[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006301130A - Electrostatic image developer and method for manufacturing the developer - Google Patents

Electrostatic image developer and method for manufacturing the developer Download PDF

Info

Publication number
JP2006301130A
JP2006301130A JP2005120389A JP2005120389A JP2006301130A JP 2006301130 A JP2006301130 A JP 2006301130A JP 2005120389 A JP2005120389 A JP 2005120389A JP 2005120389 A JP2005120389 A JP 2005120389A JP 2006301130 A JP2006301130 A JP 2006301130A
Authority
JP
Japan
Prior art keywords
particles
electrostatic image
developing toner
charge control
control agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005120389A
Other languages
Japanese (ja)
Inventor
Toshihiko Oguchi
壽彦 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morimura Chemicals Ltd
Original Assignee
Morimura Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morimura Chemicals Ltd filed Critical Morimura Chemicals Ltd
Priority to JP2005120389A priority Critical patent/JP2006301130A/en
Publication of JP2006301130A publication Critical patent/JP2006301130A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic image developer the charge amount of which rapidly reaches a saturation value with a small amount of friction and shows little change when friction is repeated. <P>SOLUTION: The electrostatic image developer comprises (α) a single toner for electrostatic image development in a particle state essentially comprising thermoplastic color resin particles, or (α) the above toner for electrostatic image development in a particle state essentially comprising thermoplastic color resin particles and (β) a triboelectric member in a particle state for triboelectric charging of the toner particles for electrostatic image development, wherein composite particles comprising carrier particles having 1 nm to 10 μm particle diameter and a charge controlling agent are externally added to the developer. The charge controlling agent particles depositing on the triboelectric member are charged, and the charged charge controlling agent particles move by the agitating effect in a developer agitating device to the surface of the color particles to charge the color resin particles. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は静電像潜像を可視化するための乾式静電像現像剤およびその製造方法に関する。   The present invention relates to a dry electrostatic image developer for visualizing an electrostatic latent image and a method for producing the same.

一般に、乾式静電像現像トナーは、これをキャリアと呼ばれる粒子状摩擦帯電部材と混合した2成分現像剤として、又は、このトナーを、制御ブレードなどを用いて摩擦しながら現像ロール上に層状に付着させて用いる1成分現像剤として使用される。1成分現像剤において、制御ブレードおよび現像ロールはトナーに摩擦帯電を付与する摩擦帯電部材として働いている。キャリア粒子表面や現像ロールあるいは制御ブレードなど(以下これらをキャリアなどの摩擦帯電部材と呼ぶ)の表面に付着したトナーは、キャリア表面との摩擦や現像ロールに圧接した制御ブレードとの摩擦によって所望の帯電量を獲得するので、これを感光体上などに形成した静電潜像に接触させると、感光表面には潜像電荷に応じた可視像を得ることができる。電子写真プロセスにおいて、上記した静電潜像の可視化工程は現像工程と呼ばれる重要な工程となっている。   Generally, a dry electrostatic image developing toner is a two-component developer mixed with a particulate frictional charging member called a carrier, or the toner is layered on a developing roll while rubbing with a control blade or the like. It is used as a one-component developer used by adhering. In the one-component developer, the control blade and the developing roll function as a frictional charging member that imparts frictional charge to the toner. The toner adhering to the surface of the carrier particles, the developing roll, or the control blade (hereinafter referred to as a friction charging member such as a carrier) is desired by friction with the carrier surface or friction with the control blade pressed against the developing roll. Since the amount of charge is acquired, when it is brought into contact with an electrostatic latent image formed on a photoreceptor, a visible image corresponding to the latent image charge can be obtained on the photosensitive surface. In the electrophotographic process, the above-described electrostatic latent image visualization step is an important step called a development step.

このようにして得られた現像像は紙などに転写され、この転写像を熱ロールと接触させると、トナーが熱融解して紙上に融着して紙上には定着したトナー像が得られる。一方感光体はクリーニングして再び静電潜像を形成しせしめ、同様に現像・転写工程が繰り返されて転写紙上に定着されたトナー像が印刷される。   The developed image thus obtained is transferred onto paper or the like, and when this transferred image is brought into contact with a heat roll, the toner is melted by heat and fused onto the paper, and a fixed toner image is obtained on the paper. On the other hand, the photosensitive member is cleaned to form an electrostatic latent image again, and similarly, the development / transfer process is repeated to print a toner image fixed on the transfer paper.

電子写真プロセスではこのように、静電潜像形成−現像−転写−クリーニング−静電潜像形成−……の各工程が繰り返され、転写工程により転写紙上に得られた転写画像は、熱定着されて複写装置から出てくる。   In the electrophotographic process, each process of electrostatic latent image formation-development-transfer-cleaning-electrostatic latent image formation-- is repeated, and the transfer image obtained on the transfer paper by the transfer process is thermally fixed. Then comes out of the copying machine.

さて、電子写真プロセスでは、上記工程を数万サイクル繰り返した後も転写紙上に得られた画像は初期のものとほとんど変わらないことが要求されており、これを達成するためには、現像工程に用いられるトナー粒子が一定の摩擦帯電量を保持し、静電潜像電荷に応じて忠実にトナー粒子が付着するものでなくてはならない。   In the electrophotographic process, the image obtained on the transfer paper is required to be almost the same as the initial one even after repeating the above steps for several tens of thousands of cycles. The toner particles used must maintain a certain amount of triboelectric charge and adhere to the toner particles faithfully according to the electrostatic latent image charge.

しかしながら、トナー粒子の帯電量はこれに帯電を付与するキャリア粒子などの摩擦帯電部材との摩擦によって獲得されるものであり、均質な転写像を得るためにはトナー粒子の帯電電荷の再現性確保というもっとも達成困難な課題と結びついている。   However, the charge amount of the toner particles is obtained by friction with a frictional charging member such as carrier particles for imparting charge to the toner particles, and in order to obtain a uniform transfer image, reproducibility of the charged charge of the toner particles is ensured. It is linked to the most difficult task to achieve.

一般に、静電像現像トナーの摩擦帯電量を確保する方法の一つとして、トナー中に電荷制御剤を練り込むことが行われている。電荷制御剤はその分子中に多数の官能基あるいはこれら官能基の塩を有する有機物が用いられることが多く、トナーの主成分である熱可塑性樹脂や顔料とともに 熱混練−粉砕−分級 して静電像現像トナーが作製されている。トナー中に帯電制御剤を練り込んだトナーの摩擦帯電量は、練り込まないトナーに比較して摩擦帯電の立ち上がりが著しく早くなり、また、安定で十分な摩擦帯電量が確保できるようになって、摩擦帯電特性が著しく改良される。しかしながら、静電像現像トナーがキャリアなどの摩擦帯電部材と長時間摩擦したり、現像プロセスを繰り返してゆくと、帯電量が徐々に低下する結果、しばしば所望の現像画質を確保できなくなるという問題が生じている。   In general, as one method for securing the triboelectric charge amount of electrostatic image developing toner, a charge control agent is kneaded into the toner. The charge control agent is often an organic substance having a large number of functional groups or salts of these functional groups in the molecule, and is electrostatically kneaded, pulverized and classified together with the thermoplastic resin and pigment as the main component of the toner. An image developing toner is produced. The triboelectric charge amount of the toner in which the charge control agent is kneaded into the toner is significantly faster than the non-kneaded toner, and the stable triboelectric charge amount can be secured. , The triboelectric charging characteristics are remarkably improved. However, when the electrostatic image developing toner rubs against a frictional charging member such as a carrier for a long time or the development process is repeated, the amount of charge gradually decreases, resulting in a problem that often the desired development image quality cannot be secured. Has occurred.

静電像現像トナーの摩擦帯電量を安定化させる別の方法として、外添剤の添加がある。外添剤には粒径 数十nm〜1μm 程度の有機あるいは無機の超微粒子が用いられ、一般に静電像現像トナー100重量部に対して数重量部が外添される。外添剤を含むトナーがキャリアなどの摩擦帯電部材と接触した場合、これら摩擦帯電部材との間で一定の摩擦帯電量を確保し、現像時にはトナー表面に付着した状態でキャリア表面から脱離するので、外添剤の帯電はトナー帯電に寄与することになる。   As another method for stabilizing the triboelectric charge amount of the electrostatic image developing toner, there is an addition of an external additive. As the external additive, organic or inorganic ultrafine particles having a particle size of about several tens of nm to 1 μm are used, and several parts by weight are generally externally added to 100 parts by weight of the electrostatic image developing toner. When toner containing an external additive comes into contact with a friction charging member such as a carrier, a certain amount of triboelectric charge is secured with the friction charging member, and is detached from the carrier surface while adhering to the toner surface during development. Therefore, charging of the external additive contributes to toner charging.

一般に粉体の摩擦帯電量はその比表面積に比例して増大するので、外添剤のような超微粒子は単位重量あたりの帯電量が非常に大きくなる。このような外添剤粒子がキャリア表面と接触したのちトナー表面を被覆すると、外添剤粒子が持ち込んだ電荷量分だけトナー帯電量が増加する。それゆえ外添剤は電荷制御効果を有する物質の一つとみることができる。しかしながら外添剤を添加した場合も長時間キャリアなどの摩擦帯電部材と摩擦していると、トナー表面やキャリア表面を構成する物質による汚染が進んだり、キャリア表面に埋没したり、現像時に外添剤が優先的に潜像面に移行するので、当初の帯電制御機能が維持できなくなる。この結果、当初の帯電制御効果は徐々に失われて最終的にはトナーの摩擦帯電量が低下し、所望の現像画質を保持できなくなるという問題が生じている。   In general, the triboelectric charge amount of powder increases in proportion to its specific surface area, so that the ultrafine particles such as external additives have a very large charge amount per unit weight. When the toner surface is coated after the external additive particles come into contact with the carrier surface, the toner charge amount is increased by the amount of charge brought in by the external additive particles. Therefore, the external additive can be regarded as one of substances having a charge control effect. However, even when an external additive is added, if it is rubbed with a frictional charging member such as a carrier for a long time, contamination with the toner surface or the material constituting the carrier surface proceeds, it is buried in the carrier surface, or externally added during development. Since the agent preferentially moves to the latent image surface, the original charge control function cannot be maintained. As a result, the initial charge control effect is gradually lost, eventually causing a problem that the amount of frictional charge of the toner is lowered and the desired development image quality cannot be maintained.

本発明は、静電像現像トナーの摩擦帯電における上記したような問題を解消すべくなされたもので、摩擦操作の開始とともに、少ない摩擦量で急速に帯電量が飽和値に達し、その後摩擦を繰り返した時の帯電量変化が非常に小さい静電像現像剤を提供することを目的とする。   The present invention has been made to solve the above-described problems in frictional charging of electrostatic image developing toner. With the start of the friction operation, the charged amount rapidly reaches a saturation value with a small amount of friction, and then the friction is reduced. An object of the present invention is to provide an electrostatic image developer that has a very small change in charge amount when it is repeated.

さらに本発明は、現像にともなって新たに補給する静電像現像トナーの帯電量が、もともと存在していた静電像現像トナーの飽和帯電量値に速やかに達し、静電像現像トナーの消費と追加による静電像現像トナー帯電量の変化を極力小さくするような静電像現像トナーを提供することを目的とする。   Further, according to the present invention, the charge amount of the electrostatic image developing toner newly replenished with the development quickly reaches the saturation charge amount value of the electrostatic image developing toner which originally existed, and the consumption of the electrostatic image developing toner is increased. It is an object of the present invention to provide an electrostatic image developing toner that minimizes the change in the charge amount of the electrostatic image developing toner due to the addition.

さらにまた本発明では、静電像現像トナー粒子の表面とキャリアなどの摩擦帯電部材表面との間に存在する電荷制御剤の量を一定範囲に保ち、摩擦を繰り返した場合の帯電量変化を極力小さくするための現像剤を提供することを目的とする。   Furthermore, in the present invention, the amount of the charge control agent existing between the surface of the electrostatic image developing toner particles and the surface of the friction charging member such as a carrier is kept within a certain range, and the change in the charge amount when the friction is repeated as much as possible. An object is to provide a developer for reducing the size.

本発明者は、上述した従来の難点のない静電像現像トナーを提供すべく、鋭意検討を重ねた結果、現像剤中に担体粒子と電荷制御剤とからなる複合粒子を外添することによって、前述した問題が解消し、帯電の立ち上がりが早く、摩擦を繰り返しても一定した所望の帯電量が長期にわたって確保できる静電像現像トナーが得られることを見出した。   As a result of intensive studies to provide the above-mentioned conventional electrostatic image developing toner, the present inventor has added a composite particle composed of carrier particles and a charge control agent to the developer. It has been found that an electrostatic image developing toner can be obtained in which the above-mentioned problems are solved, the charge rises quickly, and a constant desired charge amount can be secured over a long period of time even when friction is repeated.

すなわち本発明の静電像現像剤は、(イ)熱可塑性の着色樹脂粒子を主体とする粒子状の静電像現像トナー単独、または(イ)熱可塑性の着色樹脂粒子を主体とする粒子状の静電像現像トナーと、(ロ)前記静電像現像トナーの粒子を摩擦帯電させるための粒子状の摩擦帯電部材とからなる静電像現像トナーに、(ハ)粒径範囲が1nm〜10μmの担体粒子と電荷制御剤からなる複合粒子が外添されていることを特徴とする。   That is, the electrostatic image developer of the present invention is either (a) a particulate electrostatic image developing toner mainly composed of thermoplastic colored resin particles, or (a) a particulate form mainly composed of thermoplastic colored resin particles. And (b) a particle-shaped frictional charging member for frictionally charging the particles of the electrostatic image developing toner. A composite particle comprising 10 μm carrier particles and a charge control agent is externally added.

本発明における着色樹脂粒子は、熱可塑性樹脂粒子中に着色樹脂粒子を含有させてなる粒径2〜20μm、体積平均粒径が5〜10μm程度の着色樹脂粒子であって、熱溶融特性や離型性を改良するためにワックスなどを含み、また流動性を改良するためにその表面に超微粒のシリカ粉が外添された粒子もこの範疇に含まれる。着色樹脂粒子は、熱可塑性粒子と着色剤およびワックスなどを溶融混練したのち粉砕・分級して所望粒度の粒子を得、これにシリカ粉などを添加して得られる粉砕法によって得ることができる。また、最近ケミカルトナーと呼ばれる粒子のように、着色剤とワックスなどをモノマー中に分散し、分散液を水中にて懸濁重合する、水中に分散した微粒の熱可塑性樹脂や着色剤およびワックスを凝集させる、あるいは乳化した樹脂粒子およびワックス粒子と着色剤を凝集させる、などの方法によっても得ることができる。   The colored resin particles in the present invention are colored resin particles having a particle size of 2 to 20 μm and a volume average particle size of about 5 to 10 μm, which are obtained by including the colored resin particles in the thermoplastic resin particles, and have heat melting characteristics and separation properties. Particles containing wax or the like to improve moldability, and particles with ultrafine silica powder added externally to improve flowability are also included in this category. The colored resin particles can be obtained by a pulverization method obtained by melt-kneading thermoplastic particles, a colorant, wax, and the like, and then pulverizing and classifying them to obtain particles of a desired particle size, and adding silica powder or the like thereto. In addition, like particles called chemical toners, a colorant and wax are dispersed in a monomer, and the dispersion is suspended and polymerized in water. Fine particles of thermoplastic resin, colorant and wax dispersed in water are used. It can also be obtained by agglomerating or emulsifying resin particles and wax particles and a colorant.

本発明におけるキャリアなどの粒子状の摩擦帯電部材としては、その形態が実質的に球形で粒径が20μm〜200μmのフェライトの焼結体や鉄粉、ガラスビーズなどが用いられ、その表面にアクリル樹脂、シリコーン樹脂、フッ素樹脂などをカーボンブラックのような導電性粒子とともに被覆して帯電性を制御したものが用いられる。また、粒子状の摩擦帯電部材が用いられない場合には、上記した摩擦帯電部材と同質の材料で表面処理を施したゴムロール、金属ロールなどが用いられる。この場合、静電像現像剤は、現像過程において、これらのロール表面にブレードで押し付けられて摩擦帯電する。   As the particulate frictional charging member such as a carrier in the present invention, a sintered body of ferrite having a substantially spherical shape and a particle size of 20 μm to 200 μm, iron powder, glass beads, etc. are used, and an acrylic resin is used on the surface thereof. A resin, silicone resin, fluororesin, or the like coated with conductive particles such as carbon black to control the chargeability is used. When a particulate frictional charging member is not used, a rubber roll, a metal roll, or the like that has been surface-treated with the same material as the frictional charging member described above is used. In this case, the electrostatic image developer is frictionally charged by being pressed against the surface of these rolls with a blade in the development process.

本発明における複合粒子を構成する電荷制御剤粒子としては、一般に有機物を主体として構成されるもので、その分子中に高い密度でカルボニル基、酸性水酸基、ハロゲン基、ニトロ基、カルボキシル基、スルホン酸基、などのような酸性基または電子受容性基を含む物質、あるいはその分子中に高い密度でフェニル基、アミド基、アミノ基、アンモニウム基などの塩基性または電子供与性の基を含む物質、あるいはこれらの基と種々の有機・無機化合物との間で酸・塩基反応による塩が形成されている物質が用いられる。このような物質としては、例えば、ニグロシン、パラフェニルパラローズアニリンの硫酸塩に代表されるトリフェニルメタン染料の誘導体およびこれらの塩、含金属アゾ染料、ターシャリーブチルサリチル酸の金属錯体、アルキルまたはアルキルアリル基を有する第4アンモニウム塩、などが例示される。   The charge control agent particles constituting the composite particles in the present invention are generally composed mainly of organic matter, and have a high density in the molecule such as carbonyl group, acidic hydroxyl group, halogen group, nitro group, carboxyl group, sulfonic acid. A substance containing an acidic group or an electron-accepting group such as a group, or a substance containing a basic or electron-donating group such as a phenyl group, an amide group, an amino group or an ammonium group at a high density in the molecule; Alternatively, a substance in which a salt by an acid / base reaction is formed between these groups and various organic / inorganic compounds is used. Such substances include, for example, nigrosine, derivatives of triphenylmethane dyes typified by sulfates of paraphenylpararose aniline and salts thereof, metal-containing azo dyes, metal complexes of tertiary butyl salicylic acid, alkyl or alkyl Examples thereof include quaternary ammonium salts having an allyl group.

また、複合粒子 に用いられる担体粒子としては、熱可塑性樹脂、ワックス、熱可塑性樹脂の架橋体、などから形成される有機物粒子、金属酸化物、金属フッ化物、金属硫化物、金属窒化物、金属炭化物、金属硫酸化物、金属炭酸化物などから形成される無機物粒子であって、その粒径が1nm〜10μmの範囲内にある粒子が用いられ、粒子は実質的に球形のものが望ましい。   The carrier particles used in the composite particles include organic particles, metal oxides, metal fluorides, metal sulfides, metal nitrides, metal oxides formed from thermoplastic resins, waxes, crosslinked thermoplastic resins, etc. Inorganic particles formed from carbides, metal sulfates, metal carbonates, etc., particles having a particle size in the range of 1 nm to 10 μm are used, and the particles are preferably substantially spherical.

複合粒子は電荷制御剤が担体粒子の表面を被覆したものが望ましいが、必ずしも被覆したものでなくてもよく、たとえば担体粒子と電荷制御剤粒子とが互いに密に結びついて複合体を形成したものであってもよい。   The composite particles are preferably coated with the charge control agent on the surface of the carrier particles, but not necessarily coated, for example, the carrier particles and the charge control agent particles are intimately connected to each other to form a composite. It may be.

本発明者らが行った電荷制御剤を練り込んだ着色樹脂粒子の電荷制御実験によると、着色樹脂粒子の表面に存在する電荷制御剤のみが着色樹脂粒子の電荷制御に寄与していることが確認できた。すなわち、電荷制御剤を着色樹脂粒子に外添してキャリアなどと直接混合すると、混合操作中に生じた電荷制御剤の微粒子が着色樹脂粒子表面に付着して、従来のように着色樹脂粒子の作製時に電荷制御剤を熱可塑性樹脂や着色剤とともに 熱混練−粉砕−分級 して得た着色樹脂粒子に比較すると、電荷制御剤の使用量が重量で1/10 以下でも著しく大きな電荷制御効果を示すことを確かめられた。   According to the charge control experiment of the colored resin particles kneaded with the charge control agent conducted by the present inventors, only the charge control agent present on the surface of the colored resin particles contributes to the charge control of the colored resin particles. It could be confirmed. That is, when the charge control agent is externally added to the colored resin particles and directly mixed with the carrier or the like, the fine particles of the charge control agent generated during the mixing operation adhere to the colored resin particle surface, Compared to colored resin particles obtained by heat-kneading, pulverizing, and classifying the charge control agent together with the thermoplastic resin and colorant at the time of production, the charge control effect is remarkably large even when the amount of charge control agent used is 1/10 or less by weight. It was confirmed to show.

この結果は、外添した電荷制御剤による着色樹脂粒子の電荷制御が以下の(a)および(c)のプロセスを通して行なわれていると考えられる。すなわち、(a)外添された電荷制御剤粒子は、着色樹脂粒子とキャリアなどの摩擦帯電部材との間に存在し、その一部が摩擦帯電部材の表面との間で電荷交換を行なって両者は等量で逆の帯電電荷をもつ。(b)次いでこの帯電した電荷制御剤粒子が着色樹脂粒子の表面に付着して、着色樹脂粒子が帯電する。(c)電荷制御剤とキャリアなどの摩擦帯電部材 (B) との摩擦操作により電荷制御剤の微粒子が生成し、摩擦帯電部材の表面には電荷制御剤微粒子が供給されるので、混合操作によって(a)−(b)のプロセスを経て着色樹脂粒子に常に一定の帯電量が与えられる。   From this result, it is considered that the charge control of the colored resin particles by the externally added charge control agent is performed through the following processes (a) and (c). That is, (a) the externally added charge control agent particles exist between the colored resin particles and the friction charging member such as a carrier, and a part of the charge control agent particles exchanges charge with the surface of the friction charging member. Both are equal and have oppositely charged charges. (B) Next, the charged charge control agent particles adhere to the surface of the colored resin particles, and the colored resin particles are charged. (C) Fine particles of the charge control agent are generated by the friction operation between the charge control agent and the friction charging member (B) such as a carrier, and the charge control agent fine particles are supplied to the surface of the friction charging member. A constant charge amount is always given to the colored resin particles through the processes (a) to (b).

しかしながら、ここで問題となるのは、通常の電荷制御剤は10μm以上の一次粒径を有する結晶体の凝集物であることが多く、これをそのまま外添した場合、電荷制御剤の微粒子が生成してこれがキャリアなどの摩擦帯電部材の表面に付着しても、帯電制御を行なうに十分な電荷量を着色樹脂粒子(A)に与えることが出来ないこと、あるいは十分な帯電量に達するまでに時間を要して帯電量の立ち上がりが遅くなること、大粒径の電荷制御剤粒子が着色樹脂粒子 (A) とともに静電潜像に付着すると現像特性を劣化させること、などの問題が生ずる。   However, the problem here is that normal charge control agents are often aggregates of crystals having a primary particle size of 10 μm or more, and when this is added externally, fine particles of the charge control agent are formed. Even if this adheres to the surface of a friction charging member such as a carrier, it is impossible to give the colored resin particles (A) a sufficient amount of charge for charge control, or until a sufficient amount of charge is reached. There are problems such as slow rise of charge amount over time, and deterioration of development characteristics when charge control agent particles having a large particle size adhere to the electrostatic latent image together with the colored resin particles (A).

本発明者らは、上記した問題点を解決するために種々の検討をおこない、 上記 (a)〜(c)によって着色樹脂粒子の帯電が円滑に行なわれるためには、(1) 着色樹脂粒子および帯電摩擦帯電部材の表面に対する電荷制御剤粒子の着・脱が円滑に行なえること、(2)そのための電荷制御剤粒子の粒径範囲は数nm〜1μm超微粒子であることが望ましいこと、(3) これを達成するためには電荷制御剤粒子と担体粒子との複合体を使用することが必須であること、を確認した。   The present inventors have made various studies in order to solve the above-described problems, and in order to smoothly charge the colored resin particles according to the above (a) to (c), (1) colored resin particles The charge control agent particles can be smoothly attached to and detached from the surface of the charging friction charging member, and (2) the charge control agent particles for that purpose preferably have a particle size range of several nanometers to 1 μm ultrafine particles. 3) In order to achieve this, it was confirmed that it was essential to use a composite of charge control agent particles and carrier particles.

すなわち、通常用いられている電荷制御剤は数μm〜数十μmの結晶あるいは凝集体として存在しており、これらを粒径範囲は 数nm〜1μm超微粒子となるまで粉砕あるいは解砕することは非常に難しい。また、得られた超微粒子を安定な単離状態で着色樹脂粒子と 帯電摩擦帯電部材の間に供給することは非常に困難である。しかしながら、電荷制御剤の粉砕あるいは解砕に際して、粒径1nm〜10μmの担体粒子を共存させた場合、担体粒子は粉砕乃至は解砕助剤として有効に働くだけでなく、粉砕乃至は解砕によって生成したnm〜1μm粒子をその表面に付着させて安定化するので、超微粒の電荷制御剤粒子が再凝集することを防止できる。以上によって得られた担体粒子と電荷制御剤粒子の複合粒子は、着色樹脂粒子およびキャリアなどの摩擦帯電部材表面への電荷制御剤供給粒子と見做すことができ、さらに、この複合粒子から供給される電荷制御剤の粒径は数nm〜1μmに保つことができる。   That is, normally used charge control agents exist as crystals or aggregates of several μm to several tens of μm, and these can be pulverized or crushed until the particle size ranges from several nm to 1 μm ultrafine particles. very difficult. Also, it is very difficult to supply the obtained ultrafine particles between the colored resin particles and the charging friction charging member in a stable isolated state. However, when carrier particles having a particle size of 1 nm to 10 μm coexist at the time of pulverization or crushing of the charge control agent, the carrier particles not only effectively work as a crushing or crushing aid, but also by crushing or crushing. Since the generated nm to 1 μm particles are adhered to the surface and stabilized, it is possible to prevent re-aggregation of ultrafine charge control agent particles. The composite particles of carrier particles and charge control agent particles obtained as described above can be regarded as charge control agent supply particles to the surface of the frictional charging member such as colored resin particles and carriers, and further supplied from the composite particles. The particle size of the charge control agent applied can be kept between a few nm and 1 μm.

上記した複合粒子中の超微粒電荷制御剤粒子は、複合粒子のまま、あるいは担体粒子の表面から脱利した状態でキャリア粒子の表面に移行して帯電させることが出来、これが着色樹脂粒子の表面に移行して着色樹脂粒子を帯電することができる。   The ultrafine charge control agent particles in the above-mentioned composite particles can be charged by being transferred to the surface of the carrier particles as they are, or in a state of being depleted from the surface of the carrier particles. And the colored resin particles can be charged.

複合粒子は種々の方法によって作製できる。たとえば、電荷制御粒子を粉砕乃至は解砕する工程で担体粒子を混合する方法は効率の良い作製法である。この場合、担体粒子と電荷制御粒子とを所望の割合で強い剪断力を作用させつつ混合する方法はとくに好ましい。混合中に生じた電荷制御剤の微粉は担体粒子表面を被覆するが、被覆層を形成している電荷制御剤粒子は粒子外に存在する電荷制粒子や、外部の担体粒子の被覆層を形成している電荷制御剤粒子との摺り合わせにより、その一次粒径はさらに小さくなり、最終的には1nm 〜1μmの一次粒子径を有する帯電制御粒子の被覆層となる。担体粒子と帯電制御粒子の混合は水や有機溶剤などを添加しない乾式状態、水や有機溶剤を添加した湿式状態、あるいは粒径0.1〜数mmのアルミナやジルコニア製メディアを加えた状態で行なうことができる。   Composite particles can be produced by various methods. For example, a method of mixing carrier particles in a step of pulverizing or crushing charge control particles is an efficient production method. In this case, a method of mixing the carrier particles and the charge control particles while applying a strong shearing force at a desired ratio is particularly preferable. The fine powder of charge control agent generated during mixing coats the surface of the carrier particles, but the charge control agent particles forming the coating layer form charge control particles existing outside the particles and a coating layer of external carrier particles. By sliding with the charge control agent particles, the primary particle size is further reduced, and finally, a coating layer of charge control particles having a primary particle size of 1 nm to 1 μm is obtained. Mix carrier particles and charge control particles in a dry state without adding water or organic solvent, in a wet state with water or organic solvent added, or with alumina or zirconia media with a particle size of 0.1 to several mm. Can do.

均一な複合粒子を得るための強剪断力はディゾルバー、ハイスピードミキサー、ヘンシェルミキサー、ピンミル、ニーダ、2軸あるいは3軸押し出し機、ロールミル、ボールミル、アトライタ、ビーズミル、機械式ミル、ジェットミル、などを使用することにより得ることができる。   Strong shear force to obtain uniform composite particles includes dissolver, high speed mixer, Henschel mixer, pin mill, kneader, twin or triple screw extruder, roll mill, ball mill, attritor, bead mill, mechanical mill, jet mill, etc. It can be obtained by use.

これらの機器は担体粒子の種類あるいは担体粒子と電荷制御剤粒子の組み合わせによって、湿式あるいは乾式で行なうことが出来、湿式で行なう場合には水または有機溶剤が添加され、所望によっては電荷制御剤を溶解する分散媒が使用される。また上記機器による強剪断力下での混合は、-20℃〜200℃の温度範囲で行なうことができる。   These devices can be wet or dry depending on the type of carrier particles or a combination of carrier particles and charge control agent particles. When wet, water or an organic solvent is added. A dispersible dispersion medium is used. Moreover, the mixing under the strong shearing force by the above apparatus can be performed in a temperature range of -20 ° C to 200 ° C.

電荷制御剤あるいは電荷制御剤と担体粒子からなる複合粒子を水あるいは有機溶剤に分散させて得た分散液を着色剤粒子 (A) あるいはキャリアなどの摩擦帯電部材の表面に散布し、散布後に分散液を乾燥させることにより、着色樹脂粒子あるいはキャリアなどの摩擦帯電部材の表面に微粒の電荷制御剤粒子あるいは複合粒子の微粒子を外添することもできる。この方法においては分散液中の帯電制御剤や担体粒子の粒径分布をあらかじめ調整することが容易である。好ましい外添微粒子の粒子径範囲は1nm〜1μmであるが、帯電制御剤が溶解する場合にはより微粒の電荷制御剤粒子を容易に外添できることになる。   Disperse a dispersion liquid obtained by dispersing charge control agent or composite particles composed of charge control agent and carrier particles in water or organic solvent on the surface of triboelectric charging member such as colorant particles (A) or carrier, and disperse after dispersion By drying the liquid, fine charge control agent particles or composite particles can be externally added to the surface of the friction charging member such as colored resin particles or carriers. In this method, it is easy to previously adjust the particle size distribution of the charge control agent and carrier particles in the dispersion. A preferable particle diameter range of the externally added fine particles is 1 nm to 1 μm. However, when the charge control agent is dissolved, finer charge control agent particles can be easily externally added.

なお、担体粒子と電荷制御剤との混合比率が重量比で10:0.05〜0.05:10 の範囲であることが望ましい。   The mixing ratio of the carrier particles and the charge control agent is preferably in the range of 10: 0.05 to 0.05: 10 by weight.

上記において着色剤粒子あるいはキャリアなどの摩擦帯電部材を撹拌や回転して動的状態となし、これに上記分散液や電荷制御剤の溶液を散布することは、着色樹脂粒子 (A) あるいはキャリアなどの摩擦帯電部材の表面に粒径1nm〜1μmの電荷制御剤粒子あるいは複合粒子の微粒子を均一に外添するために有効である。   In the above, the friction charging member such as the colorant particles or the carrier is agitated or rotated to form a dynamic state, and the dispersion liquid or the charge control agent solution is sprayed on the colored resin particles (A) or the carrier. This is effective for uniformly externally adding charge control agent particles having a particle size of 1 nm to 1 μm or fine particles of composite particles to the surface of the frictional charging member.

(作用)
上記したように、着色樹脂粒子を主体とする静電像現像トナーおよびこの粒子を摩擦させるためのキャリアなどの摩擦帯電部材の少なくとも一方あるいはこれらの混合系に、 粒径が1nm〜10μm の電荷制御剤と担体粒子からなる複合粒子を添加した場合、トナーおよびキャリアなどの摩擦帯電部材の表面には着・脱可能な粒径 1nm〜1μm の電荷制御剤粒子が付着する。 摩擦帯電部材の表面に付着した電荷制御剤粒子には、摩擦帯電部材表面との間で電荷移動が生じて摩擦帯電部材と等量で逆極性の帯電が発生するが、帯電した電荷制御剤粒子が現像攪拌機内での攪拌作用によって、着色樹脂粒子の表面に移行すると、着色樹脂粒子が 帯電することになる。
(Function)
As described above, charge control with a particle size of 1 nm to 10 μm is applied to at least one of an electrostatic image developing toner mainly composed of colored resin particles and a friction charging member such as a carrier for rubbing the particles or a mixed system thereof. When composite particles composed of an agent and carrier particles are added, charge control agent particles having a particle size of 1 nm to 1 μm that can be attached and detached adhere to the surface of a frictional charging member such as toner and carrier. The charge control agent particles adhering to the surface of the frictional charging member cause charge transfer to and from the surface of the frictional charging member, and the charge of the opposite polarity is generated in the same amount as that of the frictional charging member. However, when the resin moves to the surface of the colored resin particles by the stirring action in the developing stirrer, the colored resin particles are charged.

着色樹脂粒子がこのようなメカニズムで帯電する場合、電荷制御剤粒子の大きさはできるだけ小さくすることが望ましく、従来用いられていたような大粒径の電荷制御剤粒子では電荷制御への作用効果が著しく制限されたものとなる。   When the colored resin particles are charged by such a mechanism, it is desirable to reduce the size of the charge control agent particles as much as possible. In the case of charge control agent particles having a large particle size as conventionally used, the effect of charge control is exerted. Is significantly limited.

すなわち、担体粒子と電荷制御剤との複合粒子は、着色樹脂粒子および摩擦帯電部材の 粒子の表面に望ましいとされる粒径 (1nm〜1μm) を有する電荷制御剤粒子の供給源として作用しており、仮に複合粒子がnm サイズの担体粒子および電荷制御剤粒子で構成されたμmサイズの集合粒子であっても、着色樹脂粒子と摩擦帯電部材との混合攪拌作用によってこれらが解砕されて超微粒の電荷制御剤を安定に供給できる。   That is, the composite particles of the carrier particles and the charge control agent act as a supply source of the charge control agent particles having a desirable particle size (1 nm to 1 μm) on the surface of the colored resin particles and the particles of the triboelectric charging member. Even if the composite particles are μm-sized aggregate particles composed of nm-sized carrier particles and charge control agent particles, these particles are crushed by the mixing and stirring action of the colored resin particles and the triboelectric charging member. A fine charge control agent can be stably supplied.

(1)従来のように静電像現像トナー中に電荷制御剤を練り込んで添加し、内包させた静電像現像トナーを使用した静電像現像剤に比較して帯電の立ち上がり特性を著しく改良された静電像現像剤を得ることができる。 (1) A charge control agent is kneaded and added to the electrostatic image developing toner as in the past, and the rising characteristics of the charge are remarkably higher than those of the electrostatic image developer using the encapsulated electrostatic image developing toner. An improved electrostatic image developer can be obtained.

(2)帯電した超微粒子の電荷制御剤は非常に少量の添加量で着色樹脂粒子に大きな帯電を付与することができるため、従来電荷制御剤を静電像現像トナー中に練りこんでいたときの使用量の 1/10 程度で十分な電荷制御効果を示す。 (2) The charged ultrafine charge control agent can impart a large charge to the colored resin particles with a very small addition amount, so when the conventional charge control agent has been kneaded into the electrostatic image developing toner. A sufficient charge control effect can be obtained with about 1/10 of the amount used.

(3)遊離した大粒径の電荷制御剤による感光体表面や摩擦帯電部材表面の汚染が生じない。 (3) No contamination of the surface of the photoreceptor or the surface of the frictional charging member due to the released large particle size charge control agent.

(4)静電像現像トナーとキャリアとの間で発生する摩擦帯電量の変動がきわめて小さく、安定で十分な帯電量が確保されるなど、優れた帯電特性が実現できる。 (4) Excellent charging characteristics can be realized, for example, the fluctuation of the triboelectric charge amount generated between the electrostatic image developing toner and the carrier is extremely small, and a stable and sufficient charge amount is ensured.

(5)本発明の複合粒子は粉砕法による静電像現像トナー表面への外添のみでなく、懸濁重合トナー、乳化重合凝集トナーなどへも適用できる。 (5) The composite particles of the present invention can be applied not only to external addition to the electrostatic image developing toner surface by a pulverization method but also to suspension polymerization toner, emulsion polymerization aggregation toner, and the like.

(6)本発明の複合粒子は乾式状態で添加可能なことはもちろん、分散液として使用すれば湿式状態でも添加できる。 (6) The composite particles of the present invention can be added in a dry state, as well as in a wet state if used as a dispersion.

以下本発明を実施するための形態について説明する。   Hereinafter, modes for carrying out the present invention will be described.

(実施例1)
ポリエステル樹脂 (ガラス転移温度60℃, 融点140℃,酸価 1.0 ) 100 重量部にフタロシアニンブルー4重量部、ワックス(融点85℃)2重量部を混合した後、二軸押し出し機で混練をおこなった。得られた混練物をジェット式ミルにより微粉砕し、分級を行って平均粒径7μm の着色樹脂粒子を得た。この粒子に平均粒径0.1μmの球形アクリル樹脂80重量部に20重量部のアルカリブルーを被覆した平均粒径 0.3 μの複合粒子 0.3重量部を加えてハイスピードミキサーで混合し、正帯電性の青色トナーを得た。得られた静電像現像トナー5重量部と平均粒径50μmのフェライトキャリア95重量部、をペイントコンディショナーで3分間混合して2成分現像剤を調整し、ブローオフ法でトナー帯電量を測定したところ、+40μC/gの帯電量を得、その後の混合による帯電量の増加率は10%以下で、帯電の立ち上がりが早く、帯電特性の安定な静電像現像トナーが得られていることが確認できた。
(Example 1)
Polyester resin (glass transition temperature 60 ° C, melting point 140 ° C, acid value 1.0) 100 parts by weight was mixed with 4 parts by weight of phthalocyanine blue and 2 parts by weight of wax (melting point 85 ° C), and then kneaded with a twin screw extruder. . The obtained kneaded material was pulverized by a jet mill and classified to obtain colored resin particles having an average particle diameter of 7 μm. To this particle, 80 parts by weight of spherical acrylic resin having an average particle size of 0.1 μm and 0.3 part by weight of composite particles having an average particle size of 0.3 μ coated with 20 parts by weight of alkali blue are added and mixed with a high speed mixer. A blue toner was obtained. 5 parts by weight of the obtained electrostatic image developing toner and 95 parts by weight of ferrite carrier having an average particle diameter of 50 μm were mixed for 3 minutes with a paint conditioner to prepare a two-component developer, and the toner charge amount was measured by the blow-off method. , + 40μC / g charge amount was obtained, and the rate of increase in charge amount after mixing was 10% or less, and it was confirmed that an electrostatic image developing toner with a stable charge characteristic was obtained with a quick rise in charge. It was.

上記青色トナー 100重量部にアミノシラン処理シリカ粒子2重量部を添加してミキサーで混合して正帯電型1成分現像剤を作製し、レーザープリンターにて印字率5%の標準パターンの印刷を行ったところ、画像濃度1.2,地汚れ濃度 0.06 の鮮明な画像が得られた。   2 parts by weight of aminosilane-treated silica particles were added to 100 parts by weight of the blue toner and mixed with a mixer to prepare a positively charged one-component developer, and a standard pattern with a printing rate of 5% was printed with a laser printer. However, a clear image with an image density of 1.2 and a background density of 0.06 was obtained.

上記アミノシラン処理シリカを外添したトナーを用いて、静電像現像トナーを補給しつつ5万枚の印字を重ねたときの静電像現像トナー帯電量の変動率は 10% 以下であり、画像濃度の低下がほとんど見受けられず、地汚れ濃度も 0.08を上回ることがなかった。   Using the toner externally added with aminosilane-treated silica, the fluctuation rate of the electrostatic image developing toner charge amount when 50,000 prints are superimposed while replenishing the electrostatic image developing toner is 10% or less. There was almost no decrease in density, and the soil density did not exceed 0.08.

(実施例2)
ポリエステル樹脂 (ガラス転移温度60℃, 融点140℃, 酸価 1.0) 100 重量部にフタロシアニンブルー4重量部、を混合した後、二軸押し出し機で混練をおこなった。得られた混練物をジェット式ミルにより微粉砕し、分級を行って平均粒径7μm の着色樹脂粒子を得た。この粒子 100重量部をハイスピードミキサーで撹拌しつつ平均粒径0.02μmのアルミナ粒子 50重量部に50重量部のアルカリブルーを被覆した平均粒径 0.25μmの複合粒子のヘプタン分散液(粒子濃度20%)1.5 重量部を散布したのち乾燥して正帯電性の青色静電像現像トナーを得た。
(Example 2)
Polyester resin (glass transition temperature 60 ° C., melting point 140 ° C., acid value 1.0) 100 parts by weight and 4 parts by weight of phthalocyanine blue were mixed and then kneaded by a twin screw extruder. The obtained kneaded material was pulverized by a jet mill and classified to obtain colored resin particles having an average particle diameter of 7 μm. A heptane dispersion of composite particles having an average particle diameter of 0.25 μm, in which 50 parts by weight of alumina particles having an average particle diameter of 0.02 μm and 50 parts by weight of alkali blue are mixed while stirring 100 parts by weight of the particles with a high speed mixer (particle concentration 20 %) 1.5 parts by weight were sprayed and dried to obtain a positively charged blue electrostatic image developing toner.

得られた青色静電像現像トナーの乾燥粉5重量部と平均粒径50μmのフェライトキャリア95重量部をペイントコンディショナーで3分間混合して2成分現像剤を調整し、ブローオフ法で静電像現像トナー帯電量を測定したところ、+45μC/gのトナー帯電量を得た。その後の30分まで混合したときの帯電量の増加率は10%以下であり、帯電の立ち上がりが早く帯電特性が安定な静電像現像トナーができていることが確認できた。   5 parts by weight of the dry powder of the obtained blue electrostatic image developing toner and 95 parts by weight of a ferrite carrier having an average particle diameter of 50 μm are mixed for 3 minutes with a paint conditioner to prepare a two-component developer, and electrostatic image development is performed by a blow-off method. When the toner charge amount was measured, a toner charge amount of +45 μC / g was obtained. Thereafter, the rate of increase of the charge amount when mixed for up to 30 minutes was 10% or less, and it was confirmed that an electrostatic image developing toner having a rapid charge start-up and stable charge characteristics was produced.

上記青色静電像現像トナー 100重量部にアミノシラン処理シリカ粒子2重量部を添加してミキサーで混合して正帯電型1成分現像剤を作製し、レーザープリンターにて印字率5%の標準パターンの印刷を行ったところ、画像濃度1.2,地汚れ濃度0.06の鮮明な画像が得られた。静電像現像トナーを補給しつつ10万枚の印字を重ねたときの静電像現像トナー帯電量の変動率は 10% 以下であり、画像濃度の低下がほとんど見受けられず、地汚れ濃度も 0.08 を上回ることがなかった。   100 parts by weight of the blue electrostatic image developing toner, 2 parts by weight of aminosilane-treated silica particles are added and mixed with a mixer to prepare a positively charged one-component developer, and a standard pattern with a printing rate of 5% is obtained with a laser printer. As a result of printing, a clear image with an image density of 1.2 and a background smudge density of 0.06 was obtained. The fluctuation rate of the electrostatic image development toner charge amount when printing over 100,000 sheets while replenishing electrostatic image development toner is 10% or less, there is almost no decrease in image density, and the background density is also low. Never exceeded 0.08.

(実施例3)
実施例2のアルカリブルー(正帯電型電荷制御剤) 微粒子をアルミナ微粒子表面に被覆してなる複合粒子を、ターシャリーブチルサリチル酸の亜鉛錯体(負帯電型電荷制御剤) 微粒子をヘキサメチルシラザン処理のシリカ粒子(一次粒径 8 nm)に被覆してなる複合粒子に変えた他は、実施例2と全く同様にして2成分現像剤を作製し、同様にして負帯電性青色静電像現像トナーの帯電量を測定したところ、−50μC/g の静電像現像トナー帯電量を得、その後30分まで混合を続けたときの帯電量増加は10%以下で、帯電量の立ち上がりが早く帯電特性が安定な負帯電性の静電像現像トナーができていることが確認できた。
(Example 3)
Example 2 Alkali blue (positive charge control agent) Composite particles formed by coating fine particles on the surface of alumina fine particles, tertiary butylsalicylic acid zinc complex (negative charge type charge control agent), fine particles treated with hexamethylsilazane A two-component developer was prepared in the same manner as in Example 2 except that the composite particles formed by coating silica particles (primary particle size 8 nm) were used. The charge amount of the electrostatic image developing toner was measured to be -50μC / g, and when the mixing was continued until 30 minutes, the increase in the charge amount was 10% or less, and the rise of the charge amount was quick. It was confirmed that a stable negatively chargeable electrostatic image developing toner was formed.

上記青色静電像現像トナー100重量部にヘキサメチルシラザン処理シリカ粒子2重量部を添加してミキサーで混合して正帯電型1成分現像剤を作製し、レーザープリンターにて印字率5%の標準パターンの印刷を行ったところ、画像濃度1.2,地汚れ濃度0.06の鮮明な画像が得られた。静電像現像トナーを補給しつつ10万枚の印字を重ねたときの静電像現像トナー帯電量の変動率は10% 以下であり、画像濃度の低下がほとんど見受けられず、地汚れ濃度も0.08を上回ることがなかった。     Two parts by weight of hexamethylsilazane-treated silica particles are added to 100 parts by weight of the blue electrostatic image developing toner and mixed with a mixer to produce a positively charged one-component developer. A standard with a printing rate of 5% using a laser printer When the pattern was printed, a clear image with an image density of 1.2 and a background density of 0.06 was obtained. The fluctuation rate of the electrostatic image developing toner charge amount when printing over 100,000 sheets while replenishing the electrostatic image developing toner is 10% or less, almost no decrease in image density is observed, and the background stain density is also low. Never exceeded 0.08.

(比較例1)
ポリエステル樹脂(酸価 0, ガラス転移温度60℃, 融点140℃, 酸価 1.0)100重量部にフタロシアニンブルー4重量部、ワックス(融点85℃)2重量部、アルカリブルー1.0重量部を混合した後、二軸押し出し機で混練をおこなった。得られた混練物をジェット式ミルにより微粉砕し、分級を行って平均粒径7μm の青色静電像現像トナーを得た。得られた粒子5重量部と平均粒径50μmのフェライトキャリア95重量部をペイントコンディショナーで3分間混合して2成分現像剤を調整し、ブローオフ法で帯電量を測定したところ、+ 30μC/g のトナー帯電量を得た。その後30分攪拌を続けたとき帯電量は徐々に増加し、増加率は20 %以上に達した。
(Comparative Example 1)
After mixing 100 parts by weight of polyester resin (acid value 0, glass transition temperature 60 ° C, melting point 140 ° C, acid value 1.0) with 4 parts by weight phthalocyanine blue, 2 parts by weight wax (melting point 85 ° C), and 1.0 part by weight alkali blue The mixture was kneaded with a twin screw extruder. The obtained kneaded material was finely pulverized by a jet mill and classified to obtain a blue electrostatic image developing toner having an average particle diameter of 7 μm. 5 parts by weight of the obtained particles and 95 parts by weight of a ferrite carrier having an average particle diameter of 50 μm were mixed with a paint conditioner for 3 minutes to prepare a two-component developer, and the charge amount was measured by a blow-off method. A toner charge amount was obtained. Thereafter, when stirring was continued for 30 minutes, the charge amount gradually increased, and the increase rate reached 20% or more.

上記青色静電像現像トナー 100重量部にアミノシラン処理シリカ粒子 2 重量部を添加してミキサーで混合して正帯電型1成分現像剤を作製し、レーザープリンターにて印字率5%の標準パターンの印刷を行ったところ、画像濃度1.2, 地汚れ濃度0.06の鮮明な画像が得られたが、静電像現像トナーを補給しつつ3000枚の印字を重ねたところ静電像現像トナー帯電量の変動率は30%を越え、画像濃度は0.8に低下した。また、現像画像の地汚れ濃度も0.10と増加した。   2 parts by weight of aminosilane-treated silica particles are added to 100 parts by weight of the blue electrostatic image developing toner and mixed with a mixer to prepare a positively charged one-component developer. A standard pattern with a printing rate of 5% is prepared with a laser printer. When the image was printed, a clear image with an image density of 1.2 and a background density of 0.06 was obtained. When 3000 sheets were printed with the electrostatic image developing toner replenished, the electrostatic image developing toner charge amount fluctuated. The rate exceeded 30% and the image density dropped to 0.8. In addition, the background density of the developed image also increased to 0.10.

(比較例2)
実施例3のターシャリーブチルサリチル酸の亜鉛錯体(負帯電型電荷制御剤)とヘキサメチルシラザン処理シリカ粒子との複合粒子をターシャリーブチルサリチル酸のみとして同様に電荷制御剤のみの外添静電像現像トナーを作製した他は、実施例2と全く同様にして2成分現像剤を作製した。
(Comparative Example 2)
The composite particle of the tertiary butyl salicylic acid zinc complex of Example 3 (negatively charged type charge control agent) and hexamethylsilazane-treated silica particles is used as the tertiary butyl salicylic acid alone, and the external electrostatic image development using only the charge control agent is used. A two-component developer was prepared in the same manner as in Example 2 except that the toner was prepared.

得られた粒子5重量部と平均粒径50μmのフェライトキャリア95重量部をペイントコンディショナーで3分間混合して2成分現像剤を調整し、ブローオフ法で帯電量を測定したところ、-30μC/g の静電像現像トナー帯電量を得た。その後30分攪拌を続けたとき帯電量は徐々に増加し、増加率は40%以上に達した。   5 parts by weight of the obtained particles and 95 parts by weight of a ferrite carrier having an average particle diameter of 50 μm were mixed with a paint conditioner for 3 minutes to prepare a two-component developer, and the charge amount was measured by the blow-off method. An electrostatic image developing toner charge amount was obtained. Thereafter, when stirring was continued for 30 minutes, the charge amount gradually increased, and the increase rate reached 40% or more.

上記青色静電像現像トナー 100重量部にヘキサメチルシラザン処理シリカ粒子2重量部を添加してミキサーで混合して正帯電型1成分現像剤を作製し、レーザープリンターにて印字率5%の標準パターンの印刷を行ったところ、画像濃度1.2,地汚れ濃度0.06の鮮明な青色画像が得られたが、静電像現像トナーを補給しつつ2000枚の印字を重ねたところの画像濃度の低下は0.3であり、地汚れ濃度も0.11と増加した。   Add 100 parts by weight of the above blue electrostatic image developing toner to 2 parts by weight of hexamethylsilazane-treated silica particles and mix with a mixer to produce a positively charged one-component developer. When the pattern was printed, a clear blue image with an image density of 1.2 and a background smudge density of 0.06 was obtained. However, the image density declined when 2000 prints were overlaid while supplying electrostatic image developing toner. It was 0.3, and the soil density increased to 0.11.

(実施例4)
スチレンモノマー80重量部、ブチルメタアクリレートモノマー20重量部、カーボンブラック5重量部、ポリエチレンワックス(平均粒径1.0μm, 融点100℃)2重量部、重合開始剤1重量部を乳化剤とともに水中で混合し、懸濁重合して平均粒径6.5μmの黒色粒子を得た。得られた黒色粒子を水洗して乳化剤などを除去したのちの水分散液に、含金属アゾ染料(金属:鉄,負帯電型電荷制御剤) とエステルワックス(融点75℃) からなる平均粒径300nmの複合粒子(含金属アゾ染料:ワックスの混合比率70:30)の20%水分散体0.5重量部を加えて撹拌混合した。得ら得られた混合分散体はフィルタープレスなどにより水を除去した後乾燥、解砕して黒色静電像現像トナーを得た。
Example 4
80 parts by weight of styrene monomer, 20 parts by weight of butyl methacrylate monomer, 5 parts by weight of carbon black, 2 parts by weight of polyethylene wax (average particle size 1.0 μm, melting point 100 ° C.) and 1 part by weight of a polymerization initiator are mixed in water together with an emulsifier. Then, suspension polymerization was performed to obtain black particles having an average particle diameter of 6.5 μm. The resulting black particles are washed with water to remove emulsifiers, etc., and then added to an aqueous dispersion to obtain an average particle diameter of a metal-containing azo dye (metal: iron, negatively charged charge control agent) and an ester wax (melting point: 75 ° C.). 0.5 parts by weight of a 20% aqueous dispersion of 300 nm composite particles (metal-containing azo dye: wax mixing ratio 70:30) was added and mixed with stirring. The obtained mixed dispersion was dried and crushed after removing water with a filter press or the like to obtain a black electrostatic image developing toner.

得られた黒色静電像現像トナーの乾燥粉5重量部と平均粒径50μmのフェライトキャリア95重量部をペイントコンディショナーで3分間混合して2成分現像剤を調整し、ブローオフ法で静電像現像トナー帯電量を測定したところ、-50μC/gの負帯電性静電像現像トナー帯電量を得た。その後この2成分現像剤を30分まで混合したときの帯電量の増加率は5%以下であり、帯電の立ち上がりが早く帯電特性が安定な静電像現像トナーができていることが確認できた。   5 parts by weight of the dry powder of the obtained black electrostatic image developing toner and 95 parts by weight of ferrite carrier having an average particle diameter of 50 μm are mixed for 3 minutes with a paint conditioner to prepare a two-component developer, and electrostatic image development is performed by the blow-off method. When the toner charge amount was measured, a negatively chargeable electrostatic image developing toner charge amount of -50 μC / g was obtained. Thereafter, when the two-component developer was mixed for up to 30 minutes, the rate of increase in charge amount was 5% or less, confirming that an electrostatic image developing toner having a quick charge rise and stable charge characteristics was produced. .

上記黒色静電像現像トナー100重量部にヘキサメチルシラザン処理シリカ粒子2重量部を添加してミキサーで混合して負帯電型1成分現像剤を作製し、レーザープリンターにて印字率5%の標準パターンの印刷を行ったところ、画像濃度1.5,地汚れ濃度 0.07 の鮮明な黒色画像が得られた。静電像現像トナーを補給しつつ2万枚の印字を重ねたときの静電像現像トナー帯電量の変動率は10% 以下であり、画像濃度の低下がほとんど見受けられず、地汚れ濃度も 0.08 を上回ることがなかった。   Add 2 parts by weight of hexamethylsilazane-treated silica particles to 100 parts by weight of the above black electrostatic image developing toner and mix with a mixer to prepare a negatively charged one-component developer. When the pattern was printed, a clear black image with an image density of 1.5 and background density of 0.07 was obtained. The fluctuation rate of the electrostatic image development toner charge amount when overlaying 20,000 prints while replenishing the electrostatic image development toner is 10% or less. Never exceeded 0.08.

(実施例5)
スチレン・ブチルメタアクリレート・アクリル酸(重量比 85:14:1)共重合体エマルション(固形分 30 wt%, 粒径 100 nm, ガラス転移点 60℃)300重量部をイオン交換水 2000 重量部、カーボンブラック5重量部、ポリエチレンワックス(融点80 ℃, 粒径 3000 nm)10重量部を加えてビーズミルを通して分散液を得た。得られた分散液を撹拌しつつ 40 wt% 塩化カルシウム水溶液150重量部を滴下して分散粒子を凝集せしめ、分散液温度を90 ℃にしてさらに5時間加熱攪拌して平均粒径8.0μmの黒色粒子を得た。この黒色静電像現像トナーの分散体に新たな水を加えつつ洗浄を行った後、ターシャリーブチルサリチル酸の亜鉛錯体と球形シリカ微粉(平均粒径 100nm)からなる平均粒径120nmの複合粒子(ターシャリーブチルサリチル酸:シリカの混合比率20:80)の20%水分散体0.5重量部を加えて撹拌混合した。次いでこの混合液をフィルタープレスし、得られたプレスケーキは60 ℃ の真空乾燥機に10時間保持して乾燥後、解砕しての黒色粒子を得た。
(Example 5)
Styrene / butyl methacrylate / acrylic acid (weight ratio 85: 14: 1) copolymer emulsion (solid content 30 wt%, particle size 100 nm, glass transition point 60 ° C.) 300 parts by weight ion-exchanged water 2000 parts by weight 5 parts by weight of carbon black and 10 parts by weight of polyethylene wax (melting point 80 ° C., particle size 3000 nm) were added and a dispersion was obtained through a bead mill. While stirring the resulting dispersion, 150 parts by weight of a 40 wt% calcium chloride aqueous solution was added dropwise to agglomerate the dispersed particles. The dispersion temperature was set to 90 ° C. and the mixture was further heated and stirred for 5 hours to obtain a black particle having an average particle size of 8.0 μm. Particles were obtained. The black electrostatic image developing toner dispersion was washed while adding new water, and then a composite particle having an average particle size of 120 nm composed of a zinc complex of tertiary butylsalicylic acid and spherical silica fine powder (average particle size of 100 nm) ( 0.5 part by weight of a 20% aqueous dispersion of a tertiary butyl salicylic acid: silica mixing ratio 20:80) was added and mixed with stirring. Subsequently, this mixed liquid was subjected to filter press, and the obtained press cake was kept in a vacuum dryer at 60 ° C. for 10 hours, dried, and then crushed to obtain black particles.

得られた黒色静電像現像トナーの乾燥粉5重量部と平均粒径50μmのフェライトキャリア95重量部をペイントコンディショナーで混合して2成分現像剤を調整し、ブローオフ法で静電像現像トナー帯電量を測定したところ、混合時間2分での初期帯電量は−50μC/g であり、混合時間を30分まで増加したときの帯電量増加は10%以下であった。   The resulting black electrostatic image developing toner 5 parts by weight of dry powder and 95 parts by weight of ferrite carrier having an average particle size of 50 μm are mixed with a paint conditioner to prepare a two-component developer, and electrostatic image developing toner is charged by the blow-off method. When the amount was measured, the initial charge amount at the mixing time of 2 minutes was −50 μC / g, and the increase in charge amount when the mixing time was increased to 30 minutes was 10% or less.

ついで、上記黒色静電像現像トナー100重量部に対してヘキサメチルジシラザン処理シリカ粉1.0重量%を外添した静電像現像トナー5重量部を球形フェライトキャリア95重量部と混合した2成分現像剤を作製し、レーザープリンターにて印字率5%の標準パターンの印刷を行ったところ、画像濃度1.5A,地汚れ濃度0.06の鮮明な黒色画像が得られた。静電像現像トナーを補給しつつ2万枚の印字を重ねたときの静電像現像トナー帯電量の変動率は10% 以下であり、画像濃度の低下がほとんど見受けられず、地汚れ濃度も0.08を上回ることがなかった。   Next, two-component development in which 5 parts by weight of an electrostatic image developing toner obtained by externally adding 1.0% by weight of hexamethyldisilazane-treated silica powder to 100 parts by weight of the black electrostatic image developing toner is mixed with 95 parts by weight of a spherical ferrite carrier. When an agent was prepared and a standard pattern was printed with a laser printer at a printing rate of 5%, a clear black image with an image density of 1.5 A and a background stain density of 0.06 was obtained. The fluctuation rate of the electrostatic image development toner charge amount when overlaying 20,000 prints while replenishing the electrostatic image development toner is 10% or less. Never exceeded 0.08.

Claims (8)

(イ)熱可塑性の着色樹脂粒子 を主体とする粒子状の静電像現像トナー単独、または(イ)熱可塑性の着色樹脂粒子を主体とする粒子状の静電像現像トナーと、(ロ)前記静電像現像トナーの粒子を摩擦帯電させるための粒子状の摩擦帯電部材とからなる静電像現像剤において、(ハ)粒径範囲が1nm〜10μmの担体粒子と電荷制御剤からなる複合粒子と、が外添されていることを特徴とする静電像現像剤。   (A) a particulate electrostatic image developing toner mainly composed of thermoplastic colored resin particles, or (a) a particulate electrostatic image developing toner mainly composed of thermoplastic colored resin particles; An electrostatic image developer comprising a particulate triboelectric charging member for frictionally charging particles of the electrostatic image developing toner, (c) a composite comprising carrier particles having a particle size range of 1 nm to 10 μm and a charge control agent And an electrostatic image developer to which particles are externally added. (イ)熱可塑性の着色樹脂粒子を主体とする粒子状の静電像現像トナーと、(ロ)前記静電像現像トナーの粒子を摩擦帯電させるための粒子状の摩擦帯電部材とからなる静電像現像剤において、前記静電像現像トナーの粒子及び前記摩擦帯電部材の少なくとも一方の表面に、(ハ)粒径範囲が1nm〜10μmの担体粒子と電荷制御剤からなる複合粒子と、が外添されていることを特徴とする静電像現像剤。   (A) a static electrostatic image developing toner composed mainly of colored thermoplastic resin particles; and (b) a particulate frictional charging member for frictionally charging the electrostatic image developing toner particles. In the electrostatic image developer, (c) composite particles composed of carrier particles having a particle size range of 1 nm to 10 μm and a charge control agent are provided on at least one surface of the electrostatic image developing toner particles and the frictional charging member. An electrostatic image developer which is externally added. 前記(ハ)の複合粒子は、担体粒子の表面に電荷制御剤を付着させ若しくは被覆したものであることを特徴とする請求項1又は2記載の静電像現像剤。   3. The electrostatic image developer according to claim 1, wherein the composite particles (c) are obtained by attaching or coating a charge control agent on the surface of carrier particles. (ハ)の複合粒子を構成する担体粒子が実質的に球形であることを特徴とする請求項1乃至3項のいずれか1項記載の静電像現像剤。   The electrostatic image developer according to any one of claims 1 to 3, wherein the carrier particles constituting the composite particles of (c) are substantially spherical. (ハ)の複合粒子は、前記(イ)の静電像現像トナー、及び(ロ)の摩擦帯電部材、の少なくとも一方の表面に、摩擦によって少なくともその一部が脱着可能に被覆されていることを特徴とする請求項1乃至4項のいずれか1項記載の静電像現像剤。   (C) The composite particles (c) are at least partially coated by friction with at least one surface of the electrostatic image developing toner (a) and the friction charging member (b). The electrostatic image developer according to claim 1, wherein the developer is an electrostatic image developer. 担体粒子と電荷制御剤との混合比率が重量比で10:0.05〜0.05:10 の範囲であることを特徴とする請求項1乃至5のいずれか1項記載の静電像現像剤。   6. The electrostatic image developer according to claim 1, wherein the mixing ratio of the carrier particles and the charge control agent is in the range of 10: 0.05 to 0.05: 10 by weight. (イ)熱可塑性の着色樹脂粒子を主体とする粒子状の静電像現像トナー単独、または(イ)熱可塑性の着色樹脂粒子 を主体とする粒子状の静電像現像トナーと、(ロ)前記静電像現像トナーの粒子を摩擦帯電させるための粒子状の摩擦帯電部材とからなる静電像現像剤の製造方法において、
前記(イ)静電像現像トナー及び(ロ)前記摩擦帯電部材の少なくとも一方を構成する成分に(ハ)前記複合粒子を溶解又は分散させる分散工程と、
前記複合粒子を溶解又は分散させた溶液又は分散液を(イ)あるいは(ロ)に散布する散布工程と、
前記散布工程で散布された液を乾燥させる工程と
を有することを特徴とする静電像現像剤の製造方法。
(A) Particulate electrostatic image developing toner mainly composed of thermoplastic colored resin particles, or (a) Particulate electrostatic image developing toner mainly composed of thermoplastic colored resin particles; In a method for producing an electrostatic image developer comprising a particulate frictional charging member for frictionally charging particles of the electrostatic image developing toner,
(C) a dispersion step of dissolving or dispersing the composite particles in a component constituting at least one of the (a) electrostatic image developing toner and (b) the frictional charging member;
A spraying step of spraying (b) or (b) a solution or dispersion in which the composite particles are dissolved or dispersed;
And a step of drying the liquid sprayed in the spraying step.
重合法によって得られた(イ)熱可塑性の着色樹脂粒子の分散液に、(ロ)電荷制御剤あるいは担体粒子と電荷制御剤とからなる複合粒子を添加して混合する工程と、
得られた分散液から分散媒を除去して乾燥する工程とを有することを特徴とする静電像用トナーの製造方法。
(B) adding a charge control agent or composite particles composed of carrier particles and a charge control agent to the dispersion of thermoplastic colored resin particles obtained by the polymerization method and mixing them;
And a step of removing the dispersion medium from the obtained dispersion and drying it.
JP2005120389A 2005-04-18 2005-04-18 Electrostatic image developer and method for manufacturing the developer Withdrawn JP2006301130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005120389A JP2006301130A (en) 2005-04-18 2005-04-18 Electrostatic image developer and method for manufacturing the developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005120389A JP2006301130A (en) 2005-04-18 2005-04-18 Electrostatic image developer and method for manufacturing the developer

Publications (1)

Publication Number Publication Date
JP2006301130A true JP2006301130A (en) 2006-11-02

Family

ID=37469514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005120389A Withdrawn JP2006301130A (en) 2005-04-18 2005-04-18 Electrostatic image developer and method for manufacturing the developer

Country Status (1)

Country Link
JP (1) JP2006301130A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014238450A (en) * 2013-06-06 2014-12-18 富士ゼロックス株式会社 Electrostatic charge image developer, process cartridge, image forming method, and image forming apparatus
JP2016139039A (en) * 2015-01-28 2016-08-04 京セラドキュメントソリューションズ株式会社 Positively charged toner for electrostatic latent image development

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014238450A (en) * 2013-06-06 2014-12-18 富士ゼロックス株式会社 Electrostatic charge image developer, process cartridge, image forming method, and image forming apparatus
JP2016139039A (en) * 2015-01-28 2016-08-04 京セラドキュメントソリューションズ株式会社 Positively charged toner for electrostatic latent image development

Similar Documents

Publication Publication Date Title
KR20140075684A (en) Charge control agent composition for external addition and electrostatic image developing toner
DE60033992T2 (en) Charge control agents, manufacturing methods and toners for developing electrostatic images
JP3063913B2 (en) Method for producing toner for developing electrostatic images
JP2006301130A (en) Electrostatic image developer and method for manufacturing the developer
JPH06317933A (en) Magnetic toner and electrophotographic method
JPH09281742A (en) Developer
JPS61217055A (en) Electrostatic charge image developing toner
JP4165822B2 (en) Full color toner kit, process cartridge, image forming method and image forming apparatus
JP2788634B2 (en) Non-magnetic one-component toner for electrostatic image development
JP3445126B2 (en) Image forming method and image forming apparatus
JPH0534971A (en) Production of electrostatic latent image developing toner
JPS63155156A (en) Production of electrostatic charge developing toner
JPS61117565A (en) Method for producing toner composition for electrophotography
JP4355645B2 (en) Non-magnetic one-component developer and image forming method
JP3164453B2 (en) Toner for developing electrostatic images
JPS6199155A (en) Toner
JPH09325521A (en) Electrostatic image developing toner and electrostatic image developing method
JPH0547113B2 (en)
WO2007061142A1 (en) Yellow toner
JPS60192958A (en) Electrostatic image developing toner and its manufacture
JPH03155567A (en) Production of toner for developing electrostatic latent image and production of dye and pigment dispersion used therefor
JPH01126670A (en) Electrophotographic image producing method
JPH03155568A (en) Toner for developing electrostatic latent image and production of master batch therefor
JP2001201889A (en) Method for producing yellow toner
JPH11327194A (en) Electrostatic image developing toner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701