[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006300742A - Chemical substance detection device using oscillation frequency adjusting system - Google Patents

Chemical substance detection device using oscillation frequency adjusting system Download PDF

Info

Publication number
JP2006300742A
JP2006300742A JP2005123201A JP2005123201A JP2006300742A JP 2006300742 A JP2006300742 A JP 2006300742A JP 2005123201 A JP2005123201 A JP 2005123201A JP 2005123201 A JP2005123201 A JP 2005123201A JP 2006300742 A JP2006300742 A JP 2006300742A
Authority
JP
Japan
Prior art keywords
frequency
chemical substance
circuit
substance detection
detection apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005123201A
Other languages
Japanese (ja)
Inventor
Susumu Tanaka
進 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Prefecture
Original Assignee
Shizuoka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Prefecture filed Critical Shizuoka Prefecture
Priority to JP2005123201A priority Critical patent/JP2006300742A/en
Publication of JP2006300742A publication Critical patent/JP2006300742A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chemical substance detection device having no problem of cost or a circuit design even if a high-speed vibrator is used, by solving the problem of cost increase or designing wherein when an oscillation frequency band of a vibrator becomes a high frequency band exceeding several-ten MHz, a low-cost TTLIC used in common at present cannot be used as it is. <P>SOLUTION: This chemical substance detection device utilizing a piezoelectric oscillator is provided with: a piezoelectric oscillation circuit 7 for oscillating with a resonance frequency of the piezoelectric oscillator; and a fixed frequency oscillation circuit 9 for oscillating with a fixed frequency. In the device, an output frequency of the piezoelectric oscillation circuit is mixed with an output frequency of the fixed frequency oscillation circuit by an analog mixing circuit 11 so as to output a beat (resonance) frequency, and a beat component frequency is extracted by a beat extraction circuit 13, and then guided to a frequency counter circuit 15, thereby to count the frequency. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、空気中に存在するガス状化学物質を検出する検出装置に係り、特に、圧電振動子の共振周波数の変化を利用して検出する検出装置に関するものである。   The present invention relates to a detection device that detects gaseous chemical substances present in the air, and more particularly to a detection device that detects changes in the resonance frequency of a piezoelectric vibrator.

水晶振動子と言った圧電振動子は質量が変化すると質量変化に比例して共振周波数が変化する圧電特性を有しており、従来からこの圧電特性を利用して空気中に存在するガス状化学物質を検出する検出装置はあり、作業環境等の測定に広く用いられている。
検出装置のセンサ素子として代表的な水晶振動子は、図6に示すように、水晶板31を2枚の電極板33で挟み、2枚の電極板33上にそれぞれ感応膜35(ガス分子吸着膜)を貼り付けた構造になっており、電極板33にはリード37がそれぞれ接続されている。水晶振動子はホルダー39により保持された状態でセンサセル内に配置されている。ガス分子を吸着すると水晶振動子の質量が増大して共振振動数の減少を引き起こす。振動数変化と付着物質の質量との関係は、以下のSauerbrey 式と呼ばれる式(数1)で表される。すなわち、電極上での質量変化は振動数変化と比例関係にある。
Piezoelectric vibrators called quartz vibrators have a piezoelectric property that the resonance frequency changes in proportion to the mass change when the mass changes. Conventionally, gaseous chemistry that exists in the air using this piezoelectric property. There are detection devices for detecting substances, and they are widely used for measuring work environments and the like.
As shown in FIG. 6, a typical quartz resonator as a sensor element of a detection device has a quartz plate 31 sandwiched between two electrode plates 33, and a sensitive film 35 (gas molecule adsorption) on each of the two electrode plates 33. And a lead 37 is connected to the electrode plate 33. The crystal resonator is disposed in the sensor cell while being held by the holder 39. When gas molecules are adsorbed, the mass of the crystal unit increases, causing a decrease in the resonance frequency. The relationship between the change in frequency and the mass of the adhering substance is expressed by the following equation (Equation 1) called the Sauerbrey equation. That is, the mass change on the electrode is proportional to the frequency change.

Figure 2006300742
Figure 2006300742

現在市販されている水晶発振子の検出限界は数 ng cm-2 であり、原子の単分子層吸着をも測定できるほど高感度であることからQCM(Quartz-crystal microbalance)と呼ばれている。
臭い分子の殆どは吸着されることから、上記した装置を利用して臭いの検出が行われている。
The detection limit of a crystal oscillator currently on the market is several ng cm-2, and it is called QCM (Quartz-crystal microbalance) because it is sensitive enough to measure even the adsorption of a monolayer of atoms.
Since most of the odor molecules are adsorbed, the odor is detected using the above-described apparatus.

従来の検出装置は、図7に示すような電気的構成をしており、上記した水晶振動子41が配置されたQCM発振回路系(センサセル)43の発振回路、即ちQCM発振回路45で発振する共振周波数をそのまま高速カウンタ回路47で計測し、計測されたカウント数に基づき演算部49で演算(デジタル)処理して共振振動数の変化分、即ち差分周波数を導出していた。   The conventional detection apparatus has an electrical configuration as shown in FIG. 7, and oscillates in the oscillation circuit of the QCM oscillation circuit system (sensor cell) 43 in which the above-described crystal resonator 41 is arranged, that is, the QCM oscillation circuit 45. The resonance frequency is directly measured by the high-speed counter circuit 47, and the calculation unit 49 performs calculation (digital) processing based on the measured count number to derive a change amount of the resonance frequency, that is, a difference frequency.

特開平10−090152号公報Japanese Patent Laid-Open No. 10-090152

水晶振動子の発振振動数は数MHz〜数百MHzと元々高かったが、最近では基本周波数の二乗に比例して分解能が上がることもあってより高速な振動子を用いる傾向が強まっている。
しかしながら、現在広く使用されているTTLICの動作速度の上限は数十MHz程度なので、上記したより高速な振動子を使用するとなると従来の素子では対応できず、高速対応の高価な別の素子に使用を切り替えなければならない。また、高速を起因とする同期の取り難さ、発熱、回路基板上でのノイズの発生等の問題が新たに生じるため、回路設計が難しくなる。
The oscillation frequency of a crystal resonator was originally high, from several MHz to several hundred MHz, but recently, the resolution increases in proportion to the square of the fundamental frequency, and the tendency to use a higher-speed transducer is increasing.
However, since the upper limit of the operating speed of TTLIC that is widely used at present is about several tens of MHz, if a higher-speed vibrator as described above is used, the conventional element cannot be used, and it is used for another expensive element corresponding to high speed. Must be switched. In addition, since problems such as difficulty in synchronization due to high speed, heat generation, and generation of noise on the circuit board newly occur, circuit design becomes difficult.

それ故、本発明は、高速な振動子を使用しても、コストや回路設計上の問題が生じない化学物質検出装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a chemical substance detection apparatus that does not cause problems in cost and circuit design even when a high-speed vibrator is used.

上記課題を解決するために、請求項1の発明は、表面にガス吸着膜を設けた圧電発振子が配置されたセンサセルと、前記センサセルに測定対象ガスが供給されたときに前記圧電発振子の共振周波数で発振する圧電発振回路と、固定周波数で発振する固定周波数発振回路と、前記圧電発振回路の出力周波数と前記固定周波数発振回路の出力周波数を混合してうなり(共鳴)周波数を出力するアナログミキシング回路と、うなり周波数からうなり成分周波数を抽出するうなり抽出回路とを備え、うなり成分を吸着ガスを為す化学物質の検出信号として利用することを特徴とする発振周波数調整方式を利用した化学物質検出装置である。   In order to solve the above-mentioned problems, the invention of claim 1 is directed to a sensor cell having a piezoelectric oscillator having a gas adsorption film provided on a surface thereof, and a piezoelectric cell having a measurement target gas when the measurement target gas is supplied to the sensor cell. A piezoelectric oscillation circuit that oscillates at a resonance frequency, a fixed frequency oscillation circuit that oscillates at a fixed frequency, and an analog that outputs a beat (resonance) frequency by mixing the output frequency of the piezoelectric oscillation circuit and the output frequency of the fixed frequency oscillation circuit Chemical substance detection using an oscillation frequency adjustment method, which has a mixing circuit and a beat extraction circuit that extracts the beat component frequency from the beat frequency, and uses the beat component as a detection signal for the chemical substance that makes the adsorbed gas Device.

請求項2の発明は、請求項1に記載した化学物質検出装置において、さらに、うなり成分周波数をカウントするカウンタ回路と、前記カウンタ回路で計測されたカウント数をそのまま差分周波数として利用して、ガスの種類と濃度を導出する演算処理部とを備えることを特徴とする化学物質検出装置である。   According to a second aspect of the present invention, there is provided the chemical substance detection apparatus according to the first aspect, further comprising: a counter circuit that counts the beat component frequency; and the count number measured by the counter circuit is directly used as a differential frequency, It is a chemical substance detection apparatus provided with the arithmetic processing part which derives | leads-out the kind and density | concentration.

請求項3の発明は、請求項1に記載した化学物質検出装置において、固定周波数発振回路から出力される波数をうなり成分周波数の1波長の長さ分計測するカウンタ回路と、前記カウンタ回路で計測されたカウント数で固定周波数を除して差分周波数を導出し、導出された差分周波数に基づき、ガスの種類と濃度を導出する演算処理部とを備えることを特徴とする化学物質検出装置である。   According to a third aspect of the present invention, in the chemical substance detection apparatus according to the first aspect, the counter circuit that measures the wave number output from the fixed frequency oscillation circuit for the length of one wavelength of the beat component frequency is measured by the counter circuit. A chemical substance detection apparatus comprising: an arithmetic processing unit for deriving a difference frequency by dividing a fixed frequency by the counted number and deriving a gas type and concentration based on the derived difference frequency .

請求項4の発明は、請求項1に記載した化学物質検出装置において、さらに、うなり成分の周波数を電圧に変換する周波数電圧変換回路とを備えることを特徴とする化学物質検出装置である。   According to a fourth aspect of the present invention, there is provided the chemical substance detection apparatus according to the first aspect, further comprising a frequency voltage conversion circuit for converting the frequency of the beat component into a voltage.

請求項5の発明は、請求項1から4のいずれかに記載した化学物質検出装置において、圧電発振子が水晶発振子であることを特徴とする化学物質検出装置である。   A fifth aspect of the present invention is the chemical substance detection apparatus according to any one of the first to fourth aspects, wherein the piezoelectric oscillator is a crystal oscillator.

本発明の化学物質検出装置によれば、振動子の発振周波数帯が数十MHzを超える高周波数帯にあっても、現在慣用されている廉価なTTLICをそのまま使用できるため、上記したコストや設計上の問題を解消できる。   According to the chemical substance detection apparatus of the present invention, even if the oscillation frequency band of the vibrator is in a high frequency band exceeding several tens of MHz, an inexpensive TTLIC that is currently used can be used as it is. The above problem can be solved.

本発明の第1の実施の形態に係る化学物質検出装置1の電気的構成を図1に示す。
水晶振動子3をセンサ素子とするQCM発振回路系5(センサセル)では、QCM発振回路7が図示しない電源と接続されており、水晶振動子3がセンサセル5に供給されたサンプルガスのガス分子(一例)を吸着すると、QCM発振回路7が吸着量に応じて変化した共振周波数で発振する。固定周波数発振回路9も図示しない電源と接続されており、化学物質濃度が0(ゼロ)、即ち水晶振動子3に臭いガス分子が全く吸着していない状態の固定周波数を発振する。
FIG. 1 shows an electrical configuration of the chemical substance detection apparatus 1 according to the first embodiment of the present invention.
In the QCM oscillation circuit system 5 (sensor cell) using the crystal resonator 3 as a sensor element, the QCM oscillation circuit 7 is connected to a power source (not shown), and the gas molecules (the sample gas supplied to the sensor cell 5) When an example) is adsorbed, the QCM oscillation circuit 7 oscillates at a resonance frequency that changes in accordance with the amount of adsorption. The fixed frequency oscillation circuit 9 is also connected to a power source (not shown), and oscillates at a fixed frequency in a state where the chemical substance concentration is 0 (zero), that is, no odorous gas molecules are adsorbed to the crystal unit 3 at all.

QCM発振回路7、固定周波数発振回路9のそれぞれの出力端は、アナログミキシング回路11と接続されており、アナログミキシング回路11は、図2の出力波形に示すように、QCM発振回路7の出力するQCM発振周波数と固定発振回路の出力する固定周波数をアナログ的に混合してうなり(共鳴)周波数を出力する。
うなり抽出回路13は、アナログミキシング回路11から出力されたうなり周波数を受取り、そこからうなり成分周波数を抽出する。ガス分子の吸着によりQCM発振周波数が300Hz下がっていると、図3に示すように、うなり成分周波数は300Hzの正弦波となる。
The output terminals of the QCM oscillation circuit 7 and the fixed frequency oscillation circuit 9 are connected to an analog mixing circuit 11, and the analog mixing circuit 11 outputs the QCM oscillation circuit 7 as shown in the output waveform of FIG. The beat (resonance) frequency is output by analogally mixing the QCM oscillation frequency and the fixed frequency output from the fixed oscillation circuit.
The beat extraction circuit 13 receives the beat frequency output from the analog mixing circuit 11 and extracts the beat component frequency therefrom. When the QCM oscillation frequency is lowered by 300 Hz due to the adsorption of gas molecules, the beat component frequency becomes a sine wave of 300 Hz as shown in FIG.

低速カウンタ回路15は現在広く使用されている動作速度の上限が数十MHz程度のカウンタ回路である。うなり成分周波数を低速カウンタ回路15にそのまま導いて周波数を1秒間計測する。QCM発振周波数が300Hz下がっていると、カウンタ回路数は300となる。   The low-speed counter circuit 15 is a counter circuit whose upper limit of the operation speed that is widely used at present is about several tens of MHz. The beat component frequency is guided to the low speed counter circuit 15 as it is, and the frequency is measured for 1 second. When the QCM oscillation frequency is lowered by 300 Hz, the number of counter circuits is 300.

そして、低速カウンタ回路15で計測されたカウント数をそのまま差分周波数として利用して、演算処理部17では、従来と同様に、差分周波数に基づいて吸着量を演算し、センサセルを通過するガス量に基づいて化学物質の濃度を算出する。
具体的には、低速カウンタ回路15で計測された共振周波数の変化から、図示しない記憶素子に予め分析対象(吸着対象)とする化学物質の種類と濃度についてのデータと比較しながら、吸着した化学物質の種類と濃度を推定する。
そして、推定結果を表示部19に表示する。
Then, using the count number measured by the low-speed counter circuit 15 as a difference frequency as it is, the arithmetic processing unit 17 calculates the amount of adsorption based on the difference frequency in the same manner as in the past, and calculates the amount of gas passing through the sensor cell. Based on this, the chemical concentration is calculated.
Specifically, from the change in the resonance frequency measured by the low speed counter circuit 15, the adsorbed chemistry is compared with data on the type and concentration of the chemical substance to be analyzed (adsorption object) in advance in a storage element (not shown). Estimate the type and concentration of the substance.
Then, the estimation result is displayed on the display unit 19.

パーソナルコンピュータ(PC)21はデータの収集・解析を実行するためのCPUや記憶素子、液晶モニタのような表示部、カウンタ回路のような計測装置との接続が可能なインターフェースを具備しており、この実施の形態では、パーソナルコンピュータ21により演算処理部17と表示部19が構成されている。
計測装置とパーソナルコンピュータ21の間は、RS−232Cの規格に基づいた転送方式に基づき、データ転送を行っている。
The personal computer (PC) 21 has an interface that can be connected to a CPU, a storage element, a display unit such as a liquid crystal monitor, and a measurement device such as a counter circuit for collecting and analyzing data. In this embodiment, the personal computer 21 constitutes the arithmetic processing unit 17 and the display unit 19.
Data is transferred between the measurement device and the personal computer 21 based on a transfer method based on the RS-232C standard.

この検出装置1によれば、計測されたカウンタ回路数を差分周波数としてそのまま利用できるので、その後特別な(デジタル)演算処理をする必要はない   According to this detection apparatus 1, since the measured number of counter circuits can be used as a difference frequency as it is, it is not necessary to perform special (digital) arithmetic processing thereafter.

本発明の第2の実施の形態に係る化学物質検出装置を説明する。
この化学物質検出装置の計測原理は化学物質検出装置1と同じであり、低速カウンタ回路15における計測方法等が異なっている。従って相違点のみ説明する。
図3に示すようなうなり成分周波数(波形)を出力するまでは、第1の実施の形態と同じであるが、第1の実施の形態ではうなり成分周波数を低速カウンタ回路15でそのまま計測していたのに対して、この第2の実施の形態では、固定周波数の出力を利用して計測する。
A chemical substance detection apparatus according to a second embodiment of the present invention will be described.
The measurement principle of this chemical substance detection apparatus is the same as that of the chemical substance detection apparatus 1, and the measurement method in the low-speed counter circuit 15 is different. Therefore, only the differences will be described.
Until the beat component frequency (waveform) as shown in FIG. 3 is output, the beat component frequency is the same as in the first embodiment, but in the first embodiment, the beat component frequency is directly measured by the low-speed counter circuit 15. On the other hand, in the second embodiment, measurement is performed using a fixed frequency output.

具体的に言えば、図4に示すように、うなり成分周波数の波が0から立ち上がると同時に固定周波数、例えば20MHzの方形波数の計測を開始し、1波長が過ぎたところで計測を停止する。
次に、演算処理部でまず差分周波数を算出する。
カウント数が66,667であったとすると、差分周波数は
20MHz÷66,667=299.999Hzと推定され、
カウント数が66,666であったとすると、差分周波数は、
20MHz÷66,666=300.003Hzと推定される。
この後は、第1の実施の形態と同様にデータを取り扱える。
Specifically, as shown in FIG. 4, at the same time as the wave of the beat component frequency rises from 0, measurement of a fixed frequency, for example, a square wave number of 20 MHz is started, and the measurement is stopped when one wavelength has passed.
Next, the difference frequency is first calculated by the arithmetic processing unit.
If the count is 66,667, the difference frequency is estimated to be 20 MHz ÷ 66,667 = 299.999 Hz,
If the count number is 66,666, the difference frequency is
It is estimated that 20 MHz ÷ 66,666 = 300.003 Hz.
Thereafter, data can be handled in the same manner as in the first embodiment.

上記したように、この検出装置を使用した場合には低速カウンタ回路15での計測時間はうなり成分の1波長分となるので、1/300秒しかかからない。第1の実施の形態に係る検出装置1を使用した場合には1秒かかっていたことから、計測時間を大幅に短縮することができる。
また、測定誤差も±1Hzであったものが±0.003Hz以下となり、非常に高精度となる。
As described above, when this detection device is used, the measurement time in the low-speed counter circuit 15 is equivalent to one wavelength of the beat component, and therefore it takes only 1/300 second. When the detection apparatus 1 according to the first embodiment is used, since it took 1 second, the measurement time can be greatly shortened.
In addition, the measurement error is ± 1 Hz, which is ± 0.003 Hz or less, which is very high accuracy.

本発明の第3の実施の形態に係る化学物質検出装置25を説明する。
この化学物質検出装置25の電気的構成の一部は化学物質検出装置1と同じであるが、うなり抽出回路13は低速カウンタ回路15に接続されずに、周波数電圧変換回路27に接続されている。
すなわち、うなり抽出回路13から出力されたうなり成分周波数は、周波数電圧変換回路27に導かれ、周波数に比例したアナログの電圧信号に変換される。うなり成分周波数はサンプルガスの濃度変化に対応して連続的に変化しているため、その連続的な電圧信号を警報装置(警報灯、警報ブザー)の警報信号や、開閉装置の制御信号として利用できる。例えば、電圧が一定以上になった場合に警報を発動したり、開閉扉を閉めたりする。
A chemical substance detection apparatus 25 according to a third embodiment of the present invention will be described.
A part of the electrical configuration of the chemical substance detection device 25 is the same as that of the chemical substance detection device 1, but the beat extraction circuit 13 is not connected to the low speed counter circuit 15 but is connected to the frequency voltage conversion circuit 27. .
That is, the beat component frequency output from the beat extraction circuit 13 is guided to the frequency voltage conversion circuit 27 and converted into an analog voltage signal proportional to the frequency. Since the beat component frequency changes continuously in response to changes in the sample gas concentration, the continuous voltage signal is used as an alarm signal for alarm devices (alarm lamps, alarm buzzers) and as a control signal for switchgear. it can. For example, an alarm is triggered when the voltage exceeds a certain level, or the door is closed.

以上、本発明の実施の形態について詳述してきたが、具体的構成は、この実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲における設計の変更などがあっても発明に含まれる。
例えば、測定対象ガスが1つの成分からなることは少ないことから、従来は特性の少しずつ異なる感応膜を貼り付けたQCM発振回路系を複数個組みにし、複数のQCM発振回路系から出力された周波数をそれぞれ高速カウンタ回路でカウントし、演算処理部がそれらのデータを収集した上で、測定対象ガスの組成を同定し、その後に構成ガスの濃度を算出していたが、そのような複数のQCM発振回路系を配置する場合には、本発明の分析装置では、1つの固定周波数発振回路を共用すればよい。
電圧電号の出力は、第3の実施の形態のアナログ出力に限定されず、第1、2の実施の形態に示すように、演算処理部からオン−オフ信号としてデジタル出力し、開閉装置、通知装置やホームエレクトリック装置の制御信号して利用してもよい。
Although the embodiment of the present invention has been described in detail above, the specific configuration is not limited to this embodiment, and the present invention can be changed even if there is a design change without departing from the gist of the present invention. included.
For example, since the gas to be measured is rarely composed of one component, conventionally, a plurality of QCM oscillation circuit systems each having a sensitive film with slightly different characteristics are attached to each other, and output from a plurality of QCM oscillation circuit systems. Each frequency was counted by a high-speed counter circuit, and after the arithmetic processing unit collected those data, the composition of the gas to be measured was identified, and then the concentration of the constituent gas was calculated. When the QCM oscillation circuit system is disposed, the analyzer of the present invention may share one fixed frequency oscillation circuit.
The output of the voltage signal is not limited to the analog output of the third embodiment, and as shown in the first and second embodiments, it is digitally output as an on-off signal from the arithmetic processing unit, and a switchgear, You may use as a control signal of a notification apparatus or a home electric apparatus.

本発明の化学物質検出装置は、高速な振動子を利用しても慣用のTTLICで対応できるので、検出性能の向上の要求に直ぐに答えることができる。   The chemical substance detection apparatus of the present invention can respond to a demand for improvement in detection performance immediately because a conventional TTLIC can be used even if a high-speed vibrator is used.

本発明の第1の実施の形態に係る化学物質検出装置の電気的構成を示す。1 shows an electrical configuration of a chemical substance detection apparatus according to a first embodiment of the present invention. 図1の検出装置における出力波形を示す。The output waveform in the detection apparatus of FIG. 1 is shown. 図1の検出装置における周波数の計測方法の説明図である。It is explanatory drawing of the measuring method of the frequency in the detection apparatus of FIG. 本発明の第2の実施の形態に係る化学物質検出装置における周波数の計測方法の説明図である。It is explanatory drawing of the measuring method of the frequency in the chemical substance detection apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る化学物質検出装置の電気的構成を示す。The electrical structure of the chemical substance detection apparatus which concerns on the 3rd Embodiment of this invention is shown. 水晶振動子の構造図である。It is a structural diagram of a crystal resonator. 従来の化学物質検出装置の電気的構成を示す。The electrical structure of the conventional chemical substance detection apparatus is shown.

符号の説明Explanation of symbols

1‥‥化学物質検出装置
3‥‥水晶振動子 5‥‥QCM発振回路系
7‥‥QCM発振回路 9‥‥固定周波数発振回路
11‥‥アナログミキシング回路 13‥‥うなり抽出回路
15‥‥低速カウンタ回路 17‥‥演算処理
19‥‥表示部
25‥‥化学物質検出装置 27‥‥周波数電圧変換回路
31‥‥水晶板 33‥‥電極板
35‥‥感応膜 37‥‥リード
39‥‥ホルダー 41‥‥センサセル
DESCRIPTION OF SYMBOLS 1 ... Chemical substance detection apparatus 3 ... Crystal oscillator 5 ... QCM oscillation circuit system 7 ... QCM oscillation circuit 9 ... Fixed frequency oscillation circuit 11 ... Analog mixing circuit 13 ... Beat extraction circuit 15 ... Low speed counter Circuit 17 ... Processing 19 ... Display unit 25 ... Chemical substance detection device 27 ... Frequency voltage converter 31 ... Crystal plate 33 ... Electrode plate 35 ... Sensitive film 37 ... Lead 39 ... Holder 41 ... …… Sensor cell

Claims (5)

表面にガス吸着膜を設けた圧電発振子が配置されたセンサセルと、前記センサセルに測定対象ガスが供給されたときに前記圧電発振子の共振周波数で発振する圧電発振回路と、固定周波数で発振する固定周波数発振回路と、前記圧電発振回路の出力周波数と前記固定周波数発振回路の出力周波数を混合してうなり(共鳴)周波数を出力するアナログミキシング回路と、うなり周波数からうなり成分周波数を抽出するうなり抽出回路とを備え、うなり成分を吸着ガスを為す化学物質の検出信号として利用することを特徴とする発振周波数調整方式を利用した化学物質検出装置。   A sensor cell having a piezoelectric oscillator having a gas adsorption film on its surface, a piezoelectric oscillation circuit that oscillates at the resonance frequency of the piezoelectric oscillator when a measurement target gas is supplied to the sensor cell, and oscillates at a fixed frequency A fixed frequency oscillation circuit, an analog mixing circuit that outputs a beat (resonance) frequency by mixing the output frequency of the piezoelectric oscillation circuit and the output frequency of the fixed frequency oscillation circuit, and a beat extraction that extracts the beat component frequency from the beat frequency A chemical substance detection apparatus using an oscillation frequency adjustment method, characterized in that a beat component is used as a chemical substance detection signal for adsorbed gas. 請求項1に記載した化学物質検出装置において、さらに、うなり成分周波数をカウントするカウンタ回路と、前記カウンタ回路で計測されたカウント数をそのまま差分周波数として利用して、ガスの種類と濃度を導出する演算処理部とを備えることを特徴とする化学物質検出装置。   2. The chemical substance detection apparatus according to claim 1, further comprising: a counter circuit that counts the beat component frequency; and the count number measured by the counter circuit is directly used as a difference frequency to derive a gas type and concentration. A chemical substance detection apparatus comprising: an arithmetic processing unit. 請求項1に記載した化学物質検出装置において、固定周波数発振回路から出力される波数をうなり成分周波数の1波長の長さ分計測するカウンタ回路と、前記カウンタ回路で計測されたカウント数で固定周波数を除して差分周波数を導出し、導出された差分周波数に基づき、ガスの種類と濃度を導出する演算処理部とを備えることを特徴とする化学物質検出装置。   2. The chemical substance detection apparatus according to claim 1, wherein a counter circuit that measures a wave number output from a fixed frequency oscillation circuit for a length of one wavelength of a beat component frequency, and a fixed frequency with a count number measured by the counter circuit. A chemical substance detection apparatus comprising: an arithmetic processing unit for deriving a difference frequency by deriving and deriving a gas type and concentration based on the derived difference frequency. 請求項1に記載した化学物質検出装置において、さらに、うなり成分の周波数を電圧に変換する周波数電圧変換回路とを備えることを特徴とする化学物質検出装置。   The chemical substance detection apparatus according to claim 1, further comprising a frequency voltage conversion circuit that converts the frequency of the beat component into a voltage. 請求項1から4のいずれかに記載した化学物質検出装置において、圧電発振子が水晶発振子であることを特徴とする化学物質検出装置。
5. The chemical substance detection apparatus according to claim 1, wherein the piezoelectric oscillator is a crystal oscillator.
JP2005123201A 2005-04-21 2005-04-21 Chemical substance detection device using oscillation frequency adjusting system Pending JP2006300742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005123201A JP2006300742A (en) 2005-04-21 2005-04-21 Chemical substance detection device using oscillation frequency adjusting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005123201A JP2006300742A (en) 2005-04-21 2005-04-21 Chemical substance detection device using oscillation frequency adjusting system

Publications (1)

Publication Number Publication Date
JP2006300742A true JP2006300742A (en) 2006-11-02

Family

ID=37469205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005123201A Pending JP2006300742A (en) 2005-04-21 2005-04-21 Chemical substance detection device using oscillation frequency adjusting system

Country Status (1)

Country Link
JP (1) JP2006300742A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229353A (en) * 2008-03-25 2009-10-08 Seiko Epson Corp Device and system for sensing gas
CN113884407A (en) * 2020-07-03 2022-01-04 国网安徽省电力有限公司电力科学研究院 Electrical equipment leakage online monitoring method and device and computer readable storage medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294496A (en) * 1994-04-19 1995-11-10 Tektronix Inc Chemical sensor
JPH07318474A (en) * 1994-05-30 1995-12-08 Shimadzu Corp Moisture meter
JPH1090152A (en) * 1996-09-19 1998-04-10 Yokogawa Electric Corp Measuring apparatus for concentration of gas
JP2000121527A (en) * 1998-10-12 2000-04-28 Shimadzu Corp Moisture meter
JP2002014166A (en) * 2000-06-30 2002-01-18 Nippon Soken Inc Sound-wave measuring apparatus
JP2002525578A (en) * 1998-09-11 2002-08-13 フェムトメトリクス,インコーポレイテッド Chemical sensor array
JP2002544479A (en) * 1999-05-10 2002-12-24 フィッシャー コントロールズ インターナショナル, インコーポレイテッド High frequency measurement circuit with inherent noise reduction for resonant chemical sensors
JP2003152535A (en) * 2001-11-16 2003-05-23 Hitachi Ltd Communication-oriented semiconductor integrated circuit and radio communication system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294496A (en) * 1994-04-19 1995-11-10 Tektronix Inc Chemical sensor
JPH07318474A (en) * 1994-05-30 1995-12-08 Shimadzu Corp Moisture meter
JPH1090152A (en) * 1996-09-19 1998-04-10 Yokogawa Electric Corp Measuring apparatus for concentration of gas
JP2002525578A (en) * 1998-09-11 2002-08-13 フェムトメトリクス,インコーポレイテッド Chemical sensor array
JP2000121527A (en) * 1998-10-12 2000-04-28 Shimadzu Corp Moisture meter
JP2002544479A (en) * 1999-05-10 2002-12-24 フィッシャー コントロールズ インターナショナル, インコーポレイテッド High frequency measurement circuit with inherent noise reduction for resonant chemical sensors
JP2002014166A (en) * 2000-06-30 2002-01-18 Nippon Soken Inc Sound-wave measuring apparatus
JP2003152535A (en) * 2001-11-16 2003-05-23 Hitachi Ltd Communication-oriented semiconductor integrated circuit and radio communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229353A (en) * 2008-03-25 2009-10-08 Seiko Epson Corp Device and system for sensing gas
CN113884407A (en) * 2020-07-03 2022-01-04 国网安徽省电力有限公司电力科学研究院 Electrical equipment leakage online monitoring method and device and computer readable storage medium

Similar Documents

Publication Publication Date Title
Oprea et al. Gas sensors based on mass-sensitive transducers part 1: transducers and receptors—basic understanding
JP2008107167A (en) Sensing device
US7165452B2 (en) Measuring method, measurement-signal output circuit, and measuring apparatus
JP2006184260A (en) Sensing device
JP5379909B2 (en) Viscoelasticity measuring method and viscoelasticity measuring device
JP3757329B2 (en) Hazardous chemical substance monitoring apparatus and method
JP2002544479A (en) High frequency measurement circuit with inherent noise reduction for resonant chemical sensors
Beeley et al. All-digital interface ASIC for a QCM-based electronic nose
Murrieta-Rico et al. Frequency domain sensors and frequency measurement techniques
JP2006300742A (en) Chemical substance detection device using oscillation frequency adjusting system
JP4646813B2 (en) Biosensor measurement system, viscosity measurement method, and trace mass measurement method
Zielinski et al. Measuring aerosol phase changes and hygroscopicity with a microresonator mass sensor
WO2007058922A2 (en) Sensor for detecting the adulteration and quality of fluids
Zhang et al. Bulk acoustic wave sensors for sensing measurand-induced electrical property changes in solutions
CN108896654B (en) Energy dissipation factor measuring method based on piezoelectric acoustic wave resonant sensor
Yu et al. Volatile organic compounds discrimination based on dual mode detection
JP2010032245A (en) Relative permittivity/conductivity measuring apparatus
JP2001304945A (en) Device for detecting extremely small amount of mass using high-frequency quartz resonator, and method for calibrating detection device
JP2624853B2 (en) Micro reaction detection sensor and system
JP2005098866A (en) Measurement method using vibrator, and biosensor device
Türkdoğan Design and implementation of a cost effective quartz crystal microbalance system for monitoring small changes on any surface
Kamel et al. Design of a simple low-cost quartz crystal microbalance system
Ramezany et al. Sail-shaped piezoelectric micro-resonators for high resolution gas flowmetry
Meng et al. A liquid density sensor based on longitudinal wave effect of a piezoelectric quartz crystal in liquid phase
JP2008185451A (en) Quartz oscillator sensor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Effective date: 20100603

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426