[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006350038A - Pattern forming method - Google Patents

Pattern forming method Download PDF

Info

Publication number
JP2006350038A
JP2006350038A JP2005177006A JP2005177006A JP2006350038A JP 2006350038 A JP2006350038 A JP 2006350038A JP 2005177006 A JP2005177006 A JP 2005177006A JP 2005177006 A JP2005177006 A JP 2005177006A JP 2006350038 A JP2006350038 A JP 2006350038A
Authority
JP
Japan
Prior art keywords
pattern
group
light
meth
pattern forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005177006A
Other languages
Japanese (ja)
Inventor
Reiji Higuchi
令史 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fujifilm Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Holdings Corp filed Critical Fujifilm Holdings Corp
Priority to JP2005177006A priority Critical patent/JP2006350038A/en
Publication of JP2006350038A publication Critical patent/JP2006350038A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pattern forming method for elaborately shaping a resist pattern after developed, removing a residue of the resist, forming a permanent pattern such as a wiring pattern with high definition and high efficiency, and achieving high resolution and high adhesiveness between a substrate and a photosensitive layer without causing chipping, peeling or swelling in a crosslinked portion (cured film) of the resist. <P>SOLUTION: The pattern forming method is carried out by using a pattern forming material having at least a photosensitive layer on a supporting body, and includes steps of laminating the photosensitive layer on a substrate to be processed, exposing and developing the photosensitive layer to form a resist pattern, and shaping the resist pattern by a dry process on the resist pattern. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、パッケージ基板を含むプリント配線基板分野において、ドライフィルムレジスト(DFR)等に好適な、高精細な永久パターンを効率よく形成するパターン形成方法に関する。   The present invention relates to a pattern forming method for efficiently forming a high-definition permanent pattern suitable for a dry film resist (DFR) or the like in the field of printed wiring boards including package substrates.

配線パターンなどの永久パターンを形成するに際して、支持体上に感光性樹脂組成物を塗布、乾燥することにより感光層を形成させたパターン形成材料が用いられている。前記永久パターンの製造方法としては、例えば、前記永久パターンが形成される銅張積層板等の基体上に、前記パターン形成材料を積層させて積層体を形成し、該積層体における前記感光層に対して露光を行い、該露光後、前記感光層を現像してレジストパターンを形成させ、その後エッチング処理等を行うことにより前記永久パターンが形成される。   When forming a permanent pattern such as a wiring pattern, a pattern forming material in which a photosensitive layer is formed by applying and drying a photosensitive resin composition on a support is used. As the method for producing the permanent pattern, for example, a laminate is formed by laminating the pattern forming material on a substrate such as a copper clad laminate on which the permanent pattern is formed, and the photosensitive layer in the laminate is formed on the photosensitive layer. The permanent pattern is formed by exposing to light, developing the photosensitive layer after the exposure to form a resist pattern, and then performing an etching process or the like.

しかし、前記現像時においてレジストパターンの間隙に樹脂の残渣が残留することがある。この残渣の存在により、その後のエッチング工程の際に、前記レジストパターンの間隙にエッチング液がうまく入り込めず、エッチングが阻害される部位が生じる。特に、配線パターンなどでは前記間隙が狭く緻密なため、残渣の残留によって間隙へのエッチング液の流入阻害が顕著となり、基体の部位によってエッチングの進行にムラを生じる。更に、配線パターンでは、レジストパターンの厚みが10μm以上と肉厚であり、光源により近い側での硬化が促進されるため、レジストパターンの断面形状は、基板とは反対側が幅広な逆台形状に形成され、レジストパターンの表面側の間隙がより狭くなって、エッチング液の流入がより阻まれ易いものとなる。これらにより、エッチングが良好に行われず、配線回路の線幅に太細を生じて不均一なものとなり、解像度の低下を招き、精細な永久パターンを形成できなくなる問題を生じる。そのため、逆台形状のレジストパターンを矩形に整えて、エッチングに支障を来さないようにすることが求められる。   However, a resin residue may remain in the gap of the resist pattern during the development. Due to the presence of the residue, in the subsequent etching process, an etching solution does not enter the gap between the resist patterns well, and a portion where etching is hindered is generated. In particular, since the gap is narrow and dense in a wiring pattern or the like, the inhibition of the flow of the etching solution into the gap becomes remarkable due to the residue remaining, and the etching progress varies depending on the portion of the substrate. Furthermore, in the wiring pattern, the thickness of the resist pattern is as thick as 10 μm or more, and curing on the side closer to the light source is promoted, so that the cross-sectional shape of the resist pattern has a wide inverted trapezoidal shape on the side opposite to the substrate As a result, the gap on the surface side of the resist pattern becomes narrower and the inflow of the etching solution is more easily prevented. As a result, etching is not performed satisfactorily, and the line width of the wiring circuit becomes thick and non-uniform, resulting in a decrease in resolution and a problem that a fine permanent pattern cannot be formed. Therefore, it is required to arrange the inverted trapezoidal resist pattern into a rectangle so as not to hinder the etching.

この残渣による不具合を解消するため、従来は現像時間を延長する手段がとられているが、NaCO水溶液などの現像液に長時間浸漬することで、露光により架橋した部位が膨潤し、現像部位に現像液が入りにくくなって、結果的に残渣の除去が十分には行われなくなることがある。更に、この現像時間の延長により、前記レジストの架橋部が脆弱なものとなり、レジストの欠けや基体からの剥離を生じる可能性があり、レジストパターン製品の品質の低下を招くおそれがある。
また、特許文献2及び3では、ドライデスミア処理により、樹脂層に形成した貫通孔内の樹脂の残渣を除去する方法が開示されているが、残渣除去のみで貫通孔の整形を行うものではないし、レジストパターンの整形についても何ら開示がない。
したがって、現像後のレジストパターンの整形を行うとともにレジストの残渣を除去することにより、配線パターン等の永久パターンを高精細に、かつ、効率よく形成可能であり、しかも、レジストの架橋部に欠けや剥離、膨潤などを生じることなく、高い解像度と基体と感光層との密着性を両立しうるパターン形成方法は、未だ十分満足し得るものが提供されていないのが現状である。
In order to eliminate the problem caused by this residue, conventionally, means for extending the development time has been taken, but by immersing in a developer such as an aqueous solution of Na 2 CO 3 for a long time, the cross-linked site is swollen by exposure, As a result, it becomes difficult for the developer to enter the development site, and as a result, the residue may not be sufficiently removed. Further, the extension of the development time makes the cross-linked portion of the resist brittle, and there is a possibility that the resist is chipped or peeled off from the substrate, leading to a decrease in the quality of the resist pattern product.
Further, Patent Documents 2 and 3 disclose a method of removing a resin residue in a through-hole formed in a resin layer by dry desmear treatment. However, the through-hole is not shaped only by removing the residue. There is no disclosure about shaping of the resist pattern.
Therefore, by shaping the resist pattern after development and removing the resist residue, a permanent pattern such as a wiring pattern can be formed with high definition and efficiency, and the resist bridging portion is not chipped. At present, no satisfactory pattern forming method has been provided that can achieve both high resolution and adhesion between the substrate and the photosensitive layer without causing peeling or swelling.

特開2003−307845号公報JP 2003-307845 A 特開平8−180757号公報JP-A-8-180757 特開2001−230549号公報JP 2001-230549 A

本発明は、かかる現状に鑑みてなされたものであり、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、ドライプロセスにより現像後のレジストパターンの整形を行うとともにレジストの残渣を除去することにより、配線パターン等の永久パターンを高精細に、かつ、効率よく形成可能であり、しかも、レジストの架橋部に欠けや剥離、膨潤などを生じることなく、高い解像度と基体と感光層との密着性とを高度に両立したパターン形成方法を提供することを目的とする。   This invention is made | formed in view of this present condition, and makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention can form a permanent pattern such as a wiring pattern with high definition and efficiency by shaping the resist pattern after development by a dry process and removing the residue of the resist. It is an object of the present invention to provide a pattern forming method that is highly compatible with high resolution and adhesion between a substrate and a photosensitive layer, without causing chipping, peeling, swelling, or the like in a crosslinked portion of a resist.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 支持体上に感光層を少なくとも有するパターン形成材料における該感光層を、被処理基体上に積層し、該感光層を露光し、現像してレジストパターンを形成した後、該レジストパターンに対してドライプロセスによりレジストパターン整形工程が行われることを特徴とするパターン形成方法である。該<1>に記載のパターン形成方法においては、ドライプロセスによりレジストパターン整形工程を行うことにより、NaCO水溶液など現像液を使用する、いわゆるウェットプロセスで発生するレジストパターンの膨潤や欠け、基板からの剥離を生じることなく、断面形状が逆台形状のレジストパターンを矩形に整形することができるとともに、レジストの残渣を良好に除去することが可能となる。その結果、レジストパターンの間隙にエッチング液などが入り込み易いものとなり、エッチング処理などが良好に行われ、配線パターンなどの永久レジストパターンを、高精細に形成することができる。
<2> レジストパターン整形工程が、プラズマエッチング処理により行われる前記<1>に記載のパターン形成方法である。該<2>に記載のパターン形成方法においては、前記パターン形成材料の溶融温度よりも、低い温度でプラズマエッチング処理が行われるので、前記レジストパターンが溶融して破損などを生じることがなく、レジストパターンの整形を高精度に行うことができ、かつ残渣を良好に除去することが可能となる。
<3> プラズマエッチング処理が、減圧下で行われる前記<2>に記載のパターン形成方法である。該<3>のパターン形成方法においては、真空状態で行うので、プラズマエッチングの処理能力の向上が図れる。
<4> レジストパターン整形工程が、大気圧オゾン表面処理により行われる前記<1>に記載のパターン形成方法である。
<5> 、大気圧オゾン表面処理が、大気圧下で行われる前記<4>に記載のパターン形成方法である。該<3>に記載のパターン形成方法においては、真空引を必要とせず、レジストパターン整形工程の処理時間を短縮して効率化が図れる。
<6> 基体が、プリント配線板製造用基板である前記<1>から<5>のいずれかに記載のパターン形成方法である。
<7> レジストパターン整形工程が行われた後、永久パターンの形成を行う前記<1>から<6>のいずれかに記載のパターン形成方法である。
<8> 永久パターンが、配線パターンであり、該永久パターンの形成がエッチング処理及びめっき処理の少なくともいずれかにより行われる前記<7>に記載のパターン形成方法である。
<9> 配線パターンが、サブトラクティブ法及びセミアディティブ法のいずれかにより形成される前記<8>に記載のパターン形成方法である。
<10> 感光層が、重合性化合物と、バインダーと、光重合開始剤とを含む前記<1>から<9>のいずれかに記載のパターン形成方法である。
<11> 重合性化合物が、プロピレンオキシド基を含む化合物、エチレンオキシド基を含む化合物、ウレタン基を含む化合物、及びアリール基を含む化合物から選択される少なくとも1種を有する前記<10>に記載のパターン形成方法である。
<12> 重合性化合物が、プロピレンオキシド基を含む化合物、ウレタン基を含む化合物、及びアリール基を含む化合物を少なくとも含む前記<10>から<11>に記載のパターン形成方法である。
<13> 重合性化合物が、ビスフェノール骨格を有する前記<10>から<12>のいずれかに記載のパターン形成方法である。
<14> バインダーが、酸性基を有する前記<10>から<13>のいずれかに記載のパターン形成方法である。
<15> バインダーが、ビニル共重合体を含む前記<10>から<14>のいずれかに記載のパターン形成方法である。
<16> バインダーが、スチレン及びスチレン誘導体の少なくともいずれかの共重合体を含む前記<10>から<15>のいずれかに記載のパターン形成方法である。
<17> バインダーの酸価が、70〜250(mgKOH/g)である前記<10>から<16>のいずれかに記載のパターン形成方法である。
<18> 光重合開始剤が、ハロゲン化炭化水素誘導体、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩及びメタロセン類から選択される少なくとも1種を含む前記<10>から<17>のいずれかに記載のパターン形成方法である。
<19> 光重合開始剤が、ヘキサアリールビイミダゾールを含む前記<10>から<18>のいずれかに記載のパターン形成方法である。
<20> 感光層の厚みが1〜100μmである前記<1>から<19>のいずれかに記載のパターン形成方法である。
<21> 感光層が、バインダーを30〜90質量%含有し、重合性化合物を5〜60質量%含有し、光重合開始剤を0.1〜30質量%含有する前記<1>から<20>のいずれかに記載のパターン形成方法である。
<22> 支持体が、長尺状である前記<1>から<21>のいずれかに記載のパターン形成材料である。
<23> パターン形成材料が、長尺状であり、ロール状に巻かれてなる前記<1>から<22>のいずれかに記載のパターン形成材料である。
<24> パターン形成材料における感光層上に保護フィルムを有する前記<1>から<23>のいずれかに記載のパターン形成材料である。
<25> 感光層上に保護フィルムを有し、該保護フィルムが、ポリプロピレン樹脂、エチレン−プロピレン共重合樹脂及びポリエチレンテレフタレート樹脂から選択される少なくとも1種を含む前記<1>から<24>のいずれかに記載のパターン形成材料。
<26> 露光が、光照射手段からの光を受光し出射する描素部をn個有する光変調手段により、前記光照射手段からの光を変調させた後、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイクロレンズアレイを通して行われることを少なくとも含む前記<1>から<25>のいずれかに記載のパターン形成方法である。該<26>に記載のパターン形成方法においては、前記光照射手段が、前記光変調手段に向けて光を照射する。該光照射手段における前記n個の描素部が、前記光照射手段からの光を受光し、放射することにより、前記光照射手段から受けた光を変調する。前記光変調手段により変調した光が、前記マイクロレンズアレイにおける前記非球面を通ることにより、前記描素部における出射面の歪みによる収差が補正され、前記パターン形成材料上に結像させる像の歪みが抑制される。この結果、前記パターン形成材料への露光が高精細に行われる。例えば、その後、前記感光層を現像することにより、高精細なパターンが形成される。
<27> 非球面が、トーリック面である前記<26>に記載のパターン形成方法である。該<27>に記載のパターン形成方法においては、前記非球面がトーリック面であることにより、前記描素部における放射面の歪みによる収差が効率よく補正され、パターン形成材料上に結像させる像の歪みが効率よく抑制される。この結果、前記パターン形成材料への露光が高精細に行われる。例えば、その後、前記感光層を現像することにより、高精細なパターンが形成される。
<28> 露光が、アパーチャアレイを通して行われる前記<1>から<27>のいずれかに記載のパターン形成方法である。該<28>に記載のパターン形成方法においては、露光が前記アパーチャアレイを通して行われることにより、消光比が向上する。この結果、露光が極めて高精細に行われる。例えば、その後、前記感光層を現像すると、極めて高精細なパターンが形成される。
<29> 露光が、露光光と感光層とを相対的に移動させながら行われる前記<1>から<28>のいずれかに記載のパターン形成方法である。該<29>に記載のパターン形成方法においては、前記変調させた光と前記感光層とを相対的に移動させながら露光することにより、露光が高速に行われる。例えば、その後、前記感光層を現像すると、高精細なパターンが形成される。
<30> 露光が、感光層の一部の領域に対して行われる前記<1>から<29>のいずれかに記載のパターン形成方法である。
Means for solving the problems are as follows. That is,
<1> The photosensitive layer in a pattern forming material having at least a photosensitive layer on a support is laminated on a substrate to be processed, and the photosensitive layer is exposed and developed to form a resist pattern. On the other hand, a resist pattern shaping step is performed by a dry process. In the pattern forming method according to <1>, by performing a resist pattern shaping process by a dry process, a resist pattern is swollen or chipped by a so-called wet process using a developer such as an aqueous Na 2 CO 3 solution, A resist pattern having an inverted trapezoidal cross-sectional shape can be shaped into a rectangle without peeling off from the substrate, and the resist residue can be removed well. As a result, an etchant or the like can easily enter the gap between the resist patterns, the etching process is performed well, and a permanent resist pattern such as a wiring pattern can be formed with high definition.
<2> The pattern forming method according to <1>, wherein the resist pattern shaping step is performed by a plasma etching process. In the pattern forming method according to <2>, since the plasma etching process is performed at a temperature lower than the melting temperature of the pattern forming material, the resist pattern does not melt and cause damage or the like. Pattern shaping can be performed with high accuracy, and residues can be removed well.
<3> The pattern forming method according to <2>, wherein the plasma etching process is performed under reduced pressure. Since the <3> pattern forming method is performed in a vacuum state, it is possible to improve the processing capability of plasma etching.
<4> The pattern forming method according to <1>, wherein the resist pattern shaping step is performed by an atmospheric pressure ozone surface treatment.
<5> The pattern forming method according to <4>, wherein the atmospheric pressure ozone surface treatment is performed under an atmospheric pressure. In the pattern forming method according to <3>, vacuuming is not required, and the processing time of the resist pattern shaping step can be shortened to increase efficiency.
<6> The pattern forming method according to any one of <1> to <5>, wherein the substrate is a printed wiring board manufacturing substrate.
<7> The pattern forming method according to any one of <1> to <6>, wherein a permanent pattern is formed after the resist pattern shaping step is performed.
<8> The pattern forming method according to <7>, wherein the permanent pattern is a wiring pattern, and the formation of the permanent pattern is performed by at least one of an etching process and a plating process.
<9> The pattern forming method according to <8>, wherein the wiring pattern is formed by one of a subtractive method and a semi-additive method.
<10> The pattern forming method according to any one of <1> to <9>, wherein the photosensitive layer includes a polymerizable compound, a binder, and a photopolymerization initiator.
<11> The pattern according to <10>, wherein the polymerizable compound has at least one selected from a compound containing a propylene oxide group, a compound containing an ethylene oxide group, a compound containing a urethane group, and a compound containing an aryl group. It is a forming method.
<12> The pattern forming method according to <10> to <11>, wherein the polymerizable compound includes at least a compound containing a propylene oxide group, a compound containing a urethane group, and a compound containing an aryl group.
<13> The pattern forming method according to any one of <10> to <12>, wherein the polymerizable compound has a bisphenol skeleton.
<14> The pattern forming method according to any one of <10> to <13>, wherein the binder has an acidic group.
<15> The pattern forming method according to any one of <10> to <14>, wherein the binder includes a vinyl copolymer.
<16> The pattern forming method according to any one of <10> to <15>, wherein the binder includes a copolymer of at least one of styrene and a styrene derivative.
<17> The pattern forming method according to any one of <10> to <16>, wherein the binder has an acid value of 70 to 250 (mgKOH / g).
<18> The photopolymerization initiator includes at least one selected from halogenated hydrocarbon derivatives, hexaarylbiimidazoles, oxime derivatives, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, and metallocenes. The pattern forming method according to any one of <10> to <17>.
<19> The pattern formation method according to any one of <10> to <18>, wherein the photopolymerization initiator includes hexaarylbiimidazole.
<20> The pattern forming method according to any one of <1> to <19>, wherein the photosensitive layer has a thickness of 1 to 100 μm.
<21> From the above <1> to <20, wherein the photosensitive layer contains 30 to 90% by mass of the binder, 5 to 60% by mass of the polymerizable compound, and 0.1 to 30% by mass of the photopolymerization initiator. > The pattern forming method according to any one of the above.
<22> The pattern forming material according to any one of <1> to <21>, wherein the support has a long shape.
<23> The pattern forming material according to any one of <1> to <22>, wherein the pattern forming material has a long shape and is wound in a roll shape.
<24> The pattern forming material according to any one of <1> to <23>, wherein the pattern forming material has a protective film on the photosensitive layer.
<25> Any of the above <1> to <24>, having a protective film on the photosensitive layer, wherein the protective film contains at least one selected from polypropylene resin, ethylene-propylene copolymer resin, and polyethylene terephthalate resin The pattern forming material according to any one of the above.
<26> After the light is modulated by the light modulation unit having n number of pixel portions that receive and emit light from the light irradiation unit, the light is emitted from the light irradiation unit. The pattern forming method according to any one of <1> to <25>, wherein the pattern forming method includes at least a microlens array in which microlenses having aspheric surfaces capable of correcting aberration due to distortion are arranged. In the pattern forming method according to <26>, the light irradiation unit irradiates light toward the light modulation unit. The n picture elements in the light irradiation means receive and emit light from the light irradiation means, thereby modulating the light received from the light irradiation means. The light modulated by the light modulation means passes through the aspherical surface in the microlens array, so that the aberration due to the distortion of the exit surface in the pixel portion is corrected, and the image is imaged on the pattern forming material. Is suppressed. As a result, the pattern forming material is exposed with high definition. For example, a high-definition pattern is formed by developing the photosensitive layer thereafter.
<27> The pattern forming method according to <26>, wherein the aspherical surface is a toric surface. In the pattern forming method according to <27>, since the aspherical surface is a toric surface, the aberration due to the distortion of the radiation surface in the pixel portion is efficiently corrected, and an image formed on the pattern forming material is formed. Is efficiently suppressed. As a result, the pattern forming material is exposed with high definition. For example, a high-definition pattern is formed by developing the photosensitive layer thereafter.
<28> The pattern forming method according to any one of <1> to <27>, wherein the exposure is performed through an aperture array. In the pattern forming method according to <28>, the extinction ratio is improved by performing exposure through the aperture array. As a result, the exposure is performed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
<29> The pattern forming method according to any one of <1> to <28>, wherein the exposure is performed while relatively moving the exposure light and the photosensitive layer. In the pattern forming method according to <29>, exposure is performed at high speed by performing exposure while relatively moving the modulated light and the photosensitive layer. For example, when the photosensitive layer is subsequently developed, a high-definition pattern is formed.
<30> The pattern forming method according to any one of <1> to <29>, wherein the exposure is performed on a partial region of the photosensitive layer.

本発明によると、従来における問題を解決することができ、現像後のレジストパターンの整形を精巧に行って、かつレジストの残渣を除去することにより、配線パターン等の永久パターンを高精細に、かつ、効率よく形成可能であり、しかも、レジストの架橋部(硬化膜)に欠けや剥離、膨潤などを生じることなく、高い解像度と基体と感光層との密着性とを高度に両立したパターン形成方法を提供することができる。   According to the present invention, conventional problems can be solved, and the resist pattern after development is finely shaped, and the resist residue is removed, so that a permanent pattern such as a wiring pattern can be obtained with high definition and A pattern forming method that can be formed efficiently and that achieves a high level of compatibility between the high resolution and the adhesion between the substrate and the photosensitive layer without causing chipping, peeling or swelling in the crosslinked portion (cured film) of the resist. Can be provided.

(パターン形成方法)
本発明のパターン形成方法は、支持体上に感光層を少なくとも有するパターン形成材料における該感光層を、被処理基体上に積層し(積層工程)、該感光層に対し露光し(露光工程)、現像してレジストパターンを形成した後(現像工程)、該レジストパターンに対してドライプロセスによりレジストパターン整形工程が行われることを少なくとも含み、適宜選択したその他の工程を含むものである。
(Pattern formation method)
In the pattern forming method of the present invention, the photosensitive layer in a pattern forming material having at least a photosensitive layer on a support is laminated on a substrate to be processed (lamination step), and the photosensitive layer is exposed (exposure step). After developing to form a resist pattern (development process), the process includes at least a resist pattern shaping process performed by a dry process on the resist pattern, and includes other processes selected as appropriate.

[積層工程]
前記積層工程における積層体の形成方法としては、特に制限はなく、目的に応じて適宜選択することができるが、前記基体上に前記パターン形成材料を加熱及び加圧の少なくともいずれかを行いながら積層することが好ましい。
前記加熱温度としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、50〜140℃が好ましく、60〜120℃がより好ましい。
前記加圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、0.1〜1.0MPaが好ましく、0.2〜0.8MPaがより好ましい。
また、積層する速度は、特に制限はなく、目的に応じて適宜選択することができるが、例えば、0.1〜4m/分が好ましく、1〜3m/分がより好ましい。
[Lamination process]
The method for forming the laminate in the lamination step is not particularly limited and may be appropriately selected depending on the intended purpose. However, the pattern forming material is laminated on the substrate while at least one of heating and pressing. It is preferable to do.
There is no restriction | limiting in particular as said heating temperature, Although it can select suitably according to the objective, For example, 50-140 degreeC is preferable and 60-120 degreeC is more preferable.
There is no restriction | limiting in particular as a pressure of the said pressurization, Although it can select suitably according to the objective, For example, 0.1-1.0 MPa is preferable and 0.2-0.8 MPa is more preferable.
Moreover, there is no restriction | limiting in particular in the speed | rate to laminate | stack, Although it can select suitably according to the objective, For example, 0.1-4 m / min is preferable and 1-3 m / min is more preferable.

前記加熱及び加圧の少なくともいずれかを行う装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ラミネーター、真空ラミネーターなどが好適に挙げられる。   There is no restriction | limiting in particular as an apparatus which performs at least any one of the said heating and pressurization, According to the objective, it can select suitably, For example, a laminator, a vacuum laminator, etc. are mentioned suitably.

前記加熱及び加圧の少なくともいずれかを行う装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ラミネーター(例えば、大成ラミネータ社製、VP−II)などが好適に挙げられる。   There is no restriction | limiting in particular as an apparatus which performs at least any one of the said heating and pressurization, According to the objective, it can select suitably, For example, a laminator (For example, Taisei Laminator company make, VP-II) etc. are suitable. Can be mentioned.

前記積層体における層構成としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記基体と前記感光層と前記支持体とをこの順有する層構成が好ましい。   There is no restriction | limiting in particular as a layer structure in the said laminated body, Although it can select suitably according to the objective, For example, the layer structure which has the said base | substrate, the said photosensitive layer, and the said support body in this order is preferable.

<基体>
前記基体としては、特に制限はなく、公知の材料の中から表面平滑性の高いものから凸凹のある表面を有するものまで適宜選択することができるが、板状の基体(基板)が好ましく、具体的には、公知のプリント配線板形成用基板(例えば、銅張積層板)、ガラス板(例えば、ソーダガラス板等)、合成樹脂性のフィルム、紙、金属板などが挙げられる。
<Substrate>
The substrate is not particularly limited, and can be appropriately selected from known materials having high surface smoothness to those having an uneven surface. A plate-like substrate (substrate) is preferable, and Specifically, a known printed wiring board forming substrate (for example, a copper-clad laminate), a glass plate (for example, a soda glass plate), a synthetic resin film, paper, a metal plate, and the like can be given.

前記プリント配線板形成用基板としては、ガラスエポキシ基板、エポキシ含浸アラミド不織布、ポリイミド等の絶縁層の表面に、銅箔層をめっき箔やスパッタ箔として設けたものが好適に挙げられる。前記スパッタ箔を設ける場合には、銅箔と絶縁層との密着性を向上させる目的で、他の金属箔(Ni、Cr等)を下地層として設けてもよい。   Preferred examples of the printed wiring board forming substrate include a glass epoxy substrate, an epoxy-impregnated aramid nonwoven fabric, a surface of an insulating layer such as polyimide, and a copper foil layer provided as a plating foil or a sputtered foil. When the sputter foil is provided, another metal foil (Ni, Cr, etc.) may be provided as a base layer for the purpose of improving the adhesion between the copper foil and the insulating layer.

前記基体表面は、積層される前記パターン形成材料との密着性を向上させる目的で、化学研磨などの方法により、0.5〜2μm程度の凹凸を形成してもよい。   The surface of the substrate may be formed with unevenness of about 0.5 to 2 μm by a method such as chemical polishing for the purpose of improving adhesion with the pattern forming material to be laminated.

<パターン形成材料>
前記パターン形成材料としては、支持体上に少なくとも感光層を有する限り、特に制限はなく、目的に応じて適宜選択することができる。前記感光層は、支持体上に形成されているのが好ましく、また、前記支持体と前記感光層との間に、クッション層を設けてもよく、感光層上に保護フィルムを形成してもよい。さらに、適宜選択したその他の層を設けてもよい。
<Pattern forming material>
The pattern forming material is not particularly limited as long as it has at least a photosensitive layer on a support, and can be appropriately selected according to the purpose. The photosensitive layer is preferably formed on a support, and a cushion layer may be provided between the support and the photosensitive layer, or a protective film may be formed on the photosensitive layer. Good. Furthermore, other layers appropriately selected may be provided.

<<感光層>>
前記感光層は、重合性化合物、バインダー、及び光重合開始剤を含み、必要に応じて適宜選択した増感剤やその他の成分を含んでいてもよい。
<< Photosensitive layer >>
The photosensitive layer contains a polymerizable compound, a binder, and a photopolymerization initiator, and may contain a sensitizer and other components appropriately selected as necessary.

−重合性化合物−
前記重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、炭素数3以上のアルキレンオキシド基、ウレタン基を含む化合物、及びアリール基を含む化合物から選択される少なくとも1種を有することが好ましく、プロピレンオキシド基を含む化合物、ウレタン基を含む化合物、及びアリール基を含む化合物を少なくとも含むことがより好ましい。
-Polymerizable compound-
The polymerizable compound is not particularly limited and may be appropriately selected depending on the intended purpose. However, at least selected from an alkylene oxide group having 3 or more carbon atoms, a compound containing a urethane group, and a compound containing an aryl group. It preferably has one kind, and more preferably includes at least a compound containing a propylene oxide group, a compound containing a urethane group, and a compound containing an aryl group.

前記炭素数3以上のアルキレンオキシド基を有する重合性化合物は、ビスフェノールAを一部に含むジアクリレート化合物、及びウレタン結合を一部に含むジアクリレート化合物から選択される少なくとも1種であることが好ましい。
また、前記重合性化合物は、1種単独で使用してもよく、2種以上を併用してもよく、更にはその他の重合性化合物と併用してもよい。
The polymerizable compound having an alkylene oxide group having 3 or more carbon atoms is preferably at least one selected from a diacrylate compound partially containing bisphenol A and a diacrylate compound partially containing a urethane bond. .
Moreover, the said polymeric compound may be used individually by 1 type, may use 2 or more types together, Furthermore, you may use together with another polymeric compound.

前記炭素数3以上のアルキレンオキシド基としては、例えば、炭素数3〜6のアルキレンオキシド基が好ましく、具体的には、プロピレンオキシド基(n−プロピレンオキシド基、イソプロピレンオキシド基)、ブチレンオキシド基(n−ブチレンオキシド基、イソブチレンオキシド基)、ペンチレンオキシド基、ヘキシレンオキシド基、これらを組み合わせた基(ランダム、ブロックのいずれに組み合わされてもよい)などが挙げられる。これらの中でも、現像時のスカムの発生を抑制することができる点でプロピレンオキシド基がより好ましい。   The alkylene oxide group having 3 or more carbon atoms is preferably, for example, an alkylene oxide group having 3 to 6 carbon atoms, specifically, a propylene oxide group (n-propylene oxide group, isopropylene oxide group), butylene oxide group. (N-butylene oxide group, isobutylene oxide group), pentylene oxide group, hexylene oxide group, a group combining these (which may be combined in any of random and block), and the like. Among these, a propylene oxide group is more preferable in that generation of scum during development can be suppressed.

前記その他のアルキレンオキシド基としては、例えば、メチレンオキシド基、エチレンオキシド基などが挙げられ、これらの中でもエチレンオキシド基が好ましい。   Examples of the other alkylene oxide groups include a methylene oxide group and an ethylene oxide group. Among these, an ethylene oxide group is preferable.

前記重合性化合物は、例えば、重合性基を1個以上有するのが好ましく、2個以上有するのがより好ましい。また、前記重合性化合物は、例えば、ウレタン基、アリール基を有することも好ましい。
前記重合性基としては、例えば、(メタ)アクリレート基、ビニルエーテル基、ビニルエステル基、脂環式エーテル基(例えば、エポキシ基、オキセタン基等)などが挙げられ、これらの中でも、(メタ)アクリレート基が好ましい。
For example, the polymerizable compound preferably has one or more polymerizable groups, more preferably two or more. Moreover, it is also preferable that the said polymeric compound has a urethane group and an aryl group, for example.
Examples of the polymerizable group include a (meth) acrylate group, a vinyl ether group, a vinyl ester group, an alicyclic ether group (for example, an epoxy group, an oxetane group, etc.), and among these, a (meth) acrylate Groups are preferred.

前記炭素数3以上のアルキレンオキシド基をX、前記その他のアルキレンオキシド基をXとした場合、前記重合性基と、前記Xと、前記Xとの連結の組合せとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、重合性基−(X−、重合性基−(X−(X−、重合性基−(X−(X−、などが挙げられる。前記連結の先には、更に有機基を有していてもよい。また、前記重合性基が2個以上である場合には、該重合性基は互いに隣接していてもよく、2価の有機基を介して連結されていてもよい。 When the alkylene oxide group having 3 or more carbon atoms is X 1 and the other alkylene oxide group is X 2 , the combination of the polymerizable group, the X 1 and the X 2 is particularly limited. The polymerizable group may be appropriately selected depending on the purpose. For example, a polymerizable group-(X 1 ) m- , a polymerizable group-(X 1 ) m- (X 2 ) n- , a polymerizable group-( X 2 ) n- (X 1 ) m- , and the like. The end of the connection may further have an organic group. Moreover, when the said polymeric group is two or more, this polymeric group may mutually adjoin and may be connected through the bivalent organic group.

前記2価の有機基としては、例えば、アルキレン基、アリーレン基、アルケニレン基、アルキニレン基、カルボニル基(−CO−)、酸素原子(−O−)、硫黄原子(−S−)、イミノ基(−NH−)、イミノ基の水素原子が1価の炭化水素基で置換された置換イミノ基、スルホニル基(−SO−)又はこれらを組み合わせた基(例えば、ウレタン基、エステル基、ウレイド基、アミド基等)などが好適に挙げられ、これらの中でも、アルキレン基、アリーレン基、又は前記これらを組み合わせた基(例えば、ウレタン基、エステル基、ウレイド基、アミド基等)が好ましい。 Examples of the divalent organic group include an alkylene group, an arylene group, an alkenylene group, an alkynylene group, a carbonyl group (—CO—), an oxygen atom (—O—), a sulfur atom (—S—), an imino group ( -NH-), substituted imino group wherein a hydrogen atom of the imino group is substituted with a monovalent hydrocarbon group, sulfonyl group (-SO 2 -) or a group comprising a combination thereof (e.g., a urethane group, an ester group, a ureido group , An amide group, etc.) are preferable. Among these, an alkylene group, an arylene group, or a group (for example, a urethane group, an ester group, a ureido group, an amide group, etc.) that combines these is preferable.

前記重合性化合物としては、例えば、下記構造式(1)で表される化合物、2,2−ビス(4−((メタ)アクリロキシポリアルコキシ)フェニル)プロパン(例えば、2,2−ビス(4−((メタ)アクリロキシポリプロポキシ)フェニル)プロパン等)、ポリアルキレングリコールジアクリレート(例えば、ポリプロピレングリコールジアクリレート等)、ポリアルキレンオキシド基変性ウレタンジ(メタ)アクリレート(例えば、ポリプロピレンオキシド基変性ウレタンジ(メタ)アクリレート、ポリエチレン及びプロピレンオキシド基変性ウレタンジ(メタ)アクリレート等)などが挙げられる。   Examples of the polymerizable compound include a compound represented by the following structural formula (1), 2,2-bis (4-((meth) acryloxypolyalkoxy) phenyl) propane (for example, 2,2-bis ( 4-((meth) acryloxypolypropoxy) phenyl) propane), polyalkylene glycol diacrylate (for example, polypropylene glycol diacrylate), polyalkylene oxide group-modified urethane di (meth) acrylate (for example, polypropylene oxide group-modified urethane di) (Meth) acrylate, polyethylene, propylene oxide group-modified urethane di (meth) acrylate, and the like).

前記構造式(1)中、Rは互いに同一であっても、異なっていてもよく、水素原子又は炭素数1〜3のアルキル基を表し、EOはエチレングリコール鎖を表し、POはプロピレングリコール鎖を表し、m及びmはそれぞれ0〜30の整数を、n及びnはそれぞれ1〜30の整数を表す。 In the structural formula (1), R may be the same as or different from each other, and each represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, EO represents an ethylene glycol chain, and PO represents a propylene glycol chain. M 5 and m 6 each represent an integer of 0 to 30, and n 5 and n 6 each represent an integer of 1 to 30.

前記構造式(1)で表される2,2−ビス(4−((メタ)アクリロキシポリエトキシポリプロポキシ)フェニル)プロパンとしては、例えば、2,2−ビス(4−((メタ)アクリロキシジエトキシオクタプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロキシテトラエトキシテトラプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロヘキサエトキシヘキサプロポキシ)フェニル)プロパン等が挙げられる。これらは1種単独で使用してもよく、2種以上を併用してもよい。   Examples of 2,2-bis (4-((meth) acryloxypolyethoxypolypropoxy) phenyl) propane represented by the structural formula (1) include 2,2-bis (4-((meth) acrylic). Loxydiethoxyoctapropoxy) phenyl) propane, 2,2-bis (4-((meth) acryloxytetraethoxytetrapropoxy) phenyl) propane, 2,2-bis (4-((meth) acrylohexaethoxyhexa) And propoxy) phenyl) propane. These may be used alone or in combination of two or more.

前記2,2−ビス(4−((メタ)アクリロキシポリプロポキシ)フェニル)プロパンとしては、例えば、2,2−ビス(4−((メタ)アクリロキシジプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロキシトリプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロキシテトラプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロキシペンタプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロキシヘキサプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロキシヘプタプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロキシオクタプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロキシノナプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロキシデカプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロキシウンデカプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロキシドデカプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロキシトリデカプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロキシテトラデカプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロキシペンタデカプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロキシヘキサデカプロポキシ)フェニル)プロパンなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。   Examples of the 2,2-bis (4-((meth) acryloxypolypropoxy) phenyl) propane include 2,2-bis (4-((meth) acryloxydipropoxy) phenyl) propane and 2,2 -Bis (4-((meth) acryloxytripropoxy) phenyl) propane, 2,2-bis (4-((meth) acryloxytetrapropoxy) phenyl) propane, 2,2-bis (4-((meta ) Acryloxypentapropoxy) phenyl) propane, 2,2-bis (4-((meth) acryloxyhexapropoxy) phenyl) propane, 2,2-bis (4-((meth) acryloxyheptapropoxy) phenyl) Propane, 2,2-bis (4-((meth) acryloxyoctapropoxy) phenyl) propane, 2,2-bis (4-((meth) a) Liloxynonapropoxy) phenyl) propane, 2,2-bis (4-((meth) acryloxydecapropoxy) phenyl) propane, 2,2-bis (4-((meth) acryloxyundecapropoxy) phenyl) Propane, 2,2-bis (4-((meth) acryloxydodecapropoxy) phenyl) propane, 2,2-bis (4-((meth) acryloxytridecapropoxy) phenyl) propane, 2,2-bis (4-((meth) acryloxytetradecapropoxy) phenyl) propane, 2,2-bis (4-((meth) acryloxypentadecapropoxy) phenyl) propane, 2,2-bis (4-((meta And acryloxyhexadecapropoxy) phenyl) propane. These may be used alone or in combination of two or more.

前記ポリプロピレングリコールジアクリレートとしては、例えば、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、テトラプロピレングリコールジアクリレート、ペンタプロピレングリコールジアクリレート、ヘキサプロピレングリコールジアクリレート、ヘプタプロピレングリコールジアクリレート、オクタプロピレングリコールジアクリレート、ノナプロピレングリコールジアクリレート、デカプロピレングリコールジアクリレート、ウンデカプロピレングリコールジアクリレート、ドデカプロピレングリコールジアクリレート、トリデカプロピレングリコールジアクリレート、テトラデカプロピレングリコールジアクリレート、ペンタデカプロピレングリコールジアクリレート、ヘキサデカプロピレングリコールジアクリレート、ヘプタデカプロピレングリコールジアクリレート、オクタデカプロピレングリコールジアクリレート、ノナデカプロピレングリコールジアクリレート、エイコサプロピレングリコールジアクリレートなどが挙げられ、これらの中でもプロピレングリコール単位を分子内に2〜14個有するものが好ましい。   Examples of the polypropylene glycol diacrylate include dipropylene glycol diacrylate, tripropylene glycol diacrylate, tetrapropylene glycol diacrylate, pentapropylene glycol diacrylate, hexapropylene glycol diacrylate, heptapropylene glycol diacrylate, and octapropylene glycol diacrylate. Acrylate, nonapropylene glycol diacrylate, decapropylene glycol diacrylate, undecapropylene glycol diacrylate, dodecapropylene glycol diacrylate, tridecapropylene glycol diacrylate, tetradecapropylene glycol diacrylate, pentadecapropylene glycol diacrylate, hexadeca Propi Glycol diacrylate, heptadecapropylene glycol diacrylate, octadecapropylene glycol diacrylate, nonadeca propylene glycol diacrylate, eicosa propylene glycol diacrylate, etc. Among them, propylene glycol units in the molecule are 2 to 14 Those having one are preferred.

前記ポリアルキレンオキシド基変性ウレタンジ(メタ)アクリレートとしては、例えば、下記構造式(5)で表される化合物のエチレンオキシド基の少なくとも一部を、プロピレンオキシド基に置換したものが挙げられる。例えば、すべてのエチレンオキシド基がプロピレンオキシド基に置換されたn=5のもの、エチレンオキシド基3個とプロピレンオキシド基3個とが連結した構造を有するものなどが挙げられる。
Examples of the polyalkylene oxide group-modified urethane di (meth) acrylate include those in which at least a part of the ethylene oxide group of the compound represented by the following structural formula (5) is substituted with a propylene oxide group. For example, n = 5 in which all ethylene oxide groups are substituted with propylene oxide groups, and those having a structure in which three ethylene oxide groups and three propylene oxide groups are linked.

また、前記重合性化合物としては、下記構造式(2)〜(4)で表される化合物も好適に挙げられる。これらは1種単独で使用してもよく、2種類以上を併用してもよい。
前記構造式(2)中、Rは互いに同一であっても、異なっていてもよく、水素原子又は炭素数1〜3のアルキル基を表し、EOはエチレングリコール鎖を表し、POはプロピレングリコール鎖を表し、m、m及びnはそれぞれ1〜30の整数を表す。
Further, examples of the polymerizable compound also include compounds represented by the following structural formulas (2) to (4). These may be used alone or in combination of two or more.
In the structural formula (2), R may be the same as or different from each other, and each represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, EO represents an ethylene glycol chain, and PO represents a propylene glycol chain. M 1 , m 2 and n 1 each represents an integer of 1 to 30.

前記構造式(3)中、Rは互いに同一であっても、異なっていてもよく、水素原子又は炭素数1〜3のアルキル基を表し、EOはエチレングリコール鎖を表し、POはプロピレングリコール鎖を表し、m、n及びnはそれぞれ1〜30の整数を表す。 In the structural formula (3), R may be the same as or different from each other, and each represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, EO represents an ethylene glycol chain, and PO represents a propylene glycol chain. M 3 , n 2 and n 3 each represents an integer of 1 to 30.

前記構造式(4)中、Rは互いに同一であっても、異なっていてもよく、水素原子又は炭素数1〜3のアルキル基を表し、EOはエチレングリコール鎖を表し、POはプロピレングリコール鎖を表し、m、及びnはそれぞれ1〜30の整数を表す。 In the structural formula (4), R may be the same as or different from each other, and each represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, EO represents an ethylene glycol chain, and PO represents a propylene glycol chain. the stands, m 4, and n 4 each represents an integer of 1 to 30.

前記構造式(1)、構造式(2)、構造式(3)及び構造式(4)における炭素数1〜3のアルキル基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基が挙げられる。
前記構造式(1)、構造式(2)、構造式(3)及び構造式(4)におけるエチレングリコール鎖の総数(m+m、m、m及びm+m)はそれぞれ1〜30の整数であり、1〜10の整数であることが好ましく、4〜9の整数であることが好ましく、5〜8の整数であることが特に好ましい。この整数が30を超えると、テント信頼性及びレジスト形状が悪化する傾向がある。
前記構造式(1)、構造式(2)、構造式(3)及び構造式(4)におけるプロピレングリコール鎖の総数(n、n+n、n及びn+n)はそれぞれ1〜30の整数であり、5〜20の整数であることが好ましく、8〜16の整数であることが好ましく、10〜14の整数であることが特に好ましい。この整数が30を超えると、解像度が悪化し、スカム(現像液汚染)が発生する傾向がある。
Examples of the alkyl group having 1 to 3 carbon atoms in the structural formula (1), the structural formula (2), the structural formula (3), and the structural formula (4) include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. Is mentioned.
The total number of ethylene glycol chains (m 1 + m 2 , m 3 , m 4 and m 5 + m 6 ) in the structural formula (1), structural formula (2), structural formula (3) and structural formula (4) is 1 respectively. It is an integer of -30, It is preferable that it is an integer of 1-10, It is preferable that it is an integer of 4-9, It is especially preferable that it is an integer of 5-8. When this integer exceeds 30, the tent reliability and the resist shape tend to deteriorate.
The total number of propylene glycol chains (n 1 , n 2 + n 3 , n 4 and n 5 + n 6 ) in the structural formula (1), the structural formula (2), the structural formula (3), and the structural formula (4) is 1 respectively. It is an integer of -30, It is preferable that it is an integer of 5-20, It is preferable that it is an integer of 8-16, It is especially preferable that it is an integer of 10-14. If this integer exceeds 30, the resolution tends to deteriorate and scum (developer contamination) tends to occur.

前記重合性化合物の例としては、グリシジル基を有する化合物にα,β−不飽和カルボン酸を反応させて得られる化合物、γ−クロロ−β−ヒドロキシプロピル−β’−(メタ)−アクリロイルオキシエチル−o−フタレート、β−ヒドロキシプロピル−β’−(メタ)−アクリロイルオキシエチル−o−フタレートなども挙げられる。また、後述の構造式(20)、(23)、(25)及び、これらを原料としたウレタンモノマーなども挙げられる。   Examples of the polymerizable compound include a compound obtained by reacting a compound having a glycidyl group with an α, β-unsaturated carboxylic acid, γ-chloro-β-hydroxypropyl-β ′-(meth) -acryloyloxyethyl. -O-phthalate, [beta] -hydroxypropyl- [beta] '-(meth) -acryloyloxyethyl-o-phthalate, and the like are also included. In addition, structural formulas (20), (23), and (25) described later, and urethane monomers using these as raw materials are also included.

−−その他の重合性化合物−−
前記その他の重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、ウレタン基及びアリール基の少なくともいずれかを有するモノマー又はオリゴマーや、前記その他のアルキレンオキシド基を有するモノマー又はオリゴマー等が好ましい。これらは、重合性基を2種以上有することが好ましい。前記重合性基については、上述の通りである。
-Other polymerizable compounds-
The other polymerizable compound is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a monomer or oligomer having at least one of a urethane group and an aryl group, and the other alkylene oxide group A monomer or oligomer having These preferably have two or more polymerizable groups. The polymerizable group is as described above.

前記ウレタン基を有するモノマーとしては、例えば、特公昭48−41708、特開昭51−37193、特公平5−50737、特公平7−7208、特開2001−154346、特開2001−356476号公報等に記載されている化合物などが挙げられ、例えば、分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物と分子中に水酸基を有するビニルモノマーとの付加物などが挙げられる。   Examples of the monomer having a urethane group include JP-B-48-41708, JP-A-51-37193, JP-B-5-50737, JP-B-7-7208, JP-A-2001-154346, JP-A-2001-356476, and the like. And the like. Examples thereof include adducts of a polyisocyanate compound having two or more isocyanate groups in the molecule and a vinyl monomer having a hydroxyl group in the molecule.

前記分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシレンジイソシアネート、トルエンジイソシアネート、フェニレンジイソシアネート、ノルボルネンジイソシアネート、ジフェニルジイソシアネート、ジフェニルメタンジイソシアネート、3,3’ジメチル−4,4’−ジフェニルジイソシアネート等のジイソシアネート;該ジイソシアネートを更に2官能アルコールとの重付加物(この場合も両末端はイソシアネート基);該ジイソシアネートのビュレット体やイソシアヌレート等の3量体;該ジイソシアネート若しくはジイソシアネート類と、トリメチロールプロパン、ペンタエリトリトール、グリセリン等の多官能アルコール、又はこれらのエチレンオキシド付加物等の得られる他官能アルコールとの付加体などが挙げられる。   Examples of the polyisocyanate compound having two or more isocyanate groups in the molecule include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, xylene diisocyanate, toluene diisocyanate, phenylene diisocyanate, norbornene diisocyanate, diphenyl diisocyanate, diphenylmethane diisocyanate, A diisocyanate such as 3,3′dimethyl-4,4′-diphenyl diisocyanate; a polyaddition product of the diisocyanate with a bifunctional alcohol (in this case, both ends are isocyanate groups); a burette or isocyanurate of the diisocyanate; Trimer; the diisocyanate or diisocyanates and trimethylolpropane, pe Taeritoritoru, polyfunctional alcohols such as glycerin, or the like adducts of other functional alcohol obtained of such these ethylene oxide adducts and the like.

前記分子中に水酸基を有するビニルモノマーとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、オクタエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ペンタエリトリトールトリ(メタ)アクリレートなどが挙げられる。   Examples of the vinyl monomer having a hydroxyl group in the molecule include 2-hydroxyethyl (meth) acrylate, diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, and octaethylene. Examples include glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, and pentaerythritol tri (meth) acrylate.

また、前記ウレタン基を有するモノマーとしては、トリ((メタ)アクリロイルオキシエチル)イソシアヌレート、ジ(メタ)アクリル化イソシアヌレート、エチレンオキシド変性イソシアヌル酸のトリ(メタ)アクリレート等のイソシアヌレート環を有する化合物が挙げられる。これらの中でも、下記構造式(5)から(15)で表される化合物が好適に挙げられる。また、これらの化合物は、1種単独で使用してもよく、2種以上を併用してもよい。   In addition, examples of the monomer having a urethane group include compounds having an isocyanurate ring such as tri ((meth) acryloyloxyethyl) isocyanurate, di (meth) acrylated isocyanurate, and tri (meth) acrylate of ethylene oxide-modified isocyanuric acid. Is mentioned. Among these, compounds represented by the following structural formulas (5) to (15) are preferable. Moreover, these compounds may be used individually by 1 type, and may use 2 or more types together.

但し、前記構造式(5)〜(15)中、n、n1、n2及びmは、1〜60を意味し、lは、1〜20を意味し、Rは、水素原子又はメチル基を表す。   However, in said structural formula (5)-(15), n, n1, n2 and m mean 1-60, l means 1-20, R represents a hydrogen atom or a methyl group. .

前記アリール基を有するモノマーとしては、アリール基を有する限り、特に制限はなく、目的に応じて適宜選択することができるが、例えば、アリール基を有する多価アルコール化合物、多価アミン化合物及び多価アミノアルコール化合物の少なくともいずれかと不飽和カルボン酸とのエステル又はアミドなどが挙げられる。   The monomer having an aryl group is not particularly limited as long as it has an aryl group, and can be appropriately selected depending on the purpose. For example, a polyhydric alcohol compound having a aryl group, a polyvalent amine compound, and a polyvalent Examples thereof include esters or amides of at least one of amino alcohol compounds and unsaturated carboxylic acid.

前記アリール基を有する多価アルコール化合物、多価アミン化合物又は多価アミノアルコール化合物としては、例えば、ポリスチレンオキシド、キシリレンジオール、ジ−(β−ヒドロキシエトキシ)ベンゼン、1,5−ジヒドロキシ−1,2,3,4−テトラヒドロナフタレン、2、2−ジフェニル−1,3−プロパンジオール、ヒドロキシベンジルアルコール、ヒドロキシエチルレゾルシノール、1−フェニル−1,2−エタンジオール、2,3,5,6−テトラメチル−p−キシレン−α,α’−ジオール、1,1,4,4−テトラフェニル−1,4−ブタンジオール、1,1,4,4−テトラフェニル−2−ブチン−1,4−ジオール、1,1’−ビ−2−ナフトール、ジヒドロキシナフタレン、1,1’−メチレン−ジ−2−ナフトール、1,2,4−ベンゼントリオール、ビフェノール、2,2’−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、ビス(ヒドロキシフェニル)メタン、カテコール、4−クロルレゾルシノール、ハイドロキノン、ヒドロキシベンジルアルコール、メチルハイドロキノン、メチレン−2,4,6−トリヒドロキシベンゾエート、フロログリシノール、ピロガロール、レゾルシノール、α−(1−アミノエチル)−p−ヒドロキシベンジルアルコール、α−(1−アミノエチル)−p−ヒドロキシベンジルアルコール、3−アミノ−4−ヒドロキシフェニルスルホンなどが挙げられる。また、この他、キシリレンビス(メタ)アクリルアミド、ノボラック型エポキシ樹脂やビスフェノールAジグリシジルエーテル等のグリシジル化合物にα、β−不飽和カルボン酸を付加して得られる化合物、フタル酸やトリメリット酸などと分子中に水酸基を含有するビニルモノマーから得られるエステル化物、フタル酸ジアリル、トリメリット酸トリアリル、ベンゼンジスルホン酸ジアリル、重合性モノマーとしてカチオン重合性のジビニルエーテル類(例えば、ビスフェノールAジビニルエーテル)、エポキシ化合物(例えば、ノボラック型エポキシ樹脂、ビスフェノールAジグリシジルエーテル等)、ビニルエステル類(例えば、ジビニルフタレート、ジビニルテレフタレート、ジビニルベンゼン−1,3−ジスルホネート等)、スチレン化合物(例えば、ジビニルベンゼン、p−アリルスチレン、p−イソプロペンスチレン等)が挙げられる。   Examples of the polyhydric alcohol compound, polyhydric amine compound or polyhydric amino alcohol compound having an aryl group include polystyrene oxide, xylylene diol, di- (β-hydroxyethoxy) benzene, 1,5-dihydroxy-1, 2,3,4-tetrahydronaphthalene, 2,2-diphenyl-1,3-propanediol, hydroxybenzyl alcohol, hydroxyethyl resorcinol, 1-phenyl-1,2-ethanediol, 2,3,5,6-tetra Methyl-p-xylene-α, α′-diol, 1,1,4,4-tetraphenyl-1,4-butanediol, 1,1,4,4-tetraphenyl-2-butyne-1,4- Diol, 1,1'-bi-2-naphthol, dihydroxynaphthalene, 1,1'-methylene-di-2-naphtho 1,2,4-benzenetriol, biphenol, 2,2′-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl) cyclohexane, bis (hydroxyphenyl) methane, catechol, 4 -Chlorresorcinol, hydroquinone, hydroxybenzyl alcohol, methyl hydroquinone, methylene-2,4,6-trihydroxybenzoate, phloroglicinol, pyrogallol, resorcinol, α- (1-aminoethyl) -p-hydroxybenzyl alcohol, α- (1-aminoethyl) -p-hydroxybenzyl alcohol, 3-amino-4-hydroxyphenylsulfone and the like can be mentioned. In addition, compounds obtained by adding α, β-unsaturated carboxylic acid to glycidyl compounds such as xylylene bis (meth) acrylamide, novolac epoxy resin and bisphenol A diglycidyl ether, phthalic acid, trimellitic acid, etc. Esterified products obtained from vinyl monomers containing hydroxyl groups in the molecule, diallyl phthalate, triallyl trimellitic acid, diallyl benzenedisulfonate, cationically polymerizable divinyl ethers (for example, bisphenol A divinyl ether), epoxy as a polymerizable monomer Compound (for example, novolac type epoxy resin, bisphenol A diglycidyl ether, etc.), vinyl ester (for example, divinyl phthalate, divinyl terephthalate, divinylbenzene-1,3-disulfonate, etc.), styrene Compounds such as divinylbenzene, p-allylstyrene, p-isopropenestyrene, and the like.

前記アリール基を有するモノマーの具体例としては、例えば、アリール基及びエチレンオキシド基を有する上述の重合性化合物、2,2−ビス〔4−((メタ)アクリルオキシエトキシ)フェニル〕プロパン、フェノール性のOH基1個に置換しさせたエトキシ基の数が2から20である2,2−ビス(4−((メタ)アクリロイルオキシポリエトキシ)フェニル)プロパン(例えば、2,2−ビス(4−((メタ)アクリロイルオキシジエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシテトラエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシデカエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタデカエトキシ)フェニル)プロパン等)、などが挙げられる。なお、これらは、ビスフェノールA骨格に由来する部分をビスフェノールF又はビスフェノールS等に変更した化合物であってもよい。   Specific examples of the monomer having an aryl group include, for example, the above-described polymerizable compound having an aryl group and an ethylene oxide group, 2,2-bis [4-((meth) acryloxyethoxy) phenyl] propane, phenolic 2,2-bis (4-((meth) acryloyloxypolyethoxy) phenyl) propane (for example, 2,2-bis (4- ((Meth) acryloyloxydiethoxy) phenyl) propane, 2,2-bis (4-((meth) acryloyloxytetraethoxy) phenyl) propane, 2,2-bis (4-((meth) acryloyloxypentaethoxy) ) Phenyl) propane, 2,2-bis (4-((meth) acryloyloxydecaethoxy) phenyl) propane 2,2-bis (4 - ((meth) acryloyloxy-pentadecanoyl) phenyl) propane), and the like. These compounds may be compounds obtained by changing the part derived from the bisphenol A skeleton to bisphenol F or bisphenol S.

前記ビスフェノール骨格とウレタン基とを有する重合性化合物としては、例えば、ビスフェノールとエチレンオキシド等の付加物、重付加物として得られる末端に水酸基を有する化合物にイソシアネート基と重合性基とを有する化合物(例えば、2−イソシアネートエチル(メタ)アクリレート、α、α−ジメチル−ビニルベンジルイソシアネート等)などが挙げられる。   Examples of the polymerizable compound having a bisphenol skeleton and a urethane group include compounds having an isocyanate group and a polymerizable group in a compound having a hydroxyl group at the terminal obtained as an adduct such as bisphenol and ethylene oxide or a polyaddition product (for example, , 2-isocyanatoethyl (meth) acrylate, α, α-dimethyl-vinylbenzyl isocyanate, etc.).

前記ウレタン基を含有するモノマー及び前記アリール基を有するモノマー以外の重合性モノマーとしては、例えば、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等)と脂肪族多価アルコール化合物とのエステル、不飽和カルボン酸と多価アミン化合物とのアミドなどが挙げられる。   Examples of the polymerizable monomer other than the monomer having a urethane group and the monomer having an aryl group include an unsaturated carboxylic acid (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.) And an ester of an aliphatic polyhydric alcohol compound and an amide of an unsaturated carboxylic acid and a polyvalent amine compound.

前記不飽和カルボン酸と脂肪族多価アルコール化合物とのエステルのモノマーとしては、例えば、(メタ)アクリル酸エステルとして、エチレングリコールジ(メタ)アクリレート、エチレン基の数が2〜18であるポリエチレングリコールジ(メタ)アクリレート(例えば、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ノナエチレングリコールジ(メタ)アクリレート、ドデカエチレングリコールジ(メタ)アクリレート、テトラデカエチレングリコールジ(メタ)アクリレート等)、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ((メタ)アクリロイルオキシプロピル)エーテル、トリメチロールエタントリ(メタ)アクリレート、1,3−プロパンジオールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、1,4−シクロヘキサンジオールジ(メタ)アクリレート、1,2,4−ブタントリオールトリ(メタ)アクリレート、1,5−ベンタンジオール(メタ)アクリレート、ペンタエリトリトールジ(メタ)アクリレート、ペンタエリトリトールトリ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、ソルビトールトリ(メタ)アクリレート、ソルビトールテトラ(メタ)アクリレート、ソルビトールペンタ(メタ)アクリレート、ソルビトールヘキサ(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、トリシクロデカンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、キシレノールジ(メタ)アクリレートなどが挙げられる。   Examples of the monomer of the ester of the unsaturated carboxylic acid and the aliphatic polyhydric alcohol compound include (meth) acrylic acid ester, ethylene glycol di (meth) acrylate, and polyethylene glycol having 2 to 18 ethylene groups. Di (meth) acrylate (for example, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, nonaethylene glycol di (meth) acrylate, dodecaethylene glycol di (meth) acrylate , Tetradecaethylene glycol di (meth) acrylate, etc.), trimethylolpropane tri (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri ((meth)) (Chloroyloxypropyl) ether, trimethylolethane tri (meth) acrylate, 1,3-propanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) Acrylate, 1,6-hexanediol di (meth) acrylate, tetramethylene glycol di (meth) acrylate, 1,4-cyclohexanediol di (meth) acrylate, 1,2,4-butanetriol tri (meth) acrylate, 1 , 5-Bentanediol (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipe Taerythritol hexa (meth) acrylate, sorbitol tri (meth) acrylate, sorbitol tetra (meth) acrylate, sorbitol penta (meth) acrylate, sorbitol hexa (meth) acrylate, dimethylol dicyclopentane di (meth) acrylate, tricyclode Candi (meth) acrylate, neopentyl glycol di (meth) acrylate, neopentyl glycol modified trimethylolpropane di (meth) acrylate, glycerin di (meth) acrylate, glycerin tri (meth) acrylate, xylenol di (meth) acrylate, etc. Can be mentioned.

前記(メタ)アクリル酸エステル類の中でも、その入手の容易さ等の観点から、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ペンタエリトリトールトリアクリレート、ペンタエリトリトールジ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ジグリセリンジ(メタ)アクリレート、1,3−プロパンジオールジ(メタ)アクリレート、1,2,4−ブタントリオールトリ(メタ)アクリレート、1,4−シクロヘキサンジオールジ(メタ)アクリレート、1,5−ペンタンジオール(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド付加したトリメチロールプロパンのトリ(メタ)アクリル酸エステルなどが好ましい。   Among the (meth) acrylic acid esters, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra ( (Meth) acrylate, pentaerythritol triacrylate, pentaerythritol di (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, glycerin tri (meth) acrylate, diglycerin di (meth) acrylate, 1, 3-propanediol di (meth) acrylate, 1,2,4-butanetriol tri (meth) acrylate, 1,4-cyclohexanediol di (meth) acrylate, , 5-pentanediol (meth) acrylate, neopentyl glycol di (meth) acrylate, tri (meth) acrylic acid esters of trimethylolpropane which is ethylene oxide adducts are preferred.

前記イタコン酸と前記脂肪族多価アルコール化合物とのエステル(イタコン酸エステル)としては、例えば、エチレングリコールジイタコネート、1,3−ブタンジオールジイタコネート、1,4ーブタンジオールジイタコネート、テトラメチレングリコールジイタコネート、ペンタエリトリトールジイタコネート、及びソルビトールテトライタコネートなどが挙げられる。   Examples of the ester of itaconic acid and the aliphatic polyhydric alcohol compound (itaconic acid ester) include ethylene glycol diitaconate, 1,3-butanediol diitaconate, 1,4-butanediol diitaconate, Examples include tetramethylene glycol diitaconate, pentaerythritol diitaconate, and sorbitol tetritaconate.

前記クロトン酸と前記脂肪族多価アルコール化合物とのエステル(クロトン酸エステル)としては、例えば、エチレングリコールジクロトネート、テトラメチレングリコールジクロトネート、ペンタエリトリトールジクロトネート、ソルビトールテトラジクロトネートなどが挙げられる。   Examples of the ester (crotonate ester) of the crotonic acid and the aliphatic polyhydric alcohol compound include ethylene glycol dicrotonate, tetramethylene glycol dicrotonate, pentaerythritol dicrotonate, and sorbitol tetradicrotonate. Can be mentioned.

前記イソクロトン酸と前記脂肪族多価アルコール化合物とのエステル(イソクロトン酸エステル)としては、例えば、エチレングリコールジイソクロトネート、ペンタエリトリトールジイソクロトネート、ソルビトールテトライソクロトネートなどが挙げられる。   Examples of the ester of the isocrotonic acid and the aliphatic polyhydric alcohol compound (isocrotonate ester) include ethylene glycol diisocrotonate, pentaerythritol diisocrotonate, sorbitol tetraisocrotonate, and the like.

前記マレイン酸と前記脂肪族多価アルコール化合物とのエステル(マレイン酸エステル)としては、例えば、エチレングリコールジマレート、トリエチレングリコールジマレート、ペンタエリトリトールジマレート、ソルビトールテトラマレートなどが挙げられる。   Examples of the ester of maleic acid and the aliphatic polyhydric alcohol compound (maleic acid ester) include ethylene glycol dimaleate, triethylene glycol dimaleate, pentaerythritol dimaleate, and sorbitol tetramaleate.

前記多価アミン化合物と前記不飽和カルボン酸類から誘導されるアミドとしては、例えば、メチレンビス(メタ)アクリルアミド、エチレンビス(メタ)アクリルアミド、1,6−ヘキサメチレンビス(メタ)アクリルアミド、オクタメチレンビス(メタ)アクリルアミド、ジエチレントリアミントリス(メタ)アクリルアミド、ジエチレントリアミンビス(メタ)アクリルアミド、などが挙げられる。   Examples of the amide derived from the polyvalent amine compound and the unsaturated carboxylic acid include methylene bis (meth) acrylamide, ethylene bis (meth) acrylamide, 1,6-hexamethylene bis (meth) acrylamide, and octamethylene bis ( And (meth) acrylamide, diethylenetriamine tris (meth) acrylamide, and diethylenetriamine bis (meth) acrylamide.

また、上記以外にも、前記重合性モノマーとして、例えば、ブタンジオール−1,4−ジグリシジルエーテル、シクロヘキサンジメタノールグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリトリトールテトラグリシジルエーテル、グリセリントリグリシジルエーテル等のグリシジル基含有化合物にα,β−不飽和カルボン酸を付加して得られる化合物、特開昭48−64183号、特公昭49−43191号、特公昭52−30490号各公報に記載されているようなポリエステルアクリレートやポリエステル(メタ)アクリレートオリゴマー類、エポキシ化合物(例えば、ブタンジオール−1,4−ジグリシジルエーテル、シクロヘキサンジメタノールグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリトリトールテトラグリシジルエーテル、グリセリントリグリシジルエーテルなど)と(メタ)アクリル酸を反応させたエポキシアクリレート類等の多官能のアクリレートやメタクリレート、日本接着協会誌vol.20、No.7、300〜308ページ(1984年)に記載の光硬化性モノマー及びオリゴマー、アリルエステル(例えば、フタル酸ジアリル、アジピン酸ジアリル、マロン酸ジアリル、ジアリルアミド(例えば、ジアリルアセトアミド等)、カチオン重合性のジビニルエーテル類(例えば、ブタンジオール−1,4−ジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、ヘキサンジオールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ペンタエリトリトールテトラビニルエーテル、グリセリントリビニルエーテル等)、エポキシ化合物(例えば、ブタンジオール−1,4−ジグリシジルエーテル、シクロヘキサンジメタノールグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリトリトールテトラグリシジルエーテル、グリセリントリグリシジルエーテル等)、オキセタン類(例えば、1,4−ビス〔(3−エチルー3−オキセタニルメトキシ)メチル〕ベンゼン等)、エポキシ化合物、オキセタン類(例えば、WO01/22165号公報に記載の化合物)、N−β−ヒドロキシエチル−β−(メタクリルアミド)エチルアクリレート、N,N−ビス(β−メタクリロキシエチル)アクリルアミド、アリルメタクリレート等の異なったエチレン性不飽和二重結合を2個以上有する化合物などが挙げられる。   In addition to the above, examples of the polymerizable monomer include butanediol-1,4-diglycidyl ether, cyclohexanedimethanol glycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, hexanediol diglycidyl ether, Compounds obtained by adding an α, β-unsaturated carboxylic acid to a glycidyl group-containing compound such as methylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, glycerin triglycidyl ether, JP-A-48-64183, JP-B-49 -43191, Japanese Patent Publication No. 52-30490, polyester acrylates and polyester (meth) acrylate oligomers, epoxy compounds (for example, (Butanediol-1,4-diglycidyl ether, cyclohexanedimethanol glycidyl ether, diethylene glycol diglycidyl ether, hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, glycerin triglycidyl ether) and (meta ) Photofunctional monomers and oligomers described in polyfunctional acrylates and methacrylates such as epoxy acrylates reacted with acrylic acid, Journal of Japan Adhesion Association Vol. 20, No. 7, pages 300 to 308 (1984), allyl Esters such as diallyl phthalate, diallyl adipate, diallyl malonate, diallylamide (eg diallylacetamide), cationically polymerizable divinyl acetate (For example, butanediol-1,4-divinyl ether, cyclohexanedimethanol divinyl ether, ethylene glycol divinyl ether, diethylene glycol divinyl ether, hexanediol divinyl ether, trimethylolpropane trivinyl ether, pentaerythritol tetravinyl ether, glycerin trivinyl ether, etc. ), Epoxy compounds (for example, butanediol-1,4-diglycidyl ether, cyclohexanedimethanol glycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol Tetraglycidyl ether, glycerin Liglycidyl ether, etc.), oxetanes (eg, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, etc.), epoxy compounds, oxetanes (eg, compounds described in WO01 / 22165) , N-β-hydroxyethyl-β- (methacrylamido) ethyl acrylate, N, N-bis (β-methacryloxyethyl) acrylamide, allyl methacrylate, and other compounds having two or more different ethylenically unsaturated double bonds Etc.

前記ビニルエステル類としては、例えば、ジビニルサクシネート、ジビニルアジペートなどが挙げられる。   Examples of the vinyl esters include divinyl succinate and divinyl adipate.

これらの多官能モノマー又はオリゴマーは、1種単独で使用してもよく、2種以上を併用してもよい。   These polyfunctional monomers or oligomers may be used alone or in combination of two or more.

前記重合性モノマーは、必要に応じて、分子内に重合性基を1個含有する重合性化合物(単官能モノマー)を併用してもよい。
前記単官能モノマーとしては、例えば、前記バインダーの原料として例示した化合物、特開平6−236031号公報に記載されている2塩基のモノ((メタ)アクリロイルオキシアルキルエステル)モノ(ハロヒドロキシアルキルエステル)等の単官能モノマー(例えば、γ−クロロ−β−ヒドロキシプロピル−β’−メタクリロイルオキシエチル−o−フタレート等)、特許2744643号公報、WO00/52529号パンフレット、特許2548016号公報等に記載の化合物が挙げられる。
If necessary, the polymerizable monomer may be used in combination with a polymerizable compound (monofunctional monomer) containing one polymerizable group in the molecule.
Examples of the monofunctional monomer include the compounds exemplified as the raw material of the binder, and the dibasic mono ((meth) acryloyloxyalkyl ester) mono (halohydroxyalkyl ester) described in JP-A-6-236031. Monofunctional monomers such as γ-chloro-β-hydroxypropyl-β′-methacryloyloxyethyl-o-phthalate, etc., compounds described in Japanese Patent No. 2744443, WO00 / 52529 pamphlet, Japanese Patent No. 2548016, etc. Is mentioned.

前記感光層における重合性化合物の含有量としては、例えば、5〜90質量%が好ましく、15〜60質量%がより好ましく、20〜50質量%が特に好ましい。
前記含有量が、5質量%となると、テント膜の強度が低下することがあり、90質量%を超えると、保存時のエッジフュージョン(ロール端部からのしみだし故障)が悪化することがある。
また、重合性化合物中に前記重合性基を2個以上有する多官能モノマーの含有量としては、5〜100質量%が好ましく、20〜100質量%がより好ましく、40〜100質量%が特に好ましい。
As content of the polymeric compound in the said photosensitive layer, 5-90 mass% is preferable, for example, 15-60 mass% is more preferable, and 20-50 mass% is especially preferable.
If the content is 5% by mass, the strength of the tent film may be reduced, and if it exceeds 90% by mass, edge fusion during storage (exudation failure from the end of the roll) may be deteriorated. .
Moreover, as content of the polyfunctional monomer which has 2 or more of the said polymeric groups in a polymeric compound, 5-100 mass% is preferable, 20-100 mass% is more preferable, 40-100 mass% is especially preferable. .

−バインダー−
前記バインダーとしては、例えば、アルカリ性液に対して膨潤性であることが好ましく、アルカリ性液に対して可溶性であることがより好ましい。
アルカリ性液に対して膨潤性又は溶解性を示すバインダーとしては、例えば、酸性基を有するものが好適に挙げられる。
-Binder-
The binder is preferably, for example, swellable with an alkaline liquid, and more preferably soluble in an alkaline liquid.
As the binder exhibiting swellability or solubility with respect to the alkaline liquid, for example, those having an acidic group are preferably mentioned.

前記酸性基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カルボキシル基、スルホン酸基、リン酸基などが挙げられ、これらの中でもカルボキシル基が好ましい。
カルボキシル基を有するバインダーとしては、例えば、カルボキシル基を有するビニル共重合体、ポリウレタン樹脂、ポリアミド酸樹脂、変性エポキシ樹脂などが挙げられ、これらの中でも、塗布溶媒への溶解性、アルカリ現像液への溶解性、合成適性、膜物性の調整の容易さ等の観点からカルボキシル基を有するビニル共重合体が好ましい。
There is no restriction | limiting in particular as said acidic group, According to the objective, it can select suitably, For example, a carboxyl group, a sulfonic acid group, a phosphoric acid group etc. are mentioned, Among these, a carboxyl group is preferable.
Examples of the binder having a carboxyl group include a vinyl copolymer having a carboxyl group, a polyurethane resin, a polyamic acid resin, and a modified epoxy resin. Among these, the solubility in a coating solvent, the solubility in an alkali developer, and the like. A vinyl copolymer having a carboxyl group is preferable from the viewpoint of solubility, suitability for synthesis, ease of adjustment of film properties, and the like.

前記カルボキシル基を有するビニル共重合体は、少なくとも(1)カルボキシル基を有するビニルモノマー、及び(2)これらと共重合可能なモノマーとの共重合により得ることができる。   The vinyl copolymer having a carboxyl group can be obtained by copolymerization of at least (1) a vinyl monomer having a carboxyl group, and (2) a monomer copolymerizable therewith.

前記カルボキシル基を有するビニルモノマーとしては、例えば、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、アクリル酸ダイマー、水酸基を有する単量体(例えば、2−ヒドロキシエチル(メタ)アクリレート等)と環状無水物(例えば、無水マレイン酸や無水フタル酸、シクロヘキサンジカルボン酸無水物)との付加反応物、ω−カルボキシ−ポリカプロラクトンモノ(メタ)アクリレートなどが挙げられる。これらの中でも、共重合性やコスト、溶解性などの観点から(メタ)アクリル酸が特に好ましい。
また、カルボキシル基の前駆体として無水マレイン酸、無水イタコン酸、無水シトラコン酸等の無水物を有するモノマーを用いてもよい。
Examples of the vinyl monomer having a carboxyl group include (meth) acrylic acid, vinyl benzoic acid, maleic acid, maleic acid monoalkyl ester, fumaric acid, itaconic acid, crotonic acid, cinnamic acid, acrylic acid dimer, and hydroxyl group. An addition reaction product of a monomer (for example, 2-hydroxyethyl (meth) acrylate) and a cyclic anhydride (for example, maleic anhydride, phthalic anhydride, cyclohexanedicarboxylic anhydride), ω-carboxy-polycaprolactone mono Examples include (meth) acrylate. Among these, (meth) acrylic acid is particularly preferable from the viewpoints of copolymerizability, cost, solubility, and the like.
Moreover, you may use the monomer which has anhydrides, such as maleic anhydride, itaconic anhydride, and citraconic anhydride, as a precursor of a carboxyl group.

前記その他の共重合可能なモノマーとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、(メタ)アクリルアミド類、ビニルエーテル類、ビニルアルコールのエステル類、スチレン類、(メタ)アクリロニトリル、ビニル基が置換した複素環式基(例えば、ビニルピリジン、ビニルピロリドン、ビニルカルバゾール等)、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニルイミダゾール、ビニルカプロラクトン、2−アクリルアミド−2−メチルプロパンスルホン酸、リン酸モノ(2―アクリロイルオキシエチルエステル)、リン酸モノ(1−メチル−2―アクリロイルオキシエチルエステル)、官能基(例えば、ウレタン基、ウレア基、スルホンアミド基、フェノール基、イミド基)を有するビニルモノマーなどが挙げられ、これらの中でもスチレン類が好ましい。   The other copolymerizable monomer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include (meth) acrylic acid esters, crotonic acid esters, vinyl esters, and maleic acid diesters. , Fumaric acid diesters, itaconic acid diesters, (meth) acrylamides, vinyl ethers, esters of vinyl alcohol, styrenes, (meth) acrylonitrile, heterocyclic groups substituted with vinyl groups (eg, vinylpyridine, Vinylpyrrolidone, vinylcarbazole, etc.), N-vinylformamide, N-vinylacetamide, N-vinylimidazole, vinylcaprolactone, 2-acrylamido-2-methylpropanesulfonic acid, phosphoric acid mono (2-acryloyloxyethyl ester), phosphorus Acid mono (1- Chill-2-acryloyloxyethyl ester), functional groups (e.g., a urethane group, a urea group, a sulfonamide group, a phenol group and a vinyl monomer are mentioned having an imide group), styrene is preferred among these.

前記(メタ)アクリル酸エステル類としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、t−ブチルシクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、t−オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、アセトキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−メトキシエトキシ)エチル(メタ)アクリレート、3−フェノキシ−2−ヒドロキシプロピル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノフェニルエーテル(メタ)アクリレート、トリエチレングリコールモノメチルエーテル(メタ)アクリレート、トリエチレングリコールモノエチルエーテル(メタ)アクリレート、ポリエチレングリコールモノメチルエーテル(メタ)アクリレート、ポリエチレングリコールモノエチルエーテル(メタ)アクリレート、β−フェノキシエトキシエチルアクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、オクタフロロペンチル(メタ)アクリレート、パーフロロオクチルエチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、トリブロモフェニルオキシエチル(メタ)アクリレートなどが挙げられる。   Examples of the (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) ) Acrylate, t-butyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, t-octyl (meth) acrylate, Dodecyl (meth) acrylate, octadecyl (meth) acrylate, acetoxyethyl (meth) acrylate, phenyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate 2-ethoxyethyl (meth) acrylate, 2- (2-methoxyethoxy) ethyl (meth) acrylate, 3-phenoxy-2-hydroxypropyl (meth) acrylate, benzyl (meth) acrylate, diethylene glycol monomethyl ether (meta ) Acrylate, diethylene glycol monoethyl ether (meth) acrylate, diethylene glycol monophenyl ether (meth) acrylate, triethylene glycol monomethyl ether (meth) acrylate, triethylene glycol monoethyl ether (meth) acrylate, polyethylene glycol monomethyl ether (meth) acrylate , Polyethylene glycol monoethyl ether (meth) acrylate, β-phenoxyethoxyethyl acrylate, Nylphenoxypolyethylene glycol (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, trifluoroethyl (meth) acrylate, octafluoropentyl (meth) Examples thereof include acrylate, perfluorooctylethyl (meth) acrylate, tribromophenyl (meth) acrylate, and tribromophenyloxyethyl (meth) acrylate.

前記クロトン酸エステル類としては、例えば、クロトン酸ブチル、クロトン酸ヘキシルなどが挙げられる。   Examples of the crotonic acid esters include butyl crotonate and hexyl crotonate.

前記ビニルエステル類としては、例えば、ビニルアセテート、ビニルプロピオネート、ビニルブチレート、ビニルメトキシアセテート、安息香酸ビニルなどが挙げられる。   Examples of the vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl methoxyacetate, vinyl benzoate, and the like.

前記マレイン酸ジエステル類としては、例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチルなどが挙げられる。   Examples of the maleic acid diesters include dimethyl maleate, diethyl maleate, and dibutyl maleate.

前記フマル酸ジエステル類としては、例えば、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジブチルなどが挙げられる。   Examples of the fumaric acid diesters include dimethyl fumarate, diethyl fumarate, dibutyl fumarate and the like.

前記イタコン酸ジエステル類としては、例えば、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジブチルなどが挙げられる。   Examples of the itaconic acid diesters include dimethyl itaconate, diethyl itaconate, and dibutyl itaconate.

前記(メタ)アクリルアミド類としては、例えば、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−n−ブチルアクリル(メタ)アミド、N−t−ブチル(メタ)アクリルアミド、N−シクロヘキシル(メタ)アクリルアミド、N−(2−メトキシエチル)(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−フェニル(メタ)アクリルアミド、N−ベンジル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ジアセトンアクリルアミドなどが挙げられる。   Examples of the (meth) acrylamides include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N- n-butylacryl (meth) amide, Nt-butyl (meth) acrylamide, N-cyclohexyl (meth) acrylamide, N- (2-methoxyethyl) (meth) acrylamide, N, N-dimethyl (meth) acrylamide, Examples thereof include N, N-diethyl (meth) acrylamide, N-phenyl (meth) acrylamide, N-benzyl (meth) acrylamide, (meth) acryloylmorpholine, diacetone acrylamide and the like.

前記スチレン類としては、例えば、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、ヒドロキシスチレン、メトキシスチレン、ブトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、クロロメチルスチレン、酸性物質により脱保護可能な基(例えば、t−Boc等)で保護されたヒドロキシスチレン、ビニル安息香酸メチル、α−メチルスチレンなどが挙げられる。   Examples of the styrenes include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, isopropyl styrene, butyl styrene, hydroxy styrene, methoxy styrene, butoxy styrene, acetoxy styrene, chlorostyrene, dichlorostyrene, bromostyrene, chloro Examples include methylstyrene, hydroxystyrene protected with a group that can be deprotected by an acidic substance (for example, t-Boc and the like), methyl vinylbenzoate, α-methylstyrene, and the like.

前記ビニルエーテル類としては、例えば、メチルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、メトキシエチルビニルエーテルなどが挙げられる。   Examples of the vinyl ethers include methyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, and methoxyethyl vinyl ether.

前記官能基を有するビニルモノマーの合成方法としては、例えば、イソシアナート基と水酸基又はアミノ基の付加反応が挙げられ、具体的には、イソシアナート基を有するモノマーと、水酸基を1個含有する化合物又は1級若しくは2級アミノ基を1個有する化合物との付加反応、水酸基を有するモノマー又は1級若しくは2級アミノ基を有するモノマーと、モノイソシアネートとの付加反応が挙げられる。   Examples of the method for synthesizing the vinyl monomer having a functional group include an addition reaction of an isocyanate group and a hydroxyl group or an amino group, specifically, a monomer having an isocyanate group and a compound containing one hydroxyl group. Alternatively, an addition reaction with a compound having one primary or secondary amino group, an addition reaction between a monomer having a hydroxyl group or a monomer having a primary or secondary amino group, and a monoisocyanate can be given.

前記イソシアナート基を有するモノマーとしては、例えば、下記構造式(16)〜(18)で表される化合物が挙げられる。   Examples of the monomer having an isocyanate group include compounds represented by the following structural formulas (16) to (18).

但し、前記構造式(16)〜(18)中、Rは水素原子又はメチル基を表す。 However, in the structural formulas (16) to (18), R 1 represents a hydrogen atom or a methyl group.

前記モノイソシアネートとしては、例えば、シクロヘキシルイソシアネート、n−ブチルイソシアネート、トルイルイソシアネート、ベンジルイソシアネート、フェニルイソシアネート等が挙げられる。   Examples of the monoisocyanate include cyclohexyl isocyanate, n-butyl isocyanate, toluyl isocyanate, benzyl isocyanate, and phenyl isocyanate.

前記水酸基を有するモノマーとしては、例えば、下記構造式(19)〜(27)で表される化合物が挙げられる。   Examples of the monomer having a hydroxyl group include compounds represented by the following structural formulas (19) to (27).

但し、前記構造式(19)〜(27)中、Rは水素原子又はメチル基を表し、nは1以上の整数を表す。 However, in the above structural formula (19) ~ (27), R 1 represents a hydrogen atom or a methyl radical, n represents an integer of 1 or more.

前記水酸基を1個含有する化合物としては、例えば、アルコール類(例えば、メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、sec−ブタノール、t−ブタノール、n−ヘキサノール、2−エチルヘキサノール、n−デカノール、n−ドデカノール、n−オクタデカノール、シクロペンタノール、シクロへキサノール、ベンジルアルコール、フェニルエチルアルコール等)、フェノール類(例えば、フェノール、クレゾール、ナフトール等)、更に置換基を含むものとして、フロロエタノール、トリフロロエタノール、メトキシエタノール、フェノキシエタノール、クロロフェノール、ジクロロフェノール、メトキシフェノール、アセトキシフェノール等が挙げられる。   Examples of the compound containing one hydroxyl group include alcohols (for example, methanol, ethanol, n-propanol, i-propanol, n-butanol, sec-butanol, t-butanol, n-hexanol, 2-ethylhexanol). , N-decanol, n-dodecanol, n-octadecanol, cyclopentanol, cyclohexanol, benzyl alcohol, phenylethyl alcohol, etc.), phenols (eg, phenol, cresol, naphthol, etc.), and further containing substituents Examples thereof include fluoroethanol, trifluoroethanol, methoxyethanol, phenoxyethanol, chlorophenol, dichlorophenol, methoxyphenol, acetoxyphenol, and the like.

前記1級又は2級アミノ基を有するモノマーとしては、例えば、ビニルベンジルアミンなどが挙げられる。   Examples of the monomer having a primary or secondary amino group include vinylbenzylamine.

前記1級又は2級アミノ基を1個含有する化合物としては、例えば、アルキルアミン(メチルアミン、エチルアミン、n−プロピルアミン、i−プロピルアミン、n−ブチルアミン、sec−ブチルアミン、t−ブチルアミン、ヘキシルアミン、2−エチルヘキシルアミン、デシルアミン、ドデシルアミン、オクタデシルアミン、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジオクチルアミン)、環状アルキルアミン(シクロペンチルアミン、シクロへキシルアミン等)、アラルキルアミン(ベンジルアミン、フェネチルアミン等)、アリールアミン(アニリン、トルイルアミン、キシリルアミン、ナフチルアミン等)、更にこれらの組合せ(N−メチル−N−ベンジルアミン等)、更に置換基を含むアミン(トリフロロエチルアミン、ヘキサフロロイソプロピルアミン、メトキシアニリン、メトキシプロピルアミン等)などが挙げられる。   Examples of the compound containing one primary or secondary amino group include alkylamines (methylamine, ethylamine, n-propylamine, i-propylamine, n-butylamine, sec-butylamine, t-butylamine, hexyl). Amine, 2-ethylhexylamine, decylamine, dodecylamine, octadecylamine, dimethylamine, diethylamine, dibutylamine, dioctylamine), cyclic alkylamine (cyclopentylamine, cyclohexylamine, etc.), aralkylamine (benzylamine, phenethylamine, etc.), Arylamines (aniline, toluylamine, xylylamine, naphthylamine, etc.), combinations thereof (N-methyl-N-benzylamine, etc.), and amines containing further substituents (trifluoroethylamino) , Hexafluoro isopropyl amine, methoxyaniline, methoxypropylamine and the like) and the like.

また、上記以外の前記その他の共重合可能なモノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2−エチルヘキシル、スチレン、クロルスチレン、ブロモスチレン、ヒドロキシスチレンなどが好適に挙げられる。   Examples of the other copolymerizable monomers other than those described above include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, benzyl (meth) acrylate, and (meth) acrylic. Preferable examples include 2-ethylhexyl acid, styrene, chlorostyrene, bromostyrene, and hydroxystyrene.

前記その他の共重合可能なモノマーは、1種単独で使用してもよく、2種以上を併用してもよい。   The said other copolymerizable monomer may be used individually by 1 type, and may use 2 or more types together.

前記ビニル共重合体は、それぞれ相当するモノマーを公知の方法により常法に従って共重合させることで調製することができる。例えば、前記モノマーを適当な溶媒中に溶解し、ここにラジカル重合開始剤を添加して溶液中で重合させる方法(溶液重合法)を利用することにより調製することができる。また、水性媒体中に前記モノマーを分散させた状態でいわゆる乳化重合等で重合を利用することにより調製することができる。   The vinyl copolymer can be prepared by copolymerizing the corresponding monomers by a known method according to a conventional method. For example, it can be prepared by using a method (solution polymerization method) in which the monomer is dissolved in a suitable solvent and a radical polymerization initiator is added thereto to polymerize in a solution. Moreover, it can prepare by utilizing superposition | polymerization by what is called emulsion polymerization etc. in the state which disperse | distributed the said monomer in the aqueous medium.

前記溶液重合法で用いられる適当な溶媒としては、特に制限はなく、使用するモノマー、及び生成する共重合体の溶解性等に応じて適宜選択することができ、例えば、メタノール、エタノール、プロパノール、イソプロパノール、1−メトキシ−2−プロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、メトキシプロピルアセテート、乳酸エチル、酢酸エチル、アセトニトリル、テトラヒドロフラン、ジメチルホルムアミド、クロロホルム、トルエンなどが挙げられる。これらの溶媒は、1種単独で使用してもよく、2種以上を併用してもよい。   The suitable solvent used in the solution polymerization method is not particularly limited and may be appropriately selected depending on the monomer used and the solubility of the copolymer to be produced. For example, methanol, ethanol, propanol, Examples include isopropanol, 1-methoxy-2-propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, methoxypropyl acetate, ethyl lactate, ethyl acetate, acetonitrile, tetrahydrofuran, dimethylformamide, chloroform, toluene and the like. These solvents may be used alone or in combination of two or more.

前記ラジカル重合開始剤としては、特に制限はなく、例えば、2,2’−アゾビス(イソブチロニトリル)(AIBN)、2,2’−アゾビス−(2,4’−ジメチルバレロニトリル)等のアゾ化合物、ベンゾイルパーオキシド等の過酸化物、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩などが挙げられる。   The radical polymerization initiator is not particularly limited, and examples thereof include 2,2′-azobis (isobutyronitrile) (AIBN) and 2,2′-azobis- (2,4′-dimethylvaleronitrile). Examples thereof include peroxides such as azo compounds and benzoyl peroxide, and persulfates such as potassium persulfate and ammonium persulfate.

前記ビニル共重合体におけるカルボキシル基を有する重合性化合物の含有率としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5〜50モル%が好ましく、10〜40モル%がより好ましく、15〜35モル%が特に好ましい。
前記含有率が、5モル%未満であると、アルカリ水への現像性が不足することがあり、50モル%を超えると、硬化部(画像部)の現像液耐性が不足することがある。
There is no restriction | limiting in particular as content rate of the polymeric compound which has a carboxyl group in the said vinyl copolymer, Although it can select suitably according to the objective, For example, 5-50 mol% is preferable, 10-40 mol % Is more preferable, and 15 to 35 mol% is particularly preferable.
If the content is less than 5 mol%, the developability to alkaline water may be insufficient, and if it exceeds 50 mol%, the developer resistance of the cured portion (image portion) may be insufficient.

前記カルボキシル基を有するバインダーの分子量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、質量平均分子量として、2,000〜300,000が好ましく、4,000〜150,000がより好ましい。
前記質量平均分子量が、2,000未満であると、膜の強度が不足しやすく、また安定な製造が困難になることがあり、300,000を超えると、現像性が低下することがある。
There is no restriction | limiting in particular as molecular weight of the binder which has the said carboxyl group, Although it can select suitably according to the objective, For example, 2,000-300,000 are preferable as a mass mean molecular weight, 4,000-150 1,000 is more preferable.
When the mass average molecular weight is less than 2,000, the strength of the film tends to be insufficient and stable production may be difficult, and when it exceeds 300,000, developability may be deteriorated.

前記カルボキシル基を有するバインダーは、1種単独で使用してもよく、2種以上を併用してもよい。前記バインダーを2種以上併用する場合としては、例えば、異なる共重合成分からなる2種以上のバインダー、異なる質量平均分子量の2種以上のバインダー、異なる分散度の2種以上のバインダー、などの組合せが挙げられる。   The binder which has the said carboxyl group may be used individually by 1 type, and may use 2 or more types together. Examples of the case where two or more binders are used in combination include, for example, a combination of two or more binders composed of different copolymer components, two or more binders having different mass average molecular weights, and two or more binders having different dispersities. Is mentioned.

前記カルボキシル基を有するバインダーは、そのカルボキシル基の一部又は全部が塩基性物質で中和されていてもよい。また、前記バインダーは、さらにポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリビニルアルコール、ゼラチン等の構造の異なる樹脂を併用してもよい。   The binder having a carboxyl group may be partially or entirely neutralized with a basic substance. The binder may be used in combination with resins having different structures such as polyester resin, polyamide resin, polyurethane resin, epoxy resin, polyvinyl alcohol, and gelatin.

また、前記バインダーとしては、特許2873889号等に記載のアルカリ性液に可溶な樹脂などを用いることができる。   Moreover, as the binder, a resin soluble in an alkaline liquid described in Japanese Patent No. 2873890 and the like can be used.

前記感光層における前記バインダーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、10〜90質量%が好ましく、20〜80質量%がより好ましく、40〜80質量%が特に好ましい。
前記含有量が10質量%未満であると、アルカリ現像性やプリント配線板形成用基板(例えば、銅張積層板)との密着性が低下することがあり、90質量%を超えると、現像時間に対する安定性や、硬化膜(テント膜)の強度が低下することがある。なお、前記含有量は、前記バインダーと必要に応じて併用される高分子結合剤との合計の含有量であってもよい。
There is no restriction | limiting in particular as content of the said binder in the said photosensitive layer, Although it can select suitably according to the objective, For example, 10-90 mass% is preferable, 20-80 mass% is more preferable, 40- 80% by mass is particularly preferred.
When the content is less than 10% by mass, alkali developability and adhesion to a printed wiring board forming substrate (for example, a copper-clad laminate) may be deteriorated. Stability and strength of the cured film (tent film) may be reduced. The content may be the total content of the binder and the polymer binder used in combination as necessary.

前記バインダーの酸価としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、70〜250(mgKOH/g)が好ましく、90〜200(mgKOH/g)がより好ましく、100〜180(mgKOH/g)が特に好ましい。
前記酸価が、70(mgKOH/g)未満であると、現像性が不足したり、解像性が劣り、配線パターン等の永久パターンを高精細に得ることができないことがあり、250(mgKOH/g)を超えると、パターンの耐現像液性及び密着性の少なくともいずれかが悪化し、配線パターン等の永久パターンを高精細に得ることができないことがある。
The acid value of the binder is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 70 to 250 (mgKOH / g), more preferably 90 to 200 (mgKOH / g), 100 to 180 (mg KOH / g) is particularly preferable.
When the acid value is less than 70 (mgKOH / g), developability may be insufficient, resolution may be inferior, and permanent patterns such as wiring patterns may not be obtained with high definition. / G), at least one of the developer resistance and adhesion of the pattern deteriorates, and a permanent pattern such as a wiring pattern may not be obtained with high definition.

−光重合開始剤−
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限り、特に制限はなく、公知の光重合開始剤の中から適宜選択することができるが、例えば、紫外線領域から可視の光線に対して感光性を有するものが好ましく、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよく、モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。
また、前記光重合開始剤は、約300〜800nm(より好ましくは330〜500nm)の範囲内に少なくとも約50の分子吸光係数を有する成分を少なくとも1種含有していることが好ましい。
-Photopolymerization initiator-
The photopolymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of the polymerizable compound, and can be appropriately selected from known photopolymerization initiators. For example, it is visible from the ultraviolet region. It is preferable to have photosensitivity to the light of the photocatalyst, and may be an activator that generates an active radical by generating some action with a photoexcited sensitizer, and initiates cationic polymerization depending on the type of monomer. Initiator may be used.
The photopolymerization initiator preferably contains at least one component having a molecular extinction coefficient of at least about 50 within a range of about 300 to 800 nm (more preferably 330 to 500 nm).

前記光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有するもの、オキサジアゾール骨格を有するもの等)、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、メタロセン類などが挙げられる。これらの中でも、感光層の感度、保存性、及び感光層とプリント配線板形成用基板との密着性等の観点から、トリアジン骨格を有するハロゲン化炭化水素、オキシム誘導体、ケトン化合物、ヘキサアリールビイミダゾール系化合物が好ましい。   Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton), hexaarylbiimidazoles, oxime derivatives, organic peroxides, thio compounds, Examples include ketone compounds, aromatic onium salts, and metallocenes. Among these, halogenated hydrocarbons having a triazine skeleton, oxime derivatives, ketone compounds, hexaarylbiimidazoles from the viewpoints of sensitivity and storage stability of the photosensitive layer, and adhesion between the photosensitive layer and the printed wiring board forming substrate. System compounds are preferred.

前記ヘキサアリールビイミダゾールとしては、例えば、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(o−フロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−ブロモフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジクロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’−テトラ(3−メトキシフェニル)ビイミダゾール、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’−テトラ(4−メトキシフェニル)ビイミダゾール、2,2’−ビス(4−メトキシフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジクロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−ニトロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−メチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−トリフルオロメチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、WO00/52529号公報に記載の化合物などが挙げられる。   Examples of the hexaarylbiimidazole include 2,2′-bis (2-chlorophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (o-fluorophenyl)- 4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2-bromophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis ( 2,4-dichlorophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2-chlorophenyl) -4,4 ′, 5,5′-tetra (3-methoxyphenyl) ) Biimidazole, 2,2′-bis (2-chlorophenyl) -4,4 ′, 5,5′-tetra (4-methoxyphenyl) biimidazole, 2,2′-bis (4-methoxyphenyl) -4 , 4 ', , 5′-tetraphenylbiimidazole, 2,2′-bis (2,4-dichlorophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2-nitrophenyl) -4,4 ', 5,5'-tetraphenylbiimidazole, 2,2'-bis (2-methylphenyl) -4,4', 5,5'-tetraphenylbiimidazole, 2,2'-bis (2-trifluoromethylphenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, compounds described in WO00 / 52529, and the like.

前記ビイミダゾール類は、例えば、Bull.Chem.Soc.Japan,33,565(1960)、及びJ.Org.Chem,36(16)2262(1971)に開示されている方法により容易に合成することができる。   The biimidazoles are described in, for example, Bull. Chem. Soc. Japan, 33, 565 (1960); Org. It can be easily synthesized by the method disclosed in Chem, 36 (16) 2262 (1971).

トリアジン骨格を有するハロゲン化炭化水素化合物としては、例えば、若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物、英国特許1388492号明細書記載の化合物、特開昭53−133428号公報記載の化合物、独国特許3337024号明細書記載の化合物、F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物、特開昭62−58241号公報記載の化合物、特開平5−281728号公報記載の化合物、特開平5−34920号公報記載の化合物、米国特許第4212976号明細書に記載されている化合物等が挙げられる。   Examples of the halogenated hydrocarbon compound having a triazine skeleton include those described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969), a compound described in British Patent 1388492, a compound described in JP-A-53-133428, a compound described in German Patent 3337024, F.I. C. J. Schaefer et al. Org. Chem. 29, 1527 (1964), a compound described in JP-A-62-258241, a compound described in JP-A-5-281728, a compound described in JP-A-5-34920, and U.S. Pat. No. 4,221,976. Examples include compounds described in the specification.

前記若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物としては、例えば、2−フェニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−クロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−トリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(2,4−ジクロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2,4,6−トリス(トリクロルメチル)−1,3,5−トリアジン、2−メチル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−n−ノニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、及び2−(α,α,β−トリクロルエチル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。   Wakabayashi et al., Bull. Chem. Soc. As a compound described in Japan, 42, 2924 (1969), for example, 2-phenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-chlorophenyl) -4,6 -Bis (trichloromethyl) -1,3,5-triazine, 2- (4-tolyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxyphenyl)- 4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (2,4-dichlorophenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2, 4,6-tris (trichloromethyl) -1,3,5-triazine, 2-methyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2-n-nonyl-4,6- Bis (trichloromethyl) 1,3,5-triazine, and 2-(alpha, alpha, beta-trichloroethyl) -4,6-bis (trichloromethyl) -1,3,5-triazine.

前記英国特許1388492号明細書記載の化合物としては、例えば、2−スチリル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メチルスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4−アミノ−6−トリクロルメチル−1,3,5−トリアジンなどが挙げられる。   Examples of the compound described in the British Patent 1388492 include 2-styryl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methylstyryl) -4,6- Bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxystyryl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxystyryl)- 4-amino-6-trichloromethyl-1,3,5-triazine and the like can be mentioned.

前記特開昭53−133428号公報記載の化合物としては、例えば、2−(4−メトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−エトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−〔4−(2−エトキシエチル)−ナフト−1−イル〕−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4,7−ジメトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、及び2−(アセナフト−5−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compounds described in JP-A-53-133428 include 2- (4-methoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2 -(4-Ethoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [4- (2-ethoxyethyl) -naphth-1-yl]- 4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4,7-dimethoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -1,3,5- Examples include triazine and 2- (acenaphtho-5-yl) -4,6-bis (trichloromethyl) -1,3,5-triazine.

前記独国特許3337024号明細書記載の化合物としては、例えば、2−(4−スチリルフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシスチリル)フェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(1−ナフチルビニレンフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−クロロスチリルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−3−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−フラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、及び2−(4−ベンゾフラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compound described in the specification of German Patent 3333724 include 2- (4-styrylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4 -Methoxystyryl) phenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (1-naphthylvinylenephenyl) -4,6-bis (trichloromethyl) -1,3,5 -Triazine, 2-chlorostyrylphenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-thiophen-2-vinylenephenyl) -4,6-bis (trichloromethyl)- 1,3,5-triazine, 2- (4-thiophene-3-vinylenephenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-furan-2 Vinylenephenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, and 2- (4-benzofuran-2-vinylenephenyl) -4,6-bis (trichloromethyl) -1,3 5-triazine etc. are mentioned.

前記F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物としては、例えば、2−メチル−4,6−ビス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(ジブロモメチル)−1,3,5−トリアジン、2−アミノ−4−メチル−6−トリ(ブロモメチル)−1,3,5−トリアジン、及び2−メトキシ−4−メチル−6−トリクロロメチル−1,3,5−トリアジンなどが挙げられる。   F. above. C. J. Schaefer et al. Org. Chem. 29, 1527 (1964) include, for example, 2-methyl-4,6-bis (tribromomethyl) -1,3,5-triazine, 2,4,6-tris (tribromomethyl); -1,3,5-triazine, 2,4,6-tris (dibromomethyl) -1,3,5-triazine, 2-amino-4-methyl-6-tri (bromomethyl) -1,3,5- Examples include triazine and 2-methoxy-4-methyl-6-trichloromethyl-1,3,5-triazine.

前記特開昭62−58241号公報記載の化合物としては、例えば、2−(4−フェニルエチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−ナフチル−1−エチニルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−トリルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシフェニル)エチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−イソプロピルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−エチルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compounds described in JP-A-62-258241 include 2- (4-phenylethynylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- Naphthyl-1-ethynylphenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4-tolylethynyl) phenyl) -4,6-bis (trichloromethyl) -1 , 3,5-triazine, 2- (4- (4-methoxyphenyl) ethynylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4-isopropylphenyl) Ethynyl) phenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4-ethylphenylethynyl) phenyl) -4,6-bis (trichloromethyl) Le) -1,3,5-triazine.

前記特開平5−281728号公報記載の化合物としては、例えば、2−(4−トリフルオロメチルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジフルオロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジクロロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジブロモフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compound described in JP-A-5-281728 include 2- (4-trifluoromethylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (2, 6-difluorophenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (2,6-dichlorophenyl) -4,6-bis (trichloromethyl) -1,3,5- Examples include triazine, 2- (2,6-dibromophenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine.

前記特開平5−34920号公報記載化合物としては、例えば、2,4−ビス(トリクロロメチル)−6−[4−(N,N−ジエトキシカルボニルメチルアミノ)−3−ブロモフェニル]−1,3,5−トリアジン、米国特許第4239850号明細書に記載されているトリハロメチル−s−トリアジン化合物、更に2,4,6−トリス(トリクロロメチル)−s−トリアジン、2−(4−クロロフェニル)−4,6−ビス(トリブロモメチル)−s−トリアジンなどが挙げられる。   Examples of the compound described in JP-A-5-34920 include 2,4-bis (trichloromethyl) -6- [4- (N, N-diethoxycarbonylmethylamino) -3-bromophenyl] -1, 3,5-triazine, trihalomethyl-s-triazine compounds described in US Pat. No. 4,239,850, 2,4,6-tris (trichloromethyl) -s-triazine, 2- (4-chlorophenyl) Examples include -4,6-bis (tribromomethyl) -s-triazine.

前記米国特許第4212976号明細書に記載されている化合物としては、例えば、オキサジアゾール骨格を有する化合物(例えば、2−トリクロロメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロロフェニル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール、2−トリブロモメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリブロモメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール;2−トリクロロメチル−5−スチリル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロルスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−メトキシスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−n−ブトキシスチリル)−1,3,4−オキサジアゾール、2−トリプロモメチル−5−スチリル−1,3,4−オキサジアゾール等)などが挙げられる。   Examples of the compound described in US Pat. No. 4,221,976 include compounds having an oxadiazole skeleton (for example, 2-trichloromethyl-5-phenyl-1,3,4-oxadiazole, 2- Trichloromethyl-5- (4-chlorophenyl) -1,3,4-oxadiazole, 2-trichloromethyl-5- (1-naphthyl) -1,3,4-oxadiazole, 2-trichloromethyl-5 -(2-naphthyl) -1,3,4-oxadiazole, 2-tribromomethyl-5-phenyl-1,3,4-oxadiazole, 2-tribromomethyl-5- (2-naphthyl) -1,3,4-oxadiazole; 2-trichloromethyl-5-styryl-1,3,4-oxadiazole, 2-trichloromethyl-5- (4-chlorostyryl) -1,3,4-oxadiazole, 2-trichloromethyl-5- (4-methoxystyryl) -1,3,4-oxadiazole, 2-trichloromethyl-5- (1-naphthyl) -1, 3,4-oxadiazole, 2-trichloromethyl-5- (4-n-butoxystyryl) -1,3,4-oxadiazole, 2-tripromomethyl-5-styryl-1,3,4 Oxadiazole and the like).

本発明で好適に用いられるオキシム誘導体としては、例えば、下記構造式(28)〜(61)で表される化合物が挙げられる。   Examples of the oxime derivative suitably used in the present invention include compounds represented by the following structural formulas (28) to (61).

前記ケトン化合物としては、例えば、ベンゾフェノン、2−メチルベンゾフェノン、3−メチルベンゾフェノン、4−メチルベンゾフェノン、4−メトキシベンゾフェノン、2−クロロベンゾフェノン、4−クロロベンゾフェノン、4−ブロモベンゾフェノン、2−カルボキシベンゾフェノン、2−エトキシカルボニルベンゾルフェノン、ベンゾフェノンテトラカルボン酸又はそのテトラメチルエステル、4,4’−ビス(ジアルキルアミノ)ベンゾフェノン類(例えば、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4,4’−ビスジシクロヘキシルアミノ)ベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、4,4’−ビス(ジヒドロキシエチルアミノ)ベンゾフェノン、4−メトキシ−4’−ジメチルアミノベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4−ジメチルアミノベンゾフェノン、4−ジメチルアミノアセトフェノン、ベンジル、アントラキノン、2−t−ブチルアントラキノン、2−メチルアントラキノン、フェナントラキノン、キサントン、チオキサントン、2−クロル−チオキサントン、2,4−ジエチルチオキサントン、フルオレノン、2−ベンジル−ジメチルアミノ−1−(4−モルホリノフェニル)−1−ブタノン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルホリノ−1−プロパノン、2−ヒドロキシ−2−メチル−〔4−(1−メチルビニル)フェニル〕プロパノールオリゴマー、ベンゾイン、ベンゾインエーテル類(例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール)、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドンなどが挙げられる。   Examples of the ketone compound include benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 4-methoxybenzophenone, 2-chlorobenzophenone, 4-chlorobenzophenone, 4-bromobenzophenone, 2-carboxybenzophenone, 2-ethoxycarbonylbenzolphenone, benzophenonetetracarboxylic acid or tetramethyl ester thereof, 4,4′-bis (dialkylamino) benzophenone (for example, 4,4′-bis (dimethylamino) benzophenone, 4,4′- Bisdicyclohexylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4,4′-bis (dihydroxyethylamino) benzophenone, 4-methoxy-4′-dimethylamino Nzophenone, 4,4'-dimethoxybenzophenone, 4-dimethylaminobenzophenone, 4-dimethylaminoacetophenone, benzyl, anthraquinone, 2-t-butylanthraquinone, 2-methylanthraquinone, phenanthraquinone, xanthone, thioxanthone, 2-chloro -Thioxanthone, 2,4-diethylthioxanthone, fluorenone, 2-benzyl-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino -1-propanone, 2-hydroxy-2-methyl- [4- (1-methylvinyl) phenyl] propanol oligomer, benzoin, benzoin ethers (for example, benzoin methyl ether, benzoin ethyl ether, In propyl ether, benzoin isopropyl ether, benzoin phenyl ether, benzyl dimethyl ketal), acridone, chloro acridone, N- methyl acridone, N- butyl acridone, N- butyl - such as chloro acrylic pyrrolidone.

前記メタロセン類としては、例えば、ビス(η5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフロロ−3−(1H−ピロール−1−イル)−フェニル)チタニウム、η5−シクロペンタジエニル−η6−クメニル−アイアン(1+)−ヘキサフロロホスフェート(1−)、特開昭53−133428号公報、特公昭57−1819号公報、同57−6096号公報、及び米国特許第3615455号明細書に記載された化合物などが挙げられる。   Examples of the metallocenes include bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium, η5- Cyclopentadienyl-η6-cumenyl-iron (1 +)-hexafluorophosphate (1-), JP-A-53-133428, JP-B-57-1819, JP-A-57-6096, and US Pat. Examples thereof include compounds described in the specification of 3615455.

また、上記以外の光重合開始剤として、アクリジン誘導体(例えば、9−フェニルアクリジン、1,7−ビス(9、9’−アクリジニル)ヘプタン等)、N−フェニルグリシン等、ポリハロゲン化合物(例えば、四臭化炭素、フェニルトリブロモメチルスルホン、フェニルトリクロロメチルケトン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン、7−ベンゾトリアゾール−2−イルクマリン、また、特開平5-19475号、特開平7-271028号、特開2002-363206号、特開2002-363207号、特開2002-363208号、特開2002-363209号公報等に記載のクマリン化合物など)、アミン類(例えば、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸n−ブチル、4−ジメチルアミノ安息香酸フェネチル、4−ジメチルアミノ安息香酸2−フタルイミドエチル、4−ジメチルアミノ安息香酸2−メタクリロイルオキシエチル、ペンタメチレンビス(4−ジメチルアミノベンゾエート)、3−ジメチルアミノ安息香酸のフェネチル、ペンタメチレンエステル、4−ジメチルアミノベンズアルデヒド、2−クロル−4−ジメチルアミノベンズアルデヒド、4−ジメチルアミノベンジルアルコール、エチル(4−ジメチルアミノベンゾイル)アセテート、4−ピペリジノアセトフェノン、4−ジメチルアミノベンゾイン、N,N−ジメチル−4−トルイジン、N,N−ジエチル−3−フェネチジン、トリベンジルアミン、ジベンジルフェニルアミン、N−メチル−N−フェニルベンジルアミン、4−ブロム−N,N−ジメチルアニリン、トリドデシルアミン、アミノフルオラン類(ODB,ODBII等)、クリスタルバイオレットラクトン、ロイコクリスタルバイオレット等)、アシルホスフィンオキシド類(例えば、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキシド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフェニルホスフィンオキシド、LucirinTPOなど)などが挙げられる。   Further, as photopolymerization initiators other than the above, acridine derivatives (for example, 9-phenylacridine, 1,7-bis (9,9′-acridinyl) heptane, etc.), N-phenylglycine, and the like, polyhalogen compounds (for example, Carbon tetrabromide, phenyltribromomethylsulfone, phenyltrichloromethylketone, etc.), coumarins (for example, 3- (2-benzofuroyl) -7-diethylaminocoumarin, 3- (2-benzofuroyl) -7- (1-pyrrolidinyl) ) Coumarin, 3-benzoyl-7-diethylaminocoumarin, 3- (2-methoxybenzoyl) -7-diethylaminocoumarin, 3- (4-dimethylaminobenzoyl) -7-diethylaminocoumarin, 3,3′-carbonylbis (5 , 7-di-n-propoxycoumarin), 3,3′-carbonylbis (7-diethylaminocoumarin), 3-benzoyl-7-methoxycoumarin, 3- (2-furoyl) -7-diethylaminocoumarin, 3- (4-diethylaminocinnamoyl) -7-diethylaminocoumarin, 7-methoxy-3- (3-pyridylcarbonyl) coumarin, 3-benzoyl-5,7-dipropoxycoumarin, 7-benzotriazol-2-ylcoumarin, JP-A-5-19475, JP-A-7-271028, JP-A-2002-363206 No., JP-A-2002-363207, JP-A-2002-363208, JP-A-2002-363209, etc.), amines (for example, ethyl 4-dimethylaminobenzoate, 4-dimethylaminobenzoate) N-butyl acid, 4-dimethylaminobenzoic acid phenethyl, 4-dimethyl 2-phthalimidoethyl tilaminobenzoate, 2-methacryloyloxyethyl 4-dimethylaminobenzoate, pentamethylenebis (4-dimethylaminobenzoate), phenethyl of 3-dimethylaminobenzoic acid, pentamethylene ester, 4-dimethylaminobenzaldehyde, 2-chloro-4-dimethylaminobenzaldehyde, 4-dimethylaminobenzyl alcohol, ethyl (4-dimethylaminobenzoyl) acetate, 4-piperidinoacetophenone, 4-dimethylaminobenzoin, N, N-dimethyl-4-toluidine, N, N-diethyl-3-phenetidine, tribenzylamine, dibenzylphenylamine, N-methyl-N-phenylbenzylamine, 4-bromo-N, N-dimethylaniline, tridodecylamine, amino Nofluoranes (ODB, ODBII, etc.), crystal violet lactone, leuco crystal violet, etc., acylphosphine oxides (for example, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) ) -2,4,4-trimethyl-pentylphenylphosphine oxide, Lucirin TPO, etc.).

更に、米国特許第2367660号明細書に記載されているビシナルポリケタルドニル化合物、米国特許第2448828号明細書に記載されているアシロインエーテル化合物、米国特許第2722512号明細書に記載されているα−炭化水素で置換された芳香族アシロイン化合物、米国特許第3046127号明細書及び同第2951758号明細書に記載の多核キノン化合物、特開2002−229194号公報に記載の有機ホウ素化合物、ラジカル発生剤、トリアリールスルホニウム塩(例えば、ヘキサフロロアンチモンやヘキサフロロホスフェートとの塩)、ホスホニウム塩化合物(例えば、(フェニルチオフェニル)ジフェニルスルホニウム塩等)(カチオン重合開始剤として有効)、WO01/71428号公報記載のオニウム塩化合物などが挙げられる。   Further, vicinal polyketaldonyl compounds described in US Pat. No. 2,367,660, acyloin ether compounds described in US Pat. No. 2,448,828, and US Pat. No. 2,722,512 are described. An aromatic acyloin compound substituted with α-hydrocarbon, a polynuclear quinone compound described in US Pat. Nos. 3,046,127 and 2,951,758, an organoboron compound described in JP-A-2002-229194, and a radical Generator, triarylsulfonium salt (for example, salt with hexafluoroantimony or hexafluorophosphate), phosphonium salt compound (for example, (phenylthiophenyl) diphenylsulfonium salt, etc.) (effective as a cationic polymerization initiator), WO01 / 71428 Onium Such compounds.

前記光重合開始剤は、1種単独で使用してもよく、2種以上を併用してもよい。2種以上の組合せとしては、例えば、米国特許第3549367号明細書に記載のヘキサアリールビイミダゾールと4−アミノケトン類との組合せ、特公昭51−48516号公報に記載のベンゾチアゾール化合物とトリハロメチル−s−トリアジン化合物の組合せ、また、芳香族ケトン化合物(例えば、チオキサントン等)と水素供与体(例えば、ジアルキルアミノ含有化合物、フェノール化合物等)の組合せ、ヘキサアリールビイミダゾールとチタノセンとの組合せ、クマリン類とチタノセンとフェニルグリシン類との組合せなどが挙げられる。   The said photoinitiator may be used individually by 1 type, and may use 2 or more types together. Examples of the combination of two or more include, for example, a combination of hexaarylbiimidazole and 4-aminoketone described in US Pat. No. 3,549,367, a benzothiazole compound described in Japanese Patent Publication No. 51-48516, and trihalomethyl- Combinations of s-triazine compounds, combinations of aromatic ketone compounds (such as thioxanthone) and hydrogen donors (such as dialkylamino-containing compounds and phenol compounds), combinations of hexaarylbiimidazole and titanocene, and coumarins And combinations of titanocene and phenylglycines.

前記感光層における光重合開始剤の含有量としては、0.1〜30質量%が好ましく、0.5〜20質量%がより好ましく、0.5〜15質量%が特に好ましい。   As content of the photoinitiator in the said photosensitive layer, 0.1-30 mass% is preferable, 0.5-20 mass% is more preferable, 0.5-15 mass% is especially preferable.

−その他の成分−
前記感光層は、前記炭素数3以上のアルキレンオキシド基を有する重合性化合物、前記バインダー、及び光重合開始剤の他、適宜選択したその他の成分を含んでいてもよい。
前記その他の成分としては、例えば、重合禁止剤、増感剤、界面活性剤、可塑剤、発色剤、着色剤などが挙げられ、更に基体表面への密着促進剤及びその他の助剤類(例えば、顔料、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、熱架橋剤、表面張力調整剤、連鎖移動剤等)を併用してもよい。また、これらの成分を適宜含有させることにより、目的とするパターン形成材料の安定性、写真性、焼きだし性、膜物性等の性質を調整することもできる。
-Other ingredients-
In addition to the polymerizable compound having an alkylene oxide group having 3 or more carbon atoms, the binder, and a photopolymerization initiator, the photosensitive layer may contain other components selected as appropriate.
Examples of the other components include polymerization inhibitors, sensitizers, surfactants, plasticizers, color formers, colorants and the like, and adhesion promoters to the substrate surface and other auxiliaries (for example, , Pigments, conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, fragrances, thermal crosslinking agents, surface tension modifiers, chain transfer agents, etc.) . In addition, by appropriately containing these components, properties such as stability, photographic properties, print-out properties, and film properties of the target pattern forming material can be adjusted.

−−重合禁止剤−−
前記重合禁止剤としては、特に制限はなく、目的に応じて適宜選択することができる。
前記重合禁止剤は、前記露光により前記光重合開始剤から発生した重合開始ラジカル成分に対して水素供与(又は、水素授与)、エネルギー供与(又は、エネルギー授与)、電子供与(又は、電子授与)などを実施し、重合開始ラジカルを失活させ、重合開始を禁止する役割をはたす。
--- Polymerization inhibitor ---
There is no restriction | limiting in particular as said polymerization inhibitor, According to the objective, it can select suitably.
The polymerization inhibitor includes hydrogen donation (or hydrogen donation), energy donation (or energy donation), electron donation (or electron donation) to the polymerization initiation radical component generated from the photopolymerization initiator by the exposure. The polymerization initiation radical is deactivated and the initiation of polymerization is prohibited.

前記重合禁止剤としては、孤立電子対を有する化合物(例えば、酸素、窒素、硫黄、金属等を有する化合物)、パイ電子を有する化合物(例えば、芳香族化合物)などが挙げられ、具体的には、フェノール性水酸基を有する化合物、イミノ基を有する化合物、ニトロ基を有する化合物、ニトロソ基を有する化合物、芳香環を有する化合物、複素環を有する化合物、金属原子を有する化合物(有機化合物との錯体を含む)などが挙げられる。これらの中でも、フェノール性水酸基を有する化合物、イミノ基を有する化合物、芳香環を有する化合物、複素環を有する化合物が好ましい。   Examples of the polymerization inhibitor include compounds having a lone electron pair (for example, compounds having oxygen, nitrogen, sulfur, metal, etc.), compounds having pi electrons (for example, aromatic compounds), and the like. A compound having a phenolic hydroxyl group, a compound having an imino group, a compound having a nitro group, a compound having a nitroso group, a compound having an aromatic ring, a compound having a heterocyclic ring, a compound having a metal atom (complex with an organic compound) Including). Among these, a compound having a phenolic hydroxyl group, a compound having an imino group, a compound having an aromatic ring, and a compound having a heterocyclic ring are preferable.

前記フェノール性水酸基を有する化合物は、特に制限はなく、目的に応じて適宜選択することができるが、例えば、フェノール性水酸基を少なくとも2個有する化合物が好ましい。該フェノール性水酸基を少なくとも2個有する化合物において、少なくとも2個のフェノール性水酸基は、同一の芳香環に置換されていてもよく、同一分子内における異なる芳香環に置換されているもよい。   The compound having a phenolic hydroxyl group is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a compound having at least two phenolic hydroxyl groups is preferable. In the compound having at least two phenolic hydroxyl groups, at least two phenolic hydroxyl groups may be substituted with the same aromatic ring or may be substituted with different aromatic rings in the same molecule.

前記フェノール性水酸基を少なくとも2個有する化合物は、例えば、下記構造式(62)で表される化合物がより好ましい。   The compound having at least two phenolic hydroxyl groups is more preferably, for example, a compound represented by the following structural formula (62).

前記構造式(62)中、Zは、置換基を表し、mは、2以上の整数を表す。nは0以上の整数を表す。該m及びnは、m+n=6となるように選ばれる整数が好ましい。また、nが2以上の整数である場合、前記Zは互いに同一であってもよく異なっていてもよい。
前記mが2未満となると、解像度が悪化することがある。
In the structural formula (62), Z represents a substituent, and m represents an integer of 2 or more. n represents an integer of 0 or more. M and n are preferably integers selected so that m + n = 6. Moreover, when n is an integer greater than or equal to 2, said Z may mutually be same or different.
When m is less than 2, the resolution may be deteriorated.

前記置換基としては、例えば、カルボキシル基、スルホ基、シアノ基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)、ヒドロキシ基、炭素数30以下のアルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、ベンジルオキシカルボニル基)、炭素数30以下のアリールオキシカルボニル基(例えば、フェノキシカルボニル基)、炭素数30以下のアルキルスルホニルアミノカルボニル基(例えば、メチルスルホニルアミノカルボニル基、オクチルスルホニルアミノカルボニル基)、アリールスルホニルアミノカルボニル基(例えば、トルエンスルホニルアミノカルボニル基)、炭素数30以下のアシルアミノスルホニル基(例えば、ベンゾイルアミノスルホニル基、アセチルアミノスルホニル基、ピバロイルアミノスルホニル基)、炭素数30以下のアルコキシ基(例えば、メトキシ基、エトキシ基、ベンジルオキシ基、フェノキシエトキシ基、フェネチルオキシ基等)、炭素数30以下のアリールチオ基、アルキルチオ基(例えば、フェニルチオ基、メチルチオ基、エチルチオ基、ドデシルチオ基等)、炭素数30以下のアリールオキシ基(例えば、フェノキシ基、p−トリルオキシ基、1−ナフトキシ基、2−ナフトキシ基等)、ニトロ基、炭素数30以下のアルキル基、アルコキシカルボニルオキシ基(例えば、メトキシカルボニルオキシ基、ステアリルオキシカルボニルオキシ基、フェノキシエトキシカルボニルオキシ基)、アリールオキシカルボニルオキシ基(例えば、フェノキシカルボニルオキシ基、クロロフェノキシカルボニルオキシ基)、炭素数30以下のアシルオキシ基(例えば、アセチルオキシ基、プロピオニルオキシ基等)、炭素数30以下のアシル基(例えば、アセチル基、プロピオニル基、ベンゾイル基等)、カルバモイル基(例えば、カルバモイル基、N,N−ジメチルカルバモイル基、モルホリノカルボニル基、ピペリジノカルボニル基等)、スルファモイル基(例えば、スルファモイル基、N,N−ジメチルスルファモイル基、モルホリノスルホニル基、ピペリジノスルホニル基等)、炭素数30以下のアルキルスルホニル基(例えば、メチルスルホニル基、トルフルオロメチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、ドデシルスルホニル基)、アリールスルホニル基(例えば、ベンゼンスルホニル基、トルエンスルホニル基、ナフタレンスルホニル基、ピリジンスルホニル基、キノリンスルホニル基)、炭素数30以下のアリール基(例えばフェニル基、ジクロロフェニル基、トルイル基、メトキシフェニル基、ジエチルアミノフェニル基、アセチルアミノフェニル基、メトキシカルボニルフェニル基、ヒドロキシフェニル基、t−オクチルフェニル基、ナフチル基等)、置換アミノ基(例えば、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、ジアリールアミノ基、アシルアミノ基等)、置換ホスホノ基(例えば、ホスホノ基、ジエチルホスホノ基、ジフェニルホスホノ基)、複素環式基(例えば、ピリジル基、キノリル基、フリル基、チエニル基、テトラヒドロフルフリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピリダジル基、ピリミジル基、ピラジル基、トリアゾリル基、テトラゾリル基、ベンゾオキサゾリル基、ベンゾイミダゾリル基、イソキノリル基、チアジアゾリル基、モルホリノ基、ピペリジノ基、ピペラジノ基、インドリル基、イソインドリル基、チオモルホリノ基)、ウレイド基(例えば、メチルウレイド基、ジメチルウレイド基、フェニルウレイド基等)、スルファモイルアミノ基(例えば、ジプロピルスルファモイルアミノ基等)、アルコキシカルボニルアミノ基(例えば、エトキシカルボニルアミノ基等)、アリールオキシカルボニルアミノ基(例えば、フェニルオキシカルボニルアミノ基)、アルキルスルフィニル基(例えば、メチルスルフィニル基等)、アリールスルフィニル基(例えば、フェニルスルフィニル基等)、シリル基(例えば、トリメトキシシリル基、トリエトキシシリル基等)、シリルオキシ基(例えば、トリメチルシリルオキシ基等)等が挙げられる。   Examples of the substituent include a carboxyl group, a sulfo group, a cyano group, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom), a hydroxy group, and an alkoxycarbonyl group having 30 or less carbon atoms (for example, a methoxycarbonyl group, Ethoxycarbonyl group, benzyloxycarbonyl group), aryloxycarbonyl group having 30 or less carbon atoms (for example, phenoxycarbonyl group), alkylsulfonylaminocarbonyl group having 30 or less carbon atoms (for example, methylsulfonylaminocarbonyl group, octylsulfonylaminocarbonyl) Group), arylsulfonylaminocarbonyl group (for example, toluenesulfonylaminocarbonyl group), acylaminosulfonyl group having 30 or less carbon atoms (for example, benzoylaminosulfonyl group, acetylaminosulfonyl group, Valoylaminosulfonyl group), an alkoxy group having 30 or less carbon atoms (for example, methoxy group, ethoxy group, benzyloxy group, phenoxyethoxy group, phenethyloxy group, etc.), an arylthio group having 30 or less carbon atoms, or an alkylthio group (for example, Phenylthio group, methylthio group, ethylthio group, dodecylthio group, etc.), aryloxy group having 30 or less carbon atoms (for example, phenoxy group, p-tolyloxy group, 1-naphthoxy group, 2-naphthoxy group, etc.), nitro group, carbon number 30 or less alkyl groups, alkoxycarbonyloxy groups (for example, methoxycarbonyloxy group, stearyloxycarbonyloxy group, phenoxyethoxycarbonyloxy group), aryloxycarbonyloxy groups (for example, phenoxycarbonyloxy group, chlorophenoxycal) Nyloxy group), an acyloxy group having 30 or less carbon atoms (for example, acetyloxy group, propionyloxy group, etc.), an acyl group having 30 or less carbon atoms (for example, acetyl group, propionyl group, benzoyl group, etc.), carbamoyl group (for example, Carbamoyl group, N, N-dimethylcarbamoyl group, morpholinocarbonyl group, piperidinocarbonyl group, etc.), sulfamoyl group (for example, sulfamoyl group, N, N-dimethylsulfamoyl group, morpholinosulfonyl group, piperidinosulfonyl group) Etc.), an alkylsulfonyl group having 30 or less carbon atoms (for example, methylsulfonyl group, trifluoromethylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, dodecylsulfonyl group), arylsulfonyl group (for example, benzenesulfonyl group, toluenesulfonyl) Group, naphthalenesulfonyl group, pyridinesulfonyl group, quinolinesulfonyl group), aryl group having 30 or less carbon atoms (for example, phenyl group, dichlorophenyl group, toluyl group, methoxyphenyl group, diethylaminophenyl group, acetylaminophenyl group, methoxycarbonylphenyl group) , Hydroxyphenyl group, t-octylphenyl group, naphthyl group, etc.), substituted amino group (for example, amino group, alkylamino group, dialkylamino group, arylamino group, diarylamino group, acylamino group etc.), substituted phosphono group ( For example, phosphono group, diethylphosphono group, diphenylphosphono group), heterocyclic group (for example, pyridyl group, quinolyl group, furyl group, thienyl group, tetrahydrofurfuryl group, pyrazolyl group, isoxazolyl group, isothiazolyl group) Imidazolyl group, oxazolyl group, thiazolyl group, pyridazyl group, pyrimidyl group, pyrazyl group, triazolyl group, tetrazolyl group, benzoxazolyl group, benzimidazolyl group, isoquinolyl group, thiadiazolyl group, morpholino group, piperidino group, piperazino group, indolyl group , Isoindolyl group, thiomorpholino group), ureido group (eg methylureido group, dimethylureido group, phenylureido group etc.), sulfamoylamino group (eg dipropylsulfamoylamino group etc.), alkoxycarbonylamino group (eg For example, ethoxycarbonylamino group and the like), aryloxycarbonylamino group (for example, phenyloxycarbonylamino group), alkylsulfinyl group (for example, methylsulfinyl group and the like), arylsulfy Le group (e.g., such as phenylsulfinyl group), a silyl group (e.g., trimethoxysilyl group, triethoxysilyl group), silyloxy group (e.g., trimethylsilyloxy group) and the like.

前記構造式(74)で表される化合物としては、例えば、アルキルカテコール(例えば、カテコール、レゾルシノール、1,4−ヒドロキノン、2−メチルカテコール、3−メチルカテコール、4−メチルカテコール、2−エチルカテコール、3−エチルカテコール、4−エチルカテコール、2−プロピルカテコール、3−プロピルカテコール、4−プロピルカテコール、2−n−ブチルカテコール、3−n−ブチルカテコール、4−n−ブチルカテコール、2−tert−ブチルカテコール、3−tert−ブチルカテコール、4−tert−ブチルカテコール、3,5−di−tert−ブチルカテコール等)、アルキルレゾルシノール(例えば、2−メチルレゾルシノール、4−メチルレゾルシノール、2−エチルレゾルシノール、4−エチルレゾルシノール、2−プロピルレゾルシノール、4−プロピルレゾルシノール、2−n−ブチルレゾルシノール、4−n−ブチルレゾルシノール、2−tert−ブチルレゾルシノール、4−tert−ブチルレゾルシノール等)、アルキルヒドロキノン(例えば、メチルヒドロキノン、エチルヒドロキノン、プロピルヒドロキノン、tert−ブチルヒドロキノン、2,5−di−tert−ブチルヒドロキノン等)、ピロガロール、フロログルシンなどが挙げられる。   Examples of the compound represented by the structural formula (74) include alkylcatechol (for example, catechol, resorcinol, 1,4-hydroquinone, 2-methylcatechol, 3-methylcatechol, 4-methylcatechol, 2-ethylcatechol). 3-ethylcatechol, 4-ethylcatechol, 2-propylcatechol, 3-propylcatechol, 4-propylcatechol, 2-n-butylcatechol, 3-n-butylcatechol, 4-n-butylcatechol, 2-tert -Butyl catechol, 3-tert-butyl catechol, 4-tert-butyl catechol, 3,5-di-tert-butyl catechol, etc.), alkylresorcinol (for example, 2-methylresorcinol, 4-methylresorcinol, 2-ethylresorcinol) 4 Ethyl resorcinol, 2-propyl resorcinol, 4-propyl resorcinol, 2-n-butyl resorcinol, 4-n-butyl resorcinol, 2-tert-butyl resorcinol, 4-tert-butyl resorcinol, etc.), alkylhydroquinone (eg, methylhydroquinone) Ethylhydroquinone, propylhydroquinone, tert-butylhydroquinone, 2,5-di-tert-butylhydroquinone, etc.), pyrogallol, phloroglucin and the like.

また、前記フェノール性水酸基を有する化合物は、例えば、前記フェノール性水酸基を少なくとも1個有する芳香環が互いに2価の連結基で連結された化合物も好ましい。
前記2価の連結基としては、例えば、1〜30個の炭素原子、酸素原子、窒素原子、硫黄原子、SO、SO等を有する基が挙げられる。前記硫黄原子、酸素原子、SO、及びSOは、直接結合していてもよい。
前記炭素原子及び酸素原子は、置換基を有していてもよく、該置換基としては、例えば、上述した前記構造式(28)におけるZが挙げられる。
また、前記芳香環は、置換基を有していてもよく、該置換基としては、例えば、上述した前記構造式(28)におけるZが挙げられる。
The compound having a phenolic hydroxyl group is also preferably a compound in which aromatic rings having at least one phenolic hydroxyl group are linked to each other by a divalent linking group.
Examples of the divalent linking group include groups having 1 to 30 carbon atoms, oxygen atoms, nitrogen atoms, sulfur atoms, SO, SO 2 and the like. The sulfur atom, oxygen atom, SO, and SO 2 may be directly bonded.
The carbon atom and oxygen atom may have a substituent, and examples of the substituent include Z in the above structural formula (28).
The aromatic ring may have a substituent, and examples of the substituent include Z in the above structural formula (28).

前記フェノール性水酸基を有する化合物の具体例としては、ビスフェノールA、ビスフェノールS、ビスフェノールM、感熱紙に顕色剤として用いられる公知のビスフェノール化合物、特開2003−305945号公報に記載のビスフェノール化合物、酸化防止剤として用いられるヒンダードフェノール化合物などが挙げられる。また、4−メトキシフェノール、4−メトキシ−2−ヒドロキシベンゾフェノン、β−ナフトール、2,6−ジ−t−ブチル−4−クレゾール、サリチル酸メチル、ジエチルアミノフェノール等の置換基を有するモノフェノール化合物なども挙げられる。
前記フェノール性水酸基を有する化合物の市販品としては、本州化学社製のビスフェノール化合物が挙げられる。
Specific examples of the compound having a phenolic hydroxyl group include bisphenol A, bisphenol S, bisphenol M, a known bisphenol compound used as a color developer for thermal paper, a bisphenol compound described in JP-A-2003-305945, and an oxidation compound. Examples thereof include hindered phenol compounds used as an inhibitor. In addition, monophenol compounds having a substituent such as 4-methoxyphenol, 4-methoxy-2-hydroxybenzophenone, β-naphthol, 2,6-di-t-butyl-4-cresol, methyl salicylate, diethylaminophenol, etc. Can be mentioned.
A commercial product of the compound having a phenolic hydroxyl group includes a bisphenol compound manufactured by Honshu Chemical.

前記イミノ基を有する化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、分子量が50以上のものが好ましく、分子量が70以上のものがより好ましい。
前記イミノ基を有する化合物は、イミノ基で置換された環状構造を有することが好ましい。該環状構造としては、芳香環及び複素環の少なくともいずれかが縮合しているものが好ましく、芳香環が縮合しているものがより好ましい。また、前記環状構造では、酸素原子、窒素原子、硫黄原子を有していてもよい。
There is no restriction | limiting in particular as a compound which has the said imino group, Although it can select suitably according to the objective, For example, a thing with a molecular weight of 50 or more is preferable, and a thing with a molecular weight of 70 or more is more preferable.
The compound having an imino group preferably has a cyclic structure substituted with an imino group. The cyclic structure is preferably a condensed at least one of an aromatic ring and a heterocyclic ring, and more preferably a condensed aromatic ring. Moreover, in the said cyclic structure, you may have an oxygen atom, a nitrogen atom, and a sulfur atom.

前記イミノ基を有する化合物の具体例としては、フェノチアジン、フェノキサジン、ジヒドロフェナジン、ヒドロキノリン、又は、これらの化合物を上述した前記構造式(1)におけるZで置換した化合物が挙げられる。   Specific examples of the compound having an imino group include phenothiazine, phenoxazine, dihydrophenazine, hydroquinoline, or a compound obtained by substituting these compounds with Z in the above structural formula (1).

前記イミノ基で置換された環状構造を有する化合物としては、ヒンダードアミンを一部に有するヒンダードアミン誘導体が好ましい。
前記ヒンダードアミンとしては、例えば、特開2003−246138号公報に記載のヒンダードアミンが挙げられる。
The compound having a cyclic structure substituted with the imino group is preferably a hindered amine derivative having a hindered amine in part.
Examples of the hindered amine include hindered amines described in JP-A No. 2003-246138.

前記ニトロ基を有する化合物又は前記ニトロソ基を有する化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、分子量が50以上のものが好ましく、分子量が70以上のものがより好ましい。
前記ニトロ基を有する化合物又は前記ニトロソ基を有する化合物の具体例としては、ニトロベンゼン、ニトロソ化合物とアルミニウムとのキレート化合物等が挙げられる。
The compound having the nitro group or the compound having the nitroso group is not particularly limited and may be appropriately selected depending on the intended purpose. For example, those having a molecular weight of 50 or more are preferred, and those having a molecular weight of 70 or more. Is more preferable.
Specific examples of the compound having the nitro group or the compound having the nitroso group include nitrobenzene, a chelate compound of nitroso compound and aluminum, and the like.

前記芳香環を有する化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記芳香環が孤立電子対を有する置換基(例えば、酸素原子、窒素原子、硫黄原子等を有する置換基)で置換されているものが好ましい。
前記芳香環を有する化合物の具体例としては、例えば、上述のフェノール性水酸基を有する化合物、上述のイミノ基を有する化合物、アニリン骨格を一部に有する化合物(例えば、メチレンブルー、クリスタルバイオレット等)が挙げられる。
The compound having an aromatic ring is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the aromatic ring has a substituent having a lone electron pair (for example, an oxygen atom, a nitrogen atom, a sulfur atom) And the like substituted by a substituent having
Specific examples of the compound having an aromatic ring include, for example, the above-described compound having a phenolic hydroxyl group, the above-mentioned compound having an imino group, and a compound having an aniline skeleton (for example, methylene blue, crystal violet, etc.). It is done.

前記複素環を有する化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、該複素環が、窒素、酸素、硫黄等の孤立電子対を有する原子を有するものが好ましい。
前記複素環を有する化合物の具体例としては、ピリジン、キノリンなどが挙げられる。
The compound having a heterocycle is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the heterocycle has an atom having a lone pair of electrons such as nitrogen, oxygen, and sulfur. preferable.
Specific examples of the compound having a heterocyclic ring include pyridine and quinoline.

前記金属原子を有する化合物としては、特に制限はなく、目的に応じて適宜選択することができる。
前記金属原子としては、前記重合開始剤から発生したラジカルと親和性を有する金属原子である限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、銅、アルミニウム、チタンなどが挙げられる。
There is no restriction | limiting in particular as a compound which has the said metal atom, According to the objective, it can select suitably.
The metal atom is not particularly limited as long as it is a metal atom having an affinity for a radical generated from the polymerization initiator, and can be appropriately selected according to the purpose. Examples thereof include copper, aluminum, and titanium. Can be mentioned.

前記重合禁止剤の中でも、フェノール性水酸基を少なくとも2個有する化合物、イミノ基で置換された芳香環を有する化合物、イミノ基で置換された複素環を有する化合物が好ましく、イミノ基が環状構造の一部を構成している化合物、ヒンダードアミン化合物が特に好ましい。具体的には、カテコール、フェノチアジン、フェノキサジン、ヒンダードアミン、又はこれらの誘導体が好ましい。   Among the polymerization inhibitors, a compound having at least two phenolic hydroxyl groups, a compound having an aromatic ring substituted with an imino group, and a compound having a heterocyclic ring substituted with an imino group are preferable, and the imino group has a cyclic structure. Particular preference is given to compounds constituting the part, hindered amine compounds. Specifically, catechol, phenothiazine, phenoxazine, hindered amine, or derivatives thereof are preferable.

前記重合禁止剤は、一般に市販の重合性化合物中に微量に含まれているが、解像度を向上させる観点から、市販の前記重合性化合物中に含まれる重合禁止剤とは別に上述の重合禁止剤を含ませることが好ましい。よって、前記重合禁止剤は、安定性付与のために市販の前記重合性化合物中に含まれる4−メトキシフェノール等のモノフェノール系化合物を除いた化合物が好ましい。   The polymerization inhibitor is generally contained in a trace amount in a commercially available polymerizable compound. From the viewpoint of improving the resolution, the polymerization inhibitor described above is separate from the polymerization inhibitor contained in the commercially available polymerizable compound. Is preferably included. Therefore, the polymerization inhibitor is preferably a compound excluding a monophenol compound such as 4-methoxyphenol contained in the commercially available polymerizable compound for imparting stability.

なお、前記重合禁止剤は、感光性樹脂組成物溶液に予め添加してもよい。   The polymerization inhibitor may be added in advance to the photosensitive resin composition solution.

前記重合禁止剤の含有量としては、前記感光層の前記重合性化合物に対して0.005〜0.5質量%が好ましく、0.01〜0.4質量%がより好ましく、0.02〜0.2質量%が特に好ましい。
前記含有量が、0.005質量%未満であると、解像度が低下することがあり、0.5質量%を超えると、活性エネルギー線に対する感度が低下することがある。
As content of the said polymerization inhibitor, 0.005-0.5 mass% is preferable with respect to the said polymeric compound of the said photosensitive layer, 0.01-0.4 mass% is more preferable, 0.02- 0.2% by mass is particularly preferable.
If the content is less than 0.005% by mass, the resolution may decrease, and if it exceeds 0.5% by mass, the sensitivity to active energy rays may decrease.

感光層の積層数としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1層であってもよく、2層以上であってもよい。   There is no restriction | limiting in particular as the number of lamination | stacking of a photosensitive layer, According to the objective, it can select suitably, For example, one layer may be sufficient and two or more layers may be sufficient.

−−増感剤−−
前記増感剤としては、特に制限はなく、前記光照射手段として可視光線や紫外光・可視光レーザなどにより適宜選択することができるが、例えば、極大吸収波長が380〜450nmである増感剤が好ましい。
前記増感剤は、活性エネルギー線により励起状態となり、他の物質(例えば、ラジカル発生剤、酸発生剤等)と相互作用(例えば、エネルギー移動、電子移動等)することにより、ラジカルや酸等の有用基を発生することが可能である。
--- Sensitizer--
The sensitizer is not particularly limited and may be appropriately selected as the light irradiation means by visible light, ultraviolet light, visible light laser, or the like. For example, the sensitizer having a maximum absorption wavelength of 380 to 450 nm. Is preferred.
The sensitizer is excited by active energy rays and interacts with other substances (for example, radical generator, acid generator, etc.) (for example, energy transfer, electron transfer, etc.), thereby generating radicals, acids, etc. It is possible to generate a useful group of

前記増感剤としては、特に制限はなく、公知の増感剤の中から適宜選択することができるが、例えば、公知の多核芳香族類(例えば、ピレン、ペリレン、トリフェニレン)、キサンテン類(例えば、フルオレセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル)、シアニン類(例えば、インドカルボシアニン、チアカルボシアニン、オキサカルボシアニン)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン)、チアジン類(例えば、チオニン、メチレンブルー、トルイジンブルー)、アクリジン類(例えば、アクリジンオレンジ、クロロフラビン、アクリフラビン)、アントラキノン類(例えば、アントラキノン)、スクアリウム類(例えば、スクアリウム)、アクリドン類(例えば、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドン、2−クロロ−10−ブチルアクリドン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン等があげられ、他に特開平5-19475号、特開平7-271028号、特開2002-363206号、特開2002-363207号、特開2002-363208号、特開2002-363209号等の各公報に記載のクマリン化合物など)が挙げられる。   The sensitizer is not particularly limited and may be appropriately selected from known sensitizers. For example, known polynuclear aromatics (for example, pyrene, perylene, triphenylene), xanthenes (for example, , Fluorescein, eosin, erythrosine, rhodamine B, rose bengal), cyanines (eg, indocarbocyanine, thiacarbocyanine, oxacarbocyanine), merocyanines (eg, merocyanine, carbomerocyanine), thiazines (eg, thionine, Methylene blue, toluidine blue), acridines (eg, acridine orange, chloroflavin, acriflavine), anthraquinones (eg, anthraquinone), squariums (eg, squalium), acridones (eg, acridone, chloroacrine) Don, N-methylacridone, N-butylacridone, N-butyl-chloroacridone, 2-chloro-10-butylacridone, etc.), coumarins (for example, 3- (2-benzofuroyl) -7-diethylamino Coumarin, 3- (2-benzofuroyl) -7- (1-pyrrolidinyl) coumarin, 3-benzoyl-7-diethylaminocoumarin, 3- (2-methoxybenzoyl) -7-diethylaminocoumarin, 3- (4-dimethylaminobenzoyl) ) -7-diethylaminocoumarin, 3,3′-carbonylbis (5,7-di-n-propoxycoumarin), 3,3′-carbonylbis (7-diethylaminocoumarin), 3-benzoyl-7-methoxycoumarin, 3- (2-Furoyl) -7-diethylaminocoumarin, 3- (4-diethylaminocinna) Yl) -7-diethylaminocoumarin, 7-methoxy-3- (3-pyridylcarbonyl) coumarin, 3-benzoyl-5,7-dipropoxycoumarin, and the like, and in addition, JP-A-5-19475 and JP-A-7 -2701028, JP-A-2002-363206, JP-A-2002-363207, JP-A-2002-363208, JP-A-2002-363209, and the like.

前記光重合開始剤と前記増感剤との組合せとしては、例えば、特開2001−305734号公報に記載の電子移動型開始系[(1)電子供与型開始剤及び増感色素、(2)電子受容型開始剤及び増感色素、(3)電子供与型開始剤、増感色素及び電子受容型開始剤(三元開始系)]などの組合せが挙げられる。   Examples of the combination of the photopolymerization initiator and the sensitizer include, for example, an electron transfer start system described in JP-A-2001-305734 [(1) an electron donating initiator and a sensitizing dye, (2) A combination of an electron-accepting initiator and a sensitizing dye, (3) an electron-donating initiator, a sensitizing dye and an electron-accepting initiator (ternary initiation system), and the like.

前記増感剤の含有量としては、感光性樹脂組成物の全成分に対し、0.01〜10質量%が好ましく、0.05〜8質量%がより好ましく、0.1〜5質量%が特に好ましい。   As content of the said sensitizer, 0.01-10 mass% is preferable with respect to all the components of the photosensitive resin composition, 0.05-8 mass% is more preferable, 0.1-5 mass% is Particularly preferred.

−−可塑剤−−
前記可塑剤は、前記感光層の膜物性(可撓性)をコントロールするために添加してもよい。
前記可塑剤としては、例えば、ジメチルフタレート、ジブチルフタレート、ジイソブチルフタレート、ジヘプチルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジトリデシルフタレート、ブチルベンジルフタレート、ジイソデシルフタレート、ジフェニルフタレート、ジアリルフタレート、オクチルカプリールフタレート等のフタル酸エステル類;トリエチレングリコールジアセテート、テトラエチレングリコールジアセテート、ジメチルグリコースフタレート、エチルフタリールエチルグリコレート、メチルフタリールエチルグリコレート、ブチルフタリールブチルグリコレート、トリエチレングリコールジカブリル酸エステル等のグリコールエステル類;トリクレジルホスフェート、トリフェニルホスフェート等のリン酸エステル類;4−トルエンスルホンアミド、ベンゼンスルホンアミド、N−n−ブチルベンゼンスルホンアミド、N−n−ブチルアセトアミド等のアミド類;ジイソブチルアジペート、ジオクチルアジペート、ジメチルセバケート、ジブチルセパケート、ジオクチルセパケート、ジオクチルアゼレート、ジブチルマレート等の脂肪族二塩基酸エステル類;クエン酸トリエチル、クエン酸トリブチル、グリセリントリアセチルエステル、ラウリン酸ブチル、4,5−ジエポキシシクロヘキサン−1,2−ジカルボン酸ジオクチル等、ポリエチレングリコール、ポリプロピレングリコール等のグリコール類が挙げられる。
--Plasticizer--
The plasticizer may be added to control film physical properties (flexibility) of the photosensitive layer.
Examples of the plasticizer include dimethyl phthalate, dibutyl phthalate, diisobutyl phthalate, diheptyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, ditridecyl phthalate, butyl benzyl phthalate, diisodecyl phthalate, diphenyl phthalate, diallyl phthalate, octyl capryl phthalate, and the like. Phthalic acid esters: Triethylene glycol diacetate, tetraethylene glycol diacetate, dimethylglycol phthalate, ethyl phthalyl ethyl glycolate, methyl phthalyl ethyl glycolate, butyl phthalyl butyl glycolate, triethylene glycol dicabrylate, etc. Glycol esters of tricresyl phosphate, triphenyl phosphate, etc. Acid esters; Amides such as 4-toluenesulfonamide, benzenesulfonamide, Nn-butylbenzenesulfonamide, Nn-butylacetamide; diisobutyl adipate, dioctyl adipate, dimethyl sebacate, dibutyl sepacate, dioctyl Aliphatic dibasic acid esters such as sepacate, dioctyl azelate, dibutyl malate; triethyl citrate, tributyl citrate, glycerin triacetyl ester, butyl laurate, 4,5-diepoxycyclohexane-1,2-dicarboxylic acid Examples include glycols such as dioctyl acid, polyethylene glycol, and polypropylene glycol.

前記可塑剤の含有量としては、前記感光層の全成分に対して0.1〜50質量%が好ましく、0.5〜40質量%がより好ましく、1〜30質量%が特に好ましい。   As content of the said plasticizer, 0.1-50 mass% is preferable with respect to all the components of the said photosensitive layer, 0.5-40 mass% is more preferable, 1-30 mass% is especially preferable.

−−発色剤−−
前記発色剤は、露光後の前記感光層に可視像を与える(焼きだし機能)ために添加してもよい。
前記発色剤としては、例えば、トリス(4−ジメチルアミノフェニル)メタン(ロイコクリスタルバイオレット)、トリス(4−ジエチルアミノフェニル)メタン、トリス(4−ジメチルアミノ−2−メチルフェニル)メタン、トリス(4−ジエチルアミノ−2−メチルフェニル)メタン、ビス(4−ジブチルアミノフェニル)−〔4−(2−シアノエチル)メチルアミノフェニル〕メタン、ビス(4−ジメチルアミノフェニル)−2−キノリルメタン、トリス(4−ジプロピルアミノフェニル)メタン等のアミノトリアリールメタン類;3,6−ビス(ジメチルアミノ)−9−フェニルキサンチン、3−アミノ−6−ジメチルアミノ−2−メチル−9−(2−クロロフェニル)キサンチン等のアミノキサンチン類;3,6−ビス(ジエチルアミノ)−9−(2−エトキシカルボニルフェニル)チオキサンテン、3,6−ビス(ジメチルアミノ)チオキサンテン等のアミノチオキサンテン類;3,6−ビス(ジエチルアミノ)−9,10−ジヒドロ−9−フェニルアクリジン、3,6−ビス(ベンジルアミノ)−9,10−ジビドロ−9−メチルアクリジン等のアミノ−9,10−ジヒドロアクリジン類;3,7−ビス(ジエチルアミノ)フェノキサジン等のアミノフェノキサジン類;3,7−ビス(エチルアミノ)フェノチアゾン等のアミノフェノチアジン類;3,7−ビス(ジエチルアミノ)−5−ヘキシル−5,10−ジヒドロフェナジン等のアミノジヒドロフェナジン類;ビス(4−ジメチルアミノフェニル)アニリノメタン等のアミノフェニルメタン類;4−アミノ−4’−ジメチルアミノジフェニルアミン、4−アミノ−α、β−ジシアノヒドロケイ皮酸メチルエステル等のアミノヒドロケイ皮酸類;1−(2−ナフチル)−2−フェニルヒドラジン等のヒドラジン類;1,4−ビス(エチルアミノ)−2,3−ジヒドロアントラキノン類のアミノ−2,3−ジヒドロアントラキノン類;N,N−ジエチル−4−フェネチルアニリン等のフェネチルアニリン類;10−アセチル−3,7−ビス(ジメチルアミノ)フェノチアジン等の塩基性NHを含むロイコ色素のアシル誘導体;トリス(4−ジエチルアミノ−2−トリル)エトキシカルボニルメンタン等の酸化しうる水素をもつていないが、発色化合物に酸化しうるロイコ様化合物;ロイコインジゴイド色素;米国特許3,042,515号及び同第3,042,517号に記載されているような発色形に酸化しうるような有機アミン類(例、4,4’−エチレンジアミン、ジフェニルアミン、N,N−ジメチルアニリン、4,4’−メチレンジアミントリフェニルアミン、N−ビニルカルバゾール)が挙げられ、これらの中でも、ロイコクリスタルバイオレット等のトリアリールメタン系化合物が好ましい。
--Coloring agent--
The color former may be added to give a visible image (printing function) to the photosensitive layer after exposure.
Examples of the color former include tris (4-dimethylaminophenyl) methane (leuco crystal violet), tris (4-diethylaminophenyl) methane, tris (4-dimethylamino-2-methylphenyl) methane, tris (4- Diethylamino-2-methylphenyl) methane, bis (4-dibutylaminophenyl)-[4- (2-cyanoethyl) methylaminophenyl] methane, bis (4-dimethylaminophenyl) -2-quinolylmethane, tris (4-di Aminotriarylmethanes such as propylaminophenyl) methane; 3,6-bis (dimethylamino) -9-phenylxanthine, 3-amino-6-dimethylamino-2-methyl-9- (2-chlorophenyl) xanthine, etc. Aminoxanthines; 3,6-bis (diethyl Aminothioxanthenes such as mino) -9- (2-ethoxycarbonylphenyl) thioxanthene and 3,6-bis (dimethylamino) thioxanthene; 3,6-bis (diethylamino) -9,10-dihydro-9- Amino-9,10-dihydroacridine such as phenylacridine, 3,6-bis (benzylamino) -9,10-dividro-9-methylacridine; aminophenoxazine such as 3,7-bis (diethylamino) phenoxazine Aminophenothiazines such as 3,7-bis (ethylamino) phenothiazone; aminodihydrophenazines such as 3,7-bis (diethylamino) -5-hexyl-5,10-dihydrophenazine; bis (4-dimethylamino) Aminophenylmethanes such as phenyl) anilinomethane; 4-amino-4 ′ Aminohydrocinnamic acids such as dimethylaminodiphenylamine, 4-amino-α, β-dicyanohydrocinnamic acid methyl ester; hydrazines such as 1- (2-naphthyl) -2-phenylhydrazine; 1,4-bis ( Ethylamino) -2,3-dihydroanthraquinones amino-2,3-dihydroanthraquinones; phenethylanilines such as N, N-diethyl-4-phenethylaniline; 10-acetyl-3,7-bis (dimethylamino) ) An acyl derivative of a leuco dye containing basic NH such as phenothiazine; a leuco-like compound which does not have an oxidizable hydrogen such as tris (4-diethylamino-2-tolyl) ethoxycarbonylmentane but can be oxidized to a coloring compound; Leucoin digoid pigment; U.S. Pat. Nos. 3,042,515 and 3,042 Organic amines that can be oxidized to a colored form as described in No. 517 (eg, 4,4′-ethylenediamine, diphenylamine, N, N-dimethylaniline, 4,4′-methylenediamine triphenylamine, N-vinylcarbazole), and among these, triarylmethane compounds such as leuco crystal violet are preferable.

更に、前記発色剤は、前記ロイコ体を発色させるためなどの目的で、ハロゲン化合物と組み合わせることが一般に知られている。
前記ハロゲン化合物としては、例えば、ハロゲン化炭化水素(例えば、四臭化炭素、ヨードホルム、臭化エチレン、臭化メチレン、臭化アミル、臭化イソアミル、ヨウ化アミル、臭化イソブチレン、ヨウ化ブチル、臭化ジフェニルメチル、ヘキサクロロエタン、1,2−ジブロモエタン、1,1,2,2−テトラブロモエタン、1,2−ジブロモ−1,1,2−トリクロロエタン、1,2,3トリブロモプロパン、1−ブロモ−4−クロロブタン、1,2,3,4−テトラブロモブタン、テトラクロロシクロプロペン、ヘキサクロロシクロペンタジエン、ジブロモシキロヘキサン、1,1,1−トリクロロ−2,2−ビス(4−クロロフェニル)エタンなど);ハロゲン化アルコール化合物(例えば、2,2,2−トリクロロエタノール、トリブロモエタノール、1,3−ジクロロ−2−プロパノール、1,1,1−トリクロロ−2−プロパノール、ジ(ヨードヘキサメチレン)アミノイソプロパノール、トリブロモ−t−ブチルアルコール、2,2,3−トリクロロブタン−1,4−ジオールなど);ハロゲン化カルボニル化合物(例えば1,1−ジクロロアセトン、1,3−ジクロロアセトン、ヘキサクロロアセトン、ヘキサブロモアセトン、1,1,3,3−テトラクロロアセトン、1,1,1−トリクロロアセトン、3,4−ジブロモ−2−ブタノン、1,4−ジクロロ−2−ブタノン−ジブロモシクロヘキサノン等);ハロゲン化エーテル化合物(例えば2−ブロモエチルメチルエーテル、2−ブロモエチルエチルエーテル、ジ(2−ブロモエチル)エーテル、1,2−ジクロロエチルエチルエーテル等);ハロゲン化エステル化合物(例えば、酢酸ブロモエチル、トリクロロ酢酸エチル、トリクロロ酢酸トリクロロエチル、2,3−ジブロモプロピルアクリレートのホモポリマー及び共重合体、ジブロモプロピオン酸トリクロロエチル、α,β−ジグロロアクリル酸エチル等);ハロゲン化アミド化合物(例えば、クロロアセトアミド、ブロモアセトアミド、ジクロロアセトアミド、トリクロロアセトアミド、トリブロモアセトアミド、トリクロロエチルトリクロロアセトアミド、2−ブロモイソプロピオンアミド、2,2,2−トリクロロプロピオンアミド、N−クロロスクシンイミド、N−ブロモスクシンイミドなど);硫黄やリンを有する化合物(例えば、トリブロモメチルフェニルスルホン、4−ニトロフェニルトリブロモメチルスルホン、4−クロルフェニルトリブロモメチルスルホン、トリス(2,3−ジブロモプロピル)ホスフェート等)、2,4−ビス(トリクロロメチル)6−フェニルトリアゾールなどが挙げられる。有機ハロゲン化合物では、同一炭素原子に結合した2個以上のハロゲン原子を持つハロゲン化合物が好ましく、1個の炭素原子に3個のハロゲン原子を持つハロゲン化合物がより好ましい。前記有機ハロゲン化合物は、1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、トリブロモメチルフェニルスルホン、2,4−ビス(トリクロロメチル)−6−フェニルトリアゾールが好ましい。
Furthermore, it is generally known that the color former is combined with a halogen compound for the purpose of coloring the leuco body.
Examples of the halogen compound include halogenated hydrocarbons (for example, carbon tetrabromide, iodoform, ethylene bromide, methylene bromide, amyl bromide, isoamyl bromide, amyl iodide, isobutylene bromide, butyl iodide, Diphenylmethyl bromide, hexachloroethane, 1,2-dibromoethane, 1,1,2,2-tetrabromoethane, 1,2-dibromo-1,1,2-trichloroethane, 1,2,3 tribromopropane, 1-bromo-4-chlorobutane, 1,2,3,4-tetrabromobutane, tetrachlorocyclopropene, hexachlorocyclopentadiene, dibromocyclohexane, 1,1,1-trichloro-2,2-bis (4- Chlorophenyl) ethane and the like; halogenated alcohol compounds (eg, 2,2,2-trichloroethanol, Bromoethanol, 1,3-dichloro-2-propanol, 1,1,1-trichloro-2-propanol, di (iodohexamethylene) aminoisopropanol, tribromo-t-butyl alcohol, 2,2,3-trichlorobutane 1,4-diol and the like; halogenated carbonyl compounds (for example, 1,1-dichloroacetone, 1,3-dichloroacetone, hexachloroacetone, hexabromoacetone, 1,1,3,3-tetrachloroacetone, 1,1 , 1-trichloroacetone, 3,4-dibromo-2-butanone, 1,4-dichloro-2-butanone-dibromocyclohexanone, etc.); halogenated ether compounds (eg 2-bromoethyl methyl ether, 2-bromoethyl ethyl ether) Di (2-bromoethyl) ether, 1,2- Chloroethyl ethyl ether, etc.); halogenated ester compounds (eg, bromoethyl acetate, ethyl trichloroacetate, trichloroethyl trichloroacetate, homopolymers and copolymers of 2,3-dibromopropyl acrylate, trichloroethyl dibromopropionate, α, β Halogenated amide compounds (for example, chloroacetamide, bromoacetamide, dichloroacetamide, trichloroacetamide, tribromoacetamide, trichloroethyltrichloroacetamide, 2-bromoisopropionamide, 2,2,2- Trichloropropionamide, N-chlorosuccinimide, N-bromosuccinimide, etc.); a compound having sulfur or phosphorus (for example, tribromomethylphenylsulfone, 4-nitro) Phenyl tribromomethyl sulfone, 4-chlorophenyl tribromomethyl sulfone, tris (2,3-dibromopropyl) phosphate, etc.), e.g., 2,4-bis (trichloromethyl) 6- phenyltriazole and the like. As the organic halogen compound, a halogen compound having two or more halogen atoms bonded to the same carbon atom is preferable, and a halogen compound having three halogen atoms per carbon atom is more preferable. The said organic halogen compound may be used individually by 1 type, and may use 2 or more types together. Among these, tribromomethylphenyl sulfone and 2,4-bis (trichloromethyl) -6-phenyltriazole are preferable.

前記発色剤の含有量としては、前記感光層の全成分に対して0.01〜20質量%が好ましく、0.05〜10質量%がより好ましく、0.1〜5質量%が特に好ましい。また、前記ハロゲン化合物の含有量としては、前記感光層の全成分に対し0.001〜5質量%が好ましく、0.005〜1質量%がより好ましい。   The content of the color former is preferably 0.01 to 20% by mass, more preferably 0.05 to 10% by mass, and particularly preferably 0.1 to 5% by mass with respect to all components of the photosensitive layer. Moreover, as content of the said halogen compound, 0.001-5 mass% is preferable with respect to all the components of the said photosensitive layer, and 0.005-1 mass% is more preferable.

−−着色剤−−
前記着色剤としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、例えば、赤色、緑色、青色、黄色、紫色、マゼンタ色、シアン色、黒色等の公知の顔料又は染料が挙げられ、具体的には、ビクトリア・ピュアブルーBO(C.I.42595)、オーラミン(C.I.41000)、ファット・ブラックHB(C.I.26150)、モノライト・エローGT(C.I.ピグメント・イエロー12)、パーマネント・エローGR(C.I.ピグメント・イエロー17)、パーマネント・エローHR(C.I.ピグメント・イエロー83)、パーマネント・カーミンFBB(C.I.ピグメント・レッド146)、ホスターバームレッドESB(C.I.ピグメント・バイオレット19)、パーマネント・ルビーFBH(C.I.ピグメント・レッド11)、ファステル・ピンクBスプラ(C.I.ピグメント・レッド81)、モナストラル・ファースト・ブルー(C.I.ピグメント・ブルー15)、モノライト・ファースト・ブラックB(C.I.ピグメント・ブラック1)、カーボンブラックが挙げられる。
--Colorant--
The colorant is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a known pigment such as red, green, blue, yellow, purple, magenta, cyan, black, Examples include dyes such as Victoria Pure Blue BO (C.I. 42595), Auramine (C.I. 41000), Fat Black HB (C.I. 26150), Monolite Yellow GT ( CI Pigment Yellow 12), Permanent Yellow GR (CI Pigment Yellow 17), Permanent Yellow HR (CI Pigment Yellow 83), Permanent Carmine FBB (CI Pigment)・ Red 146), Hoster Balm Red ESB (CI Pigment Violet 19), Permanent Ruby F H (CI Pigment Red 11), Fastel Pink B Spula (CI Pigment Red 81), Monastral First Blue (CI Pigment Blue 15), Monolite First Black B (CI pigment black 1) and carbon black.

また、カラーフィルターの作製に好適な前記着色剤として、例えば、C.I.ピグメント・レッド97、C.I.ピグメント・レッド122、C.I.ピグメント・レッド149、C.I.ピグメント・レッド168、C.I.ピグメント・レッド177、C.I.ピグメント・レッド180、C.I.ピグメント・レッド192、C.I.ピグメント・レッド215、C.I.ピグメント・グリーン7、C.I.ピグメント・グリーン36、C.I.ピグメント・ブルー15:1、C.I.ピグメント・ブルー15:4、C.I.ピグメント・ブルー15:6、C.I.ピグメント・ブルー22、C.I.ピグメント・ブルー60、C.I.ピグメント・ブルー64、C.I.ピグメント・イエロー139、C.I.ピグメント・イエロー83、C.I.ピグメント・バイオレット23、特開2002−162752号公報の(0138)〜(0141)に記載のもの等が挙げられる。前記着色剤の平均粒径としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5μm以下が好ましく、1μm以下がより好ましい。   Examples of the colorant suitable for producing a color filter include C.I. I. Pigment red 97, C.I. I. Pigment red 122, C.I. I. Pigment red 149, C.I. I. Pigment red 168, C.I. I. Pigment red 177, C.I. I. Pigment red 180, C.I. I. Pigment red 192, C.I. I. Pigment red 215, C.I. I. Pigment green 7, C.I. I. Pigment green 36, C.I. I. Pigment blue 15: 1, C.I. I. Pigment blue 15: 4, C.I. I. Pigment blue 15: 6, C.I. I. Pigment blue 22, C.I. I. Pigment blue 60, C.I. I. Pigment blue 64, C.I. I. Pigment yellow 139, C.I. I. Pigment yellow 83, C.I. I. Pigment violet 23, and those described in JP-A-2002-162752 (0138) to (0141). There is no restriction | limiting in particular as an average particle diameter of the said coloring agent, Although it can select suitably according to the objective, For example, 5 micrometers or less are preferable and 1 micrometer or less is more preferable.

−−染料−−
前記感光層には、取り扱い性の向上のために感光性樹脂組成物を着色し、又は保存安定性を付与する目的に、染料を用いることができる。
前記染料としては、ブリリアントグリーン(例えば、その硫酸塩)、エオシン、エチルバイオレット、エリスロシンB、メチルグリーン、クリスタルバイオレット、ベイシックフクシン、フェノールフタレイン、1,3−ジフェニルトリアジン、アリザリンレッドS、チモールフタレイン、メチルバイオレット2B、キナルジンレッド、ローズベンガル、メタニル−イエロー、チモールスルホフタレイン、キシレノールブルー、メチルオレンジ、オレンジIV、ジフェニルチロカルバゾン、2,7−ジクロロフルオレセイン、パラメチルレッド、コンゴーレッド、ベンゾプルプリン4B、α−ナフチル−レッド、ナイルブルーA、フェナセタリン、メチルバイオレット、マラカイトグリーン、パラフクシン、オイルブルー#603(オリエント化学工業社製)、ローダミンB、ローダミン6G、ビクトリア・ピュアブルーBOHなどを挙げることができ、これらの中でもカチオン染料(例えば、マラカイトグリーンシュウ酸塩、マラカイトグリーン硫酸塩等)が好ましい。該カチオン染料の対アニオンとしては、有機酸又は無機酸の残基であればよく、例えば、臭素酸、ヨウ素酸、硫酸、リン酸、シュウ酸、メタンスルホン酸、トルエンスルホン酸等の残基(アニオン)などが挙げられる。
--- Dye--
In the photosensitive layer, a dye can be used for the purpose of coloring the photosensitive resin composition for improving handleability or imparting storage stability.
Examples of the dye include brilliant green (for example, sulfate thereof), eosin, ethyl violet, erythrosine B, methyl green, crystal violet, basic fuchsin, phenolphthalein, 1,3-diphenyltriazine, alizarin red S, thymolphthalein. , Methyl violet 2B, quinaldine red, rose bengal, metanil-yellow, thymol sulfophthalein, xylenol blue, methyl orange, orange IV, diphenyltylocarbazone, 2,7-dichlorofluorescein, paramethyl red, congo red, benzo Purpurin 4B, α-naphthyl-red, Nile blue A, phenacetalin, methyl violet, malachite green, parafuxin, oil blue # 603 (Orien Chemical Co., Ltd.), Rhodamine B, Rhodamine 6G, and the like can be illustrated Victoria Pure Blue BOH, Among these cationic dyes (e.g., Malachite Green oxalate, malachite green sulfates) are preferable. The counter anion of the cationic dye may be a residue of an organic acid or an inorganic acid, for example, a residue such as bromic acid, iodic acid, sulfuric acid, phosphoric acid, oxalic acid, methanesulfonic acid, toluenesulfonic acid ( Anion) and the like.

前記染料の含有量としては、前記感光層の全成分に対して0.001〜10質量%が好ましく、0.01〜5質量%がより好ましく、0.1〜2質量%が特に好ましい。   As content of the said dye, 0.001-10 mass% is preferable with respect to all the components of the said photosensitive layer, 0.01-5 mass% is more preferable, 0.1-2 mass% is especially preferable.

−−密着促進剤−−
各層間の密着性、又はパターン形成材料と基体との密着性を向上させるために、各層に公知のいわゆる密着促進剤を用いることができる。
-Adhesion promoter-
In order to improve the adhesion between the layers or the adhesion between the pattern forming material and the substrate, a known so-called adhesion promoter can be used for each layer.

前記密着促進剤としては、例えば、特開平5−11439号公報、特開平5−341532号公報、及び特開平6−43638号公報等に記載の密着促進剤が好適挙げられる。具体的には、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、2−メルカプトベンズイミダゾール、2−メルカプトベンズオキサゾール、2−メルカプトベンズチアゾール、3−モルホリノメチル−1−フェニル−トリアゾール−2−チオン、3−モルホリノメチル−5−フェニル−オキサジアゾール−2−チオン、5−アミノ−3−モルホリノメチル−チアジアゾール−2−チオン、及び2−メルカプト−5−メチルチオ−チアジアゾール、トリアゾール、テトラゾール、ベンゾトリアゾール、カルボキシベンゾトリアゾール、アミノ基含有ベンゾトリアゾール、シランカップリング剤などが挙げられる。   Preferable examples of the adhesion promoter include adhesion promoters described in JP-A Nos. 5-11439, 5-341532, and 6-43638. Specifically, benzimidazole, benzoxazole, benzthiazole, 2-mercaptobenzimidazole, 2-mercaptobenzoxazole, 2-mercaptobenzthiazole, 3-morpholinomethyl-1-phenyl-triazole-2-thione, 3-morpholino Methyl-5-phenyl-oxadiazole-2-thione, 5-amino-3-morpholinomethyl-thiadiazole-2-thione, and 2-mercapto-5-methylthio-thiadiazole, triazole, tetrazole, benzotriazole, carboxybenzotriazole Amino group-containing benzotriazole, silane coupling agents, and the like.

前記密着促進剤の含有量としては、前記感光層の全成分に対して0.001質量%〜20質量%が好ましく、0.01〜10質量%がより好ましく、0.1質量%〜5質量%が特に好ましい。   As content of the said adhesion promoter, 0.001 mass%-20 mass% are preferable with respect to all the components of the said photosensitive layer, 0.01-10 mass% is more preferable, 0.1 mass%-5 mass% % Is particularly preferred.

前記感光層は、例えば、J.コーサー著「ライトセンシテイブシステムズ」第5章に記載されているような有機硫黄化合物、過酸化物、レドックス系化合物、アゾ又はジアゾ化合物、光還元性色素、有機ハロゲン化合物などを含んでいてもよい。   The photosensitive layer is, for example, J.I. It may contain organic sulfur compounds, peroxides, redox compounds, azo or diazo compounds, photoreducible dyes, organic halogen compounds, etc. as described in Chapter 5 of “Light Sensitive Systems” Good.

前記有機硫黄化合物としては、例えば、ジ−n−ブチルジサルファイド、ジベンジルジサルファイド、2−メルカプトベンズチアゾール、2−メルカプトベンズオキサゾール、チオフェノール、エチルトリクロロメタンスルフェネート、2−メルカプトベンズイミダゾールなどが挙げられる。   Examples of the organic sulfur compound include di-n-butyl disulfide, dibenzyl disulfide, 2-mercaptobenzthiazole, 2-mercaptobenzoxazole, thiophenol, ethyltrichloromethane sulfenate, and 2-mercaptobenzimidazole. Is mentioned.

前記過酸化物としては、例えば、ジ−t−ブチルパーオキシド、過酸化ベンゾイル、メチルエチルケトンパーオキシドを挙げることができる。   Examples of the peroxide include di-t-butyl peroxide, benzoyl peroxide, and methyl ethyl ketone peroxide.

前記レドックス化合物は、過酸化物と還元剤の組合せからなるものであり、第一鉄イオンと過硫酸イオン、第二鉄イオンと過酸化物などを挙げることができる。   The redox compound is a combination of a peroxide and a reducing agent, and examples thereof include ferrous ions and persulfate ions, ferric ions and peroxides.

前記アゾ及びジアゾ化合物としては、例えば、α,α’−アゾビスイリブチロニトリル、2−アゾビス−2−メチルブチロニトリル、4−アミノジフェニルアミンのジアゾニウム類が挙げられる。   Examples of the azo and diazo compounds include α, α'-azobisiributyronitrile, 2-azobis-2-methylbutyronitrile, and diazonium such as 4-aminodiphenylamine.

前記光還元性色素としては、例えば、ローズベンガル、エリスロシン、エオシン、アクリフラビン、リポフラビン、チオニンが挙げられる。   Examples of the photoreducible dye include rose bengal, erythrosine, eosin, acriflavine, lipoflavin, and thionine.

−−界面活性剤−−
本発明の前記パターン形成材料を製造する際に発生する面状ムラを改善させるために、公知の界面活性剤を添加することができる。
前記界面活性剤としては、例えば、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤、フッ素含有界面活性剤などから適宜選択できる。
--Surfactant--
In order to improve the surface unevenness generated when the pattern forming material of the present invention is produced, a known surfactant can be added.
The surfactant can be appropriately selected from, for example, an anionic surfactant, a cationic surfactant, a nonionic surfactant, an amphoteric surfactant, and a fluorine-containing surfactant.

前記界面活性剤の含有量としては、感光性樹脂組成物の固形分に対し、0.001〜10質量%が好ましい。
前記含有量が、0.001質量%未満になると、面状改良の効果が得られなくことがあり、10質量%を超えると、密着性が低下することがある。
As content of the said surfactant, 0.001-10 mass% is preferable with respect to solid content of the photosensitive resin composition.
When the content is less than 0.001% by mass, the effect of improving the surface shape may not be obtained, and when it exceeds 10% by mass, the adhesion may be deteriorated.

前記界面活性剤としては、上述の界面活性剤の他、フッ素系の界面活性剤として、炭素鎖3〜20でフッ素原子を40質量%以上含み、かつ、非結合末端から数えて少なくとも3個の炭素原子に結合した水素原子がフッ素置換されているフルオロ脂肪族基を有するアクリレート又はメタクリレートを共重合成分として有する高分子界面活性剤も好適に挙げられる。   As the surfactant, in addition to the above-mentioned surfactant, as a fluorine-based surfactant, it contains 40% by mass or more of fluorine atoms in a carbon chain of 3 to 20, and at least 3 counted from the non-bonding terminal A polymer surfactant having, as a copolymerization component, an acrylate or methacrylate having a fluoroaliphatic group in which a hydrogen atom bonded to a carbon atom is fluorine-substituted is also preferred.

前記感光層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、1〜100μmが好ましく、2〜50μmがより好ましく、4〜30μmが特に好ましい。   There is no restriction | limiting in particular as thickness of the said photosensitive layer, Although it can select suitably according to the objective, For example, 1-100 micrometers is preferable, 2-50 micrometers is more preferable, and 4-30 micrometers is especially preferable.

前記パターン形成材料は、例えば、円筒状の巻芯に巻き取って、長尺状でロール状に巻かれて保管されることが好ましい。前記長尺状のパターン形成材料の長さとしては、特に制限はなく、例えば、10m〜20,000mの範囲から適宜選択することができる。また、ユーザーが使いやすいようにスリット加工し、100m〜1,000mの範囲の長尺体をロール状にしてもよい。なお、この場合には、前記支持体が一番外側になるように巻き取られることが好ましい。また、前記ロール状のパターン形成材料をシート状にスリットしてもよい。保管の際、端面の保護、エッジフュージョンを防止する観点から、端面にはセパレーター(特に防湿性のもの、乾燥剤入りのもの)を設置することが好ましく、また梱包も透湿性の低い素材を用いる事が好ましい。   It is preferable that the pattern forming material is wound around a cylindrical core, wound into a long roll, and stored. There is no restriction | limiting in particular as length of the said elongate pattern formation material, For example, it can select suitably from the range of 10m-20,000m. Further, slitting may be performed so that the user can easily use, and a long body in the range of 100 m to 1,000 m may be formed into a roll. In this case, it is preferable that the support is wound up so as to be the outermost side. The roll-shaped pattern forming material may be slit into a sheet shape. From the viewpoint of protecting the end face and preventing edge fusion during storage, it is preferable to install a separator (especially moisture-proof and desiccant-containing) on the end face, and use a low moisture-permeable material for packaging. Things are preferable.

<<その他の層>>
前記その他の層としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、クッション層、バリア層、剥離層、接着層、光吸収層、表面保護層等の層が挙げられる。前記パターン形成材料は、これらの層を1種単独で有していてもよく、2種以上を有していてもよい。また、同種の層を2以上有していてもよい。
<< Other layers >>
There is no restriction | limiting in particular as said other layer, According to the objective, it can select suitably, For example, layers, such as a cushion layer, a barrier layer, a peeling layer, an adhesive layer, a light absorption layer, a surface protective layer, are mentioned. . The said pattern formation material may have these layers individually by 1 type, and may have 2 or more types. Moreover, you may have 2 or more of the same kind of layers.

<<支持体>>
前記支持体としては、特に制限はなく、目的に応じて適宜選択することができるが、前記感光層を剥離可能であり、かつ光の透過性が良好であるものが好ましく、更に表面の平滑性が良好であることがより好ましい。
<< Support >>
The support is not particularly limited and may be appropriately selected depending on the intended purpose. However, it is preferable that the photosensitive layer is peelable and has good light transmittance, and further has a smooth surface. Is more preferable.

前記支持体は、合成樹脂製で、かつ透明であるものが好ましく、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリエチレン、三酢酸セルロース、二酢酸セルロース、ポリ(メタ)アクリル酸アルキルエステル、ポリ(メタ)アクリル酸エステル共重合体、ポリ塩化ビニル、ポリビニルアルコール、ポリカーボネート、ポリスチレン、セロファン、ポリ塩化ビニリデン共重合体、ポリアミド、ポリイミド、塩化ビニル・酢酸ビニル共重合体、ポリテトラフロロエチレン、ポリトリフロロエチレン、セルロース系フィルム、ナイロンフィルム等の各種のプラスチックフィルムが挙げられ、これらの中でも、ポリエチレンテレフタレートが特に好ましい。これらは、1種単独で使用してもよく、2種以上を併用してもよい。   The support is preferably made of synthetic resin and transparent, for example, polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, cellulose triacetate, cellulose diacetate, poly (meth) acrylic acid alkyl ester, poly ( (Meth) acrylic acid ester copolymer, polyvinyl chloride, polyvinyl alcohol, polycarbonate, polystyrene, cellophane, polyvinylidene chloride copolymer, polyamide, polyimide, vinyl chloride / vinyl acetate copolymer, polytetrafluoroethylene, polytrifluoro Various plastic films, such as ethylene, a cellulose film, and a nylon film, are mentioned, Among these, polyethylene terephthalate is particularly preferable. These may be used alone or in combination of two or more.

前記支持体の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、2〜150μmが好ましく、5〜100μmがより好ましく、8〜50μmが特に好ましい。   There is no restriction | limiting in particular as thickness of the said support body, Although it can select suitably according to the objective, For example, 2-150 micrometers is preferable, 5-100 micrometers is more preferable, and 8-50 micrometers is especially preferable.

前記支持体の形状としては、特に制限はなく、目的に応じて適宜選択することができるが、長尺状が好ましい。前記長尺状の支持体の長さとしては、特に制限はなく、例えば、10m〜20000mの長さのものが挙げられる。   There is no restriction | limiting in particular as a shape of the said support body, Although it can select suitably according to the objective, A long shape is preferable. There is no restriction | limiting in particular as the length of the said elongate support body, For example, the thing of length 10m-20000m is mentioned.

<<保護フィルム>>
前記パターン形成材料は、前記感光層上に保護フィルムを形成してもよい。
前記保護フィルムに含まれる材料としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、ポリプロピレン樹脂、ポリエチレン樹脂、エチレン−プロピレン共重合樹脂、ポリエチレンテレフタレート樹脂、及び前記支持体として使用するものなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。また、前記保護フィルムは、2層以上に積層してなる積層フィルムであってもよく、該積層フィルムとしては、例えば、ポリプロピレン樹脂フィルムとエチレン−プロピレン共重合樹脂フィルムとを積層した積層フィルムが好適に挙げられる。
<< Protective film >>
The pattern forming material may form a protective film on the photosensitive layer.
The material contained in the protective film is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polypropylene resin, polyethylene resin, ethylene-propylene copolymer resin, polyethylene terephthalate resin, and the support. And the like to be used. These may be used alone or in combination of two or more. The protective film may be a laminated film formed by laminating two or more layers. As the laminated film, for example, a laminated film in which a polypropylene resin film and an ethylene-propylene copolymer resin film are laminated is suitable. Listed.

前記保護フィルムの市販品としては、例えば、王子製紙株式会社製、アルファンE−501、MA−410、E−200;帝人株式会社製、PSシリーズ(PS−25等);タマポリ株式会社製、GF−1、GF−3、GF−8、などが挙げられる。また、市販のフィルムをサンドブラスト加工することにより、前記保護フィルムを製造することも可能である。   As a commercial item of the said protective film, for example, Oji Paper Co., Ltd. make, Alphan E-501, MA-410, E-200; Teijin Ltd. make, PS series (PS-25 etc.); GF-1, GF-3, GF-8, etc. are mentioned. In addition, the protective film can be produced by sandblasting a commercially available film.

前記保護フィルムの厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5〜100μmが好ましく、8〜50μmがより好ましく、10〜30μmが特に好ましい。   There is no restriction | limiting in particular as thickness of the said protective film, Although it can select suitably according to the objective, For example, 5-100 micrometers is preferable, 8-50 micrometers is more preferable, 10-30 micrometers is especially preferable.

前記保護フィルムは、前記保護フィルムと前記感光層との接着性を調整するために表面処理してもよい。前記表面処理は、例えば、前記保護フィルムの表面に、ポリオルガノシロキサン、弗素化ポリオレフィン、ポリフルオロエチレン、ポリビニルアルコール等のポリマーからなる下塗層を形成させる。該下塗層の形成は、前記ポリマーの塗布液を前記保護フィルムの表面に塗布した後、30〜150℃(特に50〜120℃)で1〜30分間乾燥させることにより形成させることができる。
前記保護フィルムを用いる場合、例えば、前記感光層及び該感光層と隣接し、かつ前記保護フィルム以外の層の接着力Aと、前記感光層及び保護フィルムの接着力Bとが、接着力A>接着力Bの関係であることが好ましい。
The protective film may be surface-treated in order to adjust the adhesion between the protective film and the photosensitive layer. In the surface treatment, for example, an undercoat layer made of a polymer such as polyorganosiloxane, fluorinated polyolefin, polyfluoroethylene, or polyvinyl alcohol is formed on the surface of the protective film. The undercoat layer can be formed by applying the polymer coating solution to the surface of the protective film and then drying at 30 to 150 ° C. (especially 50 to 120 ° C.) for 1 to 30 minutes.
When the protective film is used, for example, the adhesive force A of the layer adjacent to the photosensitive layer and the photosensitive layer and other than the protective film and the adhesive force B of the photosensitive layer and the protective film are the adhesive force A>. The relationship of the adhesive force B is preferable.

前記支持体と保護フィルムとの組合せ(支持体/保護フィルム)としては、例えば、ポリエチレンテレフタレート/ポリプロピレン、ポリイミド/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレンテレフタレートなどが挙げられる。また、支持体及び保護フィルムの少なくともいずれかを表面処理することにより、上述のような接着力の関係を満たすことができる。前記支持体の表面処理は、前記感光層との接着力を高めるために施されてもよく、例えば、下塗層の塗設、コロナ放電処理、火炎処理、紫外線照射処理、高周波照射処理、グロー放電照射処理、活性プラズマ照射処理、レーザ光線照射処理などを挙げることができる。   Examples of the combination of the support and the protective film (support / protective film) include polyethylene terephthalate / polypropylene, polyimide / polypropylene, polyethylene terephthalate / polyethylene terephthalate, and the like. Moreover, the relationship of the above adhesive forces can be satisfy | filled by surface-treating at least any one of a support body and a protective film. The surface treatment of the support may be performed in order to increase the adhesive force with the photosensitive layer. For example, coating of a primer layer, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency irradiation treatment, glow treatment Examples thereof include a discharge irradiation process, an active plasma irradiation process, and a laser beam irradiation process.

また、前記支持体と前記保護フィルムとの静摩擦係数としては、0.3〜1.4が好ましく、0.5〜1.2がより好ましい。
前記静摩擦係数が、0.3未満であると、滑り過ぎるため、ロール状にした場合に巻ズレが発生することがあり、1.4を超えると、良好なロール状に巻くことが困難となることがある。
Moreover, as a static friction coefficient of the said support body and the said protective film, 0.3-1.4 are preferable and 0.5-1.2 are more preferable.
When the coefficient of static friction is less than 0.3, it slips too much, so when it is made into a roll, winding deviation may occur. When it exceeds 1.4, it becomes difficult to wind into a good roll. Sometimes.

前記パターン形成材料は、例えば、円筒状の巻芯に巻き取って、長尺状でロール状に巻かれて保管されることが好ましい。前記長尺状のパターン形成材料の長さとしては、特に制限はなく、例えば、10m〜20,000mの範囲から適宜選択することができる。また、ユーザーが使いやすいようにスリット加工し、100m〜1,000mの範囲の長尺体をロール状にしてもよい。なお、この場合には、前記支持体が一番外側になるように巻き取られることが好ましい。また、前記ロール状のパターン形成材料をシート状にスリットしてもよい。保管の際、端面の保護、エッジフュージョンを防止する観点から、端面にはセパレーター(特に防湿性のもの、乾燥剤入りのもの)を設置することが好ましく、また梱包も透湿性の低い素材を用いる事が好ましい。   It is preferable that the pattern forming material is wound around a cylindrical core, wound into a long roll, and stored. There is no restriction | limiting in particular as length of the said elongate pattern formation material, For example, it can select suitably from the range of 10m-20,000m. Further, slitting may be performed so that the user can easily use, and a long body in the range of 100 m to 1,000 m may be formed into a roll. In this case, it is preferable that the support is wound up so as to be the outermost side. The roll-shaped pattern forming material may be slit into a sheet shape. From the viewpoint of protecting the end face and preventing edge fusion during storage, it is preferable to install a separator (especially moisture-proof and desiccant-containing) on the end face, and use a low moisture-permeable material for packaging. Things are preferable.

[パターン形成材料の製造方法]
前記パターン形成材料は、例えば、次のようにして製造することができる。
まず、前記感光層に含まれる材料を、水又は溶剤に溶解、乳化又は分散させて、感光性樹脂組成物溶液を調製する。
[Method for producing pattern forming material]
The pattern forming material can be manufactured, for example, as follows.
First, the material contained in the photosensitive layer is dissolved, emulsified or dispersed in water or a solvent to prepare a photosensitive resin composition solution.

前記感光性樹脂組成物溶液としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、n−ヘキサノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトンなどのケトン類;酢酸エチル、酢酸ブチル、酢酸−n−アミル、硫酸メチル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、及びメトキシプロピルアセテートなどのエステル類;トルエン、キシレン、ベンゼン、エチルベンゼンなどの芳香族炭化水素類;四塩化炭素、トリクロロエチレン、クロロホルム、1,1,1−トリクロロエタン、塩化メチレン、モノクロロベンゼンなどのハロゲン化炭化水素類;テトラヒドロフラン、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、1−メトキシ−2−プロパノールなどのエーテル類;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキサイド、スルホランなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。また、公知の界面活性剤を添加してもよい。   There is no restriction | limiting in particular as said photosensitive resin composition solution, According to the objective, it can select suitably, For example, methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, n-hexanol etc. Alcohols; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisobutyl ketone and other ketones; ethyl acetate, butyl acetate, n-amyl acetate, methyl sulfate, ethyl propionate, dimethyl phthalate, ethyl benzoate, and methoxy Esters such as propyl acetate; aromatic hydrocarbons such as toluene, xylene, benzene, ethylbenzene; carbon tetrachloride, trichloroethylene, chloroform, 1,1,1-trichloroethane, methylene chloride, monochlorobenzene, etc. Halogenated hydrocarbons; tetrahydrofuran, diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethers such as 1-methoxy-2-propanol; dimethylformamide, dimethylacetamide, dimethyl sulfoxide, sulfolane and the like. These may be used alone or in combination of two or more. Moreover, you may add a well-known surfactant.

次に、前記支持体上に前記感光性樹脂組成物溶液を塗布し、乾燥させて感光層を形成し、パターン形成材料を製造することができる。   Next, the photosensitive resin composition solution is applied on the support and dried to form a photosensitive layer, whereby a pattern forming material can be produced.

前記感光性樹脂組成物溶液の塗布方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スプレー法、ロールコート法、回転塗布法、スリットコート法、エクストルージョンコート法、カーテンコート法、ダイコート法、グラビアコート法、ワイヤーバーコート法、ナイフコート法等の各種の塗布方法が挙げられる。
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、通常60〜110℃の温度で30秒間〜15分間程度である。
The method for applying the photosensitive resin composition solution is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a spray method, a roll coating method, a spin coating method, a slit coating method, and an extrusion coating method. And various coating methods such as a curtain coating method, a die coating method, a gravure coating method, a wire bar coating method, and a knife coating method.
The drying conditions vary depending on each component, the type of solvent, the use ratio, and the like, but are usually about 60 to 110 ° C. for about 30 seconds to 15 minutes.

[露光工程]
前記露光としては、特に制限はなく、目的に応じて適宜選択することができ、デジタル露光、アナログ露光等が挙げられるが、これらの中でもデジタル露光が好ましい。
[Exposure process]
There is no restriction | limiting in particular as said exposure, According to the objective, it can select suitably, Digital exposure, analog exposure, etc. are mentioned, Among these, digital exposure is preferable.

前記デジタル露光としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、形成するパターン形成情報に基づいて制御信号を生成し、該制御信号に応じて変調させた光を用いて行うことが好ましい。   The digital exposure is not particularly limited and can be appropriately selected depending on the purpose.For example, a control signal is generated based on pattern formation information to be formed, and light modulated in accordance with the control signal is generated. It is preferable to use.

前記デジタル露光の手段としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、光を照射する光照射手段、形成するパターン情報に基づいて該光照射手段から照射される光を変調させる光変調手段などが挙げられる。   The digital exposure means is not particularly limited and may be appropriately selected depending on the purpose. For example, the light irradiation means for irradiating light, and the light irradiation means for irradiating based on the pattern information to be formed. Examples thereof include light modulation means for modulating light.

<光変調手段>
前記光変調手段としては、光を変調することができる限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、n個の描素部を有することが好ましい。
前記n個の描素部を有する光変調手段としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、空間光変調素子が好ましい。
<Light modulation means>
The light modulation means is not particularly limited as long as it can modulate light, and can be appropriately selected according to the purpose. For example, it preferably has n pixel portions.
The light modulation means having the n picture elements is not particularly limited and can be appropriately selected according to the purpose. For example, a spatial light modulation element is preferable.

前記空間光変調素子としては、例えば、デジタル・マイクロミラー・デバイス(DMD)、MEMS(Micro Electro Mechanical Systems)タイプの空間光変調素子(SLM;Special Light Modulator)、電気光学効果により透過光を変調する光学素子(PLZT素子)、液晶光シャッタ(FLC)などが挙げられ、これらの中でもDMDが好適に挙げられる。   Examples of the spatial light modulator include a digital micromirror device (DMD), a MEMS (Micro Electro Mechanical Systems) type spatial light modulator (SLM), and modulates transmitted light by an electro-optic effect. An optical element (PLZT element), a liquid crystal optical shutter (FLC), etc. are mentioned, Among these, DMD is mentioned suitably.

また、前記光変調手段は、形成するパターン情報に基づいて制御信号を生成するパターン信号生成手段を有することが好ましい。この場合、前記光変調手段は、前記パターン信号生成手段が生成した制御信号に応じて光を変調させる。
前記制御信号としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、デジタル信号が好適に挙げられる。
Moreover, it is preferable that the said light modulation means has a pattern signal generation means which produces | generates a control signal based on the pattern information to form. In this case, the light modulation unit modulates light according to the control signal generated by the pattern signal generation unit.
There is no restriction | limiting in particular as said control signal, According to the objective, it can select suitably, For example, a digital signal is mentioned suitably.

以下、前記光変調手段の一例について図面を参照しながら説明する。
DMD50は図1に示すように、SRAMセル(メモリセル)60上に、各々描素(ピクセル)を構成する多数(例えば、1024個×768個)の微小ミラー(マイクロミラー)62が格子状に配列されてなるミラーデバイスである。各ピクセルにおいて、最上部には支柱に支えられたマイクロミラー62が設けられており、マイクロミラー62の表面にはアルミニウム等の反射率の高い材料が蒸着されている。なお、マイクロミラー62の反射率は90%以上であり、その配列ピッチは縦方向、横方向とも一例として13.7μmである。また、マイクロミラー62の直下には、ヒンジおよびヨークを含む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートのCMOSのSRAMセル60が配置されており、全体はモノリシックに構成されている。
Hereinafter, an example of the light modulation means will be described with reference to the drawings.
As shown in FIG. 1, in the DMD 50, a large number (eg, 1024 × 768) of micromirrors (micromirrors) 62, each constituting a pixel (pixel), are arranged in a lattice pattern on an SRAM cell (memory cell) 60. It is a mirror device arranged. In each pixel, a micromirror 62 supported by a support column is provided at the top, and a material having high reflectance such as aluminum is deposited on the surface of the micromirror 62. The reflectance of the micromirror 62 is 90% or more, and the arrangement pitch is 13.7 μm as an example in both the vertical and horizontal directions. A silicon gate CMOS SRAM cell 60 manufactured in a normal semiconductor memory manufacturing line is disposed directly below the micromirror 62 via a support including a hinge and a yoke, and the entire structure is monolithic. ing.

DMD50のSRAMセル60にデジタル信号が書き込まれると、支柱に支えられたマイクロミラー62が、対角線を中心としてDMD50が配置された基板側に対して±α度(例えば±12度)の範囲で傾けられる。図2(A)は、マイクロミラー62がオン状態である+α度に傾いた状態を示し、図2(B)は、マイクロミラー62がオフ状態である−α度に傾いた状態を示す。したがって、パターン情報に応じて、DMD50の各ピクセルにおけるマイクロミラー62の傾きを、図1に示すように制御することによって、DMD50に入射したレーザ光Bはそれぞれのマイクロミラー62の傾き方向へ反射される。   When a digital signal is written in the SRAM cell 60 of the DMD 50, the micromirror 62 supported by the support is tilted in a range of ± α degrees (for example, ± 12 degrees) with respect to the substrate side on which the DMD 50 is disposed with the diagonal line as the center. It is done. 2A shows a state where the micromirror 62 is tilted to + α degrees when the micromirror 62 is in the on state, and FIG. 2B shows a state where the micromirror 62 is tilted to −α degrees when the micromirror 62 is in the off state. Therefore, by controlling the inclination of the micromirror 62 in each pixel of the DMD 50 according to the pattern information as shown in FIG. The

なお、図1には、DMD50の一部を拡大し、マイクロミラー62が+α度又は−α度に制御されている状態の一例を示す。それぞれのマイクロミラー62のオンオフ制御は、DMD50に接続されたコントローラ302(図12参照)によって行われる。また、オフ状態のマイクロミラー62で反射したレーザ光Bが進行する方向には、光吸収体(図示せず)が配置されている。   FIG. 1 shows an example of a state in which a part of the DMD 50 is enlarged and the micromirror 62 is controlled to + α degrees or −α degrees. The on / off control of each micromirror 62 is performed by a controller 302 (see FIG. 12) connected to the DMD 50. Further, a light absorber (not shown) is arranged in the direction in which the laser beam B reflected by the off-state micromirror 62 travels.

また、DMD50は、その短辺が副走査方向と所定角度θ(例えば、0.1°〜5°)を成すように僅かに傾斜させて配置するのが好ましい。図3(A)はDMD50を傾斜させない場合の各マイクロミラーによる反射光像(露光ビーム)53の走査軌跡を示し、図3(B)はDMD50を傾斜させた場合の露光ビーム53の走査軌跡を示している。   Further, it is preferable that the DMD 50 is arranged with a slight inclination so that the short side forms a predetermined angle θ (for example, 0.1 ° to 5 °) with the sub-scanning direction. 3A shows the scanning trajectory of the reflected light image (exposure beam) 53 by each micromirror when the DMD 50 is not tilted, and FIG. 3B shows the scanning trajectory of the exposure beam 53 when the DMD 50 is tilted. Show.

DMD50には、長手方向にマイクロミラーが多数個(例えば、1024個)配列されたマイクロミラー列が、短手方向に多数組(例えば、756組)配列されているが、図3(B)に示すように、DMD50を傾斜させることにより、各マイクロミラーによる露光ビーム53の走査軌跡(走査線)のピッチPが、DMD50を傾斜させない場合の走査線のピッチPより狭くなり、解像度を大幅に向上させることができる。一方、DMD50の傾斜角は微小であるので、DMD50を傾斜させた場合の走査幅Wと、DMD50を傾斜させない場合の走査幅Wとは略同一である。 In the DMD 50, a number of micromirror arrays in which a number of micromirrors are arranged in the longitudinal direction (for example, 1024) are arranged in a short direction (for example, 756 pairs). as shown, by tilting the DMD 50, the pitch P 2 of the scanning locus of the exposure beams 53 from each micromirror (scan line), it becomes narrower than the pitch P 1 of the scanning line in the case of not tilting the DMD 50, significant resolution Can be improved. On the other hand, the inclination angle of the DMD 50 is small, the scanning width W 2 in the case of tilting the DMD 50, which is substantially equal to the scanning width W 1 when not inclined DMD 50.

次に、前記光変調手段における変調速度を速くさせる方法(以下「高速変調」と称する)について説明する。
前記光変調手段は、前記n個の描素の中から連続的に配置された任意のn個未満の前記描素部をパターン情報に応じて制御可能であることが好ましい。前記光変調手段のデータ処理速度には限界があり、使用する描素数に比例して1ライン当りの変調速度が決定されるので、連続的に配列された任意のn個未満の描素部だけを使用することで1ライン当りの変調速度が速くなる。
Next, a method for increasing the modulation speed in the optical modulation means (hereinafter referred to as “high-speed modulation”) will be described.
It is preferable that the light modulation unit is capable of controlling any less than n pixel elements arranged continuously from the n pixel elements according to pattern information. There is a limit to the data processing speed of the light modulation means, and the modulation speed per line is determined in proportion to the number of pixels to be used. By using, the modulation speed per line is increased.

以下、前記高速変調について図面を参照しながら更に説明する。
ファイバアレイ光源66からDMD50にレーザ光Bが照射されると、DMD50のマイクロミラーがオン状態のときに反射されたレーザ光は、レンズ系54、58によりパターン形成材料150上に結像される。このようにして、ファイバアレイ光源66から出射されたレーザ光が描素毎にオンオフされて、パターン形成材料150がDMD50の使用描素数と略同数の描素単位(露光エリア168)で露光される。また、パターン形成材料150がステージ152と共に一定速度で移動されることにより、パターン形成材料150がスキャナ162によりステージ移動方向と反対の方向に副走査され、露光ヘッド166毎に帯状の露光済み領域170が形成される。
Hereinafter, the high-speed modulation will be further described with reference to the drawings.
When the laser light B is irradiated from the fiber array light source 66 to the DMD 50, the laser light reflected when the micromirror of the DMD 50 is in an on state is imaged on the pattern forming material 150 by the lens systems 54 and 58. In this manner, the laser light emitted from the fiber array light source 66 is turned on / off for each pixel, and the pattern forming material 150 is exposed in the number of pixel units (exposure area 168) substantially equal to the number of used pixel elements of the DMD 50. . Further, when the pattern forming material 150 is moved at a constant speed together with the stage 152, the pattern forming material 150 is sub-scanned in the direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposed region 170 is provided for each exposure head 166. Is formed.

なお本例では、図4(A)及び(B)に示すように、DMD50には、主走査方向にマイクロミラーが1024個配列されたマイクロミラー列が副走査方向に768組配列されているが、本例では、前記コントローラ302(図12参照)により一部のマイクロミラー列(例えば、1024個×256列)だけが駆動するように制御がなされる。   In this example, as shown in FIGS. 4A and 4B, in the DMD 50, 768 sets of micromirror arrays in which 1024 micromirrors are arranged in the main scanning direction are arranged in the subscanning direction. In this example, the controller 302 (see FIG. 12) controls so that only a part of the micromirror rows (eg, 1024 × 256 rows) are driven.

この場合、図4(A)に示すようにDMD50の中央部に配置されたマイクロミラー列を使用してもよく、図4(B)に示すように、DMD50の端部に配置されたマイクロミラー列を使用してもよい。また、一部のマイクロミラーに欠陥が発生した場合は、欠陥が発生していないマイクロミラー列を使用するなど、状況に応じて使用するマイクロミラー列を適宜変更してもよい。   In this case, a micromirror array arranged at the center of the DMD 50 as shown in FIG. 4 (A) may be used, and a micromirror arranged at the end of the DMD 50 as shown in FIG. 4 (B). A column may be used. In addition, when a defect occurs in some of the micromirrors, the micromirror array to be used may be appropriately changed depending on the situation, such as using a micromirror array in which no defect has occurred.

DMD50のデータ処理速度には限界があり、使用する描素数に比例して1ライン当りの変調速度が決定されるので、一部のマイクロミラー列だけを使用することで1ライン当りの変調速度が速くなる。一方、連続的に露光ヘッドを露光面に対して相対移動させる露光方式の場合には、副走査方向の描素を全部使用する必要はない。   Since the data processing speed of the DMD 50 is limited and the modulation speed per line is determined in proportion to the number of pixels used, the modulation speed per line can be increased by using only a part of the micromirror array. Get faster. On the other hand, in the case of an exposure method in which the exposure head is continuously moved relative to the exposure surface, it is not necessary to use all the pixels in the sub-scanning direction.

スキャナ162によるパターン形成材料150の副走査が終了し、センサ164でパターン形成材料150の後端が検出されると、ステージ152は、ステージ駆動装置304により、ガイド158に沿ってゲート160の最上流側にある原点に復帰し、再度、ガイド158に沿ってゲート160の上流側から下流側に一定速度で移動される。   When the sub-scan of the pattern forming material 150 by the scanner 162 is finished and the rear end of the pattern forming material 150 is detected by the sensor 164, the stage 152 is moved upstream of the gate 160 along the guide 158 by the stage driving device 304. It returns to the origin on the side and is moved again along the guide 158 from the upstream side to the downstream side of the gate 160 at a constant speed.

例えば、768組のマイクロミラー列の内、384組だけ使用する場合には、768組全部使用する場合と比較すると1ライン当り2倍速く変調することができる。また、768組のマイクロミラー列の内、256組だけ使用する場合には、768組全部使用する場合と比較すると1ライン当り3倍速く変調することができる。   For example, when only 384 sets of 768 sets of micromirror arrays are used, modulation can be performed twice as fast per line as compared with the case of using all 768 sets. Also, when only 256 pairs are used in the 768 sets of micromirror arrays, modulation can be performed three times faster per line than when all 768 sets are used.

以上説明した通り、本発明のパターン形成方法によれば、主走査方向にマイクロミラーが1,024個配列されたマイクロミラー列が、副走査方向に768組配列されたDMDを備えているが、コントローラにより一部のマイクロミラー列だけが駆動されるように制御することにより、全部のマイクロミラー列を駆動する場合に比べて、1ライン当りの変調速度が速くなる。   As described above, according to the pattern forming method of the present invention, the micromirror array in which 1,024 micromirrors are arranged in the main scanning direction includes the DMD in which 768 sets are arranged in the subscanning direction. By controlling so that only a part of the micromirror rows are driven by the controller, the modulation rate per line becomes faster than when all the micromirror rows are driven.

また、DMDのマイクロミラーを部分的に駆動する例について説明したが、所定方向に対応する方向の長さが前記所定方向と交差する方向の長さより長い基板上に、各々制御信号に応じて反射面の角度が変更可能な多数のマイクロミラーが2次元状に配列された細長いDMDを用いても、反射面の角度を制御するマイクロミラーの個数が少なくなるので、同様に変調速度を速くすることができる。   In addition, an example in which the DMD micromirror is partially driven has been described, but the length of the direction corresponding to the predetermined direction is reflected on the substrate longer than the length of the direction intersecting the predetermined direction according to the control signal. Even if a long and narrow DMD in which a large number of micromirrors capable of changing the surface angle are arranged in a two-dimensional manner is used, the number of micromirrors for controlling the angle of the reflecting surface is reduced. Can do.

また、前記露光の方法として、露光光と前記感光層とを相対的に移動しながら行うことが好ましく、この場合、前記高速変調と併用することが好ましい。これにより、短時間で高速の露光を行うことができる。   The exposure method is preferably performed while relatively moving the exposure light and the photosensitive layer, and in this case, it is preferable to use the high-speed modulation together. Thereby, high-speed exposure can be performed in a short time.

その他、図5に示すように、スキャナ162によるX方向への1回の走査でパターン形成材料150の全面を露光してもよく、図6(A)及び(B)に示すように、スキャナ162によりパターン形成材料150をX方向へ走査した後、スキャナ162をY方向に1ステップ移動し、X方向へ走査を行うというように、走査と移動を繰り返して、複数回の走査でパターン形成材料150の全面を露光するようにしてもよい。なお、この例では、スキャナ162は18個の露光ヘッド166を備えている。なお、露光ヘッドは、前記光照射手段と前記光変調手段とを少なくとも有する。   In addition, as shown in FIG. 5, the entire surface of the pattern forming material 150 may be exposed by a single scan in the X direction by the scanner 162, and as shown in FIGS. 6A and 6B, the scanner 162. After scanning the pattern forming material 150 in the X direction, the scanner 162 is moved one step in the Y direction, and scanning is performed in the X direction. Thus, the pattern forming material 150 is scanned a plurality of times. Alternatively, the entire surface may be exposed. In this example, the scanner 162 includes 18 exposure heads 166. Note that the exposure head includes at least the light irradiation unit and the light modulation unit.

前記露光は、前記感光層の一部の領域に対してされることにより該一部の領域が硬化され、後述の現像工程において、前記硬化させた一部の領域以外の未硬化領域が除去され、パターンが形成される。   The exposure is performed on a partial area of the photosensitive layer to cure the partial area, and uncured areas other than the cured partial area are removed in a development step described later. A pattern is formed.

次に、前記光変調手段を含むパターン形成装置の一例について図面を参照しながら説明する。
前記光変調手段を含むパターン形成装置は、図7に示すように、シート状のパターン形成材料150を表面に吸着して保持する平板状のステージ152を備えている。
4本の脚部154に支持された厚い板状の設置台156の上面には、ステージ移動方向に沿って延びた2本のガイド158が設置されている。ステージ152は、その長手方向がステージ移動方向を向くように配置されると共に、ガイド158によって往復移動可能に支持されている。なお、前記パターン形成装置には、ステージ152をガイド158に沿って駆動するための図示しない駆動装置を有している。
Next, an example of a pattern forming apparatus including the light modulation means will be described with reference to the drawings.
As shown in FIG. 7, the pattern forming apparatus including the light modulation means includes a flat plate stage 152 that holds a sheet-like pattern forming material 150 by adsorbing to the surface.
Two guides 158 extending along the stage moving direction are installed on the upper surface of the thick plate-shaped installation table 156 supported by the four legs 154. The stage 152 is arranged so that the longitudinal direction thereof faces the stage moving direction, and is supported by a guide 158 so as to be reciprocally movable. The pattern forming apparatus has a drive device (not shown) for driving the stage 152 along the guide 158.

設置台156の中央部には、ステージ152の移動経路を跨ぐようにコ字状のゲート160が設けられている。コ字状のゲート160の端部の各々は、設置台156の両側面に固定されている。このゲート160を挟んで一方の側にはスキャナ162が設けられ、他方の側にはパターン形成材料150の先端及び後端を検知する複数(例えば、2個)の検知センサ164が設けられている。スキャナ162及び検知センサ164は、ゲート160に各々取り付けられて、ステージ152の移動経路の上方に固定配置されている。なお、スキャナ162及び検知センサ164は、これらを制御する図示しないコントローラに接続されている。   A U-shaped gate 160 is provided at the center of the installation table 156 so as to straddle the movement path of the stage 152. Each of the ends of the U-shaped gate 160 is fixed to both side surfaces of the installation table 156. A scanner 162 is provided on one side of the gate 160, and a plurality of (for example, two) detection sensors 164 for detecting the front and rear ends of the pattern forming material 150 are provided on the other side. . The scanner 162 and the detection sensor 164 are respectively attached to the gate 160 and fixedly arranged above the moving path of the stage 152. The scanner 162 and the detection sensor 164 are connected to a controller (not shown) that controls them.

スキャナ162は、図8及び図9(B)に示すように、m行n列(例えば、3行5列)の略マトリックス状に配列された複数(例えば、14個)の露光ヘッド166を備えている。この例では、パターン形成材料150の幅との関係で、3行目には4個の露光ヘッド166を配置した。なお、m行目のn列目に配列された個々の露光ヘッドを示す場合は、露光ヘッド166mnと表記する。 As shown in FIGS. 8 and 9B, the scanner 162 includes a plurality of (for example, 14) exposure heads 166 arranged in a substantially matrix of m rows and n columns (for example, 3 rows and 5 columns). ing. In this example, four exposure heads 166 are arranged in the third row in relation to the width of the pattern forming material 150. In addition, when showing each exposure head arranged in the m-th row and the n-th column, it is expressed as an exposure head 166 mn .

露光ヘッド166による露光エリア168は、副走査方向を短辺とする矩形状である。従って、ステージ152の移動に伴い、パターン形成材料150には露光ヘッド166毎に帯状の露光済み領域170が形成される。なお、m行目のn列目に配列された個々の露光ヘッドによる露光エリアを示す場合は、露光エリア168mnと表記する。 An exposure area 168 by the exposure head 166 has a rectangular shape with a short side in the sub-scanning direction. Accordingly, as the stage 152 moves, a strip-shaped exposed region 170 is formed in the pattern forming material 150 for each exposure head 166. In addition, when showing the exposure area by each exposure head arranged in the m-th row and the n-th column, it is expressed as an exposure area 168 mn .

また、図9(A)及び(B)に示すように、帯状の露光済み領域170が副走査方向と直交する方向に隙間無く並ぶように、ライン状に配列された各行の露光ヘッドの各々は、配列方向に所定間隔(露光エリアの長辺の自然数倍、本例では2倍)ずらして配置されている。このため、1行目の露光エリア16811と露光エリア16812との間の露光できない部分は、2行目の露光エリア16821と3行目の露光エリア16831とにより露光することができる。 Further, as shown in FIGS. 9A and 9B, each of the exposure heads in each row arranged in a line so that the strip-shaped exposed regions 170 are arranged in the direction orthogonal to the sub-scanning direction without gaps. These are arranged with a predetermined interval (natural number times the long side of the exposure area, twice in this example) in the arrangement direction. Therefore, can not be exposed portion between the exposure area 168 11 in the first row and the exposure area 168 12, it can be exposed by the second row of the exposure area 168 21 and the exposure area 168 31 in the third row.

露光ヘッド16611〜166mn各々は、図10及び図11に示すように、入射された光ビームをパターン情報に応じて前記光変調手段(各描素毎に変調する空間光変調素子)として、米国テキサス・インスツルメンツ社製のデジタル・マイクロミラー・デバイス(DMD)50を備えている。DMD50は、データ処理部とミラー駆動制御部とを備えた前記コントローラ302(図12参照)に接続されている。このコントローラ302のデータ処理部では、入力されたパターン情報に基づいて、露光ヘッド166毎にDMD50の制御すべき領域内の各マイクロミラーを駆動制御する制御信号を生成する。なお、制御すべき領域については後述する。また、ミラー駆動制御部では、パターン情報処理部で生成した制御信号に基づいて、露光ヘッド166毎にDMD50の各マイクロミラーの反射面の角度を制御する。なお、反射面の角度の制御に付いては後述する。 As shown in FIGS. 10 and 11, each of the exposure heads 166 11 to 166 mn serves as the light modulation means (spatial light modulation element that modulates each pixel) according to the pattern information. A digital micromirror device (DMD) 50 manufactured by Texas Instruments, USA is provided. The DMD 50 is connected to the controller 302 (see FIG. 12) including a data processing unit and a mirror drive control unit. The data processing unit of the controller 302 generates a control signal for driving and controlling each micromirror in the area to be controlled by the DMD 50 for each exposure head 166 based on the input pattern information. The area to be controlled will be described later. The mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 50 for each exposure head 166 based on the control signal generated by the pattern information processing unit. The control of the angle of the reflecting surface will be described later.

DMD50の光入射側には、光ファイバの出射端部(発光点)が露光エリア168の長辺方向と対応する方向に沿って一列に配列されたレーザ出射部を備えたファイバアレイ光源66、ファイバアレイ光源66から出射されたレーザ光を補正してDMD上に集光させるレンズ系67、レンズ系67を透過したレーザ光をDMD50に向けて反射するミラー69がこの順に配置されている。なお、図10では、レンズ系67を概略的に示してある。   On the light incident side of the DMD 50, a fiber array light source 66 including a laser emitting section in which emission ends (light emitting points) of an optical fiber are arranged in a line along a direction corresponding to the long side direction of the exposure area 168, a fiber A lens system 67 for correcting the laser light emitted from the array light source 66 and condensing it on the DMD, and a mirror 69 for reflecting the laser light transmitted through the lens system 67 toward the DMD 50 are arranged in this order. In FIG. 10, the lens system 67 is schematically shown.

レンズ系67は、図11に詳しく示すように、ファイバアレイ光源66から出射した照明光としてのレーザ光Bを集光する集光レンズ71、集光レンズ71を通過した光の光路に挿入されたロッド状オプティカルインテグレータ(以下、ロッドインテグレータという)72、及びロッドインテグレータ72の前方つまりミラー69側に配置された結像レンズ74から構成されている。集光レンズ71、ロッドインテグレータ72及び結像レンズ74は、ファイバアレイ光源66から出射したレーザ光を、平行光に近くかつビーム断面内強度が均一化された光束としてDMD50に入射させる。このロッドインテグレータ72の形状や作用については、後に詳しく説明する。   As shown in detail in FIG. 11, the lens system 67 is inserted into the optical path of the light passing through the condenser lens 71 and the condenser lens 71 that collects the laser light B as the illumination light emitted from the fiber array light source 66. A rod-shaped optical integrator (hereinafter referred to as a rod integrator) 72 and an imaging lens 74 disposed in front of the rod integrator 72, that is, on the mirror 69 side. The condensing lens 71, the rod integrator 72, and the imaging lens 74 cause the laser light emitted from the fiber array light source 66 to enter the DMD 50 as a light beam that is close to parallel light and has a uniform beam cross-sectional intensity. The shape and action of the rod integrator 72 will be described in detail later.

レンズ系67から出射したレーザ光Bはミラー69で反射し、TIR(全反射)プリズム70を介してDMD50に照射される。なお、図10では、このTIRプリズム70は省略してある。   The laser beam B emitted from the lens system 67 is reflected by the mirror 69 and irradiated to the DMD 50 via the TIR (total reflection) prism 70. In FIG. 10, the TIR prism 70 is omitted.

また、DMD50の光反射側には、DMD50で反射されたレーザ光Bを、パターン形成材料150上に結像する結像光学系51が配置されている。この結像光学系51は、図10では概略的に示してあるが、図11に詳細を示すように、レンズ系52,54からなる第1結像光学系と、レンズ系57,58からなる第2結像光学系と、これらの結像光学系の間に挿入されたマイクロレンズアレイ55と、アパーチャアレイ59とから構成されている。   An imaging optical system 51 that images the laser beam B reflected by the DMD 50 on the pattern forming material 150 is disposed on the light reflection side of the DMD 50. The imaging optical system 51 is schematically shown in FIG. 10, but as shown in detail in FIG. 11, the imaging optical system 51 includes a first imaging optical system including lens systems 52 and 54 and lens systems 57 and 58. A second imaging optical system, a microlens array 55 inserted between these imaging optical systems, and an aperture array 59 are included.

マイクロレンズアレイ55は、DMD50の各描素に対応する多数のマイクロレンズ55aが2次元状に配列されてなるものである。本例では、後述するようにDMD50の1024個×768列のマイクロミラーのうち1024個×256列だけが駆動されるので、それに対応させてマイクロレンズ55aは1024個×256列配置されている。またマイクロレンズ55aの配置ピッチは縦方向、横方向とも41μmである。このマイクロレンズ55aは、一例として焦点距離が0.19mm、NA(開口数)が0.11で、光学ガラスBK7から形成されている。なおマイクロレンズ55aの形状については、後に詳しく説明する。
そして、各マイクロレンズ55aの位置におけるレーザ光Bのビーム径は、41μmである。
The microlens array 55 is formed by two-dimensionally arranging a large number of microlenses 55a corresponding to the pixels of the DMD 50. In this example, as will be described later, only 1024 × 256 rows of the 1024 × 768 rows of micromirrors of the DMD 50 are driven, and accordingly, 1024 × 256 rows of microlenses 55a are arranged. The arrangement pitch of the micro lenses 55a is 41 μm in both the vertical and horizontal directions. As an example, the microlens 55a has a focal length of 0.19 mm, an NA (numerical aperture) of 0.11, and is formed from the optical glass BK7. The shape of the micro lens 55a will be described in detail later.
The beam diameter of the laser beam B at the position of each microlens 55a is 41 μm.

また、アパーチャアレイ59は、マイクロレンズアレイ55の各マイクロレンズ55aに対応する多数のアパーチャ(開口)59aが形成されてなるものである。アパーチャ59aの径は、例えば、10μmである。   The aperture array 59 is formed by forming a large number of apertures (openings) 59 a corresponding to the respective micro lenses 55 a of the micro lens array 55. The diameter of the aperture 59a is, for example, 10 μm.

前記第1結像光学系は、DMD50による像を3倍に拡大してマイクロレンズアレイ55上に結像する。そして、前記第2結像光学系は、マイクロレンズアレイ55を経た像を1.6倍に拡大してパターン形成材料150上に結像、投影する。したがって全体では、DMD50による像が4.8倍に拡大してパターン形成材料150上に結像、投影されることになる。   The first imaging optical system enlarges the image by the DMD 50 three times and forms an image on the microlens array 55. The second imaging optical system enlarges the image passing through the microlens array 55 by 1.6 times and forms and projects it on the pattern forming material 150. Therefore, as a whole, the image formed by the DMD 50 is enlarged and enlarged by 4.8 times, and is imaged and projected on the pattern forming material 150.

なお、前記第2結像光学系とパターン形成材料150との間にプリズムペア73が配設され、このプリズムペア73を図11中で上下方向に移動させることにより、パターン形成材料150上における像のピントを調節可能となっている。なお同図中において、パターン形成材料150は矢印F方向に副走査送りされる。   A prism pair 73 is disposed between the second imaging optical system and the pattern forming material 150. By moving the prism pair 73 in the vertical direction in FIG. 11, an image on the pattern forming material 150 is obtained. The focus can be adjusted. In the figure, the pattern forming material 150 is sub-scanned in the direction of arrow F.

前記描素部としては、前記光照射手段からの光を受光し出射することができる限り、特に制限はなく、目的に応じて適宜選択することができるが、例えば、本発明のパターン形成方法により形成されるパターンが画像パターンである場合には、画素であり、前記光変調手段がDMDを含む場合にはマイクロミラーである。
前記光変調素子が有する描素部の数(前記n)としては、特に制限はなく、目的に応じて適宜選択することができる。
前記光変調素子における描素部の配列としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、2次元状に配列していることが好ましく、格子状に配列していることがより好ましい。
The pixel portion is not particularly limited as long as it can receive and emit light from the light irradiation means, and can be appropriately selected according to the purpose. For example, the pattern forming method of the present invention When the pattern to be formed is an image pattern, it is a pixel, and when the light modulation means includes a DMD, it is a micromirror.
There is no restriction | limiting in particular as the number (the said n) of picture element parts which the said light modulation element has, It can select suitably according to the objective.
The arrangement of the picture element portions in the light modulation element is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably arranged in a two-dimensional form, and arranged in a lattice form. More preferably.

<光照射手段>
前記光照射手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(超)高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機用などの蛍光管、LED、半導体レーザ等の公知光源、又は2以上の光を合成して照射可能な手段が挙げられ、これらの中でも2以上の光を合成して照射可能な手段が好ましい。
前記光照射手段から照射される光としては、例えば、支持体を介して光照射を行う場合には、該支持体を透過し、かつ用いられる光重合開始剤や増感剤を活性化する電磁波、紫外から可視光線、電子線、X線、レーザ光などが挙げられ、これらの中でもレーザ光が好ましく、2以上の光を合成したレーザ(以下、「合波レーザ」と称することがある)がより好ましい。また支持体を剥離してから光照射を行う場合でも、同様の光を用いることができる。
<Light irradiation means>
The light irradiation means is not particularly limited and may be appropriately selected depending on the purpose. For example, (ultra) high pressure mercury lamp, xenon lamp, carbon arc lamp, halogen lamp, copier, fluorescent tube, LED, etc. , A known light source such as a semiconductor laser, or means capable of synthesizing and irradiating two or more lights. Among these, means capable of synthesizing and irradiating two or more lights are preferable.
The light emitted from the light irradiation means is, for example, an electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support. In particular, ultraviolet to visible light, electron beam, X-ray, laser beam, and the like can be mentioned. Of these, laser beam is preferable, and a laser combining two or more lights (hereinafter, referred to as “combined laser”). More preferred. Even when light irradiation is performed after the support is peeled off, the same light can be used.

前記紫外から可視光線の波長としては、例えば、300〜1500nmが好ましく、320〜800nmがより好ましく、330nm〜650nmが特に好ましい。
前記レーザ光の波長としては、例えば、200〜1500nmが好ましく、300〜800nmがより好ましく、330nm〜500nmが更に好ましく、400nm〜450nmが特に好ましい。
As a wavelength of the ultraviolet to visible light, for example, 300 to 1500 nm is preferable, 320 to 800 nm is more preferable, and 330 nm to 650 nm is particularly preferable.
As a wavelength of the said laser beam, 200-1500 nm is preferable, for example, 300-800 nm is more preferable, 330 nm-500 nm is still more preferable, 400 nm-450 nm is especially preferable.

前記合波レーザを照射可能な手段としては、例えば、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射したレーザ光を集光して前記マルチモード光ファイバに結合させる集合光学系とを有する手段が好ましい。   Examples of means capable of irradiating the combined laser include, for example, a plurality of lasers, a multimode optical fiber, and collective optics for condensing and coupling the laser beams respectively emitted from the plurality of lasers to the multimode optical fiber. Means having a system are preferred.

以下、前記合波レーザを照射可能な手段(ファイバアレイ光源)について図を参照しながら説明する。   Hereinafter, means (fiber array light source) capable of irradiating the combined laser will be described with reference to the drawings.

ファイバアレイ光源66は図27aに示すように、複数(例えば、14個)のレーザモジュール64を備えており、各レーザモジュール64には、マルチモード光ファイバ30の一端が結合されている。マルチモード光ファイバ30の他端には、コア径がマルチモード光ファイバ30と同一で且つクラッド径がマルチモード光ファイバ30より小さい光ファイバ31が結合されている。図27bに詳しく示すように、マルチモード光ファイバ31の光ファイバ30と反対側の端部は副走査方向と直交する主走査方向に沿って7個並べられ、それが2列に配列されてレーザ出射部68が構成されている。   As shown in FIG. 27 a, the fiber array light source 66 includes a plurality of (for example, 14) laser modules 64, and one end of the multimode optical fiber 30 is coupled to each laser module 64. An optical fiber 31 having the same core diameter as that of the multimode optical fiber 30 and a smaller cladding diameter than the multimode optical fiber 30 is coupled to the other end of the multimode optical fiber 30. As shown in detail in FIG. 27b, seven end portions of the multimode optical fiber 31 opposite to the optical fiber 30 are arranged along the main scanning direction orthogonal to the sub-scanning direction, and they are arranged in two rows to form a laser. An emission unit 68 is configured.

マルチモード光ファイバ31の端部で構成されるレーザ出射部68は、図27bに示すように、表面が平坦な2枚の支持板65に挟み込まれて固定されている。また、マルチモード光ファイバ31の光出射端面には、その保護のために、ガラス等の透明な保護板が配置されるのが望ましい。マルチモード光ファイバ31の光出射端面は、光密度が高いため集塵し易く劣化し易いが、上述のような保護板を配置することにより、端面への塵埃の付着を防止し、また劣化を遅らせることができる。   As shown in FIG. 27b, the laser emitting portion 68 configured by the end portion of the multimode optical fiber 31 is sandwiched and fixed between two support plates 65 having a flat surface. In addition, a transparent protective plate such as glass is preferably disposed on the light emitting end face of the multimode optical fiber 31 for protection. The light exit end face of the multimode optical fiber 31 has high light density and is likely to collect dust and easily deteriorate. However, the protective plate as described above prevents the dust from adhering to the end face and deteriorates. Can be delayed.

この例では、クラッド径が小さい光ファイバ31の出射端を隙間無く1列に配列するために、クラッド径が大きい部分で隣接する2本のマルチモード光ファイバ30の間にマルチモード光ファイバ30を積み重ね、積み重ねられたマルチモード光ファイバ30に結合された光ファイバ31の出射端が、クラッド径が大きい部分で隣接する2本のマルチモード光ファイバ30に結合された光ファイバ31の2つの出射端の間に挟まれるように配列されている。   In this example, in order to arrange the emission ends of the optical fibers 31 with a small cladding diameter in a line without any gaps, the multimode optical fiber 30 is placed between two adjacent multimode optical fibers 30 at a portion with a large cladding diameter. Two exit ends of the optical fiber 31 coupled to the two multimode optical fibers 30 adjacent to each other at the portion where the cladding diameter is large are the exit ends of the optical fiber 31 coupled to the stacked and stacked multimode optical fibers 30. Are arranged so as to be sandwiched between them.

このような光ファイバは、例えば、図28に示すように、クラッド径が大きいマルチモード光ファイバ30のレーザ光出射側の先端部分に、長さ1〜30cmのクラッド径が小さい光ファイバ31を同軸的に結合することにより得ることができる。2本の光ファイバは、光ファイバ31の入射端面が、マルチモード光ファイバ30の出射端面に、両光ファイバの中心軸が一致するように融着されて結合されている。上述した通り、光ファイバ31のコア31aの径は、マルチモード光ファイバ30のコア30aの径と同じ大きさである。   For example, as shown in FIG. 28, an optical fiber 31 having a length of 1 to 30 cm and having a small cladding diameter is coaxially connected to the tip portion of the multimode optical fiber 30 having a large cladding diameter on the laser light emission side. Can be obtained by linking them together. In the two optical fibers, the incident end face of the optical fiber 31 is fused and joined to the outgoing end face of the multimode optical fiber 30 so that the central axes of both optical fibers coincide. As described above, the diameter of the core 31 a of the optical fiber 31 is the same as the diameter of the core 30 a of the multimode optical fiber 30.

また、長さが短くクラッド径が大きい光ファイバにクラッド径が小さい光ファイバを融着させた短尺光ファイバを、フェルールや光コネクタ等を介してマルチモード光ファイバ30の出射端に結合してもよい。コネクタ等を用いて着脱可能に結合することで、クラッド径が小さい光ファイバが破損した場合等に先端部分の交換が容易になり、露光ヘッドのメンテナンスに要するコストを低減できる。なお、以下では、光ファイバ31を、マルチモード光ファイバ30の出射端部と称する場合がある。   In addition, a short optical fiber in which an optical fiber having a short cladding diameter and a large cladding diameter is fused to an optical fiber having a short cladding diameter and a large cladding diameter may be coupled to the output end of the multimode optical fiber 30 via a ferrule or an optical connector. Good. By detachably coupling using a connector or the like, the tip portion can be easily replaced when an optical fiber having a small cladding diameter is broken, and the cost required for exposure head maintenance can be reduced. Hereinafter, the optical fiber 31 may be referred to as an emission end portion of the multimode optical fiber 30.

マルチモード光ファイバ30及び光ファイバ31としては、ステップインデックス型光ファイバ、グレーテッドインデックス型光ファイバ、及び複合型光ファイバの何れでもよい。例えば、三菱電線工業株式会社製のステップインデックス型光ファイバを用いることができる。本実施の形態では、マルチモード光ファイバ30及び光ファイバ31は、ステップインデックス型光ファイバであり、マルチモード光ファイバ30は、クラッド径=125μm、コア径=50μm、NA=0.2、入射端面コートの透過率=99.5%以上であり、光ファイバ31は、クラッド径=60μm、コア径=50μm、NA=0.2である。   The multimode optical fiber 30 and the optical fiber 31 may be any of a step index type optical fiber, a graded index type optical fiber, and a composite type optical fiber. For example, a step index type optical fiber manufactured by Mitsubishi Cable Industries, Ltd. can be used. In the present embodiment, the multimode optical fiber 30 and the optical fiber 31 are step index type optical fibers, and the multimode optical fiber 30 has a cladding diameter = 125 μm, a core diameter = 50 μm, NA = 0.2, an incident end face. The transmittance of the coat is 99.5% or more, and the optical fiber 31 has a cladding diameter = 60 μm, a core diameter = 50 μm, and NA = 0.2.

一般に、赤外領域のレーザ光では、光ファイバのクラッド径を小さくすると伝搬損失が増加する。このため、レーザ光の波長帯域に応じて好適なクラッド径が決定されている。しかしながら、波長が短いほど伝搬損失は少なくなり、GaN系半導体レーザから出射された波長405nmのレーザ光では、クラッドの厚み{(クラッド径−コア径)/2}を800nmの波長帯域の赤外光を伝搬させる場合の1/2程度、通信用の1.5μmの波長帯域の赤外光を伝搬させる場合の約1/4にしても、伝搬損失は殆ど増加しない。従って、クラッド径を60μmと小さくすることができる。   In general, in laser light in the infrared region, propagation loss increases as the cladding diameter of the optical fiber is reduced. For this reason, a suitable cladding diameter is determined according to the wavelength band of the laser beam. However, the shorter the wavelength, the smaller the propagation loss. In the case of laser light having a wavelength of 405 nm emitted from a GaN-based semiconductor laser, the cladding thickness {(cladding diameter−core diameter) / 2} is set to an infrared light having a wavelength band of 800 nm. The propagation loss hardly increases even if it is about ½ of the case of propagating infrared light and about ¼ of the case of propagating infrared light in the 1.5 μm wavelength band for communication. Therefore, the cladding diameter can be reduced to 60 μm.

但し、光ファイバ31のクラッド径は60μmには限定されない。従来のファイバアレイ光源に使用されている光ファイバのクラッド径は125μmであるが、クラッド径が小さくなるほど焦点深度がより深くなるので、マルチモード光ファイバのクラッド径は80μm以下が好ましく、60μm以下がより好ましく、40μm以下が更に好ましい。一方、コア径は少なくとも3〜4μm必要であることから、光ファイバ31のクラッド径は10μm以上が好ましい。   However, the clad diameter of the optical fiber 31 is not limited to 60 μm. The clad diameter of the optical fiber used in the conventional fiber array light source is 125 μm, but the depth of focus becomes deeper as the clad diameter becomes smaller. More preferably, it is 40 μm or less. On the other hand, since the core diameter needs to be at least 3 to 4 μm, the cladding diameter of the optical fiber 31 is preferably 10 μm or more.

レーザモジュール64は、図29に示す合波レーザ光源(ファイバアレイ光源)によって構成されている。この合波レーザ光源は、ヒートブロック10上に配列固定された複数(例えば、7個)のチップ状の横マルチモード又はシングルモードのGaN系半導体レーザLD1,LD2,LD3,LD4,LD5,LD6,及びLD7と、GaN系半導体レーザLD1〜LD7の各々に対応して設けられたコリメータレンズ11,12,13,14,15,16,及び17と、1つの集光レンズ20と、1本のマルチモード光ファイバ30と、から構成されている。なお、半導体レーザの個数は7個には限定されない。例えば、クラッド径=60μm、コア径=50μm、NA=0.2のマルチモード光ファイバには、20個もの半導体レーザ光を入射することが可能であり、露光ヘッドの必要光量を実現して、且つ光ファイバ本数をより減らすことができる。   The laser module 64 includes a combined laser light source (fiber array light source) shown in FIG. This combined laser light source includes a plurality of (for example, seven) chip-like lateral multimode or single mode GaN-based semiconductor lasers LD1, LD2, LD3, LD4, LD5, LD6, arrayed and fixed on the heat block 10. And LD7, collimator lenses 11, 12, 13, 14, 15, 16, and 17 provided corresponding to each of the GaN-based semiconductor lasers LD1 to LD7, one condenser lens 20, and one multi-lens. Mode optical fiber 30. The number of semiconductor lasers is not limited to seven. For example, as many as 20 semiconductor laser beams can be incident on a multimode optical fiber having a cladding diameter = 60 μm, a core diameter = 50 μm, and NA = 0.2. In addition, the number of optical fibers can be further reduced.

GaN系半導体レーザLD1〜LD7は、発振波長が総て共通(例えば、405nm)であり、最大出力も総て共通(例えば、マルチモードレーザでは100mW、シングルモードレーザでは30mW)である。なお、GaN系半導体レーザLD1〜LD7としては、350nm〜450nmの波長範囲で、上記の405nm以外の発振波長を備えるレーザを用いてもよい。   The GaN-based semiconductor lasers LD1 to LD7 all have the same oscillation wavelength (for example, 405 nm), and the maximum output is also all the same (for example, 100 mW for the multimode laser and 30 mW for the single mode laser). As the GaN-based semiconductor lasers LD1 to LD7, lasers having an oscillation wavelength other than the above 405 nm in a wavelength range of 350 nm to 450 nm may be used.

前記合波レーザ光源は、図30及び図31に示すように、他の光学要素と共に、上方が開口した箱状のパッケージ40内に収納されている。パッケージ40は、その開口を閉じるように作成されたパッケージ蓋41を備えており、脱気処理後に封止ガスを導入し、パッケージ40の開口をパッケージ蓋41で閉じることにより、パッケージ40とパッケージ蓋41とにより形成される閉空間(封止空間)内に上記合波レーザ光源が気密封止されている。   As shown in FIGS. 30 and 31, the combined laser light source is housed in a box-shaped package 40 having an upper opening together with other optical elements. The package 40 includes a package lid 41 created so as to close the opening thereof. After the deaeration process, a sealing gas is introduced, and the package 40 and the package lid 41 are closed by closing the opening of the package 40 with the package lid 41. 41. The combined laser light source is hermetically sealed in a closed space (sealed space) formed by 41.

パッケージ40の底面にはベース板42が固定されており、このベース板42の上面には、前記ヒートブロック10と、集光レンズ20を保持する集光レンズホルダー45と、マルチモード光ファイバ30の入射端部を保持するファイバホルダー46とが取り付けられている。マルチモード光ファイバ30の出射端部は、パッケージ40の壁面に形成された開口からパッケージ外に引き出されている。   A base plate 42 is fixed to the bottom surface of the package 40, and the heat block 10, a condensing lens holder 45 that holds the condensing lens 20, and the multimode optical fiber 30 are disposed on the top surface of the base plate 42. A fiber holder 46 that holds the incident end is attached. The exit end of the multimode optical fiber 30 is drawn out of the package from an opening formed in the wall surface of the package 40.

また、ヒートブロック10の側面にはコリメータレンズホルダー44が取り付けられており、コリメータレンズ11〜17が保持されている。パッケージ40の横壁面には開口が形成され、この開口を通してGaN系半導体レーザLD1〜LD7に駆動電流を供給する配線47がパッケージ外に引き出されている。   Further, a collimator lens holder 44 is attached to the side surface of the heat block 10, and the collimator lenses 11 to 17 are held. An opening is formed in the lateral wall surface of the package 40, and wiring 47 for supplying a driving current to the GaN-based semiconductor lasers LD1 to LD7 is drawn out of the package through the opening.

なお、図31においては、図の煩雑化を避けるために、複数のGaN系半導体レーザのうちGaN系半導体レーザLD7にのみ番号を付し、複数のコリメータレンズのうちコリメータレンズ17にのみ番号を付している。   In FIG. 31, in order to avoid complication of the figure, only the GaN-based semiconductor laser LD7 among the plurality of GaN-based semiconductor lasers is numbered, and only the collimator lens 17 among the plurality of collimator lenses is numbered. is doing.

図32は、前記コリメータレンズ11〜17の取り付け部分の正面形状を示すものである。コリメータレンズ11〜17の各々は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取った形状に形成されている。この細長形状のコリメータレンズは、例えば、樹脂又は光学ガラスをモールド成形することによって形成することができる。コリメータレンズ11〜17は、長さ方向がGaN系半導体レーザLD1〜LD7の発光点の配列方向(図32の左右方向)と直交するように、上記発光点の配列方向に密接配置されている。   FIG. 32 shows the front shape of the attachment part of the collimator lenses 11-17. Each of the collimator lenses 11 to 17 is formed in a shape obtained by cutting a region including the optical axis of a circular lens having an aspherical surface into a long and narrow plane. This elongated collimator lens can be formed, for example, by molding resin or optical glass. The collimator lenses 11 to 17 are closely arranged in the arrangement direction of the light emitting points so that the length direction is orthogonal to the arrangement direction of the light emitting points of the GaN-based semiconductor lasers LD1 to LD7 (left and right direction in FIG. 32).

一方、GaN系半導体レーザLD1〜LD7としては、発光幅が2μmの活性層を備え、活性層と平行な方向、直角な方向の拡がり角が各々例えば10°、30°の状態で各々レーザ光B1〜B7を発するレーザが用いられている。これらGaN系半導体レーザLD1〜LD7は、活性層と平行な方向に発光点が1列に並ぶように配設されている。   On the other hand, each of the GaN-based semiconductor lasers LD1 to LD7 includes an active layer having a light emission width of 2 μm, and each of the laser beams B1 in a state in which the divergence angles in a direction parallel to and perpendicular to the active layer are, for example A laser emitting ~ B7 is used. These GaN-based semiconductor lasers LD1 to LD7 are arranged so that the light emitting points are arranged in a line in a direction parallel to the active layer.

したがって、各発光点から発せられたレーザ光B1〜B7は、上述のように細長形状の各コリメータレンズ11〜17に対して、拡がり角度が大きい方向が長さ方向と一致し、拡がり角度が小さい方向が幅方向(長さ方向と直交する方向)と一致する状態で入射することになる。つまり、各コリメータレンズ11〜17の幅が1.1mm、長さが4.6mmであり、それらに入射するレーザ光B1〜B7の水平方向、垂直方向のビーム径は各々0.9mm、2.6mmである。また、コリメータレンズ11〜17の各々は、焦点距離f1=3mm、NA=0.6、レンズ配置ピッチ=1.25mmである。 Therefore, in the laser beams B1 to B7 emitted from the respective light emitting points, the direction in which the divergence angle is large coincides with the length direction and the divergence angle is small with respect to the elongated collimator lenses 11 to 17 as described above. Incident light is incident in a state where the direction coincides with the width direction (direction perpendicular to the length direction). That is, the collimator lenses 11 to 17 have a width of 1.1 mm and a length of 4.6 mm, and the horizontal and vertical beam diameters of the laser beams B1 to B7 incident thereon are 0.9 mm and 2. 6 mm. Each of the collimator lenses 11 to 17 has a focal length f 1 = 3 mm, NA = 0.6, and a lens arrangement pitch = 1.25 mm.

集光レンズ20は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取って、コリメータレンズ11〜17の配列方向、つまり水平方向に長く、それと直角な方向に短い形状に形成されている。この集光レンズ20は、焦点距離f=23mm、NA=0.2である。この集光レンズ20も、例えば、樹脂又は光学ガラスをモールド成形することにより形成される。 The condensing lens 20 is formed by cutting a region including the optical axis of a circular lens having an aspheric surface into a long and narrow shape in parallel planes, and is long in the arrangement direction of the collimator lenses 11 to 17, that is, in a horizontal direction and short in a direction perpendicular thereto. Is formed. This condenser lens 20 has a focal length f 2 = 23 mm and NA = 0.2. This condensing lens 20 is also formed by molding resin or optical glass, for example.

また、DMDを照明する光照射手段に、合波レーザ光源の光ファイバの出射端部をアレイ状に配列した高輝度のファイバアレイ光源を用いているので、高出力で且つ深い焦点深度を備えたパターン形成装置を実現することができる。更に、各ファイバアレイ光源の出力が大きくなることで、所望の出力を得るために必要なファイバアレイ光源数が少なくなり、パターン形成装置の低コスト化が図られる。   In addition, since the light emitting means for illuminating the DMD uses a high-intensity fiber array light source in which the output ends of the optical fibers of the combined laser light source are arranged in an array, it has a high output and a deep depth of focus. A pattern forming apparatus can be realized. Furthermore, since the output of each fiber array light source is increased, the number of fiber array light sources required to obtain a desired output is reduced, and the cost of the pattern forming apparatus can be reduced.

また、光ファイバの出射端のクラッド径を入射端のクラッド径よりも小さくしているので、発光部径がより小さくなり、ファイバアレイ光源の高輝度化が図られる。これにより、より深い焦点深度を備えたパターン形成装置を実現することができる。例えば、ビーム径1μm以下、解像度0.1μm以下の超高解像度露光の場合にも、深い焦点深度を得ることができ、高速且つ高精細な露光が可能となる。したがって、高解像度が必要とされる薄膜トランジスタ(TFT)の露光工程に好適である。   Further, since the cladding diameter of the output end of the optical fiber is smaller than the cladding diameter of the incident end, the diameter of the light emitting portion is further reduced, and the brightness of the fiber array light source can be increased. Thereby, a pattern forming apparatus having a deeper depth of focus can be realized. For example, even in the case of ultra-high resolution exposure with a beam diameter of 1 μm or less and a resolution of 0.1 μm or less, a deep depth of focus can be obtained, and high-speed and high-definition exposure is possible. Therefore, it is suitable for a thin film transistor (TFT) exposure process that requires high resolution.

また、前記光照射手段としては、前記合波レーザ光源を複数備えたファイバアレイ光源に限定されず、例えば、1個の発光点を有する単一の半導体レーザから入射されたレーザ光を出射する1本の光ファイバを備えたファイバ光源をアレイ化したファイバアレイ光源を用いることができる。   The light irradiating means is not limited to a fiber array light source including a plurality of the combined laser light sources, and for example, emits laser light incident from a single semiconductor laser having one light emitting point. A fiber array light source in which fiber light sources including optical fibers are arrayed can be used.

また、複数の発光点を備えた光照射手段としては、例えば、図33に示すように、ヒートブロック100上に、複数(例えば、7個)のチップ状の半導体レーザLD1〜LD7を配列したレーザアレイを用いることができる。また、図34(A)に示す、複数(例えば、5個)の発光点110aが所定方向に配列されたチップ状のマルチキャビティレーザ110が知られている。マルチキャビティレーザ110は、チップ状の半導体レーザを配列する場合と比べ、発光点を位置精度良く配列できるので、各発光点から出射されるレーザ光を合波し易い。但し、発光点が多くなるとレーザ製造時にマルチキャビティレーザ110に撓みが発生し易くなるため、発光点110aの個数は5個以下とするのが好ましい。   Further, as the light irradiation means having a plurality of light emitting points, for example, as shown in FIG. 33, a laser in which a plurality of (for example, seven) chip-shaped semiconductor lasers LD1 to LD7 are arranged on the heat block 100. An array can be used. A chip-shaped multicavity laser 110 in which a plurality of (for example, five) light emitting points 110a shown in FIG. 34A is arranged in a predetermined direction is known. Since the multicavity laser 110 can arrange the light emitting points with high positional accuracy as compared with the case where the chip-shaped semiconductor lasers are arranged, it is easy to multiplex the laser beams emitted from the respective light emitting points. However, as the number of light emitting points increases, the multicavity laser 110 is likely to be bent at the time of laser manufacturing. Therefore, the number of light emitting points 110a is preferably 5 or less.

前記光照射手段としては、このマルチキャビティレーザ110や、図34(B)に示すように、ヒートブロック100上に、複数のマルチキャビティレーザ110が各チップの発光点110aの配列方向と同じ方向に配列されたマルチキャビティレーザアレイを、レーザ光源として用いることができる。   As the light irradiation means, the multi-cavity laser 110 or a plurality of multi-cavity lasers 110 on the heat block 100 in the same direction as the arrangement direction of the light emitting points 110a of each chip as shown in FIG. An arrayed multi-cavity laser array can be used as a laser light source.

また、合波レーザ光源は、複数のチップ状の半導体レーザから出射されたレーザ光を合波するものには限定されない。例えば、図21に示すように、複数(例えば、3個)の発光点110aを有するチップ状のマルチキャビティレーザ110を備えた合波レーザ光源を用いることができる。この合波レーザ光源は、マルチキャビティレーザ110と、1本のマルチモード光ファイバ130と、集光レンズ120と、を備えて構成されている。マルチキャビティレーザ110は、例えば、発振波長が405nmのGaN系レーザダイオードで構成することができる。   The combined laser light source is not limited to one that combines laser beams emitted from a plurality of chip-shaped semiconductor lasers. For example, as shown in FIG. 21, a combined laser light source including a chip-shaped multicavity laser 110 having a plurality of (for example, three) light emitting points 110a can be used. This combined laser light source is configured to include a multi-cavity laser 110, one multi-mode optical fiber 130, and a condensing lens 120. The multi-cavity laser 110 can be composed of, for example, a GaN-based laser diode having an oscillation wavelength of 405 nm.

前記構成では、マルチキャビティレーザ110の複数の発光点110aの各々から出射したレーザ光Bの各々は、集光レンズ120によって集光され、マルチモード光ファイバ130のコア130aに入射する。コア130aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。   In the above configuration, each of the laser beams B emitted from each of the plurality of light emitting points 110 a of the multicavity laser 110 is collected by the condenser lens 120 and enters the core 130 a of the multimode optical fiber 130. The laser light incident on the core 130a propagates in the optical fiber, is combined into one, and is emitted.

マルチキャビティレーザ110の複数の発光点110aを、上記マルチモード光ファイバ130のコア径と略等しい幅内に並設すると共に、集光レンズ120として、マルチモード光ファイバ130のコア径と略等しい焦点距離の凸レンズや、マルチキャビティレーザ110からの出射ビームをその活性層に垂直な面内のみでコリメートするロッドレンズを用いることにより、レーザ光Bのマルチモード光ファイバ130への結合効率を上げることができる。   A plurality of light emitting points 110 a of the multicavity laser 110 are arranged in parallel within a width substantially equal to the core diameter of the multimode optical fiber 130, and a focal point substantially equal to the core diameter of the multimode optical fiber 130 is formed as the condenser lens 120. By using a convex lens of a distance or a rod lens that collimates the outgoing beam from the multi-cavity laser 110 only in a plane perpendicular to the active layer, the coupling efficiency of the laser beam B to the multi-mode optical fiber 130 can be increased. it can.

また、図35に示すように、複数(例えば、3個)の発光点を備えたマルチキャビティレーザ110を用い、ヒートブロック111上に複数(例えば、9個)のマルチキャビティレーザ110が互いに等間隔で配列されたレーザアレイ140を備えた合波レーザ光源を用いることができる。複数のマルチキャビティレーザ110は、各チップの発光点110aの配列方向と同じ方向に配列されて固定されている。   As shown in FIG. 35, a multi-cavity laser 110 having a plurality of (for example, three) emission points is used, and a plurality of (for example, nine) multi-cavity lasers 110 are equidistant from each other on the heat block 111. A combined laser light source including the laser array 140 arranged in (1) can be used. The plurality of multi-cavity lasers 110 are arranged and fixed in the same direction as the arrangement direction of the light emitting points 110a of each chip.

この合波レーザ光源は、レーザアレイ140と、各マルチキャビティレーザ110に対応させて配置した複数のレンズアレイ114と、レーザアレイ140と複数のレンズアレイ114との間に配置された1本のロッドレンズ113と、1本のマルチモード光ファイバ130と、集光レンズ120と、を備えて構成されている。レンズアレイ114は、マルチキャビティレーザ110の発光点に対応した複数のマイクロレンズを備えている。   This combined laser light source includes a laser array 140, a plurality of lens arrays 114 arranged corresponding to each multi-cavity laser 110, and a single rod arranged between the laser array 140 and the plurality of lens arrays 114. The lens 113, one multimode optical fiber 130, and a condenser lens 120 are provided. The lens array 114 includes a plurality of microlenses corresponding to the emission points of the multicavity laser 110.

上記の構成では、複数のマルチキャビティレーザ110の複数の発光点110aの各々から出射したレーザ光Bの各々は、ロッドレンズ113により所定方向に集光された後、レンズアレイ114の各マイクロレンズにより平行光化される。平行光化されたレーザ光Lは、集光レンズ120によって集光され、マルチモード光ファイバ130のコア130aに入射する。コア130aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。   In the above configuration, each of the laser beams B emitted from each of the plurality of light emitting points 110a of the plurality of multi-cavity lasers 110 is collected in a predetermined direction by the rod lens 113, and then each microlens of the lens array 114. It becomes parallel light. The collimated laser beam L is condensed by the condenser lens 120 and enters the core 130a of the multimode optical fiber 130. The laser light incident on the core 130a propagates in the optical fiber, is combined into one, and is emitted.

更に他の合波レーザ光源の例を示す。この合波レーザ光源は、図36(A)及び(B)に示すように、略矩形状のヒートブロック180上に光軸方向の断面がL字状のヒートブロック182が搭載され、2つのヒートブロック間に収納空間が形成されている。L字状のヒートブロック182の上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ110が、各チップの発光点110aの配列方向と同じ方向に等間隔で配列されて固定されている。   Still another example of the combined laser light source will be described. In this combined laser light source, as shown in FIGS. 36A and 36B, a heat block 182 having an L-shaped cross section in the optical axis direction is mounted on a substantially rectangular heat block 180, and two heats are provided. A storage space is formed between the blocks. On the upper surface of the L-shaped heat block 182, a plurality of (for example, two) multi-cavity lasers 110 in which a plurality of light emitting points (for example, five) are arranged in an array form the light emitting points 110a of each chip. It is arranged and fixed at equal intervals in the same direction as the arrangement direction.

略矩形状のヒートブロック180には凹部が形成されており、ヒートブロック180の空間側上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ110が、その発光点がヒートブロック182の上面に配置されたレーザチップの発光点と同じ鉛直面上に位置するように配置されている。   A concave portion is formed in the substantially rectangular heat block 180, and a plurality of (for example, two) light emitting points (for example, five) are arranged in an array on the upper surface of the space side of the heat block 180. The multi-cavity laser 110 is arranged such that its emission point is located on the same vertical plane as the emission point of the laser chip arranged on the upper surface of the heat block 182.

マルチキャビティレーザ110のレーザ光出射側には、各チップの発光点110aに対応してコリメートレンズが配列されたコリメートレンズアレイ184が配置されている。コリメートレンズアレイ184は、各コリメートレンズの長さ方向とレーザ光の拡がり角が大きい方向(速軸方向)とが一致し、各コリメートレンズの幅方向が拡がり角が小さい方向(遅軸方向)と一致するように配置されている。このように、コリメートレンズをアレイ化して一体化することで、レーザ光の空間利用効率が向上し合波レーザ光源の高出力化が図られると共に、部品点数が減少し低コスト化することができる。   On the laser beam emission side of the multi-cavity laser 110, a collimator lens array 184 in which collimator lenses are arranged corresponding to the light emission points 110a of the respective chips is arranged. In the collimating lens array 184, the length direction of each collimating lens coincides with the direction in which the divergence angle of the laser beam is large (fast axis direction), and the width direction of each collimating lens is in the direction in which the divergence angle is small (slow axis direction). They are arranged to match. Thus, by collimating and integrating the collimating lenses, the space utilization efficiency of the laser light can be improved, the output of the combined laser light source can be increased, and the number of parts can be reduced and the cost can be reduced. .

また、コリメートレンズアレイ184のレーザ光出射側には、1本のマルチモード光ファイバ130と、このマルチモード光ファイバ130の入射端にレーザ光を集光して結合する集光レンズ120と、が配置されている。   Further, on the laser beam emitting side of the collimating lens array 184, there is one multimode optical fiber 130 and a condensing lens 120 that condenses and couples the laser beam to the incident end of the multimode optical fiber 130. Is arranged.

前記構成では、レーザブロック180、182上に配置された複数のマルチキャビティレーザ110の複数の発光点110aの各々から出射したレーザ光Bの各々は、コリメートレンズアレイ184により平行光化され、集光レンズ120によって集光されて、マルチモード光ファイバ130のコア130aに入射する。コア130aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。   In the above configuration, each of the laser beams B emitted from each of the plurality of light emitting points 110a of the plurality of multi-cavity lasers 110 arranged on the laser blocks 180 and 182 is collimated by the collimating lens array 184 and condensed. The light is condensed by the lens 120 and enters the core 130 a of the multimode optical fiber 130. The laser light incident on the core 130a propagates in the optical fiber, is combined into one, and is emitted.

前記合波レーザ光源は、上記の通り、マルチキャビティレーザの多段配置とコリメートレンズのアレイ化とにより、特に高出力化を図ることができる。この合波レーザ光源を用いることにより、より高輝度なファイバアレイ光源やバンドルファイバ光源を構成することができるので、本発明のパターン形成装置のレーザ光源を構成するファイバ光源として特に好適である。   As described above, the combined laser light source can achieve particularly high output by the multistage arrangement of multicavity lasers and the array of collimating lenses. By using this combined laser light source, a higher-intensity fiber array light source or bundle fiber light source can be configured, so that it is particularly suitable as a fiber light source constituting the laser light source of the pattern forming apparatus of the present invention.

なお、前記各合波レーザ光源をケーシング内に収納し、マルチモード光ファイバ130の出射端部をそのケーシングから引き出したレーザモジュールを構成することができる。   It should be noted that a laser module in which each of the combined laser light sources is housed in a casing and the emission end of the multimode optical fiber 130 is pulled out from the casing can be configured.

また、合波レーザ光源のマルチモード光ファイバの出射端に、コア径がマルチモード光ファイバと同一で且つクラッド径がマルチモード光ファイバより小さい他の光ファイバを結合してファイバアレイ光源の高輝度化を図る例について説明したが、例えば、クラッド径が125μm、80μm、60μm等のマルチモード光ファイバを、出射端に他の光ファイバを結合せずに使用してもよい。   In addition, the other end of the multimode optical fiber of the combined laser light source is coupled with another optical fiber having the same core diameter as the multimode optical fiber and a cladding diameter smaller than the multimode optical fiber. However, for example, a multimode optical fiber having a cladding diameter of 125 μm, 80 μm, 60 μm or the like may be used without coupling another optical fiber to the emission end.

ここで、本発明の前記パターン形成方法について更に説明する。
スキャナ162の各露光ヘッド166において、ファイバアレイ光源66の合波レーザ光源を構成するGaN系半導体レーザLD1〜LD7の各々から発散光状態で出射したレーザ光B1,B2,B3,B4,B5,B6,及びB7の各々は、対応するコリメータレンズ11〜17によって平行光化される。平行光化されたレーザ光B1〜B7は、集光レンズ20によって集光され、マルチモード光ファイバ30のコア30aの入射端面に収束する。
Here, the pattern forming method of the present invention will be further described.
In each exposure head 166 of the scanner 162, laser light B1, B2, B3, B4, B5, B6 emitted in a divergent light state from each of the GaN-based semiconductor lasers LD1 to LD7 constituting the combined laser light source of the fiber array light source 66. , And B7 are collimated by corresponding collimator lenses 11-17. The collimated laser beams B <b> 1 to B <b> 7 are collected by the condenser lens 20 and converge on the incident end face of the core 30 a of the multimode optical fiber 30.

本例では、コリメータレンズ11〜17及び集光レンズ20によって集光光学系が構成され、その集光光学系とマルチモード光ファイバ30とによって合波光学系が構成されている。即ち、集光レンズ20によって上述のように集光されたレーザ光B1〜B7が、このマルチモード光ファイバ30のコア30aに入射して光ファイバ内を伝搬し、1本のレーザ光Bに合波されてマルチモード光ファイバ30の出射端部に結合された光ファイバ31から出射する。   In this example, the collimator lenses 11 to 17 and the condenser lens 20 constitute a condensing optical system, and the condensing optical system and the multimode optical fiber 30 constitute a multiplexing optical system. That is, the laser beams B1 to B7 collected as described above by the condenser lens 20 enter the core 30a of the multimode optical fiber 30 and propagate through the optical fiber to be combined with one laser beam B. The light is emitted from the optical fiber 31 coupled to the output end of the multimode optical fiber 30.

各レーザモジュールにおいて、レーザ光B1〜B7のマルチモード光ファイバ30への結合効率が0.85で、GaN系半導体レーザLD1〜LD7の各出力が30mWの場合には、アレイ状に配列された光ファイバ31の各々について、出力180mW(=30mW×0.85×7)の合波レーザ光Bを得ることができる。従って、6本の光ファイバ31がアレイ状に配列されたレーザ出射部68での出力は約1W(=180mW×6)である。   In each laser module, when the coupling efficiency of the laser beams B1 to B7 to the multimode optical fiber 30 is 0.85 and each output of the GaN-based semiconductor lasers LD1 to LD7 is 30 mW, the light arranged in an array For each of the fibers 31, a combined laser beam B with an output of 180 mW (= 30 mW × 0.85 × 7) can be obtained. Therefore, the output from the laser emitting unit 68 in which the six optical fibers 31 are arranged in an array is about 1 W (= 180 mW × 6).

ファイバアレイ光源66のレーザ出射部68には、この通り高輝度の発光点が主走査方向に沿って一列に配列されている。単一の半導体レーザからのレーザ光を1本の光ファイバに結合させる従来のファイバ光源は低出力であるため、多数列配列しなければ所望の出力を得ることができなかったが、前記合波レーザ光源は高出力であるため、少数列、例えば1列でも所望の出力を得ることができる。   In the laser emitting portion 68 of the fiber array light source 66, light emission points with high luminance are arranged in a line along the main scanning direction as described above. A conventional fiber light source that couples laser light from a single semiconductor laser to a single optical fiber has a low output, so that a desired output cannot be obtained unless multiple rows are arranged. Since the laser light source has a high output, a desired output can be obtained even with a small number of columns, for example, one column.

例えば、半導体レーザと光ファイバを1対1で結合させた従来のファイバ光源では、通常、半導体レーザとしては出力30mW(ミリワット)程度のレーザが使用され、光ファイバとしてはコア径50μm、クラッド径125μm、NA(開口数)0.2のマルチモード光ファイバが使用されているので、約1W(ワット)の出力を得ようとすれば、マルチモード光ファイバを48本(8×6)束ねなければならず、発光領域の面積は0.62mm(0.675mm×0.925mm)であるから、レーザ出射部68での輝度は1.6×10(W/m)、光ファイバ1本当りの輝度は3.2×10(W/m)である。 For example, in a conventional fiber light source in which a semiconductor laser and an optical fiber are coupled on a one-to-one basis, a laser having an output of about 30 mW (milliwatt) is usually used as the semiconductor laser, and the core diameter is 50 μm and the cladding diameter is 125 μm. Since a multimode optical fiber having a numerical aperture (NA) of 0.2 is used, if an output of about 1 W (watt) is to be obtained, 48 multimode optical fibers (8 × 6) must be bundled. Since the area of the light emitting region is 0.62 mm 2 (0.675 mm × 0.925 mm), the luminance at the laser emitting portion 68 is 1.6 × 10 6 (W / m 2 ) and one optical fiber is used. The luminance per hit is 3.2 × 10 6 (W / m 2 ).

これに対し、前記光照射手段が合波レーザを照射可能な手段である場合には、マルチモード光ファイバ6本で約1Wの出力を得ることができ、レーザ出射部68での発光領域の面積は0.0081mm(0.325mm×0.025mm)であるから、レーザ出射部68での輝度は123×10(W/m)となり、従来に比べ約80倍の高輝度化を図ることができる。また、光ファイバ1本当りの輝度は90×10(W/m)であり、従来に比べ約28倍の高輝度化を図ることができる。 On the other hand, when the light irradiating means is a means capable of irradiating a combined laser, an output of about 1 W can be obtained with six multimode optical fibers, and the area of the light emitting region at the laser emitting portion 68 can be obtained. Is 0.0081 mm 2 (0.325 mm × 0.025 mm), the luminance at the laser emitting portion 68 is 123 × 10 6 (W / m 2 ), which is about 80 times higher than the conventional luminance. be able to. Further, the luminance per optical fiber is 90 × 10 6 (W / m 2 ), and the luminance can be increased by about 28 times compared with the conventional one.

ここで、図37(A)及び(B)を参照して、従来の露光ヘッドと本実施の形態の露光ヘッドとの焦点深度の違いについて説明する。従来の露光ヘッドのバンドル状ファイバ光源の発光領域の副走査方向の径は0.675mmであり、露光ヘッドのファイバアレイ光源の発光領域の副走査方向の径は0.025mmである。図37(A)に示すように、従来の露光ヘッドでは、光照射手段(バンドル状ファイバ光源)1の発光領域が大きいので、DMD3へ入射する光束の角度が大きくなり、結果として走査面5へ入射する光束の角度が大きくなる。このため、集光方向(ピント方向のずれ)に対してビーム径が太りやすい。   Here, with reference to FIGS. 37A and 37B, the difference in depth of focus between the conventional exposure head and the exposure head of the present embodiment will be described. The diameter of the light emission region of the bundled fiber light source of the conventional exposure head in the sub-scanning direction is 0.675 mm, and the diameter of the light emission region of the fiber array light source of the exposure head in the sub-scanning direction is 0.025 mm. As shown in FIG. 37A, in the conventional exposure head, since the light emitting area of the light irradiating means (bundle-shaped fiber light source) 1 is large, the angle of the light beam incident on the DMD 3 is increased, and as a result, the scanning surface 5 is moved. The angle of the incident light beam increases. For this reason, the beam diameter tends to increase with respect to the light condensing direction (shift in the focus direction).

一方、図37(B)に示すように、本発明のパターン形成装置における露光ヘッドでは、ファイバアレイ光源66の発光領域の副走査方向の径が小さいので、レンズ系67を通過してDMD50へ入射する光束の角度が小さくなり、結果として走査面56へ入射する光束の角度が小さくなる。即ち、焦点深度が深くなる。この例では、発光領域の副走査方向の径は従来の約30倍になっており、略回折限界に相当する焦点深度を得ることができる。従って、微小スポットの露光に好適である。この焦点深度への効果は、露光ヘッドの必要光量が大きいほど顕著であり、有効である。この例では、露光面に投影された1描素サイズは10μm×10μmである。なお、DMDは反射型の空間光変調素子であるが、図37(A)及び(B)は、光学的な関係を説明するために展開図とした。   On the other hand, as shown in FIG. 37B, in the exposure head in the pattern forming apparatus of the present invention, the diameter of the light emitting region of the fiber array light source 66 in the sub-scanning direction is small, so that it passes through the lens system 67 and enters the DMD 50. As a result, the angle of the light beam incident on the scanning surface 56 is reduced. That is, the depth of focus becomes deep. In this example, the diameter of the light emitting region in the sub-scanning direction is about 30 times that of the conventional one, and a depth of focus substantially corresponding to the diffraction limit can be obtained. Therefore, it is suitable for exposure of a minute spot. This effect on the depth of focus is more prominent and effective as the required light quantity of the exposure head is larger. In this example, the size of one pixel projected on the exposure surface is 10 μm × 10 μm. The DMD is a reflective spatial light modulator, but FIGS. 37A and 37B are developed views for explaining the optical relationship.

露光パターンに応じたパターン情報が、DMD50に接続された図示しないコントローラに入力され、コントローラ内のフレームメモリに一旦記憶される。このパターン情報は、画像を構成する各描素の濃度を2値(ドットの記録の有無)で表したデータである。   Pattern information corresponding to the exposure pattern is input to a controller (not shown) connected to the DMD 50 and temporarily stored in a frame memory in the controller. This pattern information is data representing the density of each pixel constituting the image as binary values (whether or not dots are recorded).

パターン形成材料150を表面に吸着したステージ152は、図示しない駆動装置により、ガイド158に沿ってゲート160の上流側から下流側に一定速度で移動される。ステージ152がゲート160下を通過する際に、ゲート160に取り付けられた検知センサ164によりパターン形成材料150の先端が検出されると、フレームメモリに記憶されたパターン情報が複数ライン分ずつ順次読み出され、データ処理部で読み出されたパターン情報に基づいて各露光ヘッド166毎に制御信号が生成される。そして、ミラー駆動制御部により、生成された制御信号に基づいて露光ヘッド166毎にDMD50のマイクロミラーの各々がオンオフ制御される。   The stage 152 having the pattern forming material 150 adsorbed on the surface thereof is moved at a constant speed from the upstream side to the downstream side of the gate 160 along the guide 158 by a driving device (not shown). When the leading edge of the pattern forming material 150 is detected by the detection sensor 164 attached to the gate 160 while the stage 152 passes under the gate 160, the pattern information stored in the frame memory is sequentially read out for a plurality of lines. Then, a control signal is generated for each exposure head 166 based on the pattern information read by the data processing unit. Then, each of the micromirrors of the DMD 50 is controlled on and off for each exposure head 166 based on the generated control signal by the mirror drive control unit.

ファイバアレイ光源66からDMD50にレーザ光が照射されると、DMD50のマイクロミラーがオン状態のときに反射されたレーザ光は、レンズ系54、58によりパターン形成材料150の被露光面56上に結像される。このようにして、ファイバアレイ光源66から出射されたレーザ光が描素毎にオンオフされて、パターン形成材料150がDMD50の使用描素数と略同数の描素単位(露光エリア168)で露光される。また、パターン形成材料150がステージ152と共に一定速度で移動されることにより、パターン形成材料150がスキャナ162によりステージ移動方向と反対の方向に副走査され、露光ヘッド166毎に帯状の露光済み領域170が形成される。   When the DMD 50 is irradiated with laser light from the fiber array light source 66, the laser light reflected when the micromirror of the DMD 50 is in the on state is coupled onto the exposed surface 56 of the pattern forming material 150 by the lens systems 54 and 58. Imaged. In this manner, the laser light emitted from the fiber array light source 66 is turned on / off for each pixel, and the pattern forming material 150 is exposed in the number of pixel units (exposure area 168) substantially equal to the number of used pixel elements of the DMD 50. . Further, when the pattern forming material 150 is moved at a constant speed together with the stage 152, the pattern forming material 150 is sub-scanned in the direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposed region 170 is provided for each exposure head 166. Is formed.

<マイクロレンズアレイ>
前記露光は、前記変調させた光を、マイクロレンズアレイを通して行うことが好ましく、更にアパーチャアレイ、結像光学系等などを通して行ってもよい。
<Microlens array>
The exposure is preferably performed using the modulated light through a microlens array, and may be performed through an aperture array, an imaging optical system, or the like.

前記マイクロレンズアレイとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したものが好適に挙げられる。   The microlens array is not particularly limited and may be appropriately selected according to the purpose. For example, microlenses having an aspheric surface capable of correcting aberration due to distortion of the exit surface in the pixel portion are arranged. A thing is mentioned suitably.

前記非球面としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、トーリック面が好ましい。   There is no restriction | limiting in particular as said aspherical surface, Although it can select suitably according to the objective, For example, a toric surface is preferable.

以下、前記マイクロレンズアレイ、前記アパーチャアレイ、及び前記結像光学系等について図面を参照しながら説明する。   Hereinafter, the microlens array, the aperture array, the imaging optical system, and the like will be described with reference to the drawings.

図13(A)は、DMD50、DMD50にレーザ光を照射する光照射手段144、DMD50で反射されたレーザ光を拡大して結像するレンズ系(結像光学系)454、458、DMD50の各描素部に対応して多数のマイクロレンズ474が配置されたマイクロレンズアレイ472、マイクロレンズアレイ472の各マイクロレンズに対応して多数のアパーチャ478が設けられたアパーチャアレイ476、アパーチャを通過したレーザ光を被露光面56に結像するレンズ系(結像光学系)480、482で構成される露光ヘッドを表す。
ここで図14に、DMD50を構成するマイクロミラー62の反射面の平面度を測定した結果を示す。同図においては、反射面の同じ高さ位置を等高線で結んで示してあり、等高線のピッチは5nmである。なお同図に示すx方向及びy方向は、マイクロミラー62の2つ対角線方向であり、マイクロミラー62はy方向に延びる回転軸を中心として前述のように回転する。また、図15の(A)及び(B)にはそれぞれ、上記x方向、y方向に沿ったマイクロミラー62の反射面の高さ位置変位を示す。
FIG. 13A shows each of DMD 50, light irradiation means 144 for irradiating the DMD 50 with laser light, lens systems (imaging optical systems) 454, 458, and DMD 50 for enlarging and imaging the laser light reflected by the DMD 50. A microlens array 472 in which a large number of microlenses 474 are arranged corresponding to the picture element portion, an aperture array 476 in which a large number of apertures 478 are provided corresponding to each microlens of the microlens array 472, and a laser that has passed through the aperture An exposure head composed of lens systems (imaging optical systems) 480 and 482 for forming an image of light on an exposed surface 56 is shown.
Here, FIG. 14 shows the result of measuring the flatness of the reflecting surface of the micromirror 62 constituting the DMD 50. In the figure, the same height positions of the reflecting surfaces are shown connected by contour lines, and the pitch of the contour lines is 5 nm. Note that the x direction and the y direction shown in the figure are two diagonal directions of the micromirror 62, and the micromirror 62 rotates around the rotation axis extending in the y direction as described above. 15A and 15B show the height position displacement of the reflecting surface of the micromirror 62 along the x direction and the y direction, respectively.

図14及び図15に示した通り、マイクロミラー62の反射面には歪みが存在し、そして特にミラー中央部に注目してみると、1つの対角線方向(y方向)の歪みが、別の対角線方向(x方向)の歪みよりも大きくなっている。このため、マイクロレンズアレイ55のマイクロレンズ55aで集光されたレーザ光Bの集光位置における形状が歪むという問題が発生し得る。   As shown in FIGS. 14 and 15, there is distortion on the reflection surface of the micromirror 62, and when attention is paid particularly to the center of the mirror, distortion in one diagonal direction (y direction) is different from that in the other diagonal line. It is larger than the distortion in the direction (x direction). For this reason, the problem that the shape in the condensing position of the laser beam B condensed with the micro lens 55a of the micro lens array 55 may be distorted may occur.

本発明のパターン形成方法においては前記問題を防止するために、マイクロレンズアレイ55のマイクロレンズ55aが、従来とは異なる特殊な形状とされている。以下、その点について詳しく説明する。   In the pattern forming method of the present invention, in order to prevent the above problem, the microlens 55a of the microlens array 55 has a special shape different from the conventional one. Hereinafter, this point will be described in detail.

図16の(A)及び(B)はそれぞれ、マイクロレンズアレイ55全体の正面形状及び側面形状を詳しく示すものである。これらの図にはマイクロレンズアレイ55の各部の寸法も記入してあり、それらの単位はmmである。本発明のパターン形成方法では、先に図4を参照して説明したようにDMD50の1024個×256列のマイクロミラー62が駆動されるものであり、それに対応させてマイクロレンズアレイ55は、横方向に1024個並んだマイクロレンズ55aの列を縦方向に256列並設して構成されている。なお、同図(A)では、マイクロレンズアレイ55の並び順を横方向についてはjで、縦方向についてはkで示している。   FIGS. 16A and 16B respectively show the front and side shapes of the entire microlens array 55 in detail. These drawings also show the dimensions of each part of the microlens array 55, and the unit thereof is mm. In the pattern forming method of the present invention, as described above with reference to FIG. 4, the 1024 × 256 rows of micromirrors 62 of the DMD 50 are driven. A row of 1024 microlenses 55a arranged in the direction is arranged in parallel in the vertical direction. In FIG. 9A, the arrangement order of the microlens array 55 is indicated by j in the horizontal direction and k in the vertical direction.

また、図17の(A)及び(B)はそれぞれ、マイクロレンズアレイ55における1つのマイクロレンズ55aの正面形状及び側面形状を示すものである。なお同図(A)には、マイクロレンズ55aの等高線を併せて示してある。各マイクロレンズ55aの光出射側の端面は、マイクロミラー62の反射面の歪みによる収差を補正する非球面形状とされている。より具体的には、マイクロレンズ55aはトーリックレンズとされており、上記x方向に光学的に対応する方向の曲率半径Rx=−0.125mm、上記y方向に対応する方向の曲率半径Ry=−0.1mmである。   17A and 17B show the front shape and the side shape of one microlens 55a in the microlens array 55, respectively. In FIG. 9A, the contour lines of the micro lens 55a are also shown. The end surface of each microlens 55a on the light emitting side has an aspherical shape that corrects aberration due to distortion of the reflecting surface of the micromirror 62. More specifically, the micro lens 55a is a toric lens, and has a radius of curvature Rx = −0.125 mm in a direction optically corresponding to the x direction and a radius of curvature Ry = − in a direction corresponding to the y direction. 0.1 mm.

したがって、上記x方向及びy方向に平行な断面内におけるレーザ光Bの集光状態は、概略、それぞれ図18の(A)及び(B)に示す通りとなる。つまり、x方向に平行な断面内とy方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ55aの曲率半径がより小であって、焦点距離がより短くなっている。   Therefore, the condensing state of the laser beam B in the cross section parallel to the x direction and the y direction is roughly as shown in FIGS. 18A and 18B, respectively. That is, when the cross section parallel to the x direction is compared with the cross section parallel to the y direction, the radius of curvature of the microlens 55a is smaller and the focal length is shorter in the latter cross section. .

マイクロレンズ55aを前記形状とした場合の、該マイクロレンズ55aの集光位置(焦点位置)近傍におけるビーム径を計算機によってシミュレーションした結果を図19a、b、c、及びdに示す。また比較のために、マイクロレンズ55aが曲率半径Rx=Ry=−0.1mmの球面形状である場合について、同様のシミュレーションを行った結果を図20a、b、c及びdに示す。なお、各図におけるzの値は、マイクロレンズ55aのピント方向の評価位置を、マイクロレンズ55aのビーム出射面からの距離で示している。   19A, 19B, 19D, and 19D show simulation results of the beam diameter in the vicinity of the condensing position (focal position) of the microlens 55a when the microlens 55a has the above shape. For comparison, FIGS. 20a, 20b, 20c, and 20d show the results of a similar simulation when the microlens 55a has a spherical shape with a radius of curvature Rx = Ry = −0.1 mm. In addition, the value of z in each figure has shown the evaluation position of the focus direction of the micro lens 55a with the distance from the beam emission surface of the micro lens 55a.

また、前記シミュレーションに用いたマイクロレンズ55aの面形状は、下記計算式で計算される。
The surface shape of the microlens 55a used for the simulation is calculated by the following calculation formula.

但し、前記計算式において、Cxは、x方向の曲率(=1/Rx)を意味し、Cyは、y方向の曲率(=1/Ry)を意味し、Xは、x方向に関するレンズ光軸Oからの距離を意味し、Yは、y方向に関するレンズ光軸Oからの距離を意味する。   In the above formula, Cx means the curvature in the x direction (= 1 / Rx), Cy means the curvature in the y direction (= 1 / Ry), and X is the lens optical axis in the x direction. The distance from O means Y, and Y means the distance from the lens optical axis O in the y direction.

図19a〜dと図20a〜dとを比較すると明らかなように、本発明のパターン形成方法ではマイクロレンズ55aを、y方向に平行な断面内の焦点距離がx方向に平行な断面内の焦点距離よりも小さいトーリックレンズとしたことにより、その集光位置近傍におけるビーム形状の歪みが抑制される。そうであれば、歪みの無い、より高精細な画像をパターン形成材料150に露光可能となる。また、図19a〜dに示す本実施形態の方が、ビーム径の小さい領域がより広い、すなわち焦点深度がより大であることが分かる。   19A to 19D and FIGS. 20A to 20D, in the pattern forming method of the present invention, the microlens 55a is focused on the micro lens 55a with a focal length in a cross section parallel to the y direction. By using a toric lens smaller than the distance, distortion of the beam shape in the vicinity of the condensing position is suppressed. If so, the pattern forming material 150 can be exposed to a higher-definition image without distortion. It can also be seen that the embodiment shown in FIGS. 19a to 19d has a wider region with a smaller beam diameter, that is, a greater depth of focus.

なお、マイクロミラー62のx方向及びy方向に関する中央部の歪の大小関係が、上記と逆になっている場合は、x方向に平行な断面内の焦点距離がy方向に平行な断面内の焦点距離よりも小さいトーリックレンズからマイクロレンズを構成すれば、同様に、歪みの無い、より高精細な画像をパターン形成材料150に露光可能となる。   In addition, when the magnitude relation of the distortion of the center part in the x direction and the y direction of the micromirror 62 is opposite to the above, the focal length in the cross section parallel to the x direction is in the cross section parallel to the y direction. If the microlens is formed of a toric lens that is smaller than the focal length, similarly, it is possible to expose the pattern forming material 150 with a higher definition image without distortion.

また、マイクロレンズアレイ55の集光位置近傍に配置されたアパーチャアレイ59は、その各アパーチャ59aに、それと対応するマイクロレンズ55aを経た光のみが入射するように配置されたものである。すなわち、このアパーチャアレイ59が設けられていることにより、各アパーチャ59aに、それと対応しない隣接のマイクロレンズ55aからの光が入射することが防止され、消光比が高められる。   In addition, the aperture array 59 disposed in the vicinity of the condensing position of the microlens array 55 is disposed such that only light having passed through the corresponding microlens 55a is incident on each aperture 59a. That is, by providing this aperture array 59, it is possible to prevent light from adjacent microlenses 55a not corresponding to each aperture 59a from entering, and to increase the extinction ratio.

本来、上記目的で設置されるアパーチャアレイ59のアパーチャ59aの径をある程度小さくすれば、マイクロレンズ55aの集光位置におけるビーム形状の歪みを抑制する効果も得られる。しかしそのようにした場合は、アパーチャアレイ59で遮断される光量がより多くなり、光利用効率が低下することになる。それに対してマイクロレンズ55aを非球面形状とする場合は、光を遮断することがないので、光利用効率も高く保たれる。   Originally, if the diameter of the aperture 59a of the aperture array 59 installed for the above purpose is reduced to some extent, an effect of suppressing the distortion of the beam shape at the condensing position of the microlens 55a can be obtained. However, in such a case, the amount of light blocked by the aperture array 59 is increased, and the light use efficiency is reduced. On the other hand, when the microlens 55a has an aspherical shape, the light utilization efficiency is kept high because the light is not blocked.

また、本発明のパターン形成方法において、マイクロレンズ55aは、2次の非球面形状であってもよく、より高次(4次、6次・・・)の非球面形状であってもよい。前記高次の非球面形状を採用することにより、ビーム形状をさらに高精細にすることができる。   In the pattern forming method of the present invention, the microlens 55a may have a secondary aspherical shape or a higher order (4th, 6th,...) Aspherical shape. By adopting the higher order aspherical shape, the beam shape can be further refined.

また、以上説明した実施形態では、マイクロレンズ55aの光出射側の端面が非球面(トーリック面)とされているが、2つの光通過端面の一方を球面とし、他方をシリンドリカル面としたマイクロレンズからマイクロレンズアレイを構成して、上記実施形態と同様の効果を得ることもできる。   In the embodiment described above, the end surface on the light emission side of the micro lens 55a is an aspherical surface (toric surface). However, one of the two light passing end surfaces is a spherical surface and the other is a cylindrical surface. Thus, the microlens array can be configured to obtain the same effect as the above embodiment.

さらに、以上説明した実施形態においては、マイクロレンズアレイ55のマイクロレンズ55aが、マイクロミラー62の反射面の歪みによる収差を補正する非球面形状とされているが、このような非球面形状を採用する代わりに、マイクロレンズアレイを構成する各マイクロレンズに、マイクロミラー62の反射面の歪みによる収差を補正する屈折率分布を持たせても、同様の効果を得ることができる。   Furthermore, in the embodiment described above, the microlens 55a of the microlens array 55 has an aspherical shape that corrects aberration due to distortion of the reflecting surface of the micromirror 62. Such an aspherical shape is adopted. Instead, the same effect can be obtained even if each microlens constituting the microlens array has a refractive index distribution that corrects aberration due to distortion of the reflection surface of the micromirror 62.

そのようなマイクロレンズ155aの一例を図22に示す。同図の(A)及び(B)はそれぞれ、このマイクロレンズ155aの正面形状及び側面形状を示すものであり、図示の通りこのマイクロレンズ155aの外形形状は平行平板状である。なお、同図におけるx、y方向は、既述した通りである。   An example of such a microlens 155a is shown in FIG. (A) and (B) of the same figure respectively show the front shape and side shape of the micro lens 155a, and the external shape of the micro lens 155a is a parallel plate shape as shown in the figure. The x and y directions in the figure are as described above.

また、図23の(A)及び(B)は、このマイクロレンズ155aによる上記x方向及びy方向に平行な断面内におけるレーザ光Bの集光状態を概略的に示している。このマイクロレンズ155aは、光軸Oから外方に向かって次第に増大する屈折率分布を有するものであり、同図においてマイクロレンズ155a内に示す破線は、その屈折率が光軸Oから所定の等ピッチで変化した位置を示している。図示の通り、x方向に平行な断面内とy方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ155aの屈折率変化の割合がより大であって、焦点距離がより短くなっている。このような屈折率分布型レンズから構成されるマイクロレンズアレイを用いても、前記マイクロレンズアレイ55を用いる場合と同様の効果を得ることが可能である。   23A and 23B schematically show the condensing state of the laser beam B in the cross section parallel to the x direction and the y direction by the micro lens 155a. The microlens 155a has a refractive index distribution that gradually increases outward from the optical axis O. In the drawing, the broken line shown in the microlens 155a indicates that the refractive index is predetermined from the optical axis O. The position changed with the pitch is shown. As shown in the figure, when the cross section parallel to the x direction and the cross section parallel to the y direction are compared, the ratio of the refractive index change of the microlens 155a is larger in the latter cross section, and the focal length is larger. It is shorter. Even when a microlens array composed of such a gradient index lens is used, it is possible to obtain the same effect as when the microlens array 55 is used.

なお、先に図17及び図18に示したマイクロレンズ55aのように面形状を非球面としたマイクロレンズにおいて、併せて上述のような屈折率分布を与え、面形状と屈折率分布の双方によって、マイクロミラー62の反射面の歪みによる収差を補正するようにしてもよい。   In addition, in the microlens whose surface shape is aspherical like the microlens 55a previously shown in FIGS. 17 and 18, the refractive index distribution as described above is given together, and both by the surface shape and the refractive index distribution. The aberration due to the distortion of the reflection surface of the micromirror 62 may be corrected.

また、上記の実施形態では、DMD50を構成するマイクロミラー62の反射面の歪みによる収差を補正しているが、DMD以外の空間光変調素子を用いる本発明のパターン形成方法においても、その空間光変調素子の描素部の面に歪みが存在する場合は、本発明を適用してその歪みによる収差を補正し、ビーム形状に歪みが生じることを防止可能である。   In the above embodiment, the aberration due to the distortion of the reflection surface of the micromirror 62 constituting the DMD 50 is corrected. However, in the pattern forming method of the present invention using the spatial light modulator other than the DMD, the spatial light is also corrected. If there is distortion on the surface of the picture element portion of the modulation element, the present invention can be applied to correct the aberration caused by the distortion and prevent the beam shape from being distorted.

次に、前記結像光学系について更に説明する。
前記露光ヘッドでは、光照射手段144からレーザ光が照射されると、DMD50によりオン方向に反射される光束線の断面積が、レンズ系454、458により数倍(例えば、2倍)に拡大される。拡大されたレーザ光は、マイクロレンズアレイ472の各マイクロレンズによりDMD50の各描素部に対応して集光され、アパーチャアレイ476の対応するアパーチャを通過する。アパーチャを通過したレーザ光は、レンズ系480、482により被露光面56上に結像される。
Next, the imaging optical system will be further described.
In the exposure head, when the laser beam is irradiated from the light irradiation unit 144, the cross-sectional area of the light beam reflected in the ON direction by the DMD 50 is enlarged several times (for example, two times) by the lens systems 454 and 458. The The expanded laser light is condensed by each microlens of the microlens array 472 so as to correspond to each pixel part of the DMD 50, and passes through the corresponding aperture of the aperture array 476. The laser light that has passed through the aperture is imaged on the exposed surface 56 by the lens systems 480 and 482.

この結像光学系では、DMD50により反射されたレーザ光は、拡大レンズ454、458により数倍に拡大されて被露光面56に投影されるので、全体の画像領域が広くなる。このとき、マイクロレンズアレイ472及びアパーチャアレイ476が配置されていなければ、図13(B)に示すように、被露光面56に投影される各ビームスポットBSの1描素サイズ(スポットサイズ)が露光エリア468のサイズに応じて大きなものとなり、露光エリア468の鮮鋭度を表すMTF(Modulation Transfer Function)特性が低下する。   In this imaging optical system, the laser light reflected by the DMD 50 is magnified several times by the magnifying lenses 454 and 458 and projected onto the exposed surface 56, so that the entire image area is widened. At this time, if the microlens array 472 and the aperture array 476 are not arranged, as shown in FIG. 13B, one pixel size (spot size) of each beam spot BS projected onto the exposed surface 56 is set. MTF (Modulation Transfer Function) characteristics representing the sharpness of the exposure area 468 are reduced depending on the size of the exposure area 468.

一方、マイクロレンズアレイ472及びアパーチャアレイ476を配置した場合には、DMD50により反射されたレーザ光は、マイクロレンズアレイ472の各マイクロレンズによりDMD50の各描素部に対応して集光される。これにより、図13(C)に示すように、露光エリアが拡大された場合でも、各ビームスポットBSのスポットサイズを所望の大きさ(例えば、10μm×10μm)に縮小することができ、MTF特性の低下を防止して高精細な露光を行うことができる。なお、露光エリア468が傾いているのは、描素間の隙間を無くす為にDMD50を傾けて配置しているからである。   On the other hand, when the microlens array 472 and the aperture array 476 are arranged, the laser light reflected by the DMD 50 is condensed corresponding to each pixel part of the DMD 50 by each microlens of the microlens array 472. Accordingly, as shown in FIG. 13C, even when the exposure area is enlarged, the spot size of each beam spot BS can be reduced to a desired size (for example, 10 μm × 10 μm), and the MTF characteristics are obtained. It is possible to perform high-definition exposure while preventing a decrease in the image quality. The exposure area 468 is tilted because the DMD 50 is tilted and arranged in order to eliminate the gap between the pixels.

また、マイクロレンズの収差によるビームの太りがあっても、アパーチャアレイによって被露光面56上でのスポットサイズが一定の大きさになるようにビームを整形することができると共に、各描素に対応して設けられたアパーチャアレイを通過させることにより、隣接する描素間でのクロストークを防止することができる。   In addition, the aperture array can shape the beam so that the spot size on the surface to be exposed 56 is constant even if the beam is thick due to the aberration of the micro lens. Thus, crosstalk between adjacent picture elements can be prevented by passing through the aperture array.

更に、光照射手段144に後述する高輝度光源を使用することにより、レンズ458からマイクロレンズアレイ472の各マイクロレンズに入射する光束の角度が小さくなるので、隣接する描素の光束の一部が入射するのを防止することができる。即ち、高消光比を実現することができる。   Further, by using a high-intensity light source, which will be described later, as the light irradiating means 144, the angle of the light beam incident on each microlens of the microlens array 472 from the lens 458 becomes small. The incident can be prevented. That is, a high extinction ratio can be realized.

<その他の光学系>
本発明のパターン形成方法では、公知の光学系の中から適宜選択したその他の光学系と併用してもよく、例えば、1対の組合せレンズからなる光量分布補正光学系などが挙げられる。
前記光量分布補正光学系は、光軸に近い中心部の光束幅に対する周辺部の光束幅の比が入射側に比べて出射側の方が小さくなるように各出射位置における光束幅を変化させて、光照射手段からの平行光束をDMDに照射するときに、被照射面での光量分布が略均一になるように補正する。以下、前記光量分布補正光学系について図面を参照しながら説明する。
<Other optical systems>
In the pattern forming method of the present invention, it may be used in combination with other optical systems appropriately selected from known optical systems, for example, a light amount distribution correcting optical system composed of a pair of combination lenses.
The light amount distribution correcting optical system changes the light flux width at each exit position so that the ratio of the light flux width at the peripheral portion to the light flux width at the central portion close to the optical axis is smaller on the exit side than on the incident side. When the DMD is irradiated with the parallel light flux from the light irradiation means, the light amount distribution on the irradiated surface is corrected so as to be substantially uniform. Hereinafter, the light quantity distribution correcting optical system will be described with reference to the drawings.

まず、図24(A)に示したように、入射光束と出射光束とで、その全体の光束幅(全光束幅)H0、H1が同じである場合について説明する。なお、図24(A)において、符号51、52で示した部分は、前記光量分布補正光学系における入射面及び出射面を仮想的に示したものである。   First, as shown in FIG. 24A, the case where the entire luminous flux widths (total luminous flux widths) H0 and H1 are the same for the incident luminous flux and the outgoing luminous flux will be described. In FIG. 24A, the portions denoted by reference numerals 51 and 52 virtually indicate the entrance surface and the exit surface in the light quantity distribution correction optical system.

前記光量分布補正光学系において、光軸Z1に近い中心部に入射した光束と、周辺部に入射した光束とのそれぞれの光束幅h0、h1が、同一であるものとする(h0=hl)。前記光量分布補正光学系は、入射側において同一の光束幅h0,h1であった光に対し、中心部の入射光束については、その光束幅h0を拡大し、逆に、周辺部の入射光束に対してはその光束幅h1を縮小するような作用を施す。すなわち、中心部の出射光束の幅h10と、周辺部の出射光束の幅h11とについて、h11<h10となるようにする。光束幅の比率で表すと、出射側における中心部の光束幅に対する周辺部の光束幅の比「h11/h10」が、入射側における比(h1/h0=1)に比べて小さくなっている((h11/h10)<1)。   In the light quantity distribution correcting optical system, it is assumed that the light flux widths h0 and h1 of the light beam incident on the central portion near the optical axis Z1 and the light flux incident on the peripheral portion are the same (h0 = hl). The light quantity distribution correcting optical system expands the light flux width h0 of the incident light flux at the central portion with respect to the light having the same light flux width h0, h1 on the incident side, and conversely changes the incident light flux at the peripheral portion. On the other hand, the light beam width h1 is reduced. That is, the width h10 of the outgoing light beam at the center and the width h11 of the outgoing light beam at the periphery are set to satisfy h11 <h10. In terms of the ratio of the luminous flux width, the ratio “h11 / h10” of the luminous flux width in the peripheral portion to the luminous flux width in the central portion on the emission side is smaller than the ratio (h1 / h0 = 1) on the incident side ( (H11 / h10) <1).

このように光束幅を変化させることにより、通常では光量分布が大きくなっている中央部の光束を、光量の不足している周辺部へと生かすことができ、全体として光の利用効率を落とさずに、被照射面での光量分布が略均一化される。均一化の度合いは、例えば、有効領域内における光量ムラが30%以内、好ましくは20%以内となるようにする。   By changing the light flux width in this way, the light flux in the central part, which normally has a large light quantity distribution, can be utilized in the peripheral part where the light quantity is insufficient, and the overall light utilization efficiency is not reduced. In addition, the light quantity distribution on the irradiated surface is made substantially uniform. The degree of uniformity is, for example, such that the unevenness in the amount of light in the effective area is within 30%, preferably within 20%.

前記光量分布補正光学系による作用、効果は、入射側と出射側とで、全体の光束幅を変える場合(図24(B),(C))においても同様である。   The operations and effects of the light quantity distribution correcting optical system are the same when the entire luminous flux width is changed between the incident side and the exit side (FIGS. 24B and 24C).

図24(B)は、入射側の全体の光束幅H0を、幅H2に“縮小”して出射する場合(H0>H2)を示している。このような場合においても、前記光量分布補正光学系は、入射側において同一の光束幅h0、h1であった光を、出射側において、中央部の光束幅h10が周辺部に比べて大きくなり、逆に、周辺部の光束幅h11が中心部に比べて小さくなるようにする。光束の縮小率で考えると、中心部の入射光束に対する縮小率を周辺部に比べて小さくし、周辺部の入射光束に対する縮小率を中心部に比べて大きくするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光束幅の比「H11/H10」が、入射側における比(h1/h0=1)に比べて小さくなる((h11/h10)<1)。   FIG. 24B shows a case where the entire light flux width H0 on the incident side is “reduced” to the width H2 and emitted (H0> H2). Even in such a case, the light quantity distribution correcting optical system has the same light beam width h0, h1 on the incident side, and the light beam width h10 in the central part is larger than that in the peripheral part on the emission side. Conversely, the luminous flux width h11 at the peripheral part is made smaller than that at the central part. Considering the reduction rate of the light beam, the reduction rate with respect to the incident light beam in the central part is made smaller than that in the peripheral part, and the reduction rate with respect to the incident light beam in the peripheral part is made larger than that in the central part. Also in this case, the ratio “H11 / H10” of the light flux width in the peripheral portion to the light flux width in the central portion is smaller than the ratio (h1 / h0 = 1) on the incident side ((h11 / h10) <1). .

図24(C)は、入射側の全体の光束幅H0を、幅Η3に“拡大”して出射する場合(H0<H3)を示している。このような場合においても、前記光量分布補正光学系は、入射側において同一の光束幅h0、h1であった光を、出射側において、中央部の光束幅h10が周辺部に比べて大きくなり、逆に、周辺部の光束幅h11が中心部に比べて小さくなるようにする。光束の拡大率で考えると、中心部の入射光束に対する拡大率を周辺部に比べて大きくし、周辺部の入射光束に対する拡大率を中心部に比べて小さくするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光束幅の比「h11/h10」が、入射側における比(h1/h0=1)に比べて小さくなる((h11/h10)<1)。   FIG. 24C shows a case where the entire light flux width H0 on the incident side is “enlarged” by the width Η3 and emitted (H0 <H3). Even in such a case, the light quantity distribution correcting optical system has the same light beam width h0, h1 on the incident side, and the light beam width h10 in the central part is larger than that in the peripheral part on the emission side. Conversely, the luminous flux width h11 at the peripheral part is made smaller than that at the central part. Considering the expansion rate of the light beam, the expansion rate for the incident light beam in the central portion is made larger than that in the peripheral portion, and the expansion rate for the incident light beam in the peripheral portion is made smaller than that in the central portion. Also in this case, the ratio “h11 / h10” of the light flux width in the peripheral portion to the light flux width in the central portion is smaller than the ratio (h1 / h0 = 1) on the incident side ((h11 / h10) <1). .

このように、前記光量分布補正光学系は、各出射位置における光束幅を変化させ、光軸Z1に近い中心部の光束幅に対する周辺部の光束幅の比を入射側に比べて出射側の方が小さくなるようにしたので、入射側において同一の光束幅であった光が、出射側においては、中央部の光束幅が周辺部に比べて大きくなり、周辺部の光束幅は中心部に比べて小さくなる。これにより、中央部の光束を周辺部へと生かすことができ、光学系全体としての光の利用効率を落とさずに、光量分布の略均一化された光束断面を形成することができる。   As described above, the light quantity distribution correcting optical system changes the light flux width at each emission position, and the ratio of the light flux width in the peripheral portion to the light flux width in the central portion close to the optical axis Z1 is larger on the outgoing side than on the incident side. Since the light having the same luminous flux width on the incident side is larger on the outgoing side, the luminous flux width in the central portion is larger than that in the peripheral portion, and the luminous flux width in the peripheral portion is smaller than that in the central portion. Become smaller. As a result, it is possible to make use of the light beam at the center part to the peripheral part, and it is possible to form a light beam cross-section with a substantially uniform light amount distribution without reducing the light use efficiency of the entire optical system.

次に、前記光量分布補正光学系として使用する1対の組合せレンズの具体的なレンズデータの1例を示す。この例では、前記光照射手段がレーザアレイ光源である場合のように、出射光束の断面での光量分布がガウス分布である場合のレンズデータを示す。なお、シングルモード光ファイバの入射端に1個の半導体レーザを接続した場合には、光ファイバからの射出光束の光量分布がガウス分布になる。本発明のパターン形成方法では、このような場合の適用も可能である。また、マルチモード光ファイバのコア径を小さくしてシングルモード光ファイバの構成に近付ける等により光軸に近い中心部の光量が周辺部の光量よりも大きい場合にも適用可能である。
下記表1に基本レンズデータを示す。
Next, an example of specific lens data of a pair of combination lenses used as the light quantity distribution correcting optical system will be shown. In this example, lens data is shown in the case where the light amount distribution in the cross section of the emitted light beam is a Gaussian distribution, as in the case where the light irradiation means is a laser array light source. When one semiconductor laser is connected to the incident end of the single mode optical fiber, the light quantity distribution of the emitted light beam from the optical fiber becomes a Gaussian distribution. The pattern forming method of the present invention can be applied to such a case. Further, the present invention can be applied to a case where the light amount in the central portion near the optical axis is larger than the light amount in the peripheral portion, for example, by reducing the core diameter of the multi-mode optical fiber and approaching the configuration of the single mode optical fiber.
Table 1 below shows basic lens data.

表1から分かるように、1対の組合せレンズは、回転対称の2つの非球面レンズから構成されている。光入射側に配置された第1のレンズの光入射側の面を第1面、光出射側の面を第2面とすると、第1面は非球面形状である。また、光出射側に配置された第2のレンズの光入射側の面を第3面、光出射側の面を第4面とすると、第4面が非球面形状である。   As can be seen from Table 1, the pair of combination lenses is composed of two rotationally symmetric aspherical lenses. If the light incident side surface of the first lens disposed on the light incident side is the first surface and the light exit side surface is the second surface, the first surface is aspherical. In addition, when the surface on the light incident side of the second lens disposed on the light emitting side is the third surface and the surface on the light emitting side is the fourth surface, the fourth surface is aspherical.

表1において、面番号Siはi番目(i=1〜4)の面の番号を示し、曲率半径riはi番目の面の曲率半径を示し、面間隔diはi番目の面とi+1番目の面との光軸上の面間隔を示す。面間隔di値の単位はミリメートル(mm)である。屈折率Niはi番目の面を備えた光学要素の波長405nmに対する屈折率の値を示す。
下記表2に、第1面及び第4面の非球面データを示す。
In Table 1, the surface number Si indicates the number of the i-th surface (i = 1 to 4), the curvature radius ri indicates the curvature radius of the i-th surface, and the surface interval di indicates the i-th surface and the i + 1-th surface. The distance between surfaces on the optical axis is shown. The unit of the surface interval di value is millimeter (mm). The refractive index Ni indicates the value of the refractive index with respect to the wavelength of 405 nm of the optical element having the i-th surface.
Table 2 below shows the aspheric data of the first surface and the fourth surface.

上記の非球面データは、非球面形状を表す下記式(A)における係数で表される。   The aspheric data is expressed by a coefficient in the following formula (A) that represents the aspheric shape.

上記式(A)において各係数を以下の通り定義する。
Z:光軸から高さρの位置にある非球面上の点から、非球面の頂点の接平面(光軸に垂直な平面)に下ろした垂線の長さ(mm)
ρ:光軸からの距離(mm)
K:円錐係数
C:近軸曲率(1/r、r:近軸曲率半径)
ai:第i次(i=3〜10)の非球面係数
表2に示した数値において、記号“E”は、その次に続く数値が10を底とした“べき指数″であることを示し、その10を底とした指数関数で表される数値が“E”の前の数値に乗算されることを示す。例えば、「1.0E−02」であれば、「1.0×10−2」であることを示す。
In the above formula (A), each coefficient is defined as follows.
Z: Length of a perpendicular line (mm) drawn from a point on the aspheric surface at a height ρ from the optical axis to the tangent plane (plane perpendicular to the optical axis) of the apex of the aspheric surface
ρ: Distance from optical axis (mm)
K: Conic coefficient C: Paraxial curvature (1 / r, r: Paraxial radius of curvature)
ai: i-th order (i = 3 to 10) aspheric coefficient In the numerical values shown in Table 2, the symbol “E” indicates that the subsequent numerical value is a “power index” with 10 as the base. The numerical value represented by the exponential function with the base of 10 is multiplied by the numerical value before “E”. For example, “1.0E-02” indicates “1.0 × 10 −2 ”.

図26は、前記表1及び表2に示す1対の組合せレンズによって得られる照明光の光量分布を示している。横軸は光軸からの座標を示し、縦軸は光量比(%)を示す。なお、比較のために、図25に、補正を行わなかった場合の照明光の光量分布(ガウス分布)を示す。図25及び図26から分かるように、光量分布補正光学系で補正を行うことにより、補正を行わなかった場合と比べて、略均一化された光量分布が得られている。これにより、光の利用効率を落とさずに、均一なレーザ光でムラなく露光を行うことができる。   FIG. 26 shows a light amount distribution of illumination light obtained by the pair of combination lenses shown in Tables 1 and 2. The horizontal axis indicates coordinates from the optical axis, and the vertical axis indicates the light amount ratio (%). For comparison, FIG. 25 shows a light amount distribution (Gaussian distribution) of illumination light when correction is not performed. As can be seen from FIGS. 25 and 26, the light amount distribution correction optical system corrects the light amount distribution which is substantially uniform as compared with the case where the correction is not performed. Thereby, it is possible to perform exposure with uniform laser light without reducing the use efficiency of light, without causing any unevenness.

<現像工程>
前記現像工程は、前記露光工程により前記パターン形成材料における感光層を露光し、該感光層の露光した領域を硬化させた後、未硬化領域を除去することにより現像し、レジストパターンを形成する工程である。
<Development process>
The developing step is a step of exposing the photosensitive layer in the pattern forming material by the exposing step, curing the exposed region of the photosensitive layer, and developing by removing an uncured region to form a resist pattern. It is.

前記未硬化領域の除去方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、現像液を用いて除去する方法などが挙げられる。なお、この未硬化領域の除去の際にレジストの残渣を生じることがあるが、後述のレジストパターン整形工程により、残渣の除去を行うので、現像工程で厳密に除去を行う必要がない。そのため、例えば現像液への浸漬時間を最小限に抑えることができ、架橋部の欠けや膨潤、基体からの剥離などの不具合を良好に防止することができる。   There is no restriction | limiting in particular as the removal method of the said unhardened area | region, According to the objective, it can select suitably, For example, the method etc. which remove using a developing solution are mentioned. Resist residues may be generated during the removal of the uncured region. However, since the residues are removed by a resist pattern shaping process described later, it is not necessary to strictly remove the development process. Therefore, for example, the immersion time in the developing solution can be minimized, and problems such as chipping and swelling of the cross-linked portion and peeling from the substrate can be prevented satisfactorily.

前記現像液としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、アルカリ性水溶液、水系現像液、有機溶剤などが挙げられ、これらの中でも、弱アルカリ性の水溶液が好ましい。該弱アルカリ水溶液の塩基成分としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナトリウム、リン酸カリウム、ピロリン酸ナトリウム、ピロリン酸カリウム、硼砂などが挙げられる。   There is no restriction | limiting in particular as said developing solution, Although it can select suitably according to the objective, For example, alkaline aqueous solution, an aqueous developing solution, an organic solvent etc. are mentioned, Among these, weakly alkaline aqueous solution is preferable. Examples of the basic component of the weak alkaline aqueous solution include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium phosphate, phosphorus Examples include potassium acid, sodium pyrophosphate, potassium pyrophosphate, and borax.

前記弱アルカリ性の水溶液のpHとしては、例えば、約8〜12が好ましく、約9〜11がより好ましい。前記弱アルカリ性の水溶液としては、例えば、0.1〜5質量%の炭酸ナトリウム水溶液又は炭酸カリウム水溶液などが挙げられる。
前記現像液の温度としては、前記感光層の現像性に合わせて適宜選択することができるが、例えば、約25℃〜40℃が好ましい。
The pH of the weak alkaline aqueous solution is, for example, preferably about 8 to 12, and more preferably about 9 to 11. Examples of the weak alkaline aqueous solution include a 0.1 to 5% by mass aqueous sodium carbonate solution or an aqueous potassium carbonate solution.
The temperature of the developer can be appropriately selected according to the developability of the photosensitive layer, and is preferably about 25 ° C. to 40 ° C., for example.

前記現像液は、界面活性剤、消泡剤、有機塩基(例えば、エチレンジアミン、エタノールアミン、テトラメチルアンモニウムハイドロキサイド、ジエチレントリアミン、トリエチレンペンタミン、モルホリン、トリエタノールアミン等)や、現像を促進させるため有機溶剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミド類、ラクトン類等)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶液と有機溶剤を混合した水系現像液であってもよく、有機溶剤単独であってもよい。   The developer includes a surfactant, an antifoaming agent, an organic base (for example, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, triethanolamine, etc.) and accelerates development. Therefore, it may be used in combination with an organic solvent (for example, alcohols, ketones, esters, ethers, amides, lactones, etc.). The developer may be an aqueous developer obtained by mixing water or an aqueous alkali solution and an organic solvent, or may be an organic solvent alone.

[レジストパターン整形工程]
前記レジストパターン整形工程は、前記現像工程により形成されたレジストパターンに対して、ドライプロセスによりレジストパターンの硬化膜を整形し、更に前記未硬化領域の除去の際に残留した残渣を除去する工程である。この工程により、断面形状が逆台形状のレジストパターンが、矩形状に整形され、かつ基板の表面に残留した残渣を良好に除去することができる。なお、レジストパターンに高い温度がかかると、露光直後よりも樹脂の重合反応が進行し、その結果、硬化膜が硬くなり過ぎて欠けや割れが発生し易くなることがあり、更に高い温度がかかると、硬化膜が炭化してしまうため、該レジストパターン整形工程は、パターン形成材料の溶融温度よりも、低い温度で行うのが好ましく、具体的には150℃以下で行うのが好ましい。
また、パターン整形工程での具体的処理手段としては、ドライプロセスで行うのであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、プラズマエッチング処理、大気圧オゾン表面処理などが挙げられる。
[Resist pattern shaping process]
The resist pattern shaping step is a step of shaping a cured film of the resist pattern by a dry process on the resist pattern formed by the developing step, and further removing a residue remaining when the uncured region is removed. is there. By this step, the resist pattern having the inverted trapezoidal cross-sectional shape is shaped into a rectangular shape, and the residue remaining on the surface of the substrate can be satisfactorily removed. If a high temperature is applied to the resist pattern, the polymerization reaction of the resin proceeds more than immediately after the exposure, and as a result, the cured film becomes too hard and is likely to be chipped or cracked. Then, since the cured film is carbonized, the resist pattern shaping step is preferably performed at a temperature lower than the melting temperature of the pattern forming material, specifically 150 ° C. or less.
Further, the specific processing means in the pattern shaping step is not particularly limited as long as it is a dry process, and can be appropriately selected according to the purpose. For example, plasma etching treatment, atmospheric pressure ozone surface treatment, etc. Can be mentioned.

前記現像後のレジストパターンは、光源に近い部位ほど硬化が進行し易く、基体に近い部位ほど硬化が進行しにくいため、図40(A)に示す如く、硬化膜506は基体側が幅狭で光源に近い表面側が幅広とする逆台形の形状を呈している。また、この逆台形の硬化膜506の間隙内には、現像工程において未硬化領域の除去時に除去しきれなかった残渣508が残留付着している。
上記逆台形状では、硬化膜の間隙が狭くなって、基体に対して垂直方向、即ち硬化層の上面からエッチング液などを流し込んだ際に、表面張力などにより前記間隙にエッチング液がうまく入り込めず、エッチングが良好に行われなくなることがある。また、残渣の存在も、エッチング部位とエッチング液との接触を阻害して、エッチング性を低下させる原因となる。
In the resist pattern after development, curing is more likely to proceed at a portion closer to the light source, and curing is less likely to proceed at a portion closer to the base. Therefore, as shown in FIG. It has an inverted trapezoidal shape in which the surface side close to is wide. In addition, in the gap between the inverted trapezoidal cured films 506, a residue 508 that cannot be removed at the time of removing the uncured region in the development process remains.
With the inverted trapezoidal shape, the gap between the cured films becomes narrow, and when the etchant is poured in a direction perpendicular to the substrate, that is, from the upper surface of the cured layer, the etchant can enter the gaps due to surface tension. Therefore, the etching may not be performed well. Also, the presence of the residue obstructs the contact between the etching site and the etchant and causes the etching property to deteriorate.

レジストパターン整形工程では、図40(B)に示す如く、逆台形状の硬化膜の余分な部位を削って矩形状に整形すると同時に、硬化膜の間隙に残留した残渣を除去する。
従って、エッチング液などが硬化膜の間隙に確実に入り込んで、エッチング液とエッチング部位とを確実に接触させることができる。また、ドライプロセスにて処理が行われるので、処理液による硬化膜の膨潤や欠けなどの発生も防ぐことができる。その結果、前記硬化膜の間隙にエッチング液が入り込み易いものとなり、エッチング処理がムラ無く良好に行われ、パターン製品の品質を向上させることができる。
In the resist pattern shaping step, as shown in FIG. 40 (B), the excess portion of the inverted trapezoidal cured film is trimmed into a rectangular shape, and at the same time, the residue remaining in the gap between the cured films is removed.
Therefore, the etching solution or the like can surely enter the gap between the cured films, and the etching solution and the etching site can be reliably brought into contact with each other. In addition, since the treatment is performed in a dry process, the occurrence of swelling or chipping of the cured film due to the treatment liquid can be prevented. As a result, the etchant can easily enter the gaps between the cured films, the etching process can be performed satisfactorily and the quality of the pattern product can be improved.

<プラズマエッチング処理>
前記プラズマエッチング処理は、減圧下で行うのが好ましく、基板を配置したチャンバー内を真空引きした後、該チャンバー内にオゾンガス、Arガス、活性ガスのOガス、CFガスなどの処理ガスを導入し、加電圧をかけることで、プラズマ状態を発生させ、前記処理ガスをイオン化し、イオン化した処理ガスを物理的に衝突させ、また活性ガスの場合は、化学反応させることにより、基板上のレジストパターンに対してエッチング加工を行うものである。このように、ドライプロセスにて行うので、硬化膜の膨潤や欠けを防止して、高精度な整形が可能となる。また、減圧下で行うことにより、高密度プラズマを効率的に発生させて、エッチング処理を高精度かつ効率的に行うことができる。
<Plasma etching process>
The plasma etching process is preferably performed under reduced pressure, and after evacuating the chamber in which the substrate is placed, a processing gas such as ozone gas, Ar gas, active gas O 2 gas, or CF 4 gas is introduced into the chamber. By introducing and applying a voltage, a plasma state is generated, the process gas is ionized, the ionized process gas is physically collided, and in the case of an active gas, a chemical reaction is performed on the substrate. Etching is performed on the resist pattern. As described above, since the dry process is performed, the cured film can be prevented from swelling and chipping and can be shaped with high accuracy. In addition, by performing under reduced pressure, high-density plasma can be efficiently generated, and the etching process can be performed with high accuracy and efficiency.

<大気圧オゾン表面処理>
前記大気圧オゾン表面処理は、大気圧下で行うのが好ましく、基板を配置したチャンバー内に、Oガスを圧縮しイオン化したオゾンガス(O )を導入し、前記基板の硬化膜と化学反応させることで表面処理を行い、レジストパターン整形が行われる。当該大気圧オゾン表面処理では、常に大気圧の状態で処理ガスをチャンバー内に導入すればよいので、チャンバー内の真空引きをする必要がなく、該真空引きの時間を節約して、作業効率を向上させることができる。また、この場合も、ドライプロセスにて行うので、硬化膜の膨潤や欠けを防止して、高精度な整形が可能となる。
<Atmospheric pressure ozone surface treatment>
The atmospheric ozone surface treatment is preferably carried out under atmospheric pressure, in a chamber in which the substrate is placed, O 2 gas is compressed by introducing ionized ozone gas (O 3 2), the cured film and chemistry of the substrate Surface treatment is performed by reacting, and resist pattern shaping is performed. In the atmospheric pressure ozone surface treatment, it is only necessary to always introduce the treatment gas into the chamber under atmospheric pressure, so there is no need to evacuate the chamber, saving time for evacuation and improving work efficiency. Can be improved. Also in this case, since it is performed by a dry process, the cured film can be prevented from swelling and chipping, and high-precision shaping is possible.

[その他の工程]
前記その他の工程としては、特に制限はなく、公知のパターン形成における工程の中から適宜選択することが挙げられるが、例えば、エッチング工程、めっき工程などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
プリント配線板の製造を図38に示すサブトラクティブ法で行う場合においては、前記レジストパターン整形工程後にエッチング工程が行われ、図39に示すセミアディティブ法で行う場合においては、前記レジストパターン整形工程後にめっき工程及びエッチング工程が行われる。
[Other processes]
There is no restriction | limiting in particular as said other process, Although selecting suitably from the process in well-known pattern formation is mentioned, For example, an etching process, a plating process, etc. are mentioned. These may be used alone or in combination of two or more.
When the printed wiring board is manufactured by the subtractive method shown in FIG. 38, the etching process is performed after the resist pattern shaping step. When the semi-additive method shown in FIG. 39 is used, the etching process is performed after the resist pattern shaping step. A plating process and an etching process are performed.

<エッチング工程>
前記エッチング工程としては、公知のエッチング処理方法の中から適宜選択した方法により行うことができる。
前記エッチング処理に用いられるエッチング液としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記金属層が銅で形成されている場合には、塩化第二銅溶液、塩化第二鉄溶液、アルカリエッチング溶液、過酸化水素系エッチング液などが挙げられ、これらの中でも、エッチングファクターの点から塩化第二鉄溶液が好ましい。
前記エッチング工程によりエッチング処理した後に前記パターンを除去することにより、前記基体の表面に永久パターンを形成することができる。
前記永久パターンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、配線パターンなどが好適に挙げられる。
<めっき工程>
前記めっき工程としては、公知のめっき処理の中から適宜選択した方法により行うことができる。
前記めっき処理としては、例えば、硫酸銅めっき、ピロリン酸銅めっき等の銅めっき、ハイフローはんだめっき等のはんだめっき、ワット浴(硫酸ニッケル−塩化ニッケル)めっき、スルファミン酸ニッケル等のニッケルめっき、ハード金めっき、ソフト金めっき等の金めっきなど処理が挙げられる。
前記めっき工程によりめっき処理した後に前記パターンを除去することにより、また更に必要に応じて不要部をエッチング処理等で除去することにより、前記基体の表面に永久パターンを形成することができる。
<Etching process>
The etching step can be performed by a method appropriately selected from known etching methods.
There is no restriction | limiting in particular as an etching liquid used for the said etching process, Although it can select suitably according to the objective, For example, when the said metal layer is formed with copper, a cupric chloride solution, Examples thereof include a ferric chloride solution, an alkali etching solution, and a hydrogen peroxide-based etching solution. Among these, a ferric chloride solution is preferable from the viewpoint of an etching factor.
A permanent pattern can be formed on the surface of the substrate by removing the pattern after performing the etching process in the etching step.
There is no restriction | limiting in particular as said permanent pattern, According to the objective, it can select suitably, For example, a wiring pattern etc. are mentioned suitably.
<Plating process>
The plating step can be performed by a method appropriately selected from known plating processes.
Examples of the plating treatment include copper plating such as copper sulfate plating and copper pyrophosphate plating, solder plating such as high flow solder plating, watt bath (nickel sulfate-nickel chloride) plating, nickel plating such as nickel sulfamate, and hard gold. Examples of the treatment include gold plating such as plating and soft gold plating.
A permanent pattern can be formed on the surface of the substrate by removing the pattern after plating by the plating step, and further removing unnecessary portions by etching or the like as necessary.

〔プリント配線板の製造方法〕
本発明のパターン形成方法は、プリント配線板の製造に好適に用いることができる。以下、本発明のパターン形成方法を利用したプリント配線板の製造方法の一例について説明する。
[Method of manufacturing printed wiring board]
The pattern formation method of this invention can be used suitably for manufacture of a printed wiring board. Hereinafter, an example of the manufacturing method of the printed wiring board using the pattern formation method of this invention is demonstrated.

(1)積層工程
まずスルーホールを有し、表面が金属めっき層で覆われたプリント配線板形成用基板を用意する。前記プリント配線板形成用基板としては、例えば、銅張積層基板及びガラス−エポキシなどの絶縁基材に銅めっき層を形成した基板、又は、これらの基板に層間絶縁膜を積層し、銅めっき層を形成した基板(積層基板)を用いることができる。
(1) Lamination process First, a printed wiring board forming substrate having through holes and having a surface covered with a metal plating layer is prepared. As the printed wiring board forming substrate, for example, a copper-clad laminated substrate and a substrate in which a copper plating layer is formed on an insulating base material such as glass-epoxy, or an interlayer insulating film is laminated on these substrates to form a copper plating layer A substrate (laminated substrate) on which is formed can be used.

次に、前記パターン形成材料上に保護フィルムを有する場合には、該保護フィルムを剥離して、前記パターン形成材料における感光層が前記プリント配線板形成用基板の表面に接するようにして加圧ローラを用いて圧着する。これにより、前記プリント配線板形成用基板と前記積層体とをこの順に有する積層体が得られる。
前記パターン形成材料の積層温度としては、特に制限はなく、例えば、室温(15〜30℃)、又は加熱下(30〜180℃)が挙げられ、これらの中でも、加温下(60〜140℃)が好ましい。
前記圧着ロールのロール圧としては、特に制限はなく、例えば、0.1〜1MPaが好ましい。
前記圧着の速度としては、特に制限はなく、1〜3m/分が好ましい。
また、前記プリント配線板形成用基板を30〜60℃に予備加熱しておいてもよく、また、減圧下で積層してもよい。
Next, when a protective film is provided on the pattern forming material, the protective film is peeled off so that the photosensitive layer in the pattern forming material is in contact with the surface of the printed wiring board forming substrate. Crimp using the. Thereby, the laminated body which has the said board | substrate for printed wiring board formation and the said laminated body in this order is obtained.
There is no restriction | limiting in particular as lamination | stacking temperature of the said pattern formation material, For example, room temperature (15-30 degreeC) or under heating (30-180 degreeC) is mentioned, Among these, under heating (60-140 degreeC) ) Is preferred.
There is no restriction | limiting in particular as roll pressure of the said crimping | compression-bonding roll, For example, 0.1-1 Mpa is preferable.
There is no restriction | limiting in particular as the speed | rate of the said crimping | compression-bonding, and 1-3 m / min is preferable.
Further, the printed wiring board forming substrate may be preheated to 30 to 60 ° C., or may be laminated under reduced pressure.

(2)露光工程
次に、前記積層体の基体とは反対側の面から、光を照射して感光層を硬化させる。
なお、この際、必要に応じて(例えば、支持体の光透過性が不十分な場合など)支持体を剥離してから露光を行ってもよい。
なお、前記支持体の除去は、露光工程後に行ってもよく、前記(1)積層工程後に行ってもよい。
(2) Exposure process Next, the photosensitive layer is cured by irradiating light from the surface of the laminate opposite to the substrate.
At this time, exposure may be performed after peeling the support as necessary (for example, when the light transmittance of the support is insufficient).
The removal of the support may be performed after the exposure process or after the (1) lamination process.

(3)現像工程
前記プリント配線板形成用基板上の感光層の未硬化領域を、適当な現像液にて溶解除去して、配線パターン形成領域の硬化層と、テント形成領域の硬化層のパターンを形成し、前記プリント配線板形成用基板の表面に金属層を露出させる。
また、現像後に必要に応じて後加熱処理や後露光処理によって、硬化部の硬化反応を更に促進させる処理をおこなってもよい。現像は上記のようなウエット現像法であってもよく、ドライ現像法であってもよい。
(3) Development step The uncured region of the photosensitive layer on the printed wiring board forming substrate is removed by dissolution with an appropriate developer, and the pattern of the cured layer in the wiring pattern formation region and the cured layer in the tent formation region And a metal layer is exposed on the surface of the printed wiring board forming substrate.
Moreover, you may perform the process which further accelerates | stimulates the hardening reaction of a hardening part by post-heat processing or post-exposure processing as needed after image development. The development may be a wet development method as described above or a dry development method.

(4)レジストパターン整形工程
前記現像工程で形成されたレジストパターンは、図40(A)に示す如く、断面形状が逆台形状となり、金属層の表面には、残渣が付着している。レジストパターン整形工程では、この台形状の硬化膜の余分な部位を削って矩形状に整形すると同時に、金属層の表面に付着した残渣を除去する(図40(B))。
(5)配線部形成工程
前記レジストパターン整形工程にて整形したレジストパターンを用いて、前記プリント配線板形成用基板をエッチング処理した後に硬化した前記感光層を剥離する方法(例えば、図38に示すサブトラクティブ法)、または、めっき処理した後に硬化した前記感光層を剥離し、不要な銅箔層をエッチング処理する方法(例えば図39に示すセミアディティブ法)により処理することにより、配線部を形成することができる。
これらの中でも、管理が容易で技術レベルが高い、配線部を歩溜まりよく作製できる、配線部がそれほど微細ではない回路基板を低コストに作製できるという観点から、前記サブトラクティブ法が好ましいが、配線部が微細で、より解像度の高いパターンを形成する場合には、前記セミアディティブ法が好ましい。
(4) Resist Pattern Shaping Step The resist pattern formed in the developing step has an inverted trapezoidal cross section as shown in FIG. 40A, and residues are attached to the surface of the metal layer. In the resist pattern shaping step, the excess portion of the trapezoidal cured film is cut and shaped into a rectangular shape, and at the same time, the residue attached to the surface of the metal layer is removed (FIG. 40B).
(5) Wiring portion forming step A method of peeling the cured photosensitive layer after etching the printed wiring board forming substrate using the resist pattern shaped in the resist pattern shaping step (for example, as shown in FIG. 38) Subtractive method), or the photosensitive layer cured after plating is peeled off, and an unnecessary copper foil layer is processed by etching (for example, the semi-additive method shown in FIG. 39) to form a wiring portion. can do.
Among these, the subtractive method is preferable from the viewpoint of easy management and high technical level, capable of producing the wiring part with a high yield, and producing a circuit board with a very small wiring part at low cost. The semi-additive method is preferred when forming a pattern with finer portions and higher resolution.

前記エッチング処理を行うエッチング液としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記金属層が銅で形成されている場合には、塩化第二銅溶液、塩化第二鉄溶液、アルカリエッチング溶液、過酸化水素系エッチング液などが挙げられ、これらの中でも、エッチングファクターの点から塩化第二鉄溶液が好ましい。   There is no restriction | limiting in particular as etching liquid which performs the said etching process, Although it can select suitably according to the objective, For example, when the said metal layer is formed with copper, a cupric chloride solution, chloride, A ferric chloride solution, an alkaline etching solution, a hydrogen peroxide-based etching solution, and the like can be given. Among these, a ferric chloride solution is preferable from the viewpoint of an etching factor.

前記硬化した感光層を剥離するには、強アルカリ水溶液などで処理し、プリント配線基板上から剥離片として除去する。
前記強アルカリ水溶液における塩基成分としては、特に制限はなく、例えば、水酸化ナトリウム、水酸化カリウムなどが挙げられる。
前記強アルカリ水溶液のpHとしては、例えば、約12〜14が好ましく、約13〜14がより好ましい。
前記強アルカリ水溶液としては、特に制限はなく、例えば、1〜10質量%の水酸化ナトリウム水溶液又は水酸化カリウム水溶液などが挙げられる。
In order to peel off the cured photosensitive layer, it is treated with a strong alkaline aqueous solution or the like and removed as a peeled piece from the printed wiring board.
There is no restriction | limiting in particular as a base component in the said strong alkali aqueous solution, For example, sodium hydroxide, potassium hydroxide, etc. are mentioned.
As pH of the said strong alkali aqueous solution, about 12-14 are preferable, for example, and about 13-14 are more preferable.
There is no restriction | limiting in particular as said strong alkali aqueous solution, For example, 1-10 mass% sodium hydroxide aqueous solution or potassium hydroxide aqueous solution etc. are mentioned.

また、プリント配線板は、多層構成のプリント配線板であってもよい。
なお、前記パターン形成材料は上記のエッチングプロセスのみでなく、めっきプロセスに使用してもよい。前記めっき法としては、例えば、硫酸銅めっき、ピロリン酸銅めっき等の銅めっき、ハイフローはんだめっき等のはんだめっき、ワット浴(硫酸ニッケル−塩化ニッケル)めっき、スルファミン酸ニッケル等のニッケルめっき、ハード金めっき、ソフト金めっき等の金めっきなどが挙げられる。
The printed wiring board may be a multilayer printed wiring board.
In addition, you may use the said pattern formation material not only for said etching process but for a plating process. Examples of the plating method include copper plating such as copper sulfate plating and copper pyrophosphate plating, solder plating such as high flow solder plating, watt bath (nickel sulfate-nickel chloride) plating, nickel plating such as nickel sulfamate, and hard gold. Examples thereof include gold plating such as plating and soft gold plating.

以下、実施例により本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

(実施例1)
本発明のパターン形成方法を用いて、サブトラクティブ法により、プリント基板を製造し、その性能を評価した。
<積層体の製造>
−パターン形成材料の製造−
前記支持体としての16μm厚のポリエチレンテレフタレートフィルム(東レ社製、16QS52)上に下記の組成からなる感光性樹脂組成物溶液を塗布し乾燥させて、前記支持体上に15μm厚の感光層を形成し、前記パターン形成材料を製造した。
Example 1
Using the pattern forming method of the present invention, a printed circuit board was manufactured by a subtractive method, and its performance was evaluated.
<Manufacture of laminates>
-Production of pattern forming material-
A photosensitive resin composition solution having the following composition is applied onto a 16 μm-thick polyethylene terephthalate film (manufactured by Toray Industries, Inc., 16QS52) as the support, and dried to form a 15 μm-thick photosensitive layer on the support. Then, the pattern forming material was manufactured.

[感光性樹脂組成物溶液の組成]
・フェノチアジン 0.0049質量部
・メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合体組成(質量比):29/19/52、質量平均分子量:60,000、酸価189) 11.8質量部
・下記構造式(78)で表される重合性モノマー 5.6質量部
・ヘキサメチレンジイソシアネートとテトラエチレンオキシドモノメタクリレートの1/2モル比付加物 5.0質量部
・ドデカプロピレングリコールジアクリレート 0.56重量部
・2,2−ビス(o−クロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール 1.7質量部
・10−ブチル−2−クロロアクリドン 0.09質量部
・マラカイトグリーンシュウ酸塩 0.016質量部
・ロイコクリスタルバイオレット 0.1質量部
・メチルエチルケトン 40質量部
・1−メトキシ−2−プロパノール 20質量部
・フッ素系界面活性剤(大日本インキ社製、F780F) 0.021質量部
なお、前記フェノチアジンは、前記重合禁止剤であり、分子内に芳香環、複素環、及びイミノ基を有する化合物である。
[Composition of photosensitive resin composition solution]
-Phenothiazine 0.0049 part by mass-Methacrylic acid / methyl methacrylate / styrene copolymer (copolymer composition (mass ratio): 29/19/52, mass average molecular weight: 60,000, acid value 189) 11.8 mass Part, polymerizable monomer represented by the following structural formula (78) 5.6 parts by mass, ½ molar ratio adduct of hexamethylene diisocyanate and tetraethylene oxide monomethacrylate 5.0 parts by mass, dodecapropylene glycol diacrylate 56 parts by weight, 2,2-bis (o-chlorophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole 1.7 parts by mass, 10-butyl-2-chloroacridone 0.09 parts by mass, Malachite green oxalate 0.016 parts by mass, leuco crystal violet 0.1 parts by mass, methyl ethyl ketone 0 parts by mass, 1-methoxy-2-propanol 20 parts by mass, fluorine-based surfactant (F780F, manufactured by Dainippon Ink Co., Ltd.) 0.021 parts by mass In addition, the phenothiazine is the polymerization inhibitor and is contained in the molecule. A compound having an aromatic ring, a heterocyclic ring, and an imino group.

但し、構造式(78)中、m+nは、10を表す。 However, m + n represents 10 in Structural Formula (78).

前記パターン形成材料の感光層の上に、前記保護フィルムとして12μm厚のポリプロピレンフィルム(王子製紙株式会社製、アルファンE−501)を積層した。次に、前記基体として、表面を研磨、水洗、乾燥した銅張積層板(スルーホールなし、銅厚み12μm)の表面に、前記パターン形成材料の保護フィルムを剥がしながら、ラミネーター(MODEL8B−720−PH、大成ラミネーター(株)製)を用いて積層させ、前記銅張積層板と、前記感光層と、前記支持体とがこの順に積層された積層体を調製した。圧着条件は、圧着ロール温度105℃、圧着ロール圧力0.3MPa、ラミネート速度1m/分とした。   A 12 μm-thick polypropylene film (manufactured by Oji Paper Co., Ltd., Alphan-501) was laminated as the protective film on the photosensitive layer of the pattern forming material. Next, a laminator (MODEL8B-720-PH) was used as the substrate while peeling the protective film of the pattern forming material on the surface of a copper clad laminate (no through-hole, copper thickness 12 μm) polished, washed with water and dried. , Manufactured by Taisei Laminator Co., Ltd.) to prepare a laminate in which the copper-clad laminate, the photosensitive layer, and the support were laminated in this order. The pressure bonding conditions were a pressure roll temperature of 105 ° C., a pressure roll pressure of 0.3 MPa, and a laminating speed of 1 m / min.

前記積層体の前記感光層について、下記の方法により最短現像時間、及び感度(感光層を硬化させるために必要な光エネルギー量)を測定した。結果を表3に示す。   With respect to the photosensitive layer of the laminate, the shortest development time and sensitivity (the amount of light energy necessary for curing the photosensitive layer) were measured by the following methods. The results are shown in Table 3.

(1)最短現像時間の測定方法
前記積層体について、感光層の最短現像時間を測定した。
510mm×610mmの前記積層体から、前記支持体を剥がし取り、前記感光層の全面に30℃の1質量%炭酸ナトリウム水溶液を0.15MPaの圧力にてスプレーし、炭酸ナトリウム水溶液のスプレー開始から銅張積層板上の感光層が溶解除去されるまでに要した時間を測定し、これを最短現像時間とした。この測定の結果、前記感光層の最短現像時間は、7秒であった。結果を表3に示す。
(1) Measuring method of the shortest development time About the said laminated body, the shortest development time of the photosensitive layer was measured.
The support is peeled off from the laminate of 510 mm × 610 mm, and a 1 mass% sodium carbonate aqueous solution at 30 ° C. is sprayed on the entire surface of the photosensitive layer at a pressure of 0.15 MPa. The time required until the photosensitive layer on the stretched laminate was dissolved and removed was measured, and this was taken as the shortest development time. As a result of this measurement, the minimum development time of the photosensitive layer was 7 seconds. The results are shown in Table 3.

(2)感度の測定
前記調製した積層体におけるパターン形成材料の感光層に対し、支持体側から、以下に説明するパターン形成装置を用いて、0.1mJ/cmから21/2倍間隔で100mJ/cmまでの光エネルギー量の異なる光を照射して露光し、前記感光層の一部の領域を硬化させた。室温にて10分間静置した後、前記積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取り、銅張積層板上の感光層の全面に、30℃の1質量%炭酸ナトリウム水溶液をスプレー圧0.15MPaにて前記(1)で求めた最短現像時間の2倍の時間スプレーし、未硬化の領域を溶解除去して、残った硬化領域の厚みを測定した。次いで、光の照射量と、硬化層の厚さとの関係をプロットして感度曲線を得た。こうして得た感度曲線から硬化領域の厚さが15μmとなった時の光エネルギー量を、感光層を硬化させるために必要な光エネルギー量とした。
この結果、前記感光層を硬化させるために必要な光エネルギー量(感度)は、12mJ/cmであった。結果を表3に示す。
(2) Measurement of sensitivity With respect to the photosensitive layer of the pattern forming material in the prepared laminate, from the support side, a pattern forming apparatus described below is used, with an interval of 0.1 mJ / cm 2 to 2 1/2 times. Exposure was performed by irradiating with light having different light energy amounts up to 100 mJ / cm 2, and a part of the photosensitive layer was cured. After standing at room temperature for 10 minutes, the polyethylene terephthalate film (support) is peeled off from the laminate, and a 1 mass% sodium carbonate aqueous solution at 30 ° C. is sprayed on the entire surface of the photosensitive layer on the copper clad laminate. Spraying was performed at a time of .15 MPa twice as long as the shortest development time determined in (1) above, the uncured area was dissolved and removed, and the thickness of the remaining cured area was measured. Subsequently, the relationship between the light irradiation amount and the thickness of the cured layer was plotted to obtain a sensitivity curve. From the sensitivity curve thus obtained, the amount of light energy when the thickness of the cured region was 15 μm was determined as the amount of light energy necessary for curing the photosensitive layer.
As a result, the amount of light energy (sensitivity) necessary for curing the photosensitive layer was 12 mJ / cm 2 . The results are shown in Table 3.

<パターン形成>
前記積層体について、下記のパターン形成装置を用いて、下記方法によりパターン形成を行い、得られたレジストパターンに対してレジストパターン整形を行った後、整形後のレジストパターンについて、整形性、解像度、及び密着性を評価した。結果を表3に示す。
−パターン形成装置−
前記光照射手段として図27〜32に示す合波レーザ光源と、前記光変調手段として図4に示す主走査方向にマイクロミラーが1024個配列されたマイクロミラー列が、副走査方向に768組配列された内、1024個×256列のみを駆動するように制御したDMD50と、図13に示した一方の面がトーリック面であるマイクロレンズ474をアレイ状に配列したマイクロレンズアレイ472及び該マイクロレンズアレイを通した光を前記パターン形成材料に結像する光学系480、482とを有するパターン形成装置を用いた。
<Pattern formation>
About the laminate, using the following pattern forming apparatus, pattern formation by the following method, after performing the resist pattern shaping for the obtained resist pattern, for the shaped resist pattern, shaping, resolution, And the adhesion was evaluated. The results are shown in Table 3.
-Pattern forming device-
27 to 32 as the light irradiating means, and 768 pairs of micromirror arrays in which 1024 micromirrors are arranged in the main scanning direction shown in FIG. 4 as the light modulating means are arranged in the sub-scanning direction. The microlens array 472 in which the DMD 50 controlled to drive only 1024 × 256 rows and the microlenses 474 whose one surface is a toric surface shown in FIG. A pattern forming apparatus having optical systems 480 and 482 for imaging light passing through the array onto the pattern forming material was used.

また、前記マイクロレンズにおけるトーリック面は以下に説明するものを用いた。
まず、DMD50の前記描素部としてのマイクロレンズ474の出射面における歪みを補正するため、該出射面の歪みを測定した。結果を図14に示した。図14においては、反射面の同じ高さ位置を等高線で結んで示してあり、等高線のピッチは5nmである。なお同図に示すx方向及びy方向は、マイクロミラー62の2つ対角線方向であり、マイクロミラー62はy方向に延びる回転軸を中心として回転する。また、図15の(A)及び(B)にはそれぞれ、上記x方向、y方向に沿ったマイクロミラー62の反射面の高さ位置変位を示した。
The toric surface of the microlens described below was used.
First, in order to correct the distortion on the exit surface of the microlens 474 as the picture element portion of the DMD 50, the strain on the exit surface was measured. The results are shown in FIG. In FIG. 14, the same height positions of the reflecting surfaces are shown connected by contour lines, and the pitch of the contour lines is 5 nm. Note that the x direction and the y direction shown in the figure are two diagonal directions of the micromirror 62, and the micromirror 62 rotates around a rotation axis extending in the y direction. 15A and 15B show the height position displacement of the reflecting surface of the micromirror 62 along the x direction and the y direction, respectively.

図14及び図15に示した通り、マイクロミラー62の反射面には歪みが存在し、そして特にミラー中央部に注目してみると、1つの対角線方向(y方向)の歪みが、別の対角線方向(x方向)の歪みよりも大きくなっていることが判った。このため、このままではマイクロレンズアレイ55のマイクロレンズ55aで集光されたレーザ光Bの集光位置における形状が歪んでしまうことが判った。   As shown in FIGS. 14 and 15, there is distortion on the reflection surface of the micromirror 62, and when attention is paid particularly to the center of the mirror, distortion in one diagonal direction (y direction) is different from that in the other diagonal line. It was found that the strain was larger than the distortion in the direction (x direction). For this reason, it has been found that the shape of the laser beam B collected by the microlens 55a of the microlens array 55 is distorted in this state.

図16の(A)及び(B)には、マイクロレンズアレイ55全体の正面形状及び側面形状をそれぞれ詳しく示した。これらの図には、マイクロレンズアレイ55の各部の寸法も記入してあり、それらの単位はmmである。先に図4を参照して説明したようにDMD50の1024個×256列のマイクロミラー62が駆動されるものであり、それに対応させてマイクロレンズアレイ55は、横方向に1024個並んだマイクロレンズ55aの列を縦方向に256列並設して構成されている。なお、同図(A)では、マイクロレンズアレイ55の並び順を横方向についてはjで、縦方向についてはkで示している。   FIGS. 16A and 16B show the front shape and the side shape of the entire microlens array 55 in detail. In these drawings, the dimensions of each part of the microlens array 55 are also entered, and the unit thereof is mm. As described above with reference to FIG. 4, the 1024 × 256 micromirrors 62 of the DMD 50 are driven. Correspondingly, the microlens array 55 has 1024 microlenses arranged in the horizontal direction. The 55a rows are arranged in parallel in 256 rows in the vertical direction. In FIG. 9A, the arrangement order of the microlens array 55 is indicated by j in the horizontal direction and k in the vertical direction.

また、図17の(A)及び(B)には、マイクロレンズアレイ55における1つのマイクロレンズ55aの正面形状及び側面形状をそれぞれ示した。なお、同図(A)には、マイクロレンズ55aの等高線を併せて示してある。各マイクロレンズ55aの光出射側の端面は、マイクロミラー62の反射面の歪みによる収差を補正する非球面形状とされている。より具体的には、マイクロレンズ55aはトーリックレンズとされており、前記x方向に光学的に対応する方向の曲率半径Rx=−0.125mm、前記y方向に対応する方向の曲率半径Ry=−0.1mmである。   17A and 17B show a front shape and a side shape of one microlens 55a in the microlens array 55, respectively. In FIG. 9A, the contour lines of the micro lens 55a are also shown. The end surface of each microlens 55a on the light emitting side has an aspherical shape that corrects aberration due to distortion of the reflecting surface of the micromirror 62. More specifically, the micro lens 55a is a toric lens, and has a radius of curvature Rx = −0.125 mm in a direction optically corresponding to the x direction and a radius of curvature Ry = − in a direction corresponding to the y direction. 0.1 mm.

したがって、前記x方向及びy方向に平行な断面内におけるレーザ光Bの集光状態は、概略、それぞれ図18の(A)及び(B)に示す通りとなる。つまり、x方向に平行な断面内とy方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ55aの曲率半径がより小であって、焦点距離がより短くなっていることが判る。   Therefore, the condensing state of the laser beam B in the cross section parallel to the x direction and the y direction is roughly as shown in FIGS. 18A and 18B, respectively. That is, when the cross section parallel to the x direction is compared with the cross section parallel to the y direction, the radius of curvature of the microlens 55a is smaller and the focal length is shorter in the latter cross section. I understand that.

なお、マイクロレンズ55aを前記形状とした場合の、該マイクロレンズ55aの集光位置(焦点位置)近傍におけるビーム径を計算機によってシミュレーションした結果を図19a、b、c、及びdに示す。また比較のために、マイクロレンズ55aが曲率半径Rx=Ry=−0.1mmの球面形状である場合について、同様のシミュレーションを行った結果を図20a、b、c及びdに示す。なお、各図におけるzの値は、マイクロレンズ55aのピント方向の評価位置を、マイクロレンズ55aのビーム出射面からの距離で示している。   19A, 19B, 19C, and 19D show simulation results of the beam diameter in the vicinity of the condensing position (focal position) of the microlens 55a when the microlens 55a has the above shape. For comparison, FIGS. 20a, 20b, 20c, and 20d show the results of a similar simulation when the microlens 55a has a spherical shape with a radius of curvature Rx = Ry = −0.1 mm. In addition, the value of z in each figure has shown the evaluation position of the focus direction of the micro lens 55a with the distance from the beam emission surface of the micro lens 55a.

また、前記シミュレーションに用いたマイクロレンズ55aの面形状は、下記計算式で計算される。
The surface shape of the microlens 55a used for the simulation is calculated by the following calculation formula.

但し、前記計算式において、Cxは、x方向の曲率(=1/Rx)を意味し、Cyは、y方向の曲率(=1/Ry)を意味し、Xは、x方向に関するレンズ光軸Oからの距離を意味し、Yは、y方向に関するレンズ光軸Oからの距離を意味する。   In the above formula, Cx means the curvature in the x direction (= 1 / Rx), Cy means the curvature in the y direction (= 1 / Ry), and X is the lens optical axis in the x direction. The distance from O means Y, and Y means the distance from the lens optical axis O in the y direction.

図19a〜dと図20a〜dとを比較すると明らかなように、マイクロレンズ55aを、y方向に平行な断面内の焦点距離がx方向に平行な断面内の焦点距離よりも小さいトーリックレンズとしたことにより、その集光位置近傍におけるビーム形状の歪みが抑制された。この結果、歪みの無い、より高精細なパターンをパターン形成材料150に露光可能となった。また、図19a〜dに示す本実施形態の方が、ビーム径の小さい領域がより広い、すなわち焦点深度がより大であることが判る。   As is clear from a comparison between FIGS. 19a to 19d and FIGS. 20a to 20d, the microlens 55a includes a toric lens in which the focal length in the cross section parallel to the y direction is smaller than the focal length in the cross section parallel to the x direction. As a result, the distortion of the beam shape in the vicinity of the condensing position was suppressed. As a result, the pattern forming material 150 can be exposed to a higher definition pattern without distortion. Moreover, it turns out that the area | region where a beam diameter is small is wider, ie, the depth of focus is larger in this embodiment shown to FIG.

また、マイクロレンズアレイ55の集光位置近傍に配置されたアパーチャアレイ59は、その各アパーチャ59aに、それと対応するマイクロレンズ55aを経た光のみが入射するように配置されたものである。すなわち、このアパーチャアレイ59が設けられていることにより、各アパーチャ59aに、それと対応しない隣接のマイクロレンズ55aからの光が入射することが防止され、消光比が高められる。   In addition, the aperture array 59 disposed in the vicinity of the condensing position of the microlens array 55 is disposed such that only light having passed through the corresponding microlens 55a is incident on each aperture 59a. That is, by providing this aperture array 59, it is possible to prevent light from adjacent microlenses 55a not corresponding to each aperture 59a from entering, and to increase the extinction ratio.

―パターン形成―
前記積層体を製造し、室温(23℃、55%RH)にて10分間静置した。得られた積層体の支持体上から、前記パターン形成装置を用いて、ライン/スペース=1/1でライン幅10μm〜50μmまで5μm刻みで各線幅の露光を行った。この際の露光量は、前記(2)で測定した前記パターン形成材料の感光層を硬化させるために必要な光エネルギー量とした。室温にて10分間静置した後、前記積層体から支持体を剥がし取った。銅張積層板上の感光層の全面に30℃の1質量%炭酸ナトリウム水溶液をスプレー圧0.15MPaにて前記(1)で求めた最短現像時間の2倍の時間スプレーし、未硬化領域を溶解除去した。
―Pattern formation―
The laminate was manufactured and allowed to stand at room temperature (23 ° C., 55% RH) for 10 minutes. From the support of the obtained laminate, exposure was performed for each line width in increments of 5 μm from 10 μm to 50 μm in line width / space = 1/1 using the pattern forming apparatus. The amount of exposure at this time was the amount of light energy necessary for curing the photosensitive layer of the pattern forming material measured in (2). After leaving still at room temperature for 10 minutes, the support body was peeled off from the said laminated body. A 1 mass% sodium carbonate aqueous solution at 30 ° C. is sprayed over the entire surface of the photosensitive layer on the copper clad laminate at a spray pressure of 0.15 MPa for twice the shortest development time determined in (1) above, and the uncured area is Dissolved and removed.

<レジストパターン整形工程>
前記現像後のレジストパターンに対して、ドライプロセスによりプラズマエッチング処理を用いてレジストパターン整形工程を施した。この処理条件としては、基板を配置したチャンバー内を真空引きした後、該チャンバー内にオゾンガスを導入しながら加電圧をかけ、プラズマ状態を発生させることで、基板上のレジストパターンに対して加工を行った。
<Resist pattern shaping process>
The resist pattern after the development was subjected to a resist pattern shaping process using a plasma etching process by a dry process. As the processing conditions, after evacuating the inside of the chamber in which the substrate is placed, applying a voltage while introducing ozone gas into the chamber to generate a plasma state, thereby processing the resist pattern on the substrate. went.

(3)整形性の評価
レジストパターン整形工程後のレジストパターンの形状を観察し、下記基準に基づいて整形性を評価した。なお、レジストパターン整形工程前のレジストパターンと、レジストパターン整形工程後のレジストパターンとをSEM写真などで比較したところ、実施例1では、レジストパターン整形前は、図40(A)に示す如く、レジストパターンの断面形状が逆台形状であり、その間隙に残渣が付着していたが、レジストパターン整形工程を行うことにより、図40(B)に示す如く、レジストパターンの断面形状が矩形に整形されるとともに、残渣も良好に除去された。
−評価基準−
◎ ・・・レジストが矩形になっていて、かつ、パターン間にレジストの残渣がない
○ ・・・レジストが逆台形になっているが、パターン間にレジストの残渣がない
△ ・・・レジストが矩形になっているが、パターン間にレジストの残渣がある
× ・・・レジストが逆台形になっていて、かつ、パターン間にレジストの残渣がある
(3) Evaluation of formability The shape of the resist pattern after the resist pattern shaping step was observed, and the shapeability was evaluated based on the following criteria. In addition, when the resist pattern before the resist pattern shaping step and the resist pattern after the resist pattern shaping step were compared with each other with an SEM photograph or the like, in Example 1, before the resist pattern shaping, as shown in FIG. The cross-sectional shape of the resist pattern was an inverted trapezoidal shape, and residues were attached to the gaps. By performing the resist pattern shaping process, the cross-sectional shape of the resist pattern was shaped into a rectangle as shown in FIG. In addition, the residue was removed well.
-Evaluation criteria-
◎ ・ ・ ・ Resist is rectangular and there is no resist residue between patterns ○ ・ ・ ・ Resist is inverted trapezoid, but there is no resist residue between patterns △ ・ ・ ・ Resist Although it is rectangular, there is resist residue between the patterns. × ・ ・ ・ The resist is inverted trapezoid and there is resist residue between the patterns.

(4)解像度の測定
前記の様にして得られた硬化樹脂パターン付き銅張積層板の表面を光学顕微鏡で観察し、硬化樹脂パターンのラインにツマリ、ヨレ等の異常のない最小のライン幅を測定し、これを解像度とした。該解像度は数値が小さいほど良好である。結果を表3に示す。
(4) Resolution measurement The surface of the copper-clad laminate with a cured resin pattern obtained as described above is observed with an optical microscope, and the cured resin pattern line has a minimum line width free from abnormalities such as tsumari and twist. Measurement was made and this was taken as the resolution. The smaller the numerical value, the better the resolution. The results are shown in Table 3.

(5)密着性の評価
前記と同様に積層体を作製し、室温(23℃、55%RH)にて10分間静置した。得られた積層体の支持体側から、前記パターン形成装置を用いて、L(ライン):S(スペース)=1:5で、ライン幅5μm〜50μmまで5μm刻みで各線幅の露光を行って、各々10本ずつラインを作製した。この際の露光量は、前記で測定した前記パターン形成材料の感光層を硬化させるために必要な光エネルギー量である。室温にて10分間静置した後、前記積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取った。銅張積層板上の感光層の全面に、30℃の1質量%炭酸ナトリウム水溶液をスプレー圧0.15MPaにて前記で求めた最短現像時間の2倍の時間スプレーし、未硬化の領域を溶解除去して、現像処理を行った。次に、前記現像後のレジストパターンに対して、前記と同様にドライプロセスによりプラズマエッチング処理を用いてレジストパターン整形工程を施した。
得られたラインパターンにJISで規格されているセロテープ(登録商標)を貼り、ラインパターンと密着させるために指でセロテープを強く押し付けた後、銅張積層板に垂直な方向にセロテープを引っ張り、引き剥がした。この際に、前記10本中1本でもラインパターンが剥がれれば、NGとする。特に、ラインパターンの先端が剥がれ易いので、先端部を中心に評価を行った。そして、NGとならないライン幅で最小のものを評価結果として、表3に示した。例えば、20μmのラインパターンが2本剥がれ、25μmのラインパターンが1本も剥がれなかった場合には、密着性を25μmと表現した。この値が小さいほど、密着性に優れる。
(5) Evaluation of adhesion The laminate was prepared in the same manner as described above, and was allowed to stand for 10 minutes at room temperature (23 ° C., 55% RH). From the support side of the obtained laminate, using the pattern forming apparatus, L (line): S (space) = 1: 5, line width 5 μm to 50 μm, each line width is exposed in 5 μm increments, Ten lines were prepared for each. The exposure amount at this time is the amount of light energy necessary for curing the photosensitive layer of the pattern forming material measured above. After standing at room temperature for 10 minutes, the polyethylene terephthalate film (support) was peeled off from the laminate. On the entire surface of the photosensitive layer on the copper-clad laminate, a 1% by mass sodium carbonate aqueous solution at 30 ° C. is sprayed at a spray pressure of 0.15 MPa for twice the shortest development time as described above to dissolve uncured regions. After removing, development processing was performed. Next, the resist pattern after the development was subjected to a resist pattern shaping process using a plasma etching process by a dry process as described above.
Apply the JIS-standardized cello tape (registered trademark) to the obtained line pattern, press the cello tape strongly with your finger to bring it into close contact with the line pattern, and then pull and pull the cello tape in the direction perpendicular to the copper-clad laminate. I peeled it off. At this time, if even one of the ten lines is peeled off, it is determined as NG. In particular, since the tip of the line pattern was easily peeled off, the evaluation was performed mainly on the tip. The smallest line width that does not become NG is shown in Table 3 as an evaluation result. For example, when two 20 μm line patterns were peeled off and none of the 25 μm line patterns were peeled off, the adhesion was expressed as 25 μm. The smaller this value, the better the adhesion.

(6)エッチング性の評価
前記と同様に積層体を作製し、室温(23℃、55%RH)にて10分間静置した。得られた積層体の支持体側から、前記パターン形成装置を用いて、L:S=1:1で、ライン幅5μm〜50μmまで5μm刻みで各線幅の露光を行って、各々10本ずつラインを作製した。その後、前記密着性の評価と同様にして、現像処理を行い、レジストパターンを得た。次に、前記現像後のレジストパターンに対して、前記と同様にドライプロセスによりプラズマエッチング処理を用いてレジストパターン整形工程を施した。
前記レジストパターン整形工程を施したレジストパターンを有する積層体に対して、下記のようにしてエッチング処理を行うことにより配線パターンを形成し、該配線パターンの解像度をもとにエッチング性の評価を行った。
前記積層体における露出した銅張積層板の表面に、塩化鉄エッチャント(塩化第二鉄含有エッチング溶液、40°ボーメ、液温40℃)を0.25MPaで、36秒スプレーして、硬化層で覆われていない露出した領域の銅層を溶解除去することによりエッチング処理を行った。次いで、2質量%の水酸化ナトリウム水溶液をスプレーすることにより前記形成したパターンを除去して、表面に前記永久パターンとして銅層の配線パターンを備えたプリント配線板を調製した。該プリント配線基板上の配線パターンを光学顕微鏡で観察し、該配線パターンの最小のライン幅を測定し、エッチング性の評価とした。この最小ライン幅が小さいほど高精細な配線パターンが得られ、エッチング性に優れていることを意味する。実施例1では、解像できる配線パターンの最小ライン幅は20μmであり、エッチング性に極めて優れていた。結果を表3に示す。
(6) Evaluation of etching property A laminate was prepared in the same manner as described above, and was allowed to stand for 10 minutes at room temperature (23 ° C, 55% RH). From the support side of the obtained laminate, using the pattern forming apparatus, the line width is exposed in increments of 5 μm from 5 μm to 50 μm with a line width of 5 μm to 50 μm, and 10 lines each. Produced. Thereafter, in the same manner as in the evaluation of adhesion, development processing was performed to obtain a resist pattern. Next, the resist pattern after the development was subjected to a resist pattern shaping process using a plasma etching process by a dry process as described above.
The laminated body having the resist pattern subjected to the resist pattern shaping step is subjected to an etching process as described below to form a wiring pattern, and the etching property is evaluated based on the resolution of the wiring pattern. It was.
An iron chloride etchant (ferric chloride-containing etching solution, 40 ° Baume, liquid temperature 40 ° C.) is sprayed at 0.25 MPa for 36 seconds on the surface of the exposed copper-clad laminate in the laminate. Etching was performed by dissolving and removing the uncovered exposed copper layer. Next, the formed pattern was removed by spraying a 2% by mass aqueous sodium hydroxide solution to prepare a printed wiring board having a copper layer wiring pattern on the surface as the permanent pattern. The wiring pattern on the printed wiring board was observed with an optical microscope, the minimum line width of the wiring pattern was measured, and the etching property was evaluated. A smaller minimum line width means that a finer wiring pattern can be obtained and the etching property is better. In Example 1, the minimum line width of the resolvable wiring pattern was 20 μm, and the etching property was extremely excellent. The results are shown in Table 3.

(実施例2)
本発明のパターン形成方法を用いて、セミアディティブ法により、プリント基板を製造し、その性能を評価した。
<積層体の製造>
前記実施例1と同様に形成したパターン形成材料を、基体としてスパッタ箔を積層した銅張積層板の表面に積層させて、積層体を調製した。前記スパッタ箔は、銅張積層板の表面に積層したNi層と、その表面に積層した厚さ0.2μmのCu層から成る2層構造としている。
(Example 2)
A printed circuit board was manufactured by a semi-additive method using the pattern forming method of the present invention, and its performance was evaluated.
<Manufacture of laminates>
A pattern-forming material formed in the same manner as in Example 1 was laminated on the surface of a copper-clad laminate in which a sputter foil was laminated as a substrate to prepare a laminate. The sputter foil has a two-layer structure comprising a Ni layer laminated on the surface of a copper clad laminate and a Cu layer having a thickness of 0.2 μm laminated on the surface.

前記と同様に作製した積層体を使用して、実施例1と同様に露光し現像して得られたレジストパターンに対して、実施例1と同様にしてプラズマエッチング処理によりレジストパターン整形工程を行った。レジストパターン整形工程後のレジストパターンについて、実施例1と同様にして、整形性、解像度、及び密着性を評価した。結果を表3に示す。
また、レジストパターン整形工程を施したレジストパターンを有する積層体に対して、下記のようにして、セミアディティブ法におけるめっき処理を行い、めっき性を評価した。
(7)めっき性の評価
−前処理−
前記と同様に積層体を作製し、室温(23℃、55%RH)にて10分間静置した。得られた積層体の支持体側から、前記パターン形成装置を用いて、L:S=1:1で、ライン幅5μm〜50μmまで5μm刻みで各線幅の露光を行って、各々10本ずつラインを作製した。その後、前記と同様にして、現像処理を行い、レジストパターンを得た。次に、前記現像後のレジストパターンに対して、前記と同様にドライプロセスによりプラズマエッチング処理を用いてレジストパターン整形工程を施した。
前記レジストパターン整形工程を施したレジストパターンを純水洗浄した後、メルプレートPC−316(酸性浸漬脱脂剤、メルテックス社製)により脱脂処理を行った。次に、湯洗い、水洗いを行った後、硫酸:純水=1:9の洗浄液により酸洗いを行った。この酸洗いは、酸化膜の除去だけでなく、次工程の硫酸銅めっき浴に対する共洗いを兼ねるものである。
−めっき処理−
前記レジストパターンを、下記組成のめっき液を使用した硫酸銅めっき浴により、めっき処理を行った。
めっき液組成
CuSO・5HO(硫酸銅5水和物、粉末) 75g/l
SO(硫酸) 190g/l
Cl(HCl水溶液) 50mg/l
カバーグリーム CLX−A(メルテックス社製、添加剤) 5ml/l
カバーグリーム CLX−C(メルテックス社製、添加剤) 5ml/l
前記めっき処理を行った後、1次洗浄及び2次洗浄を行った。その後、2質量%の水酸化ナトリウム水溶液をスプレーすることにより前記形成したパターンを除去し、前記エッチング処理を行うことにより、表面に前記永久パターンとして銅層の配線パターンを備えたプリント配線板を調製した。該プリント配線基板上の配線パターンを光学顕微鏡で観察し、該配線パターンの最小のライン幅を測定し、めっき性の評価とした。このライン幅が小さいほど、高精細なめっきパターンが得られ、めっき性に優れていることを意味する。実施例2では、解像できる配線パターンの最小ライン幅は15μmであり、めっき性に極めて優れていた。結果を表3に示す。
Using the laminate produced in the same manner as described above, a resist pattern shaping step is performed by plasma etching in the same manner as in Example 1 on the resist pattern obtained by exposing and developing in the same manner as in Example 1. It was. About the resist pattern after a resist pattern shaping process, it carried out similarly to Example 1, and evaluated the shaping property, the resolution, and adhesiveness. The results are shown in Table 3.
Moreover, with respect to the laminated body which has the resist pattern which performed the resist pattern shaping process, the plating process in a semi-additive method was performed as follows, and plating property was evaluated.
(7) Evaluation of plating properties-Pretreatment-
A laminate was prepared in the same manner as described above and allowed to stand for 10 minutes at room temperature (23 ° C., 55% RH). From the support side of the obtained laminate, using the pattern forming apparatus, the line width is exposed in increments of 5 μm from 5 μm to 50 μm with a line width of 5 μm to 50 μm, and 10 lines each. Produced. Thereafter, development processing was performed in the same manner as described above to obtain a resist pattern. Next, the resist pattern after the development was subjected to a resist pattern shaping process using a plasma etching process by a dry process as described above.
The resist pattern subjected to the resist pattern shaping step was washed with pure water, and then degreased with Melplate PC-316 (acid immersion degreasing agent, manufactured by Meltex). Next, after washing with hot water and water, pickling was performed with a cleaning solution of sulfuric acid: pure water = 1: 9. This pickling serves not only to remove the oxide film, but also to co-wash the copper sulfate plating bath in the next step.
-Plating treatment-
The resist pattern was plated with a copper sulfate plating bath using a plating solution having the following composition.
Plating solution composition CuSO 4 · 5H 2 O (copper sulfate pentahydrate, powder) 75 g / l
H 2 SO 4 (sulfuric acid) 190 g / l
Cl (HCl aqueous solution) 50 mg / l
Cover Grime CLX-A (Meltex, additive) 5 ml / l
Cover Grime CLX-C (Meltex, additive) 5ml / l
After the plating treatment, primary cleaning and secondary cleaning were performed. Thereafter, the formed pattern is removed by spraying a 2% by mass aqueous sodium hydroxide solution, and the etching process is performed to prepare a printed wiring board having a copper layer wiring pattern on the surface as the permanent pattern. did. The wiring pattern on the printed wiring board was observed with an optical microscope, the minimum line width of the wiring pattern was measured, and the plating property was evaluated. A smaller line width means that a higher-definition plating pattern is obtained and the plating property is excellent. In Example 2, the minimum line width of the resolvable wiring pattern was 15 μm, and the plating property was extremely excellent. The results are shown in Table 3.

(実施例3)
実施例1において、レジストパターン整形工程を、下記に示す大気圧オゾン表面処理で行った以外は、実施例1と同様にして、パターン形成材料、積層体を製造し、この積層体を露光し現像してレジストパターンを得た。前記大気圧オゾン表面処理により得られたレジストパターンについて、整形性、解像度及び密着性を評価した。
<大気圧オゾン表面処理>
前記現像後のレジストパターンに対して、大気圧下において、基板を配置したチャンバー内に、Oガスを圧縮しイオン化したオゾンガス(O )を導入し、前記基板の硬化膜と化学反応させることで表面処理を行い、レジストパターン整形を施した。
次に、実施例1と同様にして、サブトラクティブ法により、レジストパターン整形工程を施したレジストパターンを有する積層体に対して、エッチング処理を行い、形成される配線パターンの最小ライン幅をもとに、エッチング性を評価した。結果を表3に示す。
(Example 3)
In Example 1, except that the resist pattern shaping step was performed by the atmospheric pressure ozone surface treatment described below, a pattern forming material and a laminate were produced in the same manner as in Example 1, and this laminate was exposed and developed. Thus, a resist pattern was obtained. The resist pattern obtained by the atmospheric pressure ozone surface treatment was evaluated for formability, resolution and adhesion.
<Atmospheric pressure ozone surface treatment>
An ozone gas (O 3 2 ) obtained by compressing and ionizing O 2 gas is introduced into the chamber in which the substrate is placed, under atmospheric pressure, and chemically reacted with the cured film of the substrate with respect to the resist pattern after development. Then, the surface treatment was performed and the resist pattern was shaped.
Next, in the same manner as in Example 1, the laminated body having the resist pattern subjected to the resist pattern shaping process is etched by the subtractive method to obtain the minimum line width of the formed wiring pattern. In addition, the etching property was evaluated. The results are shown in Table 3.

(実施例4)
実施例2において、レジストパターン整形工程を、実施例3に示す大気圧オゾン表面処理で行った以外は、実施例2と同様にしてパターン形成材料、積層体を製造し、この積層体を露光し現像してレジストパターンを得た。前記大気圧オゾン表面処理により得られたレジストパターンについて、解像度、密着性及び整形性を評価した。
次に、実施例2と同様にして、セミアディティブ法により、レジストパターン整形工程を施したレジストパターンを有する積層体に対して、めっき処理を行い、形成される配線パターンの最小ライン幅をもとに、めっき性を評価した。結果を表3に示す。
Example 4
In Example 2, except that the resist pattern shaping step was performed by the atmospheric pressure ozone surface treatment shown in Example 3, a pattern forming material and a laminate were produced in the same manner as in Example 2, and this laminate was exposed. Development was performed to obtain a resist pattern. With respect to the resist pattern obtained by the atmospheric pressure ozone surface treatment, the resolution, adhesion and shaping were evaluated.
Next, in the same manner as in Example 2, the laminated body having the resist pattern subjected to the resist pattern shaping process is plated by the semi-additive method, and the minimum line width of the formed wiring pattern is determined. Then, the plating property was evaluated. The results are shown in Table 3.

(比較例1)
実施例1において、レジストパターン整形工程を行わなかった以外は、実施例1と同様にしてパターン形成材料、積層体を製造し、この積層体を露光し現像してレジストパターンを得た。前記得られたレジストパターンについて、整形性、解像度及び密着性を評価した。また、比較例における整形性は、レジストパターン整形を行っていないレジストパターンの形状で評価した。
次に、実施例1と同様にして得られたレジストパターンに対して、実施例1と同様にして、サブトラクティブ法によりエッチング処理を行い、形成される配線パターンの最小ライン幅をもとに、エッチング性を評価した。結果を表3に示す。
(Comparative Example 1)
In Example 1, except that the resist pattern shaping step was not performed, a pattern forming material and a laminate were produced in the same manner as in Example 1, and this laminate was exposed and developed to obtain a resist pattern. About the obtained resist pattern, the formability, the resolution, and the adhesiveness were evaluated. Further, the formability in the comparative example was evaluated by the shape of the resist pattern that was not subjected to resist pattern shaping.
Next, the resist pattern obtained in the same manner as in Example 1 is etched by the subtractive method in the same manner as in Example 1, and based on the minimum line width of the formed wiring pattern, The etching property was evaluated. The results are shown in Table 3.

(比較例2)
実施例2において、レジストパターン整形工程を行わなかった以外は、実施例2と同様にしてパターン形成材料、積層体を製造し、この積層体を露光し現像してレジストパターンを得た。前記得られたレジストパターンについて、解像度、密着性及び整形性(整形前のレジストパターン形状)を評価した。
次に、実施例2と同様にして得られたレジストパターンに対して、実施例2と同様にして、セミアディティブ法によりめっき処理を行い、形成される配線パターンの最小ライン幅をもとに、めっき性を評価した。結果を表3に示す。
(Comparative Example 2)
In Example 2, a pattern forming material and a laminate were produced in the same manner as in Example 2 except that the resist pattern shaping step was not performed, and this laminate was exposed and developed to obtain a resist pattern. The obtained resist pattern was evaluated for resolution, adhesion, and shaping (resist pattern shape before shaping).
Next, the resist pattern obtained in the same manner as in Example 2 is subjected to a plating process by a semi-additive method in the same manner as in Example 2, and based on the minimum line width of the formed wiring pattern, The plating property was evaluated. The results are shown in Table 3.

(比較例3)
実施例3において、レジストパターン整形工程を行わなかった以外は、実施例3と同様にしてパターン形成材料、積層体を製造し、この積層体を露光し現像してレジストパターンを得た。前記得られたレジストパターンについて、解像度、密着性及び整形性(整形前のレジストパターン形状)を評価した。
次に、レジストパターン整形を施さないレジストパターンを有する積層体に対して、実施例1と同様にして、サブトラクティブ法によりエッチング処理を行い、形成される配線パターンの最小ライン幅をもとに、エッチング性を評価した。結果を表3に示す。
(Comparative Example 3)
In Example 3, a pattern forming material and a laminate were produced in the same manner as in Example 3 except that the resist pattern shaping step was not performed, and this laminate was exposed and developed to obtain a resist pattern. The obtained resist pattern was evaluated for resolution, adhesion, and shaping (resist pattern shape before shaping).
Next, the laminated body having a resist pattern not subjected to resist pattern shaping is subjected to an etching process by a subtractive method in the same manner as in Example 1, and based on the minimum line width of the formed wiring pattern, The etching property was evaluated. The results are shown in Table 3.

(比較例4)
実施例4において、レジストパターン整形工程を行わなかった以外は、実施例4と同様にしてパターン形成材料、積層体を製造し、この積層体を露光し現像してレジストパターンを得た。前記得られたレジストパターンについて、解像度、密着性及び整形性(整形前のレジストパターン形状)を評価した。
次に、レジストパターン整形を施さないレジストパターンを有する積層体に対して、実施例2と同様にして、セミアディティブ法によりめっき処理を行い、形成される配線パターンの最小ライン幅をもとに、めっき性を評価した。結果を表3に示す。
(Comparative Example 4)
In Example 4, a pattern forming material and a laminate were produced in the same manner as in Example 4 except that the resist pattern shaping step was not performed, and this laminate was exposed and developed to obtain a resist pattern. The obtained resist pattern was evaluated for resolution, adhesion, and shaping (resist pattern shape before shaping).
Next, for a laminate having a resist pattern that is not subjected to resist pattern shaping, a plating process is performed by a semi-additive method in the same manner as in Example 2, and based on the minimum line width of the formed wiring pattern, The plating property was evaluated. The results are shown in Table 3.

表3の結果より、実施例1及び2のレジストパターン整形後のレジストパターンでは、比較例1及び2のレジストパターン整形を行わなかったものに比べて、パターン形状に優れることから整形性に優れ、また、レジストパターンの高い解像度及び密着性が得られた。また、この整形性、解像度及び密着性に優れたレジストパターンを用いてエッチング処理又はめっき処理を行って形成される配線パターンは高精細であり、エッチング性又はめっき性に優れることが判った。
また、レジストパターン整形を、プラズマエッチング処理により行った実施例1及び2では、エッチング性、めっき性に特に優れ、極めて高精細な配線パターンが得られることが判った。
From the results of Table 3, the resist pattern after shaping the resist pattern of Examples 1 and 2 is excellent in formability because of its excellent pattern shape, compared to the resist pattern shaping of Comparative Examples 1 and 2, Moreover, the high resolution and adhesiveness of the resist pattern were obtained. Further, it has been found that a wiring pattern formed by performing an etching process or a plating process using a resist pattern having excellent formability, resolution and adhesion is high-definition and excellent in etching property or plating property.
Further, in Examples 1 and 2 where the resist pattern shaping was performed by plasma etching, it was found that an extremely high-definition wiring pattern was obtained that was particularly excellent in etching property and plating property.

本発明のパターン形成方法は、配線パターン等の永久パターンを高精細に、かつ、効率よく形成可能であり、しかも、高い解像度と基体と感光層との密着性とを高度に両立させることができるため、特に高精細な配線パターンの形成に好適に使用することができる。   The pattern forming method of the present invention can form a permanent pattern such as a wiring pattern with high definition and efficiency, and can achieve both high resolution and high adhesion between the substrate and the photosensitive layer. Therefore, it can be preferably used for forming a high-definition wiring pattern.

図1は、デジタル・マイクロミラー・デバイス(DMD)の構成を示す部分拡大図の一例である。FIG. 1 is an example of a partially enlarged view showing a configuration of a digital micromirror device (DMD). 図2(A)及び(B)は、DMDの動作を説明するための説明図の一例である。2A and 2B are examples of explanatory diagrams for explaining the operation of the DMD. 図3(A)及び(B)は、DMDを傾斜配置しない場合と傾斜配置する場合とで、露光ビームの配置及び走査線を比較して示した平面図の一例である。FIGS. 3A and 3B are examples of plan views showing the arrangement of the exposure beam and the scanning line in a case where the DMD is not inclined and in a case where the DMD is inclined. 図4(A)及び(B)は、DMDの使用領域の例を示す図の一例である。4A and 4B are examples of diagrams illustrating examples of DMD usage areas. 図5は、スキャナによる1回の走査でパターン形成材料を露光する露光方式を説明するための平面図の一例である。FIG. 5 is an example of a plan view for explaining an exposure method in which the pattern forming material is exposed by one scanning by the scanner. 図6(A)及び(B)は、スキャナによる複数回の走査でパターン形成材料を露光する露光方式を説明するための平面図の一例である。6A and 6B are examples of plan views for explaining an exposure method for exposing a pattern forming material by a plurality of scans by a scanner. 図7は、パターン形成装置の一例の外観を示す概略斜視図の一例である。FIG. 7 is an example of a schematic perspective view illustrating an appearance of an example of the pattern forming apparatus. 図8は、パターン形成装置のスキャナの構成を示す概略斜視図の一例である。FIG. 8 is an example of a schematic perspective view illustrating the configuration of the scanner of the pattern forming apparatus. 図9(A)は、パターン形成材料に形成される露光済み領域を示す平面図の一例であり、図9(B)は、各露光ヘッドによる露光エリアの配列を示す図の一例である。FIG. 9A is an example of a plan view showing an exposed region formed in the pattern forming material, and FIG. 9B is an example of a diagram showing an array of exposure areas by each exposure head. 図10は、光変調手段を含む露光ヘッドの概略構成を示す斜視図の一例である。FIG. 10 is an example of a perspective view showing a schematic configuration of an exposure head including light modulation means. 図11は、図10に示す露光ヘッドの構成を示す光軸に沿った副走査方向の断面図の一例である。FIG. 11 is an example of a sectional view in the sub-scanning direction along the optical axis showing the configuration of the exposure head shown in FIG. 図12は、パターン情報に基づいて、DMDの制御をするコントローラの一例である。FIG. 12 is an example of a controller that controls DMD based on pattern information. 図13(A)は、結合光学系の異なる他の露光ヘッドの構成を示す光軸に沿った断面図の一例であり、図13(B)は、マイクロレンズアレイ等を使用しない場合に被露光面に投影される光像を示す平面図の一例であり、図13(C)は、マイクロレンズアレイ等を使用した場合に被露光面に投影される光像を示す平面図の一例である。FIG. 13A is an example of a cross-sectional view along the optical axis showing the configuration of another exposure head having a different coupling optical system, and FIG. 13B shows the exposure when a microlens array or the like is not used. FIG. 13C is an example of a plan view showing a light image projected on the surface to be exposed when a microlens array or the like is used. 図14は、DMDを構成するマイクロミラーの反射面の歪みを等高線で示す図の一例である。FIG. 14 is an example of a diagram showing the distortion of the reflection surface of the micromirror constituting the DMD with contour lines. 図15(A)及び(B)は、前記マイクロミラーの反射面の歪みを、該ミラーの2つの対角線方向について示すグラフの一例である。FIGS. 15A and 15B are examples of graphs showing the distortion of the reflection surface of the micromirror in the two diagonal directions of the mirror. 図16は、パターン形成装置に用いられたマイクロレンズアレイの正面図(A)と側面図(B)の一例である。FIG. 16 is an example of a front view (A) and a side view (B) of a microlens array used in the pattern forming apparatus. 図17は、マイクロレンズアレイを構成するマイクロレンズの正面図(A)と側面図(B)の一例である。FIG. 17 is an example of a front view (A) and a side view (B) of the microlens constituting the microlens array. 図18は、マイクロレンズによる集光状態を1つの断面内(A)と別の断面内(B)について示す概略図の一例である。FIG. 18 is an example of a schematic diagram illustrating a condensing state by a microlens in one cross section (A) and another cross section (B). 図19aは、本発明のマイクロレンズの集光位置近傍におけるビーム径をシミュレーションした結果を示す図の一例である。FIG. 19a is an example of a diagram showing the result of simulating the beam diameter in the vicinity of the condensing position of the microlens of the present invention. 図19bは、図19aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 19B is an example of a diagram showing the same simulation result as that in FIG. 19A at another position. 図19cは、図19aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 19c is an example of a diagram showing the same simulation result as in FIG. 19a at another position. 図19dは、図19aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 19d is an example of a diagram showing the same simulation result as in FIG. 19a at another position. 図20aは、従来のパターン形成方法において、マイクロレンズの集光位置近傍におけるビーム径をシミュレーションした結果を示す図の一例である。FIG. 20a is an example of a diagram showing the result of simulating the beam diameter in the vicinity of the condensing position of the microlens in the conventional pattern forming method. 図20bは、図20aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 20b is an example of a diagram showing the same simulation result as in FIG. 20a at another position. 図20cは、図20aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 20c is an example of a diagram showing the same simulation result as in FIG. 20a for another position. 図20dは、図20aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 20d is an example of a diagram illustrating simulation results similar to those in FIG. 20a at different positions. 図21は、合波レーザ光源の他の構成を示す平面図の一例である。FIG. 21 is an example of a plan view showing another configuration of the combined laser light source. 図22は、マイクロレンズアレイを構成するマイクロレンズの正面図(A)の一例と側面図(B)の一例である。FIG. 22 shows an example of a front view (A) and an example of a side view (B) of the microlens constituting the microlens array. 図23は、図22のマイクロレンズによる集光状態を1つの断面内(A)の一例と別の断面内(B)について示す概略図の一例である。FIG. 23 is an example of a schematic diagram illustrating a light condensing state by the microlens of FIG. 22 in one cross section (A) and another cross section (B). 図24(A)、(B)及び(C)は、光量分布補正光学系による補正の概念についての説明図の一例である。FIGS. 24A, 24B, and 24C are examples of explanatory diagrams about the concept of correction by the light amount distribution correction optical system. 図25は、光照射手段がガウス分布で且つ光量分布の補正を行わない場合の光量分布を示すグラフの一例である。FIG. 25 is an example of a graph showing the light amount distribution when the light irradiation means has a Gaussian distribution and the light amount distribution is not corrected. 図26は、光量分布補正光学系による補正後の光量分布を示すグラフの一例である。FIG. 26 is an example of a graph showing the light amount distribution after correction by the light amount distribution correcting optical system. 図27a(A)は、ファイバアレイ光源の構成を示す斜視図であり、図27a(B)は、(A)の部分拡大図の一例であり、図27a(C)及び(D)は、レーザ出射部における発光点の配列を示す平面図の一例である。27A (A) is a perspective view showing the configuration of the fiber array light source, FIG. 27A (B) is an example of a partially enlarged view of (A), and FIGS. 27A (C) and (D) are lasers. It is an example of the top view which shows the arrangement | sequence of the light emission point in an emission part. 図27bは、ファイバアレイ光源のレーザ出射部における発光点の配列を示す正面図の一例である。FIG. 27 b is an example of a front view showing the arrangement of light emitting points in the laser emission part of the fiber array light source. 図28は、マルチモード光ファイバの構成を示す図の一例である。FIG. 28 is an example of a diagram illustrating a configuration of a multimode optical fiber. 図29は、合波レーザ光源の構成を示す平面図の一例である。FIG. 29 is an example of a plan view showing the configuration of the combined laser light source. 図30は、レーザモジュールの構成を示す平面図の一例である。FIG. 30 is an example of a plan view showing the configuration of the laser module. 図31は、図30に示すレーザモジュールの構成を示す側面図の一例である。FIG. 31 is an example of a side view showing the configuration of the laser module shown in FIG. 図32は、図30に示すレーザモジュールの構成を示す部分側面図である。32 is a partial side view showing the configuration of the laser module shown in FIG. 図33は、レーザアレイの構成を示す斜視図の一例である。FIG. 33 is an example of a perspective view showing a configuration of a laser array. 図34(A)は、マルチキャビティレーザの構成を示す斜視図の一例であり、図34(B)は、(A)に示すマルチキャビティレーザをアレイ状に配列したマルチキャビティレーザアレイの斜視図の一例である。FIG. 34A is an example of a perspective view showing a configuration of a multi-cavity laser, and FIG. 34B is a perspective view of a multi-cavity laser array in which the multi-cavity lasers shown in FIG. It is an example. 図35は、合波レーザ光源の他の構成を示す平面図の一例である。FIG. 35 is an example of a plan view showing another configuration of the combined laser light source. 図36(A)は、合波レーザ光源の他の構成を示す平面図の一例であり、図36(B)は、(A)の光軸に沿った断面図の一例である。FIG. 36A is an example of a plan view illustrating another configuration of the combined laser light source, and FIG. 36B is an example of a cross-sectional view along the optical axis of FIG. 図37(A)及び(B)は、従来の露光装置における焦点深度と本発明のパターン形成方法(パターン形成装置)による焦点深度との相違を示す光軸に沿った断面図の一例である。FIGS. 37A and 37B are examples of cross-sectional views along the optical axis showing the difference between the depth of focus in the conventional exposure apparatus and the depth of focus by the pattern forming method (pattern forming apparatus) of the present invention. 図38は、サブトラクティブ法における本発明のパターン形成方法を説明するための工程図の一例である。FIG. 38 is an example of a process chart for explaining the pattern forming method of the present invention in the subtractive method. 図39は、セミアディティブ法における本発明のパターン形成方法を説明するための工程図の一例である。FIG. 39 is an example of a process chart for explaining the pattern forming method of the present invention in the semi-additive method. 図40(A)は、現像により形成されたレジストパターンの断面図であり、断面形状が逆台形のレジストパターンの間隙に残渣を生じている状態を示す。図40(B)は、レジストパターン整形工程により、レジストパターンが矩形に整形されるとともに、基板表面の残渣が除去された状態を示すレジストパターンの断面図である。FIG. 40A is a cross-sectional view of a resist pattern formed by development, and shows a state where a residue is generated in a gap between resist patterns having a reverse trapezoidal cross-sectional shape. FIG. 40B is a cross-sectional view of the resist pattern showing a state in which the resist pattern is shaped into a rectangle by the resist pattern shaping step and residues on the substrate surface are removed.

符号の説明Explanation of symbols

LD1〜LD7 GaN系半導体レーザ
10 ヒートブロック
11〜17 コリメータレンズ
20 集光レンズ
30〜31 マルチモード光ファイバ
44 コリメータレンズホルダー
45 集光レンズホルダー
46 ファイバホルダー
50 デジタル・マイクロミラー・デバイス(DMD)
52 レンズ系
53 反射光像(露光ビーム)
54 第2結像光学系のレンズ
55 マイクロレンズアレイ
55a マイクロレンズ
56 被露光面(走査面)
57 第2結像光学系のレンズ
58 第2結像光学系のレンズ
59 アパーチャアレイ
64 レーザモジュール
66 ファイバアレイ光源
67 レンズ系
68 レーザ出射部
69 ミラー
70 プリズム
71 集光レンズ
72 ロッドインテグレータ
73 組合せレンズ
74 結像レンズ
100 ヒートブロック
110 マルチキャビティレーザ
111 ヒートブロック
113 ロッドレンズ
120 集光レンズ
130 マルチモード光ファイバ
130a コア
140 レーザアレイ
144 光照射手段
150 パターン形成材料
152 ステージ
155a マイクロレンズ
156 設置台
158 ガイド
160 ゲート
162 スキャナ
164 センサ
166 露光ヘッド
168 露光エリア
170 露光済み領域
180 ヒートブロック
184 コリメートレンズアレイ
302 コントローラ
304 ステージ駆動装置
454 レンズ系
468 露光エリア
472 マイクロレンズアレイ
474 マイクロレンズ
476 アパーチャアレイ
478 アパーチャ
480 レンズ系
501a 下地層(Cu箔)
501b 下地層(Ni、Cr箔)
502 絶縁層
503 支持体
504 感光層
505 圧着ロール
506 硬化膜
507 電解銅めっき
508 残渣
LD1-LD7 GaN-based semiconductor laser 10 Heat block 11-17 Collimator lens 20 Condensing lens 30-31 Multimode optical fiber 44 Collimator lens holder 45 Condensing lens holder 46 Fiber holder 50 Digital micromirror device (DMD)
52 Lens system 53 Reflected light image (exposure beam)
54 Lens of second imaging optical system 55 Micro lens array 55a Micro lens 56 Surface to be exposed (scanning surface)
57 Lens of second imaging optical system 58 Lens of second imaging optical system 59 Aperture array 64 Laser module 66 Fiber array light source 67 Lens system 68 Laser emitting unit 69 Mirror 70 Prism 71 Condensing lens 72 Rod integrator 73 Combination lens 74 Imaging lens 100 Heat block 110 Multi cavity laser 111 Heat block 113 Rod lens 120 Condensing lens 130 Multimode optical fiber 130a Core 140 Laser array 144 Light irradiation means 150 Pattern forming material 152 Stage 155a Micro lens 156 Installation table 158 Guide 160 Gate 162 Scanner 164 Sensor 166 Exposure head 168 Exposure area 170 Exposed area 180 Heat block 184 Collimating lens Ray 302 controller 304 stage driver 454 lens system 468 exposure area 472 microlens array 474 microlens 476 aperture array 478 aperture 480 lens system 501a underlayer (Cu foil)
501b Underlayer (Ni, Cr foil)
502 Insulating Layer 503 Support 504 Photosensitive Layer 505 Pressing Roll 506 Cured Film 507 Electrolytic Copper Plating 508 Residue

Claims (12)

支持体上に感光層を少なくとも有するパターン形成材料における該感光層を、被処理基体上に積層し、該感光層を露光し、現像してレジストパターンを形成した後、該レジストパターンに対してドライプロセスによりレジストパターン整形工程が行われることを特徴とするパターン形成方法。   The photosensitive layer in a pattern forming material having at least a photosensitive layer on a support is laminated on a substrate to be processed, the photosensitive layer is exposed and developed to form a resist pattern, and then dried on the resist pattern. A pattern forming method, wherein a resist pattern shaping step is performed by a process. レジストパターン整形工程が、プラズマエッチング処理により行われる請求項1に記載のパターン形成方法。   The pattern formation method according to claim 1, wherein the resist pattern shaping step is performed by a plasma etching process. プラズマエッチング処理が、減圧下で行われる請求項2に記載のパターン形成方法。   The pattern formation method according to claim 2, wherein the plasma etching process is performed under reduced pressure. レジストパターン整形工程が、大気圧オゾン表面処理により行われる請求項1に記載のパターン形成方法。   The pattern formation method according to claim 1, wherein the resist pattern shaping step is performed by atmospheric pressure ozone surface treatment. 大気圧オゾン表面処理が、大気下で行われる請求項4に記載のパターン形成方法。   The pattern formation method according to claim 4, wherein the atmospheric pressure ozone surface treatment is performed in the atmosphere. 基体が、プリント配線板製造用基板である請求項1から5のいずれかに記載のパターン形成方法。   The pattern forming method according to claim 1, wherein the substrate is a printed wiring board manufacturing substrate. レジストパターン整形工程が行われた後、永久パターンの形成を行う請求項1から6のいずれかに記載のパターン形成方法。   The pattern forming method according to claim 1, wherein a permanent pattern is formed after the resist pattern shaping step is performed. 永久パターンが、配線パターンであり、該永久パターンの形成がエッチング処理及びめっき処理の少なくともいずれかにより行われる請求項7に記載のパターン形成方法。   The pattern forming method according to claim 7, wherein the permanent pattern is a wiring pattern, and the permanent pattern is formed by at least one of an etching process and a plating process. 配線パターンが、サブトラクティブ法及びセミアディティブ法のいずれかにより形成される請求項8に記載のパターン形成方法。   The pattern formation method according to claim 8, wherein the wiring pattern is formed by one of a subtractive method and a semi-additive method. 感光層が、重合性化合物と、バインダーと、光重合開始剤とを含む請求項1から9のいずれかに記載のパターン形成方法。   The pattern formation method in any one of Claim 1 to 9 in which a photosensitive layer contains a polymeric compound, a binder, and a photoinitiator. 露光が、光照射手段からの光を受光し出射する描素部をn個有する光変調手段により、前記光照射手段からの光を変調させた後、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイクロレンズアレイを通して行われることを少なくとも含む請求項1から10のいずれかに記載のパターン形成方法。   The exposure is performed by modulating light from the light irradiating means by light modulating means having n picture elements for receiving and emitting light from the light irradiating means, and then aberration due to distortion of the exit surface in the picture element. The pattern forming method according to claim 1, wherein the pattern forming method includes at least a microlens array in which microlenses having aspherical surfaces capable of correcting the above are arranged. 非球面が、トーリック面である請求項11に記載のパターン形成方法。
The pattern forming method according to claim 11, wherein the aspherical surface is a toric surface.
JP2005177006A 2005-06-16 2005-06-16 Pattern forming method Pending JP2006350038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005177006A JP2006350038A (en) 2005-06-16 2005-06-16 Pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005177006A JP2006350038A (en) 2005-06-16 2005-06-16 Pattern forming method

Publications (1)

Publication Number Publication Date
JP2006350038A true JP2006350038A (en) 2006-12-28

Family

ID=37645964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005177006A Pending JP2006350038A (en) 2005-06-16 2005-06-16 Pattern forming method

Country Status (1)

Country Link
JP (1) JP2006350038A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238715A (en) * 2007-03-28 2008-10-09 Josho Gakuen Optical shaping method
JP2010103551A (en) * 2009-12-17 2010-05-06 Tokyo Electron Ltd Substrate processing device
CN115156725A (en) * 2022-07-25 2022-10-11 西安中科微精光子科技股份有限公司 Etching forming method based on laser scanning strategy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238715A (en) * 2007-03-28 2008-10-09 Josho Gakuen Optical shaping method
JP2010103551A (en) * 2009-12-17 2010-05-06 Tokyo Electron Ltd Substrate processing device
CN115156725A (en) * 2022-07-25 2022-10-11 西安中科微精光子科技股份有限公司 Etching forming method based on laser scanning strategy

Similar Documents

Publication Publication Date Title
JP2006011371A (en) Pattern forming method
JP4208145B2 (en) Pattern forming composition, pattern forming material, pattern forming apparatus, and pattern forming method
JP4500657B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006163339A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006251385A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006227223A (en) Composition for pattern formation, pattern forming material, and pattern forming method
JP2006243680A (en) Pattern forming process
JP5476341B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006251562A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP4468201B2 (en) Pattern forming composition, pattern forming material, pattern forming apparatus, and pattern forming method
JP2007093796A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006251390A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006184840A (en) Pattern forming material, and apparatus and method for forming pattern
JP2005258431A (en) Pattern forming process
JP2006171019A (en) Method for producing pattern forming material, and pattern forming material
JP4520879B2 (en) Pattern forming material, pattern forming apparatus, and pattern forming method
JP2006220858A (en) Pattern formation material, pattern formation device, and pattern formation method
JP4451295B2 (en) Pattern formation method
JP2006350038A (en) Pattern forming method
JP4546276B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP4549891B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006251391A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2007140174A (en) Pattern forming material, and pattern forming apparatus and pattern forming method
JP2006292889A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2005338405A (en) Pattern forming material, pattern forming apparatus and pattern forming method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061205