にシャフト10が緩く嵌合されるように(内歯13と外歯14との間にクリアランスが形成されるように)内歯13と外歯14とを形成しておき、その上でハブ3とシャフト10とを孔12の軸方向に相対移動させて内歯13と外歯14とを嵌合させ(図4(a)の状態)、しかる後に、センターボルト11でハブ3をシャフト10に固定すれば、センターボルト11が奥まで締め付けられた段階で、基端部11aによってシャフト10の先端部が径方向外側へ押し広げられ、外歯14が図4(b)に示されるように、径方向外側へ変位し、孔12の内周面に形成された内歯13に圧接されることになり、ハブ3とシャフト10とがクリアランスなく嵌合されることとなる。   Accordingly, in such a configuration, the inner teeth 13 and the outer teeth 13 are so fitted that the shaft 10 is loosely fitted in the holes 12 of the hub 3 (so that a clearance is formed between the inner teeth 13 and the outer teeth 14). The teeth 14 are formed in advance, and the hub 3 and the shaft 10 are moved relative to each other in the axial direction of the hole 12 so that the inner teeth 13 and the outer teeth 14 are fitted together (state shown in FIG. 4A). After that, if the hub 3 is fixed to the shaft 10 with the center bolt 11, when the center bolt 11 is tightened to the back, the distal end portion of the shaft 10 is pushed outward in the radial direction by the base end portion 11a. As shown in FIG. 4B, the teeth 14 are displaced radially outward, and are pressed against the inner teeth 13 formed on the inner peripheral surface of the hole 12, so that the hub 3 and the shaft 10 are in clearance. Will be fitted together.

このため、ハブ3とシャフト10とのスムーズな組付けを確保しつつ、クリアランスの存在に起因するハブ3やシャフト10の微小振動を無くすことが可能となり、ハブ3の内歯13やシャフト10の外歯14のフレッチング磨耗を防止することが可能となる。   For this reason, it becomes possible to eliminate minute vibrations of the hub 3 and the shaft 10 due to the presence of the clearance while ensuring a smooth assembly of the hub 3 and the shaft 10, and the internal teeth 13 of the hub 3 and the shaft 10. It becomes possible to prevent the fretting wear of the external teeth 14.

図5にハブ3とシャフト10との嵌合構造の他の構成例が示されている(第3の構成例)。この例においては、孔12の断面を多角形状にすると共に、シャフト10の断面を前記孔12の断面形状に合わせた多角形状とし(図5(a)においては4角形、図5(b)においては6角形とし)、シャフト10の先端部にすり割20を設けると共にセンターボルト11を図3に示されるように、基端部11aの径(R1)を先端部11bの径(R2)に比べて大きく形成し(R1>R2)、センタボルト11をシャフト10に螺合されることで、センタボルト11の基端部11aで孔12に挿入されたシャフト10の部分を径方向に拡大させるようにしている。
尚、その他の構成については、図3の構成と同様であるので、同一箇所に同一符号を付して説明を省略する。
FIG. 5 shows another configuration example of the fitting structure between the hub 3 and the shaft 10 (third configuration example). In this example, the hole 12 has a polygonal cross section, and the shaft 10 has a polygonal shape that matches the cross sectional shape of the hole 12 (in FIG. 5A, a quadrangular shape, in FIG. 5B). And a center bolt 11 as shown in FIG. 3, the diameter (R1) of the base end portion 11a is compared with the diameter (R2) of the tip end portion 11b. The center bolt 11 is screwed into the shaft 10 so that the portion of the shaft 10 inserted into the hole 12 at the base end portion 11a of the center bolt 11 is expanded in the radial direction. I have to.
Since other configurations are the same as those in FIG. 3, the same reference numerals are given to the same portions and the description thereof is omitted.

このような構成においても、シャフト10の断面形状を孔12の断面形状に対して幾分小さく形成して、ハブ3とシャフト10とを孔12の軸方向に相対移動させて嵌合させ(図5(a),(b)の上段)、その後、センターボルト11でハブ3をシャフト10に固定すれば、センターボルト11が奥まで締め付けられた段階で、センターボルト11の基端部11aによってシャフト10の先端部が押し広げられ、シャフト10の外周面が径方向外側へ変位してハブ3の孔12の対峙する内面に圧接され、ハブ3とシャフト10とがクリアランスなく嵌合されることとなる(図5(a),(b)の下段)。   Even in such a configuration, the cross-sectional shape of the shaft 10 is formed somewhat smaller than the cross-sectional shape of the hole 12, and the hub 3 and the shaft 10 are moved relative to each other in the axial direction of the hole 12 to be fitted (see FIG. 5 (a), (b) upper stage), and then, if the hub 3 is fixed to the shaft 10 with the center bolt 11, the shaft by the base end 11a of the center bolt 11 when the center bolt 11 is tightened to the back. The outer end surface of the shaft 10 is displaced radially outward and pressed against the inner surface of the hole 12 of the hub 3 facing each other, and the hub 3 and the shaft 10 are fitted with no clearance. (The lower part of FIGS. 5A and 5B).

このため、ハブ3とシャフト10とのスムーズな組付けを確保しつつ、クリアランスの存在に起因するハブ3やシャフト10の微小振動を無くすことが可能となり、ハブ3の内歯13やシャフト10の外歯14のフレッチング磨耗を防止することが可能となる。特にこのような構成においては、孔12及びシャフト10の断面形状が多角形に形成されているため、寸法管理が容易となる。   For this reason, it becomes possible to eliminate minute vibrations of the hub 3 and the shaft 10 due to the presence of the clearance while ensuring a smooth assembly of the hub 3 and the shaft 10, and the internal teeth 13 of the hub 3 and the shaft 10 can be removed. It becomes possible to prevent the fretting wear of the external teeth 14. Particularly in such a configuration, since the cross-sectional shapes of the hole 12 and the shaft 10 are formed in a polygonal shape, dimensional management becomes easy.

また、図5に示される構成においては、図6に示されるように、シャフト10の先端部の外周面(シャフト10の孔12に挿入される部分の外周面)を挿入端から徐々に径方向の寸法を拡大させるテーパ面21に形成し、これと共に又はこれに代えて、孔12の内周面をシャフト10の挿入端から徐々に径方向の寸法を小さくするテーパ面22に形成し、ハブ3とシャフト10とを孔12の軸方向に相対移動させるにつれて孔12の内面とシャフト10の外面とのクリアランスを徐々に小さくさせるようにしてもよい。
このような構成を採用することで、ハブ3とシャフトとの間のクリアランスをより効果的に低減することが可能となる。
In the configuration shown in FIG. 5, as shown in FIG. 6, the outer peripheral surface of the distal end portion of the shaft 10 (the outer peripheral surface of the portion inserted into the hole 12 of the shaft 10) is gradually increased in the radial direction A taper surface 21 that enlarges the size of the shaft 12 is formed, and together with or instead of this, an inner peripheral surface of the hole 12 is formed on a taper surface 22 that gradually decreases in the radial direction from the insertion end of the shaft 10. The clearance between the inner surface of the hole 12 and the outer surface of the shaft 10 may be gradually reduced as the shaft 3 and the shaft 10 are relatively moved in the axial direction of the hole 12.
By adopting such a configuration, the clearance between the hub 3 and the shaft can be more effectively reduced.

図7及び図8において、ハブ3とシャフト10との嵌合構造の他の構成例が示されている(第4の構成例)。この例においては、ハブ3の孔12の内周面に複数の凸部と凹部(凹凸部32)とからなる角形スプライン30を形成し、シャフト10の前記孔12に挿入する部分に前記角型スプラインと嵌合する凸部と凹部(凹凸部33)とからなる角型スプライン軸31を形成し、ハブ3とシャフト10とを孔12の軸方向に相対移動させてハブ3の凹凸部32(角型スプライン30)とシャフト10の凹凸部33(角型スプライン軸31)とが軸方向に嵌合し始める初期の部分で、図9(a)に示されるように、ハブ3に形成された凹凸部32とシャフト10に形成された凹凸部33との間に隙間を形成し、前記嵌合し始める部分以外の部分で、図9(b)に示されるように、内歯32の歯面と外歯33の歯面とに圧接代34を形成するようにしている。   7 and 8 show another configuration example of the fitting structure between the hub 3 and the shaft 10 (fourth configuration example). In this example, a rectangular spline 30 composed of a plurality of convex portions and concave portions (uneven portions 32) is formed on the inner peripheral surface of the hole 12 of the hub 3, and the square shape is inserted into the portion of the shaft 10 to be inserted into the hole 12. A square spline shaft 31 composed of a convex portion and a concave portion (concave portion 33) fitted with the spline is formed, and the hub 3 and the shaft 10 are moved relative to each other in the axial direction of the hole 12 so that the concave portion 32 ( As shown in FIG. 9A, the square spline 30) and the uneven portion 33 (square spline shaft 31) of the shaft 10 begin to fit in the axial direction. A gap is formed between the uneven portion 32 and the uneven portion 33 formed on the shaft 10, and a tooth surface of the internal tooth 32 at a portion other than the portion where the fitting starts, as shown in FIG. And press contact allowances 34 are formed on the tooth surfaces of the external teeth 33. .

したがって、このような構成においては、ハブ3とシャフト10とを孔12の軸方向に相対移動させて嵌合させる過程において、ハブ3に形成された凹凸部32とシャフト10に形成された凹凸部33とが嵌合し始める初期においては、凹凸部32と凹凸部33との間に隙間が形成されるので、シャフト10がハブ3の孔12に嵌入されやすくなり(ハブ3の凹凸部32にシャフト10の凹凸部33が軸方向に嵌入されやすくなり)、さらにハブ3とシャフト10とを孔12の軸方向に相対移動させると、互いの凹凸部32,33の圧接代34が圧接されて相互に変形され、クリアランスなく嵌合されることとなる。   Therefore, in such a configuration, the uneven portion 32 formed on the hub 3 and the uneven portion formed on the shaft 10 in the process of fitting the hub 3 and the shaft 10 relative to each other in the axial direction of the hole 12. In the initial stage when the engagement with 33 is started, a gap is formed between the concavo-convex portion 32 and the concavo-convex portion 33, so that the shaft 10 is easily inserted into the hole 12 of the hub 3 ( When the hub 3 and the shaft 10 are moved relative to each other in the axial direction of the hole 12, the pressure contact allowance 34 of the concave and convex portions 32 and 33 is pressed against each other. They are mutually deformed and fitted with no clearance.

このため、ハブ3とシャフト10とのスムーズな組付けを確保しつつ、クリアランスの存在に起因するハブ3やシャフト4の微小振動を無くすことが可能となり、ハブ3の凹凸部32やシャフト4の凹凸部33のフレッチング磨耗を防止することが可能となる。特に、この例においては、多角スプラインを採用しているので、インボリュートスプラインに比べてハブ3とシャフト10との連結部分の寸法管理が容易となる。   For this reason, it is possible to eliminate the minute vibrations of the hub 3 and the shaft 4 due to the presence of the clearance while ensuring the smooth assembly of the hub 3 and the shaft 10, and the uneven portion 32 of the hub 3 and the shaft 4. It becomes possible to prevent fretting wear of the uneven portion 33. In particular, in this example, since a polygonal spline is adopted, it is easier to manage the dimensions of the connecting portion between the hub 3 and the shaft 10 than an involute spline.

図10及び図11にハブ3とシャフト10との嵌合構造の他の構成例が示されている(第5の構成例)。この例においては、ハブ3の孔の内周面に形成されるスプラインを平行歯からなるインボリュートスプラインで構成し、シャフト10の前記孔12に挿入する先端部分に孔12の軸芯に対して所定のリード角αを持たせて形成されたインボリュートスプライン軸を形成し(シャフト10に形成された外歯14を孔12の軸心に対して所定のリード角αを持たせて形成し)、ハブ3の孔12の内周面に形成される内歯13とシャフト10の外周面に形成される外歯14とが嵌合し始める初期の部分で内歯13と外歯14との間に隙間が形成されるようにしておく。
尚、その他の構成については、図1に示す構成例と同様であるので、同一箇所に同一符号を付して説明を省略する。
10 and 11 show another configuration example of the fitting structure between the hub 3 and the shaft 10 (fifth configuration example). In this example, the spline formed on the inner peripheral surface of the hole of the hub 3 is constituted by an involute spline made of parallel teeth, and the tip portion inserted into the hole 12 of the shaft 10 is predetermined with respect to the axis of the hole 12. An involute spline shaft is formed with a lead angle α (the external teeth 14 formed on the shaft 10 are formed with a predetermined lead angle α with respect to the axis of the hole 12), and a hub 3 between the inner teeth 13 and the outer teeth 14 in the initial portion where the inner teeth 13 formed on the inner peripheral surface of the third hole 12 and the outer teeth 14 formed on the outer peripheral surface of the shaft 10 start to fit. Is formed.
Other configurations are the same as those in the configuration example shown in FIG. 1, and therefore, the same portions are denoted by the same reference numerals and description thereof is omitted.

このような構成においては、ハブ3とシャフト10とを孔12の軸方向に相対移動させて嵌合させる過程において、内歯13と外歯14とが嵌合し始める初期においては、内歯13と外歯14との間に隙間が形成されるので、シャフト10の外歯14がハブ3の内歯13に嵌入されやすくなり、また、ハブ3とシャフト10とを孔12の軸方向にさらに相対移動させると、外歯14は所定のリード角αを持たせて形成されているので、シャフト10の嵌入量が増大するにつれて軸方向の一端側では、図11(a)に示されるように、内歯13の一方の歯面が外歯14に圧接し、軸方向の他端側では、図11(b)に示されるように、内歯13の他方の歯面が外歯14に圧接し、圧接された部分が相互に変形されてクリアランスなく嵌合されることとなる。   In such a configuration, in the process in which the hub 3 and the shaft 10 are relatively moved in the axial direction of the hole 12 to be engaged, the internal teeth 13 and the external teeth 14 are initially engaged with each other at the initial stage. Since a gap is formed between the outer teeth 14 and the outer teeth 14, the outer teeth 14 of the shaft 10 can be easily fitted into the inner teeth 13 of the hub 3, and the hub 3 and the shaft 10 are further connected in the axial direction of the hole 12. When the relative movement is made, the external teeth 14 are formed with a predetermined lead angle α. Therefore, at one end side in the axial direction as the amount of insertion of the shaft 10 increases, as shown in FIG. One tooth surface of the inner tooth 13 is in pressure contact with the outer tooth 14, and the other tooth surface of the inner tooth 13 is in pressure contact with the outer tooth 14 on the other end side in the axial direction, as shown in FIG. And the parts that are pressed against each other are deformed and fitted with no clearance. It becomes a.

このため、ハブ3とシャフト10とのスムーズな組付けを確保しつつ、クリアランスの存在に起因するハブ3やシャフト10の微小振動を無くすことが可能となり、ハブ3の内歯13やシャフト10の外歯14のフレッチング磨耗を防止することが可能となる。   For this reason, it becomes possible to eliminate minute vibrations of the hub 3 and the shaft 10 due to the presence of the clearance while ensuring a smooth assembly of the hub 3 and the shaft 10, and the internal teeth 13 of the hub 3 and the shaft 10. It becomes possible to prevent the fretting wear of the external teeth 14.

図12及び図13にハブ3とシャフト10との嵌合構造の他の構成例が示されている。この例においては、ハブ3の孔12の内周面に複数の内歯13が形成され、シャフト10の外周面に前記内歯13と噛合する複数の外歯14が形成されている点において図1の構成例と同様であるが、ハブ3とシャフト10とを孔12の軸方向に相対移動させて内歯13と外歯14とを嵌合し始める部分において内歯13と外歯14の少なくとも一方を部分的に切り欠き、前記嵌合し始める部分以外の部分において内歯13と外歯14の少なくとも一方の歯先面と他方の歯底面とを圧接させるようにしている。   12 and 13 show another configuration example of the fitting structure between the hub 3 and the shaft 10. In this example, a plurality of internal teeth 13 are formed on the inner peripheral surface of the hole 12 of the hub 3, and a plurality of external teeth 14 that mesh with the inner teeth 13 are formed on the outer peripheral surface of the shaft 10. 1, but the hub 3 and the shaft 10 are moved relative to each other in the axial direction of the hole 12 to start fitting the inner teeth 13 and the outer teeth 14. At least one of the inner teeth 13 and the outer teeth 14 is pressed into contact with the other tooth bottom surface at a portion other than the portion where the fitting starts.

より具体的には、図12に示される構成においては、シャフト10の外周面に形成された外歯14の挿入端部41の歯先部分を切り欠いて外歯14が内歯13の歯底面に接触しないようにし、挿入端部以外の部分で外歯14の歯たけを内歯13の歯たけより大きくして外歯14の波先面14aが内歯13の歯底面13bに圧接されて相互に変形されるようにしている。   More specifically, in the configuration shown in FIG. 12, the outer teeth 14 are notched to the bottom surfaces of the inner teeth 13 by cutting out the tooth tip portions of the insertion end portions 41 of the outer teeth 14 formed on the outer peripheral surface of the shaft 10. The tooth tip of the external tooth 14 is made larger than the tooth base of the internal tooth 13 at a portion other than the insertion end, and the wave front surface 14 a of the external tooth 14 is pressed against the tooth bottom surface 13 b of the internal tooth 13. They are designed to be mutually deformed.

このような構成においては、ハブ3とシャフト10とを孔12の軸方向に相対移動させて内歯13と外歯14とを嵌合させていくと、嵌合し始める初期においては、シャフト10の外歯14の歯先面がハブ3の内歯13の歯底面に接触しないので、シャフト10の外歯14がハブ3の内歯13に嵌入されやすくなり、さらにハブ3とシャフト10とを孔12の軸方向に相対移動させると外歯14の歯先面14aと内歯13の歯底面13bとが相互に変形して圧接され、クリアランスなく嵌合されることとなる。   In such a configuration, when the hub 3 and the shaft 10 are relatively moved in the axial direction of the hole 12 and the inner teeth 13 and the outer teeth 14 are fitted, the shaft 10 is initially in the beginning of fitting. Since the tip surface of the external tooth 14 does not contact the bottom surface of the internal tooth 13 of the hub 3, the external tooth 14 of the shaft 10 can be easily fitted into the internal tooth 13 of the hub 3. When the hole 12 is relatively moved in the axial direction, the tooth tip surface 14a of the outer tooth 14 and the tooth bottom surface 13b of the inner tooth 13 are deformed and pressed against each other, and are fitted with no clearance.

このため、ハブ3とシャフト10とのスムーズな組付けを確保しつつ、クリアランスの存在に起因するハブ3やシャフト10の微小振動を無くすことが可能となり、ハブ3の内歯13やシャフト10の外歯14のフレッチング磨耗を防止することが可能となる。   For this reason, it becomes possible to eliminate minute vibrations of the hub 3 and the shaft 10 due to the presence of the clearance while ensuring a smooth assembly of the hub 3 and the shaft 10, and the internal teeth 13 of the hub 3 and the shaft 10. It becomes possible to prevent the fretting wear of the external teeth 14.

また、図13に示されるように、孔12の内周面に形成された内歯13のシャフトが挿入される挿入端部42の歯先部分を切り欠き、内歯13の歯先面13aが外歯14の歯底面14bに接触しないようにし、挿入端部以外の部分で内歯13の歯たけを外歯14の歯たけより大きくして内歯13の歯先面13aが外歯14の歯底面14bに圧接されて相互に変形されるようにしてもよい。   Further, as shown in FIG. 13, the tooth tip portion of the insertion end portion 42 into which the shaft of the internal tooth 13 formed on the inner peripheral surface of the hole 12 is inserted is notched, and the tooth tip surface 13 a of the internal tooth 13 is formed. The tooth bottom surface 14 b of the outer teeth 14 is made not to contact the tooth bottom surface 14 b of the outer teeth 14. You may make it deform | transform mutually by press-contacting to the tooth base 14b.

このような構成においては、ハブ3とシャフト10とを孔12の軸方向に相対移動させて内歯13と外歯14とを嵌合させていくと、嵌合し始める初期においては、ハブ3の内歯13の歯先面13aがシャフト3の外歯14の歯底面14bに接触しないので、シャフト10の外歯14がハブ3の内歯13に嵌入されやすくなり、さらにハブ3とシャフト10とを孔12の軸方向に相対移動させると内歯13の歯先面13aと外歯14の歯底面14bとが相互に変形して圧接され、クリアランスなく嵌合されることとなる。   In such a configuration, when the hub 3 and the shaft 10 are relatively moved in the axial direction of the hole 12 so that the inner teeth 13 and the outer teeth 14 are fitted, the hub 3 is initially in the beginning of fitting. Since the tooth tip surface 13a of the inner teeth 13 does not contact the tooth bottom surface 14b of the outer teeth 14 of the shaft 3, the outer teeth 14 of the shaft 10 can be easily fitted into the inner teeth 13 of the hub 3, and the hub 3 and the shaft 10 Are moved relative to each other in the axial direction of the hole 12, the tooth tip surface 13a of the inner tooth 13 and the tooth bottom surface 14b of the outer tooth 14 are deformed and pressed against each other, and are fitted with no clearance.

このため、ハブ3とシャフト10とのスムーズな組付けを確保しつつ、クリアランスの存在に起因するハブ3やシャフト10の微小振動を無くすことが可能となり、ハブ3の内面13やシャフト10の外歯14のフレッチング磨耗を防止することが可能となる。   For this reason, it is possible to eliminate the minute vibrations of the hub 3 and the shaft 10 due to the presence of the clearance while ensuring a smooth assembly of the hub 3 and the shaft 10, and the inner surface 13 of the hub 3 and the outside of the shaft 10 can be eliminated. It is possible to prevent fretting wear of the teeth 14.

尚、以上においては、第1の回転体であるハブ3と第2の回転体であるシャフト10とのスムーズな組付けを確保しつつ、ハブ3とシャフト10との連結部分でのフレッチング磨耗を防止する種々の構成例を示したが、ここに示された構成例に限定されるものではなく、上述した各構成を適宜組み合わせて用いるようにしてもよい。また、上述においては、第1の回転体であるハブ3から第2の回転体であるシャフト10へ回転動力が伝達される構成を示したが、動力が伝達される方向は特に限定されるものではない。   In the above, fretting wear at the connecting portion between the hub 3 and the shaft 10 is ensured while ensuring a smooth assembly between the hub 3 as the first rotating body and the shaft 10 as the second rotating body. Although various configuration examples to prevent are shown, the present invention is not limited to the configuration examples shown here, and the above-described configurations may be used in appropriate combination. In the above description, the configuration in which the rotational power is transmitted from the hub 3 serving as the first rotating body to the shaft 10 serving as the second rotating body is shown, but the direction in which the power is transmitted is particularly limited. is not.

図1は、本発明に係る圧縮機の動力伝達装置の第1の構成例を示す断面図であり、図1(a)は動力伝達装置全体を示す断面図、図1(b)はハブ3を孔12の軸芯に対して垂直に切断した断面図、図1(c)はハブ3とシャフト10とを孔12の軸芯に対して平行に切断した断面図である。FIG. 1 is a cross-sectional view showing a first structural example of a power transmission device for a compressor according to the present invention. FIG. 1 (a) is a cross-sectional view showing the whole power transmission device, and FIG. FIG. 1C is a cross-sectional view in which the hub 3 and the shaft 10 are cut in parallel to the axis of the hole 12. 図2は、図1に示す動力伝達装置の嵌合状態を示す断面図であり、図2(a)は図1(c)のIIa−IIa線で切断した嵌合状態を示す図、図2(b)は図1(c)のIIb−IIb線で切断した嵌合状態を示す図である。2 is a cross-sectional view showing a fitting state of the power transmission device shown in FIG. 1, and FIG. 2 (a) is a diagram showing a fitting state cut along line IIa-IIa in FIG. 1 (c). (B) is a figure which shows the fitting state cut | disconnected by the IIb-IIb line | wire of FIG.1 (c). 図3は、本発明に係る圧縮機の動力伝達装置の第2の構成例を示す断面図であり、図2(a)は動力伝達装置全体を示す断面図、図2(b)はセンターボルトを示す側面図、図2(c)はシャフトの先端部を軸方向から見た図である。FIG. 3 is a cross-sectional view showing a second configuration example of the power transmission device of the compressor according to the present invention, FIG. 2 (a) is a cross-sectional view showing the whole power transmission device, and FIG. 2 (b) is a center bolt. FIG. 2C is a view of the tip of the shaft as seen from the axial direction. 図4は、図3に示す動力伝達装置の嵌合状態を示す断面図であり、図4(a)はセンターボルトを螺合する前の状態を示す図、図4(b)はセンターボルトを螺合した後の状態を示す図である。4 is a cross-sectional view showing a fitting state of the power transmission device shown in FIG. 3, FIG. 4 (a) is a view showing a state before the center bolt is screwed, and FIG. 4 (b) is a view showing the center bolt. It is a figure which shows the state after screwing. 図5は、本発明に係る圧縮機の動力伝達装置の第3の構成例を示す断面図であり、図5(a)はハブの孔とシャフトのそれぞれの断面を四角形にした例を示し、図5(b)はハブの孔とシャフトのそれぞれの断面を五角形にした例を示す図である。FIG. 5 is a cross-sectional view showing a third configuration example of the power transmission device for a compressor according to the present invention, and FIG. 5 (a) shows an example in which the cross section of each of the hole of the hub and the shaft is made square, FIG. 5B is a diagram showing an example in which the cross section of each of the hole of the hub and the shaft is pentagonal. 図6は、図5に示す動力伝達装置の変形例を示す断面図である。FIG. 6 is a cross-sectional view showing a modification of the power transmission device shown in FIG. 図7は、本発明に係る圧縮機の動力伝達装置の第4の構成例を示す断面図である。FIG. 7 is a cross-sectional view showing a fourth configuration example of the power transmission device for the compressor according to the present invention. 図8は、図7で示す動力伝達装置に用いられるシャフト10(図8(a))とハブ3(図8(b))の構成例を示す断面図である。FIG. 8 is a cross-sectional view showing a configuration example of the shaft 10 (FIG. 8A) and the hub 3 (FIG. 8B) used in the power transmission device shown in FIG. 図9は、図7及び図8に示す動力伝達装置の嵌合状態を示す断面図であり、図9(a)はハブとシャフトを軸方向に相対移動させて嵌合し始める部分での断面を示し、図9(b)はハブとシャフトを軸方向に相対移動させて嵌合し始める部分以外の部分での断面を示す図である。FIG. 9 is a cross-sectional view showing a fitting state of the power transmission device shown in FIGS. 7 and 8, and FIG. 9 (a) is a cross section at a portion where the hub and the shaft are relatively moved in the axial direction to start fitting. FIG. 9B is a diagram showing a cross section at a portion other than the portion where the hub and the shaft are relatively moved in the axial direction and the fitting is started. 図10は、本発明に係る圧縮機の動力伝達装置の第5の構成例を示す断面図であり、図10(a)は動力伝達装置全体を示す断面図、図10(b)はシャフトを示す側面図である。FIG. 10 is a cross-sectional view showing a fifth configuration example of the power transmission device of the compressor according to the present invention, FIG. 10 (a) is a cross-sectional view showing the whole power transmission device, and FIG. 10 (b) is a shaft. FIG. 図11は、図10に示す動力伝達装置の嵌合状態を示す断面図であり、図11(a)はハブとシャフトを軸方向に相対移動させて嵌合した場合の軸方向の一端側での断面を示し、図11(b)はハブとシャフトを軸方向に相対移動させて嵌合した場合の軸方向の他端側での断面を示す。FIG. 11 is a cross-sectional view showing a fitting state of the power transmission device shown in FIG. 10, and FIG. 11 (a) is at one end side in the axial direction when the hub and the shaft are relatively moved in the axial direction. FIG. 11B shows a cross section at the other end side in the axial direction when the hub and the shaft are relatively moved in the axial direction and fitted. 図12は、本発明に係る圧縮機の動力伝達装置の第6の構成例を示す断面図であり、図12(a)は内歯と外歯との関係を示す断面図であり、図12(b)は、ハブとシャフトとを軸方向に相対移動させて嵌合させる過程を示す側断面図である。12 is a cross-sectional view showing a sixth configuration example of the power transmission device for a compressor according to the present invention, and FIG. 12 (a) is a cross-sectional view showing the relationship between the internal teeth and the external teeth. (B) is a sectional side view showing a process in which a hub and a shaft are relatively moved in the axial direction and fitted. 図13は、図12に示す動力伝達装置の変形例を示す断面図であり、図13(a)は内歯と外歯との関係を示す断面図であり、図13(b)は、ハブとシャフトとを軸方向に相対移動させて嵌合させる過程を示す側断面図である。13 is a cross-sectional view showing a modification of the power transmission device shown in FIG. 12, FIG. 13 (a) is a cross-sectional view showing the relationship between internal teeth and external teeth, and FIG. 13 (b) is a hub. It is a sectional side view which shows the process in which a shaft and a shaft are relatively moved and fitted in an axial direction.

符号の説明Explanation of symbols

3 ハブ(第1の回転体)
10 シャフト(第2の回転体)
11 センターボルト
11a 基端部
12 孔
13 内歯
14 外歯
20 すり割
21,22 テーパ面
30 角型スプライン
31 角型スプライン軸
32、33 凹凸部
3 Hub (first rotating body)
10 Shaft (second rotating body)
DESCRIPTION OF SYMBOLS 11 Center bolt 11a Base end part 12 Hole 13 Internal tooth 14 External tooth 20 Slot 21, 22 Tapered surface 30 Square type spline 31 Square type spline shaft 32, 33 Uneven part

Claims (7)

回転動力が相互に伝達される第1及び第2の回転体を備え、前記第1の回転体に形成された孔の内部に前記第2の回転体を挿入し、前記孔の内周面に複数の内歯を形成すると共に前記第2の回転体の外周面に前記内歯と噛合する複数の外歯を形成することで前記第1及び第2の回転体を相互に連結している圧縮機の動力伝達装置において、
前記第1の回転体と前記第2の回転体とを前記孔の軸方向に相対移動させて前記内歯と前記外歯とが軸方向に嵌合し始める部分で前記内歯と前記外歯との間に隙間を形成し、前記嵌合し始める部分以外の部分で前記内歯の歯面と前記外歯の歯面とを圧接させるようにしたことを特徴とする圧縮機の動力伝達装置。
A first rotating body and a second rotating body for transmitting rotational power to each other; the second rotating body is inserted into a hole formed in the first rotating body; and the inner peripheral surface of the hole Compression that forms a plurality of internal teeth and connects the first and second rotary bodies to each other by forming a plurality of external teeth that mesh with the internal teeth on the outer peripheral surface of the second rotary body. In the power transmission device of the machine,
The inner teeth and the outer teeth at a portion where the first and second rotating bodies are relatively moved in the axial direction of the hole and the inner teeth and the outer teeth start to be fitted in the axial direction. A power transmission device for a compressor, wherein a gap is formed between the inner tooth and the tooth surface of the outer tooth at a portion other than the portion where the fitting starts. .
回転動力が相互に伝達される第1及び第2の回転体を備え、前記第1の回転体に形成された孔の内部に前記第2の回転体を挿入し、前記孔の内周面に複数の内歯を形成すると共に前記第2の回転体の外周面に前記内歯と噛合する複数の外歯を形成し、且つ、前記第1の回転体と前記第2の回転体とをセンターボルトで軸方向に締結することで前記第1及び第2の回転体を相互に連結している圧縮機の動力伝達装置において、
前記回転軸にすり割を設け、前記センターボルトの基端部の径を先端部に比べて大きく形成し、前記第2の回転体に螺合された前記センタボルトの基端部によって前記孔に挿入された第2の回転体の部分を径方向に拡大させるようにしたことを特徴とする圧縮機の動力伝達装置。
A first rotating body and a second rotating body for transmitting rotational power to each other; the second rotating body is inserted into a hole formed in the first rotating body; and the inner peripheral surface of the hole A plurality of internal teeth are formed and a plurality of external teeth meshing with the internal teeth are formed on an outer peripheral surface of the second rotating body, and the first rotating body and the second rotating body are centered. In the power transmission device for the compressor, the first and second rotating bodies are connected to each other by fastening in the axial direction with bolts.
A slit is provided on the rotating shaft, a diameter of a base end portion of the center bolt is formed larger than that of a front end portion, and the hole is formed by the base end portion of the center bolt screwed into the second rotating body. A power transmission device for a compressor, wherein a portion of the inserted second rotating body is expanded in a radial direction.
回転動力が相互に伝達される第1及び第2の回転体を備え、前記第1の回転体に形成された孔の内部に前記第2の回転体を挿入し、前記第1の回転体と前記第2の回転体とをセンターボルトで軸方向に締結することで前記第1及び第2の回転体を相互に連結している圧縮機の動力伝達装置において、
前記孔の断面を多角形状にすると共に、前記第2の回転体の断面を前記孔の断面形状に合わせた多角形状とし、前記第2の回転体にすり割を設けると共に前記センターボルトの基端部の径を先端部に比べて大きく形成し、前記回転軸に螺合された前記センタボルトの基端部によって前記孔に挿入された第2の回転体の部分を径方向に拡大させるようにしたことを特徴とする圧縮機の動力伝達装置。
A first rotating body and a second rotating body through which rotational power is transmitted to each other; the second rotating body is inserted into a hole formed in the first rotating body; and In the power transmission device for a compressor, which connects the first and second rotating bodies to each other by fastening the second rotating body in the axial direction with a center bolt.
The hole has a polygonal cross section, the second rotating body has a polygonal shape matching the hole cross sectional shape, the second rotating body is provided with a slit, and the base end of the center bolt The diameter of the part is formed larger than the tip part, and the part of the second rotating body inserted into the hole is expanded in the radial direction by the base end part of the center bolt screwed to the rotating shaft. A power transmission device for a compressor.
前記孔の内部に配される前記第2の回転体の部分を前記孔への挿入側から徐々に径を拡大するテーパ形状に形成したことを特徴とする請求項2又は3記載の圧縮機の動力伝達装置。 4. The compressor according to claim 2, wherein a portion of the second rotating body disposed inside the hole is formed in a tapered shape that gradually increases in diameter from the insertion side into the hole. Power transmission device. 回転動力が相互に伝達される第1及び第2の回転体を備え、前記第1の回転体に形成された孔の内部に前記第2の回転体を挿入して前記第1及び第2の回転体を相互に連結している圧縮機の動力伝達装置において、
前記孔の内周面に複数の凸部と凹部とからなる角形スプラインを形成し、前記第2の回転体の前記孔に挿入する外周部分に前記角型スプラインと嵌合する凸部と凹起とからなる角型スプライン軸を形成したことを特徴とする動力伝達装置。
First and second rotating bodies that transmit rotational power to each other are provided, and the first and second rotating bodies are inserted into holes formed in the first rotating body. In the power transmission device of the compressor that connects the rotating bodies to each other,
A square spline composed of a plurality of convex portions and concave portions is formed on the inner peripheral surface of the hole, and a convex portion and a raised portion that are fitted to the square spline at an outer peripheral portion to be inserted into the hole of the second rotating body. A power transmission device characterized in that a square spline shaft is formed.
回転動力が相互に伝達される第1及び第2の回転体を備え、前記第1の回転体に形成された孔の内部に前記第2の回転体を挿入し、前記孔の内周面に複数の内歯を形成すると共に前記第2の回転体の外周面に前記内歯と噛合する複数の外歯を形成することで前記第1及び第2の回転体を相互に連結している圧縮機の動力伝達装置において、
前記内歯と前記外歯の少なくとも一方を前記孔の軸心に対して所定のリード角を持たせて形成したことを特徴とする動力伝達装置。
A first rotating body and a second rotating body for transmitting rotational power to each other; the second rotating body is inserted into a hole formed in the first rotating body; and the inner peripheral surface of the hole Compression that forms a plurality of internal teeth and connects the first and second rotary bodies to each other by forming a plurality of external teeth that mesh with the internal teeth on the outer peripheral surface of the second rotary body. In the power transmission device of the machine,
A power transmission device, wherein at least one of the inner teeth and the outer teeth is formed with a predetermined lead angle with respect to the axial center of the hole.
回転動力が相互に伝達される第1及び第2の回転体を備え、前記第1の回転体に形成された孔の内部に前記第2の回転体を挿入し、前記孔の内周面に複数の内歯を形成すると共に前記第2の回転体の外周面に前記内歯と噛合する複数の外歯を形成することで前記第1及び第2の回転体を相互に連結している圧縮機の動力伝達装置において、
前記第1の回転体と前記第2の回転体とを前記孔の軸方向に相対移動させて前記内歯と前記外歯とが嵌合し始める部分において前記内歯と前記外歯の少なくとも一方を切り欠き、前記嵌合し始める部分以外の部分において前記内歯と前記外歯の少なくとも一方の歯先面と他方の歯底面とを圧接させるようにしたことを特徴とする動力伝達装置。
A first rotating body and a second rotating body for transmitting rotational power to each other; the second rotating body is inserted into a hole formed in the first rotating body; and the inner peripheral surface of the hole Compression that forms a plurality of internal teeth and connects the first and second rotary bodies to each other by forming a plurality of external teeth that mesh with the internal teeth on the outer peripheral surface of the second rotary body. In the power transmission device of the machine,
At least one of the internal teeth and the external teeth at a portion where the internal teeth and the external teeth begin to be engaged by relatively moving the first rotary body and the second rotary body in the axial direction of the hole. The power transmission device is characterized in that at least one tooth tip surface of the inner teeth and the outer teeth and the other tooth bottom surface are pressed in a portion other than the portion where the fitting starts.
JP2005142263A 2005-05-16 2005-05-16 Power transmission of compressor Pending JP2006316951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005142263A JP2006316951A (en) 2005-05-16 2005-05-16 Power transmission of compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005142263A JP2006316951A (en) 2005-05-16 2005-05-16 Power transmission of compressor

Publications (1)

Publication Number Publication Date
JP2006316951A true JP2006316951A (en) 2006-11-24

Family

ID=37537804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005142263A Pending JP2006316951A (en) 2005-05-16 2005-05-16 Power transmission of compressor

Country Status (1)

Country Link
JP (1) JP2006316951A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093622A1 (en) * 2007-01-29 2008-08-07 Toyota Jidosha Kabushiki Kaisha Rotor and rotating electric machine with the rotor
JP2013230753A (en) * 2012-04-27 2013-11-14 Ntn Corp Bearing device for wheel
WO2014034769A1 (en) * 2012-08-30 2014-03-06 株式会社Ihi回転機械 Support device for balance correction
JP2014077474A (en) * 2012-10-10 2014-05-01 Aisin Ai Co Ltd Spline connection structure
JP2014199140A (en) * 2014-06-04 2014-10-23 Ntn株式会社 Vehicle bearing device
KR20160104402A (en) * 2015-02-26 2016-09-05 한온시스템 주식회사 Power transmission device of comppressor
JP2017116108A (en) * 2017-03-10 2017-06-29 Ntn株式会社 Bearing device for vehicle and manufacturing method of bearing device for vehicle
DE102016213476A1 (en) * 2016-07-22 2018-01-25 Zf Friedrichshafen Ag Gearing with axial lock
CN113700754A (en) * 2021-09-28 2021-11-26 阿姆特(上海)新能源科技有限公司 Transmission flange, vehicle transmission system and vehicle
CN115163686A (en) * 2022-06-23 2022-10-11 郑州凯雪运输制冷设备有限公司 High-performance coupler for refrigerating unit

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187804A (en) * 2007-01-29 2008-08-14 Toyota Motor Corp Rotor and rotary electric machine equipped with rotor
US7948133B2 (en) 2007-01-29 2011-05-24 Toyota Jidosha Kabushiki Kaisha Rotor and rotating electric machine with the rotor
WO2008093622A1 (en) * 2007-01-29 2008-08-07 Toyota Jidosha Kabushiki Kaisha Rotor and rotating electric machine with the rotor
US9829048B2 (en) 2012-04-27 2017-11-28 Ntn Corporation Bearing device for wheel
JP2013230753A (en) * 2012-04-27 2013-11-14 Ntn Corp Bearing device for wheel
WO2014034769A1 (en) * 2012-08-30 2014-03-06 株式会社Ihi回転機械 Support device for balance correction
JP2014048091A (en) * 2012-08-30 2014-03-17 Ihi Compressor & Machinery Co Ltd Bearing device for correcting balance
JP2014077474A (en) * 2012-10-10 2014-05-01 Aisin Ai Co Ltd Spline connection structure
JP2014199140A (en) * 2014-06-04 2014-10-23 Ntn株式会社 Vehicle bearing device
KR20160104402A (en) * 2015-02-26 2016-09-05 한온시스템 주식회사 Power transmission device of comppressor
KR102067138B1 (en) * 2015-02-26 2020-01-17 한온시스템 주식회사 Power transmission device of comppressor
DE102016213476A1 (en) * 2016-07-22 2018-01-25 Zf Friedrichshafen Ag Gearing with axial lock
JP2017116108A (en) * 2017-03-10 2017-06-29 Ntn株式会社 Bearing device for vehicle and manufacturing method of bearing device for vehicle
CN113700754A (en) * 2021-09-28 2021-11-26 阿姆特(上海)新能源科技有限公司 Transmission flange, vehicle transmission system and vehicle
CN115163686A (en) * 2022-06-23 2022-10-11 郑州凯雪运输制冷设备有限公司 High-performance coupler for refrigerating unit
CN115163686B (en) * 2022-06-23 2023-12-22 郑州凯雪运输制冷设备有限公司 High-performance coupling for refrigerating unit

Similar Documents

Publication Publication Date Title
EP3453906B1 (en) Joint for torque transmission and electric power steering device
JP2008275027A (en) Manufacturing method of power transmission and power transmission manufactured by this method
JP6485543B2 (en) Torque transmission joint and worm reducer
JP6911892B2 (en) Torque transmission joint and worm reducer
JP2006316951A (en) Power transmission of compressor
JP2003035255A (en) Fastening structure of power transmission member
JP2013506096A (en) Gearbox and gearbox fastening method
JP5870906B2 (en) Ring gear mounting structure
EP1544487B1 (en) Rotation transmission member and method for assembling a rotation transmission member
JP2008291866A (en) Oil pump drive mechanism
EP2530349B1 (en) Centrifugal clutch device
JP2009281487A (en) Connection structure of crankshaft and rotary member
JP2006118586A (en) Power transmission device
JP5256958B2 (en) Electric power steering device
JP2004195475A (en) Plastically bonded part
JP4610242B2 (en) Joint structure of gear and rotating shaft, and planetary gear reducer using the same
JP2004068873A (en) Pinion washer
JP4244175B2 (en) Transmission shaft for brush cutter and method for manufacturing the same
JP2010202125A (en) Bearing device for driving wheel and method of manufacturing the same
JP5834651B2 (en) Geared shaft
JP2001032778A (en) Internal gear pump
EP1972811A2 (en) Power transmission device of a compressor
JP4635965B2 (en) Power transmission device
JP3804608B2 (en) Blower
JP2003314467A (en) Gear pump apparatus