JP2006351918A - 発光素子 - Google Patents
発光素子 Download PDFInfo
- Publication number
- JP2006351918A JP2006351918A JP2005177583A JP2005177583A JP2006351918A JP 2006351918 A JP2006351918 A JP 2006351918A JP 2005177583 A JP2005177583 A JP 2005177583A JP 2005177583 A JP2005177583 A JP 2005177583A JP 2006351918 A JP2006351918 A JP 2006351918A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- dielectric layer
- light emitting
- light
- metal layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Led Devices (AREA)
Abstract
【課題】任意の波長の光が容易に得られる光源を提供する。
【解決手段】p型半導体層103の表面に一部が埋め込まれた埋め込み電極層104を備え、埋め込み電極層104の一部に重なるように、p型半導体層103の上に誘電体層105,金属層106,オーミックコンタクト層108,及び電極109からなる積層構造体が形成されている。埋め込み電極層104の一部と金属層106の一部とで異種金属によるトンネル接合が形成されている。また、金属層106においては、誘電体層105の側にグレーティング107が形成されている。また、上記積層構造体の部分の両側に溝131が形成され、層間絶縁層102及び誘電体層105をクラッドとし、これらに挾まれた部分のp型半導体層103をコアとする光導波路が形成されている。
【選択図】 図1
【解決手段】p型半導体層103の表面に一部が埋め込まれた埋め込み電極層104を備え、埋め込み電極層104の一部に重なるように、p型半導体層103の上に誘電体層105,金属層106,オーミックコンタクト層108,及び電極109からなる積層構造体が形成されている。埋め込み電極層104の一部と金属層106の一部とで異種金属によるトンネル接合が形成されている。また、金属層106においては、誘電体層105の側にグレーティング107が形成されている。また、上記積層構造体の部分の両側に溝131が形成され、層間絶縁層102及び誘電体層105をクラッドとし、これらに挾まれた部分のp型半導体層103をコアとする光導波路が形成されている。
【選択図】 図1
Description
本発明は、金属の表面に生成される表面プラズモンポラリトンを利用した発光素子に関する。
光インターコネクションなどの光情報処理システムで装置では、微小な領域からの発光を信号源として用いることが期待されている。微小領域における発光は、電子遷移によるエネルギー差を電磁場のエネルギーに変換することによりなるものである。例えば、電子状態bから遷移により状態がaに移り、光子が1個生成されるときの遷移確率rは、以下の(1)式で示されるものとなる。
Γ〜|〈a|p|b〉|2|〈γ|E|0〉|2δρδ(ω−Ω)・・・(1)
(1)式において、pは電子双極子に係る演算子、ρは光のモード密度、ωは光角周波数、Eは電場である。また、Ωは、電子状態のエネルギー差であり、以下の(2)式で定義される。
Ω≡(Eb−Ea)/h・・・(2)
電子遷移は種々の物質系で生じるが、遷移の前後で電子の運動量は保存されなければならない。伝導帯の底と価電子帯の頂点が同一の波数ベクトルで与えられる直接遷移型のバンド構造の半導体では、電子遷移は発光(光子の放出)を伴う。多くのIII−V素族化合物半導体やII−VI族化合物半導体は、このような直接遷移型の半導体であり、レーザ素子等発光素子が実現されている。
一方、SiやGeなどのIV族半導体は、伝導帯の底と価電子帯の頂点が同一の波数ベクトルとはならない間接遷移型半導体であるため、電子遷移が生じるためには運動量を保存するためにフォノンの吸収又は放出が必要となり、遷移確率が極度に低下する。このため、バルクの間接遷移型半導体では、このバンド構造に基づいて発光素子をつくることはできない。
一方、発光を伴うより簡易な電子遷移過程は、仕事関数が異なる異種金属のトンネル接合において存在する。図8に示すように、各々異なる金属層801と金属層802とが絶縁層803を介して配置された異種金属のトンネル接合では、フェルミ面の高い方(EF (1))から低い方(EF (2))へ電子がトンネルすると(太い線の矢印)、2つのフェルミ面のエネルギー差の光が放出される。この放出される光の角周波数ωは、以下の(3)式で示されるものとなる(非特許文献1参照)。
ω=(EF (1)−EF (2))/h・・・(3)
仕事関数は、金属元素に固有であり、異種金属のトンネル接合より放射される光のエネルギー(波長)は、組み合わされた金属により一義的に決定される。例えば、以下の表に示すように、異種金属のトンネル接合によれば、近赤外から赤外領域まで、種々の波長の光の放射が得られる。
C.Lin, et al.,"Electroluminescence at Si bandgap energy from metal-oxide-semiconductor tunneling dies", Proc. SPIE, Vol.4293, pp.147-154, 2001.
しかしながら、金属の仕事関数は、容易に制御することができず、異種金属のトンネル接合では、任意の波長の光を発生させることが困難である。例えば、通信波長帯の光を発生する金属の組み合わせは、表1に示した金属の範囲では、Cu−Pd(1.37μm)、Cu−Pt(1.24μm)、Fe−Pd(1.18μm)、Fe−Ni(1.91μm)となるが、よく用いられる波長1.55μm近傍の光を得ることができない。
本発明は、以上のような問題点を解消するためになされたものであり、任意の波長の光が容易に得られる光源を提供することを目的とする。
本発明に係る発光素子は、一方の面に周期的な凹凸が形成された金属層と、金属層の一方の面に接触して形成された誘電体層と、この誘電体層の他方の面側に設けられた光導波路と、誘電体層の他方の面側の一部に接して設けられた電極部とを少なくとも備え、電極部と誘電体層との接触部分において、金属層,誘電体層,及び電極部からなるトンネル接合が形成されているようにしたものである。この発光素子では、金属層と電極部との間に電圧を印加して電極部から金属層の側へ電子をトンネリングさせて遷移させると、金属層の誘電体層側の表面に表面プラズモンポラリトン波が励起され、励起された表面プラズモンポラリトンより、周期的な凹凸の周期構造により決定される周波数の光が光導波路側へ分離される。
上記発光素子において、光導波路は、誘電体層からなる第1クラッドと、誘電体層に接して形成された半導体の層から構成されたコアと、このコアの誘電体層の側とは反対側に形成された絶縁材料からなる第2クラッド層とから構成されていればよい。また、電極部は、金属層とは異なる金属材料から構成されていればよい。また、電極部は、n型の半導体から構成されていてもよい。ここで、電極部が、間接遷移型の半導体から構成されている場合、電極部のトンネル接合の部分に形成された微細構造を備え、この微細構造が、電極部のトンネル接合の部分における電子の運動量の揺らぎが間接遷移型の半導体の伝導帯端と価電子帯端との運動量差を超えるように電子の存在範囲を制限するものであればよい。この場合、微細構造は、電極部の誘電体層側の表面に形成された突起であればよい。また、微細構造は、電極部の誘電体層側の表面に形成された細線構造であってもよい。
以上説明したように、本発明では、一方の面に周期的な凹凸が形成された面で接する金属層及び誘電体層の一部に電極部を設け、電極部における金属層,誘電体層,及び電極部からなるトンネル接合が形成されているようにしたのでトンネル接合部における電子の遷移により金属層の表面に表面プラズモンポラリトン波が励起され、励起された表面プラズモンポラリトンより、周期的な凹凸の周期構造により決定される周波数の光が光導波路側へ分離されるようになる。この結果、本発明によれば、任意の波長の光が容易に得られる光源が容易に実現できるという優れた効果が得られる。
以下、本発明の実施の形態について図を参照して説明する。図1は、本発明の実施の形態における発光素子の構成例を模式的に示す断面図である。図1(a)は、導波(伝播)方向に平行な断面を示し、図1(b)は、導波方向に垂直な断面を示している。図1に示す発光素子は、例えば単結晶シリコンなどの半導体からなる基板101の上に、層間絶縁層102を介してp型半導体層103を備えている。p型半導体層103は、例えばp型の不純物としてBが添加されたシリコンからなる層である。
また、図1に示す発光素子は、p型半導体層103の表面に一部が埋め込まれた埋め込み電極層(電極部)104を備え、埋め込み電極層104の一部に重なるように、p型半導体層103の上に誘電体層105,金属層106,オーミックコンタクト層108,及び電極109からなる積層構造体が形成されている。埋め込み電極層104は例えば、Feから構成され、金属層106は例えばPtから構成されたものであり、埋め込み電極層104の一部と金属層106の一部とで異種金属によるトンネル接合が形成されている。また、金属層106においては、誘電体層105の側にグレーティング(周期構造)107が形成されている。また、図1に示す発光素子では、図1(b)に示すように、上記積層構造体の部分の両側に溝131が形成され、層間絶縁層102及び誘電体層105をクラッドとし、これらに挾まれた部分のp型半導体層103をコアとする光導波路が形成されている。
図1に示す発光素子では、まず、埋め込み電極層104と電極109(金属層106)との間に電圧を印加することで、異種金属のトンネル接合にトンネル電子が流れる。トンネル電子のエネルギーは、トンネル接合を形成している2つの金属の仕事関数の差にほぼ等しく、図1に例示す発光素子では、Pt−Feの組み合わせの異種金属トンネル接合であり、1.15eV(0.83μm)と比較的大きな仕事関数の差がある。このように、比較的大きなエネルギーのトンネル電子が流れること(電子遷移)により、より広い帯域に渡るSPP波が励起される(非特許文献2:D.K.Gifford, et al.,"Extraordinary transmission of luminescence through a metal electroad", Optics & Photonics NEWS (Optical Society of America), p.34, 2002)。
励起されたSPP波は、金属層106と誘電体層105との界面に沿って伝播し、グレーティング107の部分を伝播する。この結果、伝播するSPP波より、グレーティング107の周期構造により決定される周波数の光が、誘電体層105及びp型半導体層103(光導波路)の側へ分離され、図1(b)の点線の楕円で示す領域を伝播する。このように、図1に示す発光素子によれば、グレーティング107の周期構造により決定される所望とする周波数の光が得られる。また、誘電体層105は、トンネル電流が流れるように高々10nm程度と薄く、トンネル接合部分の金属層106と誘電体層105との間隙は、10nm程度と狭くされている。このため、この間隙においては、電子遷移により空間伝搬光が直接励起されない状態となっている。
なお、オーミックコンタクト層108及び電極109を設けず、金属層106に直接電位が印加されるようにしてもよい。また、p型半導体層103は、不純物の添加されていないシリコンから構成されててもよい。また、図1では、誘電体層105と層間絶縁層102とをクラッドとしてp型半導体層103をコアとする光導波路を設けるようにしたが、これに限らず、他の形態の光導波路であってもよい。
次に、図1に示した発光素子の発光についてより詳細に説明する。金属層106と誘電体層105との界面に沿って伝播する表面プラズモンポラリトン(SPP)波の波数qと角周波数ωは、誘電体層105の比誘電率εd及び金属層106の比誘電率εmとを用いて以下の(4)式に示す分散関係を満たしている。
q=(ω/c){(εdεm)/(εd+εm)}1/2・・・(4)
なお、金属層106の比誘電率εmは、プラズマ共鳴周波数ωpを用いて以下の(5)式のように示される。
εm=1−(ωp/ω)2・・・(5)
図2にこの分散関係を示している、SPP波の上記伝播の速度(群速度)は、空間を伝播する電磁波と同様に、Vg=∂ω/∂qにより与えられる。角周波数ωが小さいとき(長波長の極限)では、バルクの誘電体を伝播する光速「q=ω/{c/(εd)1/2}・・・(6)」に漸近する。また、SPP波が存在する範囲は、0<ω<ωsp(ωsp=ωp/(εd+1)1/2)であり、角周波数の上限でqは無限大に発散する。このときSPP波は共鳴状態にあり、伝播速度は0に漸近している。
SPP波が伝播する界面近傍の誘電体層105では、誘電体層105を伝播する光は金属層106のグレーティング107により空間変調される。グレーティング107の逆格子ベクトルの大きさをG(=2π/Λ;Λはグレーティング107の周期)とすると、空間伝播光の分散は、以下の(7)式で示されるものとなる。
q’=mG+ω/c・・・(7)
なお、mは整数である。
なお、mは整数である。
SPP波の群速度は、バルクの誘電体を伝播する光速よりも常に小さいので、SPP波は非放射であるが、誘電体層105を伝播する光の速度とSPP波の速度が一致するときには、SPP波と誘電体層105中の伝播光が結合する。従って、SPP波から空間伝播光ヘのエネルギーの移行が可能となる。
SPP波と空間伝播光の速度が一致する条件は、以下の(8)式により与えられる。
{(εdεm)/(εd+εm)}1/2=±1−m×(cG)/ω・・・(8)
この解は、図2に示すように、SPP波の分散と誘電体層105を伝播する空間変調光の分散の交点(黒丸)で与えられる。従って、例えば、金属層106がプラズマ共鳴波長160nmを持つ金属から構成され、誘電体層105が屈折率3.2の絶縁材料から構成されている場合、−1次の回折波を波長1.55μmで結合させるためには、グレーティング107の凹凸の周期が約350nmであればよい。
また、上述したSPP波は、電子遷移により励起可能である。電子状態bから遷移により状態がaに移るときに得るエネルギー差に相当する光の周波数ω=(EF (1)−EF (2))/hよりも低い周波数のSPP波が、励起可能である。但し、電子遷移により角周波数ω=(EF (1)−EF (2))/hの空間伝播光が励起されないようにしなければならない。このため、例えば、図3に示すように、点線で示す空間伝播光の空間波長の2分の1以下の領域で電子が遷移する状態とすれば、空間伝播光の励起が抑圧される一方、空間波長に制限のないSPP波(実線)が励起される。このような空間としては、金属に挟まれた微小間隙や共振器などの構造であればよく、また、金属片界面の開放系においても、金属の表面のごく近傍では、金属の影響を強く受けて空間伝播光の励起が抑圧される。
次に、本発明の実施の形態における他の発光素子について説明する。図4は、本発明の実施の形態における発光素子の構成例を模式的に示す断面図であり、導波(伝播)方向に平行な断面を示している。図4に示す発光素子は、例えば単結晶シリコンなどの半導体からなる基板401の上に、層間絶縁層402を介してp型半導体層403を備えている。p型半導体層403は、例えばp型の不純物としてBが添加されたシリコンからなる層である。
また、図4に示す発光素子は、p型半導体層403の表面にn型領域(電極部)404を備え、n型領域404の表面側の一部に微小な凹凸部404aを備え、この凹凸部404aの一部に重なるように、p型半導体層403の上に誘電体層405及び金属層406が形成されている。凹凸部404aにおいては、突起が設けられていればよい。n型領域404は、例えば、イオン注入法によりリンが導入された領域であり、n型領域40(凹凸部404a)の一部と金属層406の一部とでトンネル接合が形成されている。また、金属層406においては、誘電体層405の側にグレーティング(周期構造)407が形成されている。なお、図4に示す発光素子においても、誘電体層405及び金属層406の部分の両側に溝が形成され、層間絶縁層402及び誘電体層405をクラッドとし、これらに挾まれた部分のp型半導体層403をコアとする光導波路が形成されている。また、n型領域404の他の一部には、オーミック接続する電極408が形成されている。
図4に示す発光素子では、まず、電極408と金属層406との間に電圧を印加することで、n型領域404の凹凸部404aに対して電子を注入可能としている。図5に示すように、上記電圧の印加により、金属層406より絶縁層405をトンネリングしてn型領域404の伝導帯に電子が注入される。なお、図5では、グレーの部部に電子が存在していることを示している。注入された電子は、n型領域404の価電子帯に遷移し、この遷移のときのエネルギーが、金属層404の絶縁層405側の表面におけるSPP波の励起に用いられる。
ここで、SPP波の励起のためには、上記電子の遷移が直接遷移であることが必要となる。ところが、シリコンは間接遷移型の半導体であるため、電子遷移のエネルギー緩和過程に光学的過程を組み込むことが困難である。これに対し、図4に示す発光素子では、凹凸部404aを設けるようにしたので、注入された電子の存在範囲が制限されるようになり、運動量の不確定性が増大し、運動量保存則が成立しないバンド間遷移が行われるようになる。この結果、凹凸部404aを設けた領域における金属層404と絶縁層405との接合部分では、図5に示す電子の遷移によりSPP波が励起されるようになる。また、シリコンでは、電子の遷移により得られるエネルギーは、1.12eV(1.1μm)となり、通信波長帯に対応したSPP波を発生させることができる。なお、図6に示すように、金属層406のフェルミレベルEFは、p型半導体層403の禁止帯に相当するので、p型半導体層403への電子注入は阻止され、n型領域404(凹凸部404a)へのみに選択的に電子を注入することが可能となる。
以上のようにして励起されたSPP波は、金属層406と誘電体層405との界面に沿って伝播し、グレーティング407の部分を伝播する。この結果、伝播するSPP波より、グレーティング407の周期構造により決定される周波数の光が、誘電体層405及びp型半導体層403(光導波路)の側へ分離される。このように、図4に示す発光素子によれば、グレーティング407の周期構造により決定される周波数の光が得られる。
次に、本発明の実施の形態における他の発光素子について説明する。図7は、本発明の実施の形態における発光素子の構成例を模式的に示す断面図であり、導波(伝播)方向に平行な断面を示している。図7に示す発光素子は、例えば単結晶シリコンなどの半導体からなる基板701の上に、層間絶縁層702を介してp型半導体層703を備えている。p型半導体層703は、例えばp型の不純物としてBが添加されたシリコンからなる層である。
また、図7に示す発光素子は、p型半導体層703の表面にn型領域(電極部)704を備え、n型領域704の表面側の一部に細線部704aを備え、この細線部704aの一部に重なるように、p型半導体層703の上に誘電体層705,金属層706が形成されている。n型領域704(細線部704a)の一部と金属層706の一部とでトンネル接合が形成されている。また、金属層706においては、誘電体層705の側にグレーティング(周期構造)707が形成されている。n型領域704は、例えば、公知のリソグラフィー技術により形成されたマスクパターンを利用して選択的にリンをイオン注入することで形成可能である。細線部704aの寸法(太さ)は、より細い方が望ましいが、微細加工技術により物理的な制約を受ける。現状では、太さ50nm程度の細線部704aの形成が可能である。
なお、図7に示す発光素子においても、誘電体層705及び金属層706の部分の両側に溝が形成され、層間絶縁層702及び誘電体層705をクラッドとし、これらに挾まれた部分のp型半導体層703をコアとする光導波路が形成されている。また、n型領域704の他の一部には、オーミック接続する電極708が形成されている。
図7に示す発光素子では、まず、電極708と金属層706との間に電圧を印加することで、n型領域704の細線部704aに対して電子を注入可能としている。図5に示すように、上記電圧の印加により、金属層706より絶縁層705をトンネリングしてn型領域704の伝導帯に電子が注入される。なお、図5では、グレーの部部に電子が存在していることを示している。注入された電子は、n型領域704の価電子帯に遷移し、この遷移のときのエネルギーが、金属層704の絶縁層705側の表面におけるSPP波の励起に用いられる。
前述したように、シリコンは間接遷移型の半導体であるため、電子遷移のエネルギー緩和過程に光学的過程を組み込むことが困難である。これに対し、図7に示す発光素子では、細線部704aを設けるようにしたので、注入された電子の存在範囲が制限されるようになり、運動量の不確定性が増大し、運動量保存則が成立しないバンド間遷移が行われるようになる。この結果、細線部704aを設けた領域における金属層704と絶縁層705との接合部分では、電子の遷移によりSPP波が励起されるようになる。また、シリコンでは、電子の遷移により得られるエネルギーは、1.12eV(1.1μm)となり、通信波長帯に対応したSPP波を発生させることができる。なお、図7に示す発光素子においても、金属層706のフェルミレベルは、p型半導体層703の禁止帯に相当するので、p型半導体層703への電子注入は阻止され、n型領域704(細線部704a)へのみに選択的に電子を注入することが可能となる。
以上のようにして励起されたSPP波は、金属層706と誘電体層705との界面に沿って伝播し、グレーティング707の部分を伝播する。この結果、伝播するSPP波より、グレーティング707の周期構造により決定される周波数の光が、誘電体層705及びp型半導体層703(光導波路)の側へ分離される。このように、図7に示す発光素子によれば、グレーティング707の周期構造により決定される周波数の光が得られる。
101…基板、102…層間絶縁層、103…p型半導体層、104…埋め込み電極層、105…誘電体層、106…金属層、107…グレーティング(周期構造)、108…オーミックコンタクト層、109…電極。
Claims (7)
- 一方の面に周期的な凹凸が形成された金属層と、
前記金属層の前記一方の面に接触して形成された誘電体層と、
この誘電体層の他方の面側に設けられた光導波路と、
前記誘電体層の前記他方の面側の一部に接して設けられた電極部と
を少なくとも備え、
前記電極部と前記誘電体層との接触部分において、前記金属層,前記誘電体層,及び前記電極部からなるトンネル接合が形成されている
ことを特徴とする発光素子。 - 請求項1記載の発光素子において、
前記光導波路は、
前記誘電体層からなる第1クラッドと、
前記誘電体層に接して形成された半導体の層から構成されたコアと、
このコアの前記誘電体層の側とは反対側に形成された絶縁材料からなる第2クラッド層と
から構成されていることを特徴とする発光素子。 - 請求項1又は2記載の発光素子において、
前記電極部は、前記金属層とは異なる金属材料から構成されている
ことを特徴とする発光素子。 - 請求項1又は2記載の発光素子において、
前記電極部は、n型の半導体から構成されている
ことを特徴とする発光素子。 - 請求項4記載の発光素子において、
前記電極部は、間接遷移型の半導体から構成され、
前記電極部の前記トンネル接合の部分に形成された微細構造を備え、
前記微細構造は、前記電極部の前記トンネル接合の部分における電子の運動量の揺らぎが前記間接遷移型の半導体の伝導帯端と価電子帯端との運動量差を超えるように電子の存在範囲を制限するものである
ことを特徴とする発光素子。 - 請求項5記載の発光素子において、
前記微細構造は、前記電極部の前記誘電体層側の表面に形成された突起である
ことを特徴とする発光素子。 - 請求項5記載の発光素子において、
前記微細構造は、前記電極部の前記誘電体層側の表面に形成された細線構造である
ことを特徴とする発光素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005177583A JP2006351918A (ja) | 2005-06-17 | 2005-06-17 | 発光素子 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005177583A JP2006351918A (ja) | 2005-06-17 | 2005-06-17 | 発光素子 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006351918A true JP2006351918A (ja) | 2006-12-28 |
Family
ID=37647430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005177583A Pending JP2006351918A (ja) | 2005-06-17 | 2005-06-17 | 発光素子 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006351918A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100989614B1 (ko) | 2007-11-24 | 2010-10-26 | 동화제네라이트 주식회사 | 매립전극 발광다이오드 및 그 제조방법 |
WO2010147012A1 (ja) * | 2009-06-17 | 2010-12-23 | 住友電気工業株式会社 | エピタキシャル基板、発光素子、発光装置およびエピタキシャル基板の製造方法 |
KR101020910B1 (ko) | 2008-12-24 | 2011-03-09 | 엘지이노텍 주식회사 | 반도체 발광소자 및 그 제조방법 |
EP2481099A4 (en) * | 2009-09-25 | 2016-01-13 | Hewlett Packard Development Co | SILICON GERMANIUM QUANTUM BAY LIGHT DIODE |
JP2019110180A (ja) * | 2017-12-18 | 2019-07-04 | 日本電信電話株式会社 | ナノワイヤ光デバイス |
-
2005
- 2005-06-17 JP JP2005177583A patent/JP2006351918A/ja active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100989614B1 (ko) | 2007-11-24 | 2010-10-26 | 동화제네라이트 주식회사 | 매립전극 발광다이오드 및 그 제조방법 |
KR101020910B1 (ko) | 2008-12-24 | 2011-03-09 | 엘지이노텍 주식회사 | 반도체 발광소자 및 그 제조방법 |
US8653545B2 (en) | 2008-12-24 | 2014-02-18 | Lg Innotek Co., Ltd. | Semiconductor light emitting device |
US8928015B2 (en) | 2008-12-24 | 2015-01-06 | Lg Innotek Co., Ltd. | Semiconductor light emitting device |
WO2010147012A1 (ja) * | 2009-06-17 | 2010-12-23 | 住友電気工業株式会社 | エピタキシャル基板、発光素子、発光装置およびエピタキシャル基板の製造方法 |
EP2481099A4 (en) * | 2009-09-25 | 2016-01-13 | Hewlett Packard Development Co | SILICON GERMANIUM QUANTUM BAY LIGHT DIODE |
JP2019110180A (ja) * | 2017-12-18 | 2019-07-04 | 日本電信電話株式会社 | ナノワイヤ光デバイス |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | Electrically driven subwavelength optical nanocircuits | |
Jamadi et al. | Edge-emitting polariton laser and amplifier based on a ZnO waveguide | |
Liu et al. | Optical amplification and lasing by stimulated Raman scattering in silicon waveguides | |
Ba Hoang et al. | Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides | |
Dang et al. | Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films | |
Jung et al. | Quantum cascade lasers transfer-printed on silicon-on-sapphire | |
JP2004126582A (ja) | 高速光変調器 | |
Sarrafi et al. | Continuous-wave quasi-phase-matched waveguide correlated photon pair source on a III–V chip | |
Chow et al. | On quantum-dot lasing at gain peak with linewidth enhancement factor αH= 0 | |
Zhang et al. | O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy | |
US6771410B1 (en) | Nanocrystal based high-speed electro-optic modulator | |
Sekiya et al. | Design, fabrication, and optical characteristics of freestanding GaN waveguides on silicon substrate | |
CN112204757A (zh) | 基于本征等离子体激元-激子极化子的光电器件 | |
Ho et al. | Room-temperature lasing action in GaN quantum wells in the infrared 1.5 μm region | |
Xu et al. | Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities | |
Vyshnevyy et al. | Self-heating and cooling of active plasmonic waveguides | |
King et al. | Coherent power scaling in photonic crystal surface emitting laser arrays | |
Kiyota et al. | Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation | |
US10965101B2 (en) | Plasmonic quantum well laser | |
JP2006351918A (ja) | 発光素子 | |
Ellis et al. | Oxide-apertured microcavity single-photon emitting diode | |
Oda et al. | Operation of an InAs quantum-dot embedded GaAs photonic crystal slab waveguide laser by using two-photon pumping for photonics integrated circuits | |
Halioua et al. | Hybrid InP-based photonic crystal lasers on silicon on insulator wires | |
Hattori et al. | Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides | |
Bendayan et al. | Electrical control simulation of near infrared emission in SOI-MOSFET quantum well devices |