[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006351910A - Solenoid driving circuit - Google Patents

Solenoid driving circuit Download PDF

Info

Publication number
JP2006351910A
JP2006351910A JP2005177483A JP2005177483A JP2006351910A JP 2006351910 A JP2006351910 A JP 2006351910A JP 2005177483 A JP2005177483 A JP 2005177483A JP 2005177483 A JP2005177483 A JP 2005177483A JP 2006351910 A JP2006351910 A JP 2006351910A
Authority
JP
Japan
Prior art keywords
solenoid coil
current
diode
solenoid
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005177483A
Other languages
Japanese (ja)
Inventor
Kazuo Shikamata
和雄 鹿又
Teruya Sawada
輝也 澤田
Takashi Nakamura
敬 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Control Ind Co Ltd
Original Assignee
Nippon Control Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Control Ind Co Ltd filed Critical Nippon Control Ind Co Ltd
Priority to JP2005177483A priority Critical patent/JP2006351910A/en
Publication of JP2006351910A publication Critical patent/JP2006351910A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electromagnetic Pumps, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve by a simple circuit configuration without using any light emitting diode a method for shortening the attenuating time of the reverse electromotive current generated in a solenoid coil, when so applying pulses to the solenoid coil used in an electromagnetic pump, etc. as to drive it. <P>SOLUTION: A switching element 3 whose ON/OFF is performed by a desired pulse input voltage is so connected with an end of a solenoid coil 1 as to constitute a solenoid driving circuit for generating intermittently a magnetism in the solenoid coil 1, and a diode 2 for preventing the reverse current of the solenoid coil 1 is connected in series with the switching-element side of the solenoid coil 1. Thereafter, a nonpolar electrolytic capacitor 5 connected in series with a resistor 4 is connected in parallel with the solenoid coil 1 and with the diode 2 for preventing the reverse current of the solenoid coil 1. Further, a flywheel diode 6 is connected in parallel with the resistor 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、電磁ポンプ等に用いられるソレノイドコイルにパルスを印加して駆動する際に、ソレノイドコイルに発生する誘導起電流の減衰時間を短かくするソレノイド駆動回路に関する。   The present invention relates to a solenoid drive circuit that shortens the decay time of an induced electromotive current generated in a solenoid coil when the solenoid coil used in an electromagnetic pump or the like is driven by applying a pulse.

ソレノイドコイルに通電して得られる磁気力を利用して稼働する電磁ポンプ等の直流パルス駆動において、インダクタンスを有するソレノイドコイルの電流を断つことにより発生する逆起電流エネルギーは、一般的に図6に示す回路のように、フライホイールダイオードDに転流させ、ジュール熱として消費することでトランジスタ等を保護している。   In the DC pulse drive of an electromagnetic pump or the like that operates using the magnetic force obtained by energizing the solenoid coil, the counter electromotive current energy generated by cutting off the current of the solenoid coil having inductance is generally shown in FIG. As in the circuit shown, the transistors and the like are protected by commutating to the flywheel diode D and consuming it as Joule heat.

この場合の逆起電流Ibの減衰時間は、電磁ポンプの場合には数ms以上となり、比較的長い時定数をもって電流がゼロになる。従って、駆動周期が20ms以下の場合には、この程度の逆起電流の減衰時間、即ち電磁ポンプの駆動電流Icの電流立ち下り時間は、電磁ポンプのプランジャの復旧遅れで出力低下等の不都合な状態を発生させるし、逆起電流Ibの長い減衰時間はソレノイドコイルに過度の温度上昇をも招いていた。図6の回路図中の各所の電流波形を図7に示す。   In this case, the decay time of the counter electromotive current Ib is several ms or more in the case of an electromagnetic pump, and the current becomes zero with a relatively long time constant. Therefore, when the drive cycle is 20 ms or less, the back electromotive force decay time, that is, the current fall time of the electromagnetic pump drive current Ic is inconvenient, such as a decrease in output due to a delay in recovery of the plunger of the electromagnetic pump. The long decay time of the back electromotive current Ib causes an excessive temperature rise in the solenoid coil. FIG. 7 shows current waveforms at various points in the circuit diagram of FIG.

前述の逆起電流減衰時間の短縮を図る技術として、特許文献1に記述されている。即ち、図8に示すと、トランジスタTrが遮断した時にソレノイドコイルSCに発生する逆起電流のほとんどが、図中の電流Ieとして、抵抗R1を介して電解コンデンサCを瞬時に充電する。電解コンデンサCの充電された電荷は抵抗R1と抵抗R2を介してLEDに流す電流Igとして、抵抗R1と抵抗R2の時定数により緩やかに電解コンデンサの充電電荷を放電して行く。図8の回路における各所の電流波形を図9に示す。
特開2002−237412
Patent Document 1 describes a technique for shortening the above-described counter electromotive current decay time. That is, as shown in FIG. 8, most of the back electromotive current generated in the solenoid coil SC when the transistor Tr is cut off instantaneously charges the electrolytic capacitor C through the resistor R1 as the current Ie in the figure. The charged electric charge of the electrolytic capacitor C is gradually discharged as the current Ig flowing through the LED through the resistors R1 and R2 according to the time constant of the resistors R1 and R2. FIG. 9 shows current waveforms at various points in the circuit of FIG.
JP2002237374

逆起電流は、そのほとんどがトランジスタTrを遮断した瞬間に、電解コンデンサCを充電する電流Ieとして瞬時に流れるので、ソレノイドコイルSCに流れる駆動電流Ifの立ち下り減衰時間が速く減衰する状態が確認できる。   The back electromotive current almost instantaneously flows as the current Ie for charging the electrolytic capacitor C at the moment when the transistor Tr is cut off, so it is confirmed that the fall decay time of the drive current If flowing in the solenoid coil SC is quickly attenuated. it can.

しかしながら、図8に示す回路では、仮にソレノイドコイルに流す電流が大きくなると、発生する逆起電流も大きくなるので、図8に示す電解コンデンサCの容量も増やし充電電荷も増大する。そして、この電荷を放電する発光ダイオードは、「最大パルス順電流値」以内で放電する必要があり、そのためには発光ダイオードLED、保護ダイオードD2及び抵抗R2から成る回路部を複数個並列接続する必要が生じてくる。   However, in the circuit shown in FIG. 8, if the current flowing through the solenoid coil increases, the generated back electromotive current also increases. Therefore, the capacity of the electrolytic capacitor C shown in FIG. 8 increases and the charge charge also increases. The light emitting diode that discharges the electric charge needs to be discharged within the “maximum pulse forward current value”. For that purpose, a plurality of circuit units including the light emitting diode LED, the protection diode D2, and the resistor R2 need to be connected in parallel. Will arise.

この具体的な例として、直流抵抗が0.9Ωで、インダクタンスが3mH程度のソレノイドコイルを直流12Vの電源で駆動する回路例を図10に示す。図10の回路において、コンデンサCの静電容量は1000μFとし、抵抗R1を介して充電する際に、コンデンサCを許容リプル電流範囲内にするため、抵抗R1は10Ωとする。この回路定数でソレノイドに通電するデューティ比が約40%時に、赤外線発光ダイオードLED1,LED2にはそれぞれ約70mAの電流が流れる。ここでソレノイドコイル両端の電圧波形を図11に示す。   As a specific example, FIG. 10 shows a circuit example in which a solenoid coil having a DC resistance of 0.9Ω and an inductance of about 3 mH is driven by a DC 12V power source. In the circuit of FIG. 10, the capacitance of the capacitor C is 1000 μF, and when charging through the resistor R1, the resistor R1 is 10Ω in order to keep the capacitor C within the allowable ripple current range. When the duty ratio for energizing the solenoid with this circuit constant is about 40%, a current of about 70 mA flows through each of the infrared light emitting diodes LED1 and LED2. FIG. 11 shows the voltage waveform at both ends of the solenoid coil.

図11から解るように、逆起電圧は、−70V近くに達し、アース側からみたトランジスタTrのコレクタ電圧は約80V程度となる。この電圧は「ベース開放エミッタ接地コレクタ最大電圧VCEO以下にする必要があるが、一般的には、低い駆動電圧でソレノイドコイルを大電流で駆動するトランジスタはVCEOが低いので、現実的には逆起電流は駆動電圧の3倍以下にすることが望ましい。   As can be seen from FIG. 11, the back electromotive voltage reaches near -70V, and the collector voltage of the transistor Tr viewed from the ground side is about 80V. This voltage needs to be lower than the maximum open-base emitter-collector collector voltage VCEO, but in general, a transistor that drives a solenoid coil with a large current at a low driving voltage has a low VCEO. It is desirable that the current is not more than three times the driving voltage.

具体例を示すと、前述の図10に示す回路例において、逆起回路部のインピーダンスを下げるために、図12で示す回路例のように、抵抗は10Ωから3Ωへと変更し、コンデンサのリブル電流を低減するために、コンデンサ静電容量は1000μFから4700μFに変更する。この際のソレノイドコイル両端の電圧波形は図13に示す。逆起電圧は−40V程度に低減しているが、赤外線ダイオードには70mAから100mAと少し増加する。しかしながら、4700μFのコンデンサ容量は比較的大きく、100mAの赤外線発光ダイオードへの流入電流も最大定格値と等しい値である。   Specifically, in the circuit example shown in FIG. 10, in order to lower the impedance of the back electromotive circuit unit, the resistance is changed from 10Ω to 3Ω as in the circuit example shown in FIG. To reduce the current, the capacitor capacitance is changed from 1000 μF to 4700 μF. The voltage waveform at both ends of the solenoid coil at this time is shown in FIG. The back electromotive force is reduced to about -40V, but increases slightly from 70 mA to 100 mA for the infrared diode. However, the capacitor capacity of 4700 μF is relatively large, and the current flowing into the 100 mA infrared light emitting diode is also equal to the maximum rated value.

そこで、この発明は、発生した逆起電流の減衰時間を短くする方法を、発光ダイオードを使用せず、かつ簡易な回路構成で達成しようとするものである。   Accordingly, the present invention seeks to achieve a method for shortening the decay time of the generated back electromotive current without using a light emitting diode and with a simple circuit configuration.

この発明に係るソレノイド駆動回路は、ソレノイドコイルの一端に所望のパルスの入力電圧によってオンオフされるスイッチング素子を接続し、前記ソレノイドコイルに磁気を断続的に発生させるソレノイド駆動回路において、前記ソレノイドコイルの前記スイッチング素子側に逆流防止のダイオードを直列に接続し、前記ソレノイドコイルと前記逆流防止のダイオードに対し、抵抗と直列接続の無極電解コンデンサを並列に接続すると共に、前記抵抗にフライホイルダイオードを並列に接続したことにある(請求項1)。   A solenoid drive circuit according to the present invention is a solenoid drive circuit in which a switching element that is turned on and off by an input voltage of a desired pulse is connected to one end of a solenoid coil, and the solenoid coil generates magnetism intermittently. A backflow prevention diode is connected in series on the switching element side, and a non-polar electrolytic capacitor connected in series with a resistor is connected in parallel to the solenoid coil and the backflow prevention diode, and a flywheel diode is connected in parallel to the resistance. (Claim 1).

これにより、トランジスタの導通時にソレノイドコイルに順方向の駆動電流Ijが流れと同時に、電力型抵抗を介して無極電解コンデンサを充電する電流Ikが流れる。この電流Ikは、無極電解コンデンサの電力型抵抗側をプラス電荷に、反電力型抵抗側(トランジスタのコレクタ側)をマイナス電荷に充電する。   As a result, a forward drive current Ij flows through the solenoid coil when the transistor is turned on, and at the same time, a current Ik that charges the nonpolar electrolytic capacitor flows through the power-type resistor. This current Ik charges the power-type resistance side of the non-polar electrolytic capacitor with a positive charge and charges the counter-power-type resistance side (the collector side of the transistor) with a negative charge.

次にトランジスタが遮断時に、発生する逆起電流Iiは無極電解コンデンサを反電力型抵抗側から電力型抵抗方向に逆に充電してしまうことから、相殺されて逆起電流Iiの減衰時は極めて短くなる。従って、ソレノイドコイルの駆動電流Ijの立ち下り減衰時間が速くなる。   Next, when the transistor is shut off, the counter electromotive current Ii that is generated reversely charges the nonpolar electrolytic capacitor in the direction of the power type resistance from the counter power type resistance side. Shorter. Therefore, the fall decay time of the solenoid coil drive current Ij is accelerated.

以上のように、この発明によれば、ソレノイドコイルに並列接続の無極電解コンデンサに対し、トランジスタのオン時に電力型抵抗側をプラス電荷に、反電力型抵抗側をマイナスに電荷するが、トランジスタのオフ時に電力型抵抗側をマイナスに、反電力型抵抗側をプラスに充電することから、逆起電流の減衰時間を極めて短くすることができる。   As described above, according to the present invention, the non-electrolytic capacitor connected in parallel to the solenoid coil is charged positively on the power-type resistance side and negatively charged on the anti-power-type resistance side when the transistor is turned on. Since the power type resistance side is negatively charged and the counter power type resistance side is positively charged at the time of OFF, the decay time of the back electromotive current can be extremely shortened.

以下、この発明の実施例を図面にもとづいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1にこの発明の回路図、図2に各所の電圧波形、図3に各所の電流波形を示している。図1において、ソレノイドコイル1は、ステッピングモータや電磁コイル等に用いられているが、以下電磁ポンプに採用されている例を持って説明すると、ソレノイドコイル1は、その一方が逆流防止のダイオード2を介して、スイッチング素子であるトランジスタ3のコレクタ側に接続されている。   FIG. 1 shows a circuit diagram of the present invention, FIG. 2 shows voltage waveforms at various locations, and FIG. 3 shows current waveforms at various locations. In FIG. 1, the solenoid coil 1 is used in a stepping motor, an electromagnetic coil, or the like. Hereinafter, the solenoid coil 1 will be described with an example employed in an electromagnetic pump. One side of the solenoid coil 1 is a diode 2 that prevents backflow. And connected to the collector side of the transistor 3 as a switching element.

前記ソレノイドコイル1と逆流防止のダイオード2に対し、電力型抵抗4と無極電解コンデンサ5の直列回路が並列に接続されている。さらに、前記抵抗4に対し、フライホイルダイオード6が並列に接続されている   A series circuit of a power-type resistor 4 and a nonpolar electrolytic capacitor 5 is connected in parallel to the solenoid coil 1 and the backflow preventing diode 2. Further, a flywheel diode 6 is connected in parallel to the resistor 4.

いま、トランジスタ3が導通すると、ソレノイドコイル1に順方向の駆動電流Ijが流れると同時に、電力型抵抗4を介して無極電解コンデンサ5を充電する電流Ikが流れる。この電流Ikは、無極電解コンデンサ5のZ側をプラス電荷に、Y側をマイナス電荷に充電する。   Now, when the transistor 3 is turned on, a forward drive current Ij flows through the solenoid coil 1, and at the same time, a current Ik for charging the nonpolar electrolytic capacitor 5 flows through the power type resistor 4. This current Ik charges the Z side of the non-polar electrolytic capacitor 5 to a positive charge and the Y side to a negative charge.

次にトランジスタ3が遮断すると、発生する逆起電力による逆起電流Iiは無極電解コンデンサ5をY側からZ側方向に充電する訳であるが、トランジスタ3が導通していた際には、無極電解コンデンサ5は逆方向に充電されて、電荷が逆帯電していた訳であるから、電荷の移動という観点から、逆起電流が無極コンデンサ5を介して放電したことになる。   Next, when the transistor 3 is shut off, the counter electromotive current Ii generated by the counter electromotive force charges the non-polar electrolytic capacitor 5 from the Y side to the Z side. Since the electrolytic capacitor 5 was charged in the reverse direction and the charge was reversely charged, the back electromotive current was discharged through the nonpolar capacitor 5 from the viewpoint of charge transfer.

この放電電流、即ち逆起電流Iiの減衰時間は、図3に示すように極めて短い。従って、ソレノイドコイルの駆動電流Ijの立ち下り減衰時間が前述の図7のIcと比較すると速くなっている。なお電力型抵抗4は、無極電解コンデンサの充放電時間を規定する他に、+Vs〜Y間のインピーダンスを下げて、逆起電圧と駆動直流電圧Vsの和、即ち図2の(X)及び図2の(Y)で示すVp−pを、トランジスタ3の「ベース開放エミッタ接地コレクタ最大電圧」VCEOの定格値を超えないように制限して、トランジスタ3の破壊を防ぐために必要な抵抗である。   The decay time of the discharge current, that is, the back electromotive current Ii is extremely short as shown in FIG. Therefore, the fall decay time of the solenoid coil drive current Ij is faster than Ic of FIG. In addition to defining the charging / discharging time of the non-electrolytic capacitor, the power-type resistor 4 lowers the impedance between + Vs and Y to reduce the sum of the counter electromotive voltage and the drive DC voltage Vs, that is, (X) and FIG. 2 is a resistance necessary for preventing the transistor 3 from being destroyed by limiting the Vp-p indicated by (Y) of 2 so as not to exceed the rated value of the “base open emitter grounded collector maximum voltage” VCEO of the transistor 3.

図4において、この発明の回路を構成する素子の値として、ソレノイドコイル1は直流抵抗0.9Ω、インダクタンス3mH、無極電解コンデンサ5の静電容量を470μF、電力型抵抗4は100Ωとする。ソレノイドコイル1への通電条件を前述と同様にデューティ比40%とした場合のソレノイドコイル1両端の電圧波形を図5に示すが逆起電圧は−30V以内である。この点は、図12で示した従来のLEDを使用した回路例よりも少ない部品で逆起電圧の発生を減少させられることと同時に、コンデンサの静電容量が大きく低減している点からも本発明の逆起電力回路が有利である。   In FIG. 4, as the values of the elements constituting the circuit of the present invention, the solenoid coil 1 has a DC resistance of 0.9Ω, an inductance of 3 mH, the capacitance of the nonpolar electrolytic capacitor 5 is 470 μF, and the power-type resistor 4 is 100Ω. FIG. 5 shows the voltage waveform at both ends of the solenoid coil 1 when the energization condition for the solenoid coil 1 is 40% as in the case described above, but the back electromotive force is within -30V. This is because the generation of the back electromotive force can be reduced with fewer parts than the circuit example using the conventional LED shown in FIG. 12, and at the same time, the capacitance of the capacitor is greatly reduced. The inventive back electromotive force circuit is advantageous.

この発明の実施例を示す回路図である。It is a circuit diagram which shows the Example of this invention. 同上のX,Y,Z地点のパルス波形である。It is a pulse waveform at the X, Y and Z points. 同上のIh,Ii,Ij,Ikの電流波形である。It is a current waveform of Ih, Ii, Ij, and Ik. この発明の回路図において、ソレノイドコイル、抵抗、無極電解コンデンサに具体的な値を示した回路図である。In the circuit diagram of this invention, it is the circuit diagram which showed the concrete value to the solenoid coil, resistance, and a nonpolar electrolytic capacitor. 同上のソレノイドコイルの両端に表れる電圧波形である。It is a voltage waveform which appears on both ends of the solenoid coil same as the above. 従来例の一般的な回路図である。It is a general circuit diagram of a conventional example. 同上のIa,Ib,Icの電流波形である。It is a current waveform of Ia, Ib, and Ic. 特許文献1に示されている第1の実施例の回路図である。1 is a circuit diagram of a first embodiment disclosed in Patent Document 1. FIG. 同上のId,Ie,If,Igの電流波形である。It is a current waveform of Id, Ie, If, and Ig same as the above. 特許文献1に示されている第2実施例の回路図である。It is a circuit diagram of the 2nd example shown in patent documents 1. 同上のソレノイドコイルの両端に表れる電圧波形である。It is a voltage waveform which appears on both ends of the solenoid coil same as the above. 特許文献1に示されている第2の実施例の回路図において、構成する各素子の具体的な値を示した回路図である。In the circuit diagram of the 2nd Example shown by patent document 1, it is a circuit diagram which showed the specific value of each element to comprise. 同上のソレノイドコイルの両端に表れる電圧波形である。It is a voltage waveform which appears on both ends of the solenoid coil same as the above.

符号の説明Explanation of symbols

1 ソレノイドコイル
2 ダイオード
3 トランジスタ
4 電力型抵抗
5 無極電解コンデンサ
6 フライホイルダイオード
DESCRIPTION OF SYMBOLS 1 Solenoid coil 2 Diode 3 Transistor 4 Power-type resistance 5 Nonpolar electrolytic capacitor 6 Flywheel diode

Claims (1)

ソレノイドコイルの一端に所望のパルスの入力電圧によってオンオフされるスイッチング素子を接続し、前記ソレノイドコイルに磁気を断続的に発生させるソレノイド駆動回路において、
前記ソレノイドコイルの前記スイッチング素子側に逆流防止のダイオードを直列に接続し、前記ソレノイドコイルと前記逆流防止のダイオードに対し、抵抗と直列接続の無極電解コンデンサを並列に接続すると共に、前記抵抗にフライホイルダイオードを並列に接続したことを特徴とするソレノイド駆動回路。
In a solenoid drive circuit that connects a switching element that is turned on and off by an input voltage of a desired pulse to one end of the solenoid coil, and intermittently generates magnetism in the solenoid coil,
A backflow prevention diode is connected in series to the switching element side of the solenoid coil, and a non-polar electrolytic capacitor connected in series with a resistor is connected in parallel to the solenoid coil and the backflow prevention diode. A solenoid drive circuit characterized by connecting foil diodes in parallel.
JP2005177483A 2005-06-17 2005-06-17 Solenoid driving circuit Pending JP2006351910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005177483A JP2006351910A (en) 2005-06-17 2005-06-17 Solenoid driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005177483A JP2006351910A (en) 2005-06-17 2005-06-17 Solenoid driving circuit

Publications (1)

Publication Number Publication Date
JP2006351910A true JP2006351910A (en) 2006-12-28

Family

ID=37647422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005177483A Pending JP2006351910A (en) 2005-06-17 2005-06-17 Solenoid driving circuit

Country Status (1)

Country Link
JP (1) JP2006351910A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014174626A1 (en) 2013-04-25 2014-10-30 日立オートモティブシステムズ株式会社 Electromagnetic coil driving control device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125568U (en) * 1975-04-02 1976-10-12
JPS5398357U (en) * 1977-01-13 1978-08-09
JPS55120109U (en) * 1979-02-15 1980-08-26
JPS567308U (en) * 1979-06-29 1981-01-22
JPS5818312U (en) * 1981-07-28 1983-02-04 富士電機株式会社 electromagnet device
JPS6362305A (en) * 1986-09-03 1988-03-18 Hitachi Ltd Coil exciting circuit
JPH02220322A (en) * 1989-02-20 1990-09-03 Mitsubishi Electric Corp Polarized electromagnetic relay and circuit using the same
JPH02302125A (en) * 1989-05-17 1990-12-14 Hitachi Ltd Snubber circuit for self-arc quenching element in power converter
JPH0638590A (en) * 1992-07-20 1994-02-10 Komatsu Ltd Inductive load driving apparatus
JPH07143793A (en) * 1993-08-26 1995-06-02 Matsushita Electric Works Ltd Controller for inductive load
JP2000193126A (en) * 1998-12-25 2000-07-14 Db Seiko:Kk Solenoid valve
JP2002237412A (en) * 2000-10-11 2002-08-23 Nippon Control Kogyo Co Ltd Solenoid drive circuit

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125568U (en) * 1975-04-02 1976-10-12
JPS5398357U (en) * 1977-01-13 1978-08-09
JPS55120109U (en) * 1979-02-15 1980-08-26
JPS567308U (en) * 1979-06-29 1981-01-22
JPS5818312U (en) * 1981-07-28 1983-02-04 富士電機株式会社 electromagnet device
JPS6362305A (en) * 1986-09-03 1988-03-18 Hitachi Ltd Coil exciting circuit
JPH02220322A (en) * 1989-02-20 1990-09-03 Mitsubishi Electric Corp Polarized electromagnetic relay and circuit using the same
JPH02302125A (en) * 1989-05-17 1990-12-14 Hitachi Ltd Snubber circuit for self-arc quenching element in power converter
JPH0638590A (en) * 1992-07-20 1994-02-10 Komatsu Ltd Inductive load driving apparatus
JPH07143793A (en) * 1993-08-26 1995-06-02 Matsushita Electric Works Ltd Controller for inductive load
JP2000193126A (en) * 1998-12-25 2000-07-14 Db Seiko:Kk Solenoid valve
JP2002237412A (en) * 2000-10-11 2002-08-23 Nippon Control Kogyo Co Ltd Solenoid drive circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014174626A1 (en) 2013-04-25 2014-10-30 日立オートモティブシステムズ株式会社 Electromagnetic coil driving control device
US10002699B2 (en) 2013-04-25 2018-06-19 Hitachi Automotive Systems, Ltd. Electromagnetic coil driving control device

Similar Documents

Publication Publication Date Title
TW412890B (en) Power control device for laser diode use
JP2577179B2 (en) Quasi-resonant diode drive current source
EP2165576B1 (en) Driver device for a load and method of driving a load with such a driver device
US6664750B2 (en) D.C. motor bridge coil driver
JP3619959B2 (en) Solenoid drive circuit
US4982314A (en) Power source circuit apparatus for electro-luminescence device
US8937438B2 (en) Power supply with restart circuit
EP3255794A1 (en) Thyristor drive apparatus
US5852358A (en) Capactive power circuit
US9666039B2 (en) Visual notification device and driving method thereof
US20140226688A1 (en) Multiple output diode driver with independent current control and output current modulation
JP2016029639A (en) Lighting device, luminaire and lighting equipment
JP6767328B2 (en) Solenoid drive circuit
JP2006351910A (en) Solenoid driving circuit
EP3328160B1 (en) Constant current power supply providing a plurality of current output values for led lamps
EP1667497A2 (en) An electric fence energiser
US9270206B2 (en) Methods and systems for applying charge to a piezoelectric element
JP2004254401A (en) Boosting chopper device
TWM441288U (en) LED driving apparatus
CN102984864A (en) LED lamp driving power supply with lightning protection and automatic temperature control functions
CN209880379U (en) Surge type pulse transformer
KR101094726B1 (en) Circuit for anti-insect device
US9397552B2 (en) Snubber circuit to increase efficiency of power converters
RU2063103C1 (en) Generator of high-voltage pulses
CN103025014A (en) Light-emitting diode (LED) lamp driving power supply with functions of lightning resistance and automatic temperature control

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070319

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20091222

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629