[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006308403A - Spectroscopy unit - Google Patents

Spectroscopy unit Download PDF

Info

Publication number
JP2006308403A
JP2006308403A JP2005130752A JP2005130752A JP2006308403A JP 2006308403 A JP2006308403 A JP 2006308403A JP 2005130752 A JP2005130752 A JP 2005130752A JP 2005130752 A JP2005130752 A JP 2005130752A JP 2006308403 A JP2006308403 A JP 2006308403A
Authority
JP
Japan
Prior art keywords
light
optical fiber
wavelength
chromatic aberration
aberration lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005130752A
Other languages
Japanese (ja)
Inventor
Rikka Tanaka
六果 田中
Koji Horio
浩司 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moritex Corp
Original Assignee
Moritex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moritex Corp filed Critical Moritex Corp
Priority to JP2005130752A priority Critical patent/JP2006308403A/en
Publication of JP2006308403A publication Critical patent/JP2006308403A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attempt to resolve a problem that conventional large-scale spectroscopes are highly efficient but system becomes large and expensive, a small-scale spectroscopes can operate easily at a comparatively low price but a linear array detector used as a detector is not adequate to detect a faint light and requires a certain light quantity, and a spectroscopes consisting of filters and PMTs requires a filter and the PMT for each fluorescence wavelength of the desired number and further, when fluorescence wavelengths are close to each other, the decomposition of wavelength is impossible by the use of the filter in some cases. <P>SOLUTION: The spectroscopy unit is so constituted that, while an edge 5 of the optical fiber 2 continuing into a photodetector 3 is made to face a chromatic aberration lens 1 so as to be arranged movably along the its optical axis 6, a movement control mechanism 7 capable of controlling the migration position is prepared and, a light shielding section is prepared at the central side of the core at the edge of optical fiber. For the optical fiber, it is desirable to adopt the multimode fiber with high NA. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、各種装置,システム等に分光機能を付加するための分光ユニットに関するものである。   The present invention relates to a spectroscopic unit for adding a spectroscopic function to various apparatuses and systems.

各種装置,システム等に分光機能を付加するための手段としては,まずグレーティング又は分散プリズムと検出器とから構成したものがあり,近来は,検出器としてフォトダイオードアレイやCCD等のリニアアレイディテクタを使用した小型分光器も多くなっており,これらの分光器では,高速で簡単に分光スペクトルを得ることができる。   As a means for adding a spectroscopic function to various devices, systems, etc., there are firstly composed of a grating or a dispersion prism and a detector. Recently, a linear array detector such as a photodiode array or CCD is used as a detector. The number of small spectroscopes used has increased, and these spectrographs can easily obtain a spectroscopic spectrum at high speed.

一方,蛍光等の微弱光を高感度で検出する場合には,目的波長のみを通過させる複数のフィルターとPMT(光電子増倍管)を検出器とした構成したものも使用されている。   On the other hand, when detecting faint light such as fluorescence with high sensitivity, a configuration using a plurality of filters that allow only a target wavelength to pass and a PMT (photomultiplier tube) as a detector is also used.

更に,これらの構成を用いずに簡単に分光機能を付加する手段として,特許文献1では,試料からの光を色収差レンズにより収束すると共に,収束された光が通過するように配置したピンホールを,波長に応じて色収差レンズの光軸に沿って移動させる構成とし,ピンホールからの透過光を光検出器により検出するように構成したものが提案されている。
特開平1−188816号公報
Further, as means for easily adding a spectral function without using these configurations, Patent Document 1 discloses a pinhole arranged so that light from a sample is converged by a chromatic aberration lens and the converged light passes through. A configuration has been proposed in which the light is moved along the optical axis of the chromatic aberration lens in accordance with the wavelength, and the transmitted light from the pinhole is detected by a photodetector.
JP-A-1-188816

しかしながら上記の従来技術では次に示すような課題がある。
1.大型の分光器では,例えば2次光を抑えるフィルター交換が自動モーターなどで行えるようになっている等,高性能であるが、装置が大きくなり高価である。
2.また小型分光器は価格も比較的安く簡単に使用できるが、検出器として用いられているリニアアレイディテクタは微弱光の検出には不向きで、光量が必要となる。
3.微弱光を検出するための手段として,フィルターとPMTとから構成されるものでは、所望の数の蛍光波長に合わせてフィルターを複数枚数必要であると共に,また検出したい蛍光の数だけPMTが必要となり,また所望の数の蛍光波長同士が近接している場合には,フィルターでは波長分離ができない場合もある。
4.また,特許文献1のものでは,色収差を効果的に発生させるにはF値の小さいレンズを使用する必要があるが、F値が小さくなれば球面収差も同時に発生して収束する焦点が光軸上にずれるために、波長が異なる光も検出器に入ってしまうという欠点がある。
一般に、球面収差とはレンズ形状によって単色光で起こる収差で軸上の1点から出た光が1点に集まらない収差をいい、光軸中心から遠くなるほど、つまりレンズ中心から遠くなり,周縁側へいくほど焦点がずれていく現象である。この球面収差は、F値の大きいレンズを使用することで小さくすることが可能であるが、色収差を大きくするためには曲率半径の大きいレンズを使用することになり、結果として球面収差も大きくなり,これらを同時に解決することは困難である。
However, the above conventional techniques have the following problems.
1. A large spectroscope has high performance, for example, an automatic motor can be used to replace a filter that suppresses secondary light, but the apparatus is large and expensive.
2. Although a small spectroscope is relatively inexpensive and can be used easily, a linear array detector used as a detector is not suitable for detecting faint light and requires a light amount.
3. As a means for detecting faint light, a filter composed of a filter and a PMT requires a plurality of filters in accordance with a desired number of fluorescence wavelengths, and the PMT has the same number as the number of fluorescence to be detected. If the desired number of fluorescent wavelengths are close to each other, the filter may not be able to separate the wavelengths.
4. In Patent Document 1, it is necessary to use a lens having a small F value in order to effectively generate chromatic aberration. However, when the F value is small, a spherical aberration is also generated and the focal point converges. Since it is shifted on the optical axis, there is a disadvantage that light having different wavelengths also enters the detector.
In general, spherical aberration is an aberration that occurs in monochromatic light depending on the lens shape and does not collect light from one point on the axis. The farther from the center of the optical axis, that is, farther from the center of the lens, the peripheral side This is a phenomenon in which the focus shifts as the distance increases. This spherical aberration can be reduced by using a lens having a large F value, but in order to increase chromatic aberration, a lens having a large curvature radius is used, resulting in an increase in spherical aberration. It is difficult to solve these problems at the same time.

本発明は,以上の課題を解決することを目的とするもので,即ち,従来の分光器を用いずに,高感度で波長分解能の高い分光機能を利用することができる分光ユニットを提供することを目的とするものである。   An object of the present invention is to provide a spectroscopic unit that can use a spectroscopic function with high sensitivity and high wavelength resolution without using a conventional spectroscope. It is intended.

以上の課題を解決するために,本発明では、光検出器に連なる光ファイバーの端部を,色収差レンズに対向させて,その光軸に沿って移動可能に設置すると共に,その移動位置を制御可能な移動制御機構を設け,光ファイバーの端部のコアの中心側に遮光部を設けた分光ユニットを提案している。   In order to solve the above-described problems, in the present invention, the end of the optical fiber connected to the photodetector is placed facing the chromatic aberration lens so as to be movable along the optical axis, and the movement position can be controlled. Has proposed a spectroscopic unit that is equipped with a simple movement control mechanism and a light shielding part on the center side of the core at the end of the optical fiber.

そして本発明では、上記構成において,移動制御機構は,波長既知の光による測定に基づいて得られた波長と光ファイバーの端部の位置との対応関係の記憶手段を備えており,所望の波長に対して,対応関係から位置を求めて,その位置に移動させる構成とすることを提案している。   According to the present invention, in the above configuration, the movement control mechanism includes a storage unit that stores a correspondence relationship between the wavelength obtained based on the measurement using the light having a known wavelength and the position of the end of the optical fiber, and sets the desired wavelength. On the other hand, it has been proposed to obtain a position from the correspondence and move to that position.

以上の本発明においては,光ファイバーは,シングルモードファイバーではなく,高NAのマルチモードファイバーとすることが好ましい。   In the present invention described above, the optical fiber is preferably not a single mode fiber but a high NA multimode fiber.

ある波長の光が色収差レンズの周縁側を通って焦点を結ぶ位置に光ファイバーの端部を位置させると,それよりも波長が短く,色収差レンズの中心側を通って光ファイバーの端部の近傍に焦点を結ぶ光は,光ファイバーの端部のコアの中心側に設けた遮光部により遮光することができ,また上記ある波長の光が色収差レンズの中心側を通って焦点を結ぶ位置は,光ファイバーの端部よりも,更に色収差レンズから離れた位置であるので,ある波長の光は,中心側の一部が遮光部により遮光されるものの,他は遮光部の外側において高NAの光ファイバーのコア内に入射して光検出器により検出することができる。   If the end of the optical fiber is positioned at a position where light of a certain wavelength passes through the peripheral side of the chromatic aberration lens and is focused, the wavelength is shorter than that, and the light passes through the center of the chromatic aberration lens and is focused on the vicinity of the end of the optical fiber. Can be shielded by a light shielding portion provided on the center side of the core at the end of the optical fiber, and the position at which the light having a certain wavelength passes through the center side of the chromatic aberration lens is focused on the end of the optical fiber. Since it is located farther from the chromatic aberration lens than the chromatic aberration lens, a part of the center side of the light with a certain wavelength is shielded by the light shielding part, but the other is within the core of the high NA optical fiber outside the light shielding part. Incident light can be detected by a photodetector.

こうして本発明では、色収差レンズの球面収差による焦点のずれを排除し,また色収差の効果を高めることにより,高い光分解能での波長分離が可能となる。また光検出器としては,PMT等の高感度光検出器を使用することによりフィルターでは分光できないような波長差の蛍光試料等にも適用することができる。   Thus, according to the present invention, it is possible to perform wavelength separation with high optical resolution by eliminating defocus due to spherical aberration of the chromatic aberration lens and enhancing the effect of chromatic aberration. Moreover, as a photodetector, it can apply also to the fluorescence sample etc. of a wavelength difference which cannot be spectrally separated by a filter by using high sensitivity photodetectors, such as PMT.

移動制御機構に,波長既知の光による測定に基づいて得られた波長と光ファイバーの端部の位置との対応関係の記憶手段を備えることにより,所望の波長に対して,対応関係から位置を求めて,その位置に迅速に移動させることができる。   The movement control mechanism is provided with a storage means for the correspondence between the wavelength obtained based on the measurement using the light having a known wavelength and the position of the end of the optical fiber, so that the position can be obtained from the correspondence for the desired wavelength. Can be quickly moved to that position.

複数の波長に対応する夫々の位置に高速で次々に移動させることにより,複数波長の光に対する測定を行うことができる。   By moving to each position corresponding to a plurality of wavelengths one after another at a high speed, it is possible to measure light of a plurality of wavelengths.

次に本発明の実施例を添付図面を参照して説明する。
図1は本発明に係る分光ユニットの構成を示す系統図であり,また図2,図3は本発明の動作と,その原理を模式的に示す説明図である。
符号1は色収差レンズであり,2は光ファイバーである。光ファイバー2は光検出器3に接続されている。この光検出器3は,例えばPMT等の高感度光検出器を用いる。符号4は移動機構を示すものであり,この移動機構4は,光ファイバー2の端部5を色収差レンズ1に対向させて支持すると共に,この端部5を色収差レンズ1の光軸6に沿って移動可能としている。勿論,図に示すように,光ファイバー2の端部5の光軸は,色収差レンズ1の光軸6と一致させる。また光ファイバー2は,シングルモードファイバーではなく,高NAのマルチモードファイバーとしている。
Next, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a system diagram showing the configuration of a spectroscopic unit according to the present invention, and FIGS. 2 and 3 are explanatory diagrams schematically showing the operation and principle of the present invention.
Reference numeral 1 is a chromatic aberration lens, and 2 is an optical fiber. The optical fiber 2 is connected to the photodetector 3. As this photodetector 3, for example, a highly sensitive photodetector such as PMT is used. Reference numeral 4 denotes a moving mechanism. The moving mechanism 4 supports the end 5 of the optical fiber 2 so as to oppose the chromatic aberration lens 1 and supports the end 5 along the optical axis 6 of the chromatic aberration lens 1. It can be moved. Of course, as shown in the figure, the optical axis of the end portion 5 of the optical fiber 2 is made to coincide with the optical axis 6 of the chromatic aberration lens 1. The optical fiber 2 is not a single mode fiber but a high NA multimode fiber.

符号7は移動機構4の移動を制御する移動制御機構であり,この移動制御機構7には,波長既知の光による測定に基づいて得られた波長と,光ファイバー2の端部5の位置との対応関係を記憶する記憶手段8を備えており,測定すべき所望の波長に対して,記憶手段8に記憶させた対応関係から位置を求めて移動機構4を制御することにより,光ファイバー2の端部5を,求めた位置に移動させる構成としている。測定すべき波長が複数の場合には,夫々の位置を求めて移動機構4を制御して,光ファイバー2の端部5を,夫々の位置に高速で次々に移動させる制御を行う。   Reference numeral 7 denotes a movement control mechanism for controlling the movement of the movement mechanism 4, and the movement control mechanism 7 includes a wavelength obtained based on measurement using light having a known wavelength and a position of the end portion 5 of the optical fiber 2. A storage means 8 for storing the correspondence relationship is provided, and the end of the optical fiber 2 is controlled by determining the position from the correspondence relationship stored in the storage means 8 for the desired wavelength to be measured and controlling the moving mechanism 4. The unit 5 is configured to move to the obtained position. When there are a plurality of wavelengths to be measured, each position is obtained and the moving mechanism 4 is controlled, and the end 5 of the optical fiber 2 is controlled to move to each position one after another at a high speed.

図1,図2に示すように,色収差レンズ1を通った光は,色収差により,波長が長いほど,色収差レンズ1から,より離れた位置で焦点を結ぶと共に,球面収差により,図2に示すように,色収差レンズ1の中心側から周辺側に行くに従って,色収差レンズ1に,より近い位置で焦点を結ぶ。   As shown in FIG. 1 and FIG. 2, the light passing through the chromatic aberration lens 1 is focused at a position farther from the chromatic aberration lens 1 as the wavelength is longer due to chromatic aberration, and as shown in FIG. As described above, the focal point is set closer to the chromatic aberration lens 1 as it goes from the center side to the peripheral side of the chromatic aberration lens 1.

図2では,光の波長の違いを線種により表しており,例えば図1,図2の実線の光L2は破線の光L3よりも波長が長く,2点鎖線の光L1よりも波長が短い。尚,図において,色収差レンズ1の中心側を通る光には添字i,周縁側を通る光には添字oを付して区別する。 In FIG. 2, the difference in wavelength of light is represented by line types. For example, the solid line light L 2 in FIGS. 1 and 2 has a longer wavelength than the broken line light L 3 , and is longer than the two-dot chain line light L 1. The wavelength is short. In the drawing, the light passing through the center side of the chromatic aberration lens 1 is distinguished by attaching the suffix i, and the light passing through the peripheral edge is appended by the suffix o.

図2,図3に示すように,色収差レンズ1の中心側を通った光L3iが結ぶ焦点f3iは,この光L3よりも波長の長い光L2が色収差レンズ1の周縁側を通って結ぶ焦点f2oと近接している。 As shown in FIGS. 2 and 3, the focal point f 3i formed by the light L 3i passing through the center side of the chromatic aberration lens 1 is transmitted through the peripheral side of the chromatic aberration lens 1 by the light L 2 having a longer wavelength than the light L 3. It is close to the focal point f 2o .

ここで,ある波長の光,この場合,光L2の測定を行う場合には,図3に示すように,移動制御機構7により移動機構4を制御して光ファイバー2の端部5の端面を,光L2が色収差レンズ1の周縁側を通って結ぶ焦点f2oの位置にもたらす。尚,符号9は光ファイバー2のコア,10はクラッドであり,11は遮光部を示すものである。 Here, when measuring light of a certain wavelength, in this case, light L 2 , as shown in FIG. 3, the movement control mechanism 7 controls the movement mechanism 4 so that the end face of the end portion 5 of the optical fiber 2 is moved. , The light L 2 is brought to the position of the focal point f 2o that passes through the peripheral side of the chromatic aberration lens 1. Reference numeral 9 denotes a core of the optical fiber 2, 10 denotes a clad, and 11 denotes a light shielding portion.

この状態では光L2よりも波長の短い光L3が色収差レンズ1の中心側を通った光L3iは,コア9の中心側に設けた遮光部11により遮光される。色収差レンズ1を通った光L2のうち,色収差レンズ1の中心側を通った光L2iの一部は遮光部11により遮光されるが,色収差レンズ1の,より周縁側を通る光は遮光部11よりも外側に位置するので光ファイバー2のコア9内に入射して光検出器3により検出することができる。 In this state, the light L 3i that has passed through the center side of the chromatic aberration lens 1 with the light L 3 having a shorter wavelength than the light L 2 is shielded by the light shielding portion 11 provided on the center side of the core 9. Among the light L 2 that has passed through the chromatic aberration lens 1, a part of the light L 2i that has passed through the center side of the chromatic aberration lens 1 is shielded by the light shielding unit 11, but the light that passes through the peripheral side of the chromatic aberration lens 1 is shielded. Since it is located outside the section 11, it can enter the core 9 of the optical fiber 2 and be detected by the photodetector 3.

ここで遮光部11は,大きくすると,上述したように対象とする波長の光の,色収差レンズ1の中心側を通る部分を遮光する割合が大きくなるため,対象とする波長の光の光量が小さくなるが、波長分解能は高くなる。従って,遮光部11は,波長分解能と光量を勘案して適宜に決定することができる。   Here, if the light shielding unit 11 is increased, the ratio of light of the target wavelength that blocks the portion passing through the center side of the chromatic aberration lens 1 is increased as described above, so that the amount of light of the target wavelength is small. However, the wavelength resolution is increased. Therefore, the light shielding unit 11 can be appropriately determined in consideration of the wavelength resolution and the light quantity.

遮光部11は,光ファイバー2のコア9への光の入射を防止するものであるから,光を反射,散乱又は吸収する構成とすれば良く,例えば対応するコア9に傷を形成することにより,容易に散乱可能とすることができる。   Since the light shielding unit 11 prevents light from entering the core 9 of the optical fiber 2, the light shielding unit 11 may be configured to reflect, scatter, or absorb light. For example, by forming a scratch on the corresponding core 9, It can be easily scattered.

こうして本発明では、色収差レンズ1の球面収差による焦点のずれを排除し,また色収差の効果を高めることにより,高い光分解能での波長分離が可能となり,また光検出器3としては,PMT等の高感度光検出器を使用することにより,従来例として示した構成におけるフィルターでは分光できないような波長差の蛍光試料等にも適用することができる。   In this way, according to the present invention, the defocus due to the spherical aberration of the chromatic aberration lens 1 is eliminated, and the effect of chromatic aberration is enhanced, so that wavelength separation with high optical resolution becomes possible. By using a high-sensitivity photodetector, the present invention can be applied to a fluorescent sample having a wavelength difference that cannot be separated by a filter having the configuration shown as the conventional example.

上述したとおり,本発明では、移動制御機構7に,波長既知の光による測定に基づいて得られた波長と光ファイバー2の端部5の位置との対応関係の記憶手段を備えることにより,所望の波長の光に対して,対応関係から位置を求めることができ,これに基づいて移動機構4により,その位置に迅速に移動させることができる。   As described above, in the present invention, the movement control mechanism 7 is provided with a storage unit that stores the correspondence between the wavelength obtained based on the measurement using the light having a known wavelength and the position of the end portion 5 of the optical fiber 2. The position of the light having the wavelength can be obtained from the correspondence relationship, and based on this, the moving mechanism 4 can quickly move to the position.

そして,複数の波長に対応する夫々の位置に高速で次々に移動させることにより,複数波長の光に対する測定を行うことができる。   And it can measure with respect to the light of a plurality of wavelengths by moving to each position corresponding to a plurality of wavelengths one after another at high speed.

次にFRET(蛍光エネルギー移動)に良く利用される蛍光タンパク質のECFPとEYFPを同時に検出する場合について本発明を利用した実施例を説明する。
まず,ドナーであるECFPの最大励起波長は433nm,最大蛍光波長は474nmである。一方アクセプターであるEYFPの最大励起波長は512nm、最大蛍光波長は575nmである。
そこで,ECFP励起に波長405nmのレーザーダイオード(LD)を使用し、色収差レンズ1の材質にBK7を用いた場合を考えると、それぞれの波長における屈折率は、405nmで1.53024,474nmで1.52329,587nmで1.51680である。
一方,有効径3.6mm,546.1nmでの焦点距離6mmのレンズを色収差レンズ1として用いると、夫々の波長における焦点距離f(405nm)は5.85mm,f(474nm)は5.93mm,f(587nm)は6.00mmとなる。
上述した寸法から,色収差レンズ1のNAは0.29であるので、光ファイバー2のNAは0.29以上で,例えばコア9径を200μmとしたマルチモードタイプの光ファイバー2を用いる。
このとき,色収差レンズ1の球面収差による光軸6方向の焦点位置のずれは,159μmとなり、色収差レンズ1周縁部の光の焦点距離は,f(405nm)で5.69mm,f(474nm)は5.77mm,f(587nm)は5.84mmとなる。
このように色収差レンズ1の周縁部に対応したEYFPの焦点距離である5.84mmと、励起レーザー波長405nmの色収差レンズ1の中心部に対応した焦点距離5.85mmとが略同じ位置となり、そのままでは励起レーザーの光も同時に検出してしまう。
Next, an embodiment using the present invention will be described in the case of simultaneously detecting ECFP and EYFP of fluorescent proteins often used for FRET (fluorescence energy transfer).
First, ECFP as a donor has a maximum excitation wavelength of 433 nm and a maximum fluorescence wavelength of 474 nm. On the other hand, the acceptor EYFP has a maximum excitation wavelength of 512 nm and a maximum fluorescence wavelength of 575 nm.
Therefore, considering the case where a laser diode (LD) having a wavelength of 405 nm is used for ECFP excitation and BK7 is used as the material of the chromatic aberration lens 1, the refractive indexes at the respective wavelengths are 1.53024 at 405 nm, 1.52329 at 5474 nm, and 587 nm. 1.51680.
On the other hand, when a lens with an effective diameter of 3.6 mm and a focal length of 6 mm is used as the chromatic aberration lens 1, the focal length f (405 nm) at each wavelength is 5.85 mm, f (474 nm) is 5.93 mm, and f (587 nm). Is 6.00mm.
Since the NA of the chromatic aberration lens 1 is 0.29 from the above-described dimensions, the NA of the optical fiber 2 is 0.29 or more. For example, the multimode type optical fiber 2 having a core 9 diameter of 200 μm is used.
At this time, the shift of the focal position in the direction of the optical axis 6 due to the spherical aberration of the chromatic aberration lens 1 is 159 μm, and the focal length of the light at the periphery of the chromatic aberration lens 1 is 5.69 mm at f (405 nm) and 5.77 at f (474 nm). mm and f (587 nm) are 5.84 mm.
As described above, the focal length of 5.84 mm corresponding to the peripheral portion of the chromatic aberration lens 1 and the focal length of 5.85 mm corresponding to the central portion of the chromatic aberration lens 1 having the excitation laser wavelength of 405 nm are substantially the same positions. The laser light is also detected at the same time.

そこで,色収差レンズ1の中心側の20%を遮光し、光ファイバー2の端部5のコア9を,色収差レンズ1の周縁部を通った光の焦点位置に合わせると、その時の色収差レンズ1の有効径の中心側の20%を通った光の大きさは,1番大きい405nmの時で約61μmであるため、光ファイバー2のコア9の端面をφ61μmだけ遮光部11により遮光する。遮光は上述したように,その一つの手段として光を散乱させればよいので,簡単に行える方法として傷をつけた。
EYFPとEYFPの2つの蛍光を夫々検出するために必要な光ファイバー2の端部5の,光軸6方向の移動距離は150μmであり、光ファイバー2を,移動機構4としてのPZTステージを用い,移動制御機構7により制御して上記移動距離を高速スキャンさせ、高感度の光検出器3としてPMTを用いて同時測定を行い,夫々の波長においてノイズの少ない光信号の取得が可能となった。
Therefore, if 20% of the center side of the chromatic aberration lens 1 is shielded and the core 9 of the end 5 of the optical fiber 2 is aligned with the focal position of the light passing through the peripheral edge of the chromatic aberration lens 1, the effective chromatic aberration lens 1 at that time is effective. Since the magnitude of light passing through 20% on the center side of the diameter is about 61 μm at the largest 405 nm, the light shielding portion 11 shields the end face of the core 9 of the optical fiber 2 by φ61 μm. As described above, since light shielding is only required to scatter light as described above, the method is easily damaged.
The moving distance in the direction of the optical axis 6 of the end portion 5 of the optical fiber 2 necessary for detecting two fluorescences of EYFP and EYFP is 150 μm, and the optical fiber 2 is moved using a PZT stage as the moving mechanism 4. It was controlled by the control mechanism 7 to scan the moving distance at a high speed, and the PMT was used as the high-sensitivity photodetector 3 to perform simultaneous measurement, and it was possible to acquire an optical signal with little noise at each wavelength.

本発明は以上のとおりであるので、次のような効果があり,産業上の利用可能性が大である。
1.グレーティング又は分散プリズムと検出器とから構成される従来の分光器や,フィルター等を使用せずに,簡素な構成で,高感度で波長分解能の高い分光機能を実現することができる。
2.フィルターでは分光できないような波長差の小さい蛍光試料等にも適用することができる。
Since the present invention is as described above, the following effects are obtained and the industrial applicability is great.
1. A spectral function with high sensitivity and high wavelength resolution can be realized with a simple configuration without using a conventional spectroscope composed of a grating or dispersion prism and a detector, or a filter.
2. It can also be applied to a fluorescent sample having a small wavelength difference that cannot be separated by a filter.

本発明に係る分光ユニットの構成を示す系統図である。It is a systematic diagram which shows the structure of the spectroscopy unit which concerns on this invention. 本発明の動作と,その原理を模式的に示す説明図である。It is explanatory drawing which shows typically the operation | movement of this invention, and its principle. 本発明の動作と,その原理を模式的に示す説明図である。It is explanatory drawing which shows typically the operation | movement of this invention, and its principle.

符号の説明Explanation of symbols

1 色収差レンズ
2 光ファイバー
3 光検出器
4 移動機構
5 光ファイバーの端部
6 光軸
7 移動制御機構
8 記憶手段
9 コア
10 クラッド
11 遮光部
DESCRIPTION OF SYMBOLS 1 Chromatic aberration lens 2 Optical fiber 3 Optical detector 4 Movement mechanism 5 Optical fiber end part 6 Optical axis 7 Movement control mechanism 8 Storage means 9 Core 10 Clad 11 Light-shielding part

Claims (3)

光検出器に連なる光ファイバーの端部を,色収差レンズに対向させて,その光軸に沿って移動可能に設置すると共に,その移動位置を制御可能な移動制御機構を設け,光ファイバーの端部のコアの中心側に遮光部を設けたことを特徴とする分光ユニット The end of the optical fiber connected to the optical detector is opposed to the chromatic aberration lens and is installed so as to be movable along the optical axis, and a movement control mechanism capable of controlling the movement position is provided. Spectroscopic unit characterized in that a light-shielding part is provided at the center side of 移動制御機構は,波長既知の光による測定に基づいて得られた波長と光ファイバーの端部の位置との対応関係の記憶手段を備えており,所望の波長に対して,対応関係から位置を求めて,その位置に移動させる構成としたことを特徴とする請求項1に記載の分光ユニット The movement control mechanism is provided with a memory means for storing the correspondence relationship between the wavelength obtained based on the measurement with the light having a known wavelength and the position of the end of the optical fiber, and obtaining the position from the correspondence relationship with respect to the desired wavelength. The spectroscopic unit according to claim 1, wherein the spectroscopic unit is moved to the position. 光ファイバーは高NAのマルチモードファイバーとしたことを特徴とする請求項1に記載の分光ユニット
2. The spectroscopic unit according to claim 1, wherein the optical fiber is a high-NA multimode fiber.
JP2005130752A 2005-04-28 2005-04-28 Spectroscopy unit Pending JP2006308403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005130752A JP2006308403A (en) 2005-04-28 2005-04-28 Spectroscopy unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005130752A JP2006308403A (en) 2005-04-28 2005-04-28 Spectroscopy unit

Publications (1)

Publication Number Publication Date
JP2006308403A true JP2006308403A (en) 2006-11-09

Family

ID=37475465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005130752A Pending JP2006308403A (en) 2005-04-28 2005-04-28 Spectroscopy unit

Country Status (1)

Country Link
JP (1) JP2006308403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966409A (en) * 2017-12-29 2018-04-27 青岛崂应环境科技有限公司 Gas concentration analysis method and device
KR20200007297A (en) * 2018-07-12 2020-01-22 울산과학기술원 Apparatus for detecting laser based fluorescence

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966409A (en) * 2017-12-29 2018-04-27 青岛崂应环境科技有限公司 Gas concentration analysis method and device
KR20200007297A (en) * 2018-07-12 2020-01-22 울산과학기술원 Apparatus for detecting laser based fluorescence
KR102151775B1 (en) 2018-07-12 2020-09-03 울산과학기술원 Apparatus for detecting laser based fluorescence

Similar Documents

Publication Publication Date Title
KR101750188B1 (en) Confocal measurement device
US20190017938A1 (en) Diffractive biosensor
JP2017102067A (en) Optical measurement device
JP2008523383A (en) Multi-spot survey device
US8314407B2 (en) Optical illumination apparatus for illuminating a sample with a line beam
CN109596045B (en) Confocal measuring device
TWI673474B (en) Optical measuring device
JP4645176B2 (en) Spectroscopic microscope
JP6659548B2 (en) Multicolor scanning microscope
JP2021096251A (en) Device and method for coupling light having multiple different wavelengths with waveguide
US8619252B2 (en) Microscope including a light intensity measuring unit for measuring an intensity of light emitted from the microscope
JP5356804B2 (en) Raman scattered light measurement system
US20180136041A1 (en) Optical analysis system with optical conduit light delivery
NL2023275B1 (en) Alignment and readout of optical chips
KR101620594B1 (en) spectroscopy apparatus
JP2006308403A (en) Spectroscopy unit
US8742384B2 (en) Optical illumination apparatus and method having a reflective arrangement with moveable components for adjusting incident light
JP2007271528A (en) Coaxial compact fluorescence spectroscopic analyzer
US12085447B2 (en) Spectroscopy system
KR101403065B1 (en) Multichannel fluorescence detection system for laser induced fluorescence with capillary electrophoresis
JP2009192284A (en) Spectral unit, spectroscopic analyzer, and wavelength division multiplex transmission system
JP3494148B2 (en) Focus detection device and laser inspection processing device
KR101756364B1 (en) Optical Spectrometer of using Fiber Bragg Grating
JP2013195264A (en) Spectroscope and microspectroscopic system
JP2013200329A (en) Microscope system