JP2006348365A - HOT-DIP Sn-Zn-PLATED STEEL SHEET WITH ADEQUATE CORROSION RESISTANCE AND WELDABILITY - Google Patents
HOT-DIP Sn-Zn-PLATED STEEL SHEET WITH ADEQUATE CORROSION RESISTANCE AND WELDABILITY Download PDFInfo
- Publication number
- JP2006348365A JP2006348365A JP2005178745A JP2005178745A JP2006348365A JP 2006348365 A JP2006348365 A JP 2006348365A JP 2005178745 A JP2005178745 A JP 2005178745A JP 2005178745 A JP2005178745 A JP 2005178745A JP 2006348365 A JP2006348365 A JP 2006348365A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- corrosion resistance
- weldability
- hot
- plated steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2222/00—Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
- C23C2222/10—Use of solutions containing trivalent chromium but free of hexavalent chromium
Landscapes
- Coating With Molten Metal (AREA)
Abstract
Description
本発明は、優れた耐食性、接合性を兼備し、自動車燃料タンク材料、家庭用電気機械、産業機械材料として6価クロムを含まない表面処理を施した溶融Sn−Zn系めっき鋼板に関するものである。 The present invention relates to a molten Sn—Zn-based plated steel sheet that has excellent corrosion resistance and bonding properties, and is subjected to a surface treatment that does not contain hexavalent chromium as an automobile fuel tank material, household electric machine, or industrial machine material. .
従来、自動車燃料タンク材料として耐食性・加工性・半田性(溶接性)等の優れたPb−Sn合金めっき鋼板が主として用いられ、幅広く使用されている。一方、Sn−Zn合金めっき鋼板は、例えば特開昭52−130438号公報(特許文献1)のように、ZnおよびSnイオンを含む水溶液中で電解する電気めっき法で主として製造されてきた。Snを主体とするSn−Zn合金めっき鋼板は、耐食性や半田性に優れており電子部品などに多く使用されてきた。一方、自動車燃料タンク用途でこのSn−Znめっき鋼板が優れた特性を有することが知見され、特開平8−269733号公報(特許文献2)、特開平8−269734号公報(特許文献3)、特開2004−131819号公報(特許文献4)等において溶融Sn−Znめっき鋼板が開示されてきた。 Conventionally, Pb—Sn alloy plated steel sheets having excellent corrosion resistance, workability, solderability (weldability) and the like have been mainly used as automobile fuel tank materials, and are widely used. On the other hand, Sn—Zn alloy-plated steel sheets have been mainly produced by an electroplating method in which electrolysis is performed in an aqueous solution containing Zn and Sn ions as disclosed in, for example, Japanese Patent Application Laid-Open No. 52-130438 (Patent Document 1). Sn—Zn alloy-plated steel sheets mainly composed of Sn are excellent in corrosion resistance and solderability, and have been widely used for electronic parts and the like. On the other hand, it has been found that this Sn—Zn plated steel sheet has excellent characteristics for use in automobile fuel tanks, and Japanese Patent Application Laid-Open No. 8-269733 (Patent Document 2), Japanese Patent Application Laid-Open No. 8-269734 (Patent Document 3), Japanese Unexamined Patent Application Publication No. 2004-131819 (Patent Document 4) and the like have disclosed a molten Sn—Zn plated steel sheet.
自動車燃料タンクは、多くの付属品やパイプを接合したり、燃料の漏れの無いよう、周囲をシーム溶接する必要があり、材料側には連続生産を妨げない良好で安定した接合性が要求される。ところが、Sn系めっき鋼板は、スポット溶接やシーム溶接等の抵抗溶接は可能であるものの、めっき層のSnが溶接電極であるCuと合金化しやすいという性質を有するために、電極先端がSn−Cu系金属間化合物に転化していく。この金属間化合物は脆性であるため次第に欠損して行き、表面積拡大に伴う電流密度低下により十分な発熱が得られなくなり、電極寿命が劣るという課題があった。 Automobile fuel tanks need to be seam welded around so as to join many accessories and pipes, and to prevent fuel leakage, and the material side is required to have good and stable jointability that does not hinder continuous production. The However, although the Sn-based plated steel sheet can be subjected to resistance welding such as spot welding or seam welding, it has a property that Sn of the plating layer is easily alloyed with Cu which is a welding electrode. It will be converted to intermetallic compounds. Since this intermetallic compound is brittle, it is gradually lost, and there is a problem that sufficient heat generation cannot be obtained due to a decrease in current density accompanying an increase in surface area, resulting in inferior electrode life.
この課題は特にスポット溶接時に顕著となるもので、スポット溶接時の電極寿命が極端に短くなっていた。この課題に対して特許第3002445号公報(特許文献5)、特開2004−360019号公報(特許文献6)においてSn系めっき鋼板のめっき表面粗度、表面皮膜量により表面接触抵抗値を適正に制御することで連続溶接性を向上させる技術が開示されてきた。 This problem is particularly noticeable during spot welding, and the electrode life during spot welding has been extremely short. In order to solve this problem, in Japanese Patent No. 3002445 (Patent Document 5) and Japanese Patent Application Laid-Open No. 2004-360019 (Patent Document 6), the surface contact resistance value is appropriately determined by the plating surface roughness and surface coating amount of the Sn-based plated steel sheet. Techniques for improving continuous weldability by controlling have been disclosed.
しかしながら、製造コスト削減のため、更なる連続溶接性向上に対するニーズは依然高く、また、CARB(California Air Resource Board)規制やELV(End of Life Vehicle)指令等の環境規制により自動車の高寿命化も強く要望されてきている。EU指令等の環境規制により6価クロメートが使用不可になるため、特開2004−531639号公報(特許文献7)等の種々の3価クロムタイプや完全クロムフリータイプの後処理皮膜が開発されている。残念ながら、その防錆性の実態は6価クロメートに及ばない。付着量増により、確かに耐食性は向上するものの、表面接触抵抗が高くなるため抵抗溶接性が悪化する。
本発明は、上記の課題を解決し、耐食性、溶接性を高度にバランスし、6価クロムを使用しない溶融Sn−Znめっき鋼板を提供するものである。
However, in order to reduce manufacturing costs, the need for further continuous weldability improvement is still high, and the longevity of automobiles has been extended by environmental regulations such as CARB (California Air Resource Board) regulations and ELV (End of Life Vehicle) directives. There has been a strong demand. Since hexavalent chromate becomes unusable due to environmental regulations such as EU directives, various trivalent chromium type and completely chromium free type post-treatment films such as JP 2004-531639 A (Patent Document 7) have been developed. Yes. Unfortunately, the actual state of rust prevention is not as good as hexavalent chromate. Although the corrosion resistance is certainly improved by increasing the adhesion amount, the surface contact resistance is increased, so that the resistance weldability is deteriorated.
The present invention solves the above-mentioned problems, and provides a molten Sn-Zn plated steel sheet that highly balances corrosion resistance and weldability and does not use hexavalent chromium.
本発明者らは、防錆・溶接能向上させたSn−Znめっき鋼板を提供することを目的に、めっき組成・組織・3価クロム化合物を含む表面処理皮膜の付着量と分布状況を種々検討し、本発明に至ったものである。従来、耐食性と溶接性を向上させる対策は二律背反の関係(つまり、防錆能を上げるためには、めっきや表面処理の付着量を増加させれば良いが、溶接性は両方共に悪化する方向)にあったが、めっき組成・組織・3価クロム化合物を含む表面処理皮膜の付着量分布を最適化することで、両性能の向上を図ることができることを知見した。 In order to provide a Sn-Zn plated steel sheet with improved rust prevention and weldability, the present inventors variously examined the amount and distribution of the surface treatment film containing the plating composition, structure, and trivalent chromium compound. Thus, the present invention has been achieved. Conventionally, measures to improve corrosion resistance and weldability are trade-offs (that is, to increase rust prevention, the amount of plating or surface treatment can be increased, but both weldability deteriorates) However, it was found that both performances can be improved by optimizing the adhesion amount distribution of the surface treatment film containing the plating composition / structure / trivalent chromium compound.
つまり、本発明は、1〜8.8質量%のZnと残部がSn:91.2〜99.0質量%および不可避的不純物からなる溶融めっき層を鋼板表面に形成した溶融Sn基めっき鋼板であって、該めっき層が、アーム状に伸びたSnデンドライト晶とそのSnデンドライトのアーム間をSn−Zn二元共晶組織が埋めている組織からなっており、該めっき表面に金属クロム換算で3〜50mg/m2 の3価クロム化合物からなる表面処理皮膜を形成していることを特徴とする耐食性、溶接性に優れた溶融Sn−Znめっき鋼板である。 That is, the present invention is a hot-dip Sn-based plated steel sheet in which a hot-plated layer comprising 1 to 8.8% by mass of Zn and the balance Sn: 91.2 to 99.0% by mass and inevitable impurities is formed on the steel sheet surface. The plating layer is composed of an Sn dendrite crystal extending in the shape of an arm and a structure in which a Sn-Zn binary eutectic structure is buried between the arms of the Sn dendrite. It is a molten Sn—Zn plated steel sheet excellent in corrosion resistance and weldability, characterized in that a surface treatment film made of 3 to 50 mg / m 2 of a trivalent chromium compound is formed.
また、めっき層のSnデンドライト晶上に表面処理皮膜中のクロムが残っていることや、さらにSn−Zn二元共晶組織上のクロム付着量がSnデンドライト晶上の3倍以上にすることでさらに溶接性・耐食性の高位バランスを図ることが可能である。以上のように表面処理皮膜のクロム付着量分布を最適化するためには、3価クロム化合物を有する表面処理薬剤の物性値を、表面張力が30〜80mN/m、かつ、粘度が1.0〜2.5mP・sにすることが望ましい。 In addition, the chromium in the surface treatment film remains on the Sn dendrite crystal of the plating layer, and the chromium adhesion amount on the Sn-Zn binary eutectic structure is more than three times that on the Sn dendrite crystal. Furthermore, it is possible to achieve a high balance of weldability and corrosion resistance. As described above, in order to optimize the chromium adhesion distribution of the surface treatment film, the physical properties of the surface treatment agent having a trivalent chromium compound are set such that the surface tension is 30 to 80 mN / m and the viscosity is 1.0. It is desirable to set it to ˜2.5 mP · s.
以上述べたように、本発明によって、耐食性、溶接性に優れ、劣化ガソリン等に対しても長期間耐える燃料タンク用の6価クロムフリー、鉛フリー防錆鋼板が得られたことは工業的に極めて優れた効果を奏するものである。 As described above, according to the present invention, a hexavalent chromium-free, lead-free rust-proof steel sheet for a fuel tank that has excellent corrosion resistance and weldability and can withstand a long period of time against deteriorated gasoline is obtained industrially. It has an extremely excellent effect.
以下に本発明について詳細に説明する。
鋼鋳片を熱間圧延・酸洗・冷間圧延・焼鈍・調質圧延等の一連の工程を経た焼鈍済みの鋼板、また圧延材を被めっき材として、圧延油あるいは酸化膜の除去等の前処理を行った後、めっきを行う。鋼成分については、燃料タンクの複雑な形状に加工できる成分系であること、鋼−めっき層界面の合金層の厚みが薄くめっき剥離を防止できること、燃料タンク内部および外部環境における腐食の進展を抑制する成分系である必要がある。
The present invention is described in detail below.
Steel strip that has been subjected to a series of processes such as hot rolling, pickling, cold rolling, annealing, temper rolling, etc., and using rolled material as a material to be plated, removing rolling oil or oxide film, etc. After the pretreatment, plating is performed. Regarding steel components, it must be a component system that can be processed into a complex shape of the fuel tank, the thickness of the alloy layer at the steel-plating layer interface can be thin to prevent plating peeling, and the progress of corrosion inside and outside the fuel tank is suppressed. It must be a component system.
本発明では、Sn−Zn合金めっきは溶融めっき法で行うことを基本とする。溶融めっき法を採用した最大の理由は、めっき付着量の確保のためである。電気めっき法でも長時間の電解を行えばめっき付着量は確保できるが、経済的ではない。本発明で狙うめっき付着量範囲は、20〜150g/m2 (片面)と比較的厚目付の領域であり、溶融めっき法が最適である。さらにめっき元素の電位差が大きい場合、適切に組成を制御することは困難を伴うため、Sn−Zn合金は溶融めっき法が最適である。 In the present invention, Sn—Zn alloy plating is basically performed by a hot dipping method. The biggest reason for adopting the hot dipping method is to secure the plating adhesion amount. Even if electroplating is performed for a long time, the amount of plating can be secured, but it is not economical. The plating adhesion range targeted in the present invention is a relatively thick area of 20 to 150 g / m 2 (single side), and the hot dipping method is optimal. Further, when the potential difference between the plating elements is large, it is difficult to appropriately control the composition. Therefore, the Sn—Zn alloy is most suitable for the hot dipping method.
次に、めっき組成のZnの限定理由であるが、燃料タンク内面と外面における耐食性のバランスにより限定したものである。タンク外面は、完璧な防錆能力が必要とされるためタンク成形後に塗装される。したがって、塗装厚みが防錆能力を決定するが、素材としてはめっき層のもつ防食効果により赤錆を防止する。特に、塗装のつきまわりの悪い部位ではこのめっき層のもつ防食効果は極めて重要となる。Sn基めっきのZnの添加でめっき層の電位を下げ、犠牲防食能を付与する。そのためには1質量%以上のZnの添加が必要である。Sn−Zn二元共晶点である8.8質量%を超える過剰なZnの添加は、Snデンドライトが晶出しない、融点上昇をひきおこし、めっき下層の金属間化合物層の過剰な成長につながる等の理由で8.8質量%以下でなくてはならない。 Next, the reason for limiting Zn of the plating composition is that it is limited by the balance of corrosion resistance between the inner surface and the outer surface of the fuel tank. The outer surface of the tank is painted after the tank is molded because it requires perfect rust prevention ability. Therefore, although the coating thickness determines the rust prevention ability, the material prevents red rust by the anticorrosion effect of the plating layer. In particular, the anticorrosive effect of the plating layer is extremely important in the part where the coating is not good. Addition of Zn for Sn-based plating lowers the potential of the plating layer and provides sacrificial anticorrosive ability. For that purpose, 1 mass% or more of Zn needs to be added. Addition of excess Zn exceeding the Sn-Zn binary eutectic point of 8.8% by mass does not cause Sn dendrite to crystallize, raises the melting point, and leads to excessive growth of the intermetallic compound layer under the plating. For this reason, it must be 8.8% by mass or less.
一方、タンク内面での腐食は、正常なガソリンのみの場合には問題とならないが、水の混入・塩素イオンの混入・ガソリンの酸化劣化による有機カルボン酸の生成等により、かなり激しい腐食環境が出現する。もし、穿孔腐食によりガソリンがタンク外部の漏れた場合、重大事故につながる恐れがあり、これらの腐食は完全に防止されねばならない。上記の腐食促進成分を含む劣化ガソリンを作製し、各種条件下での性能を調べたところ、Znを8.8質量%以下含有するSn−Zn合金めっき皮膜は極めて優れた耐食性を発揮することが確認された。 On the other hand, corrosion inside the tank is not a problem with normal gasoline alone, but a fairly severe corrosive environment appears due to water contamination, chlorine ion contamination, and the formation of organic carboxylic acids due to oxidative degradation of gasoline. To do. If gasoline leaks outside the tank due to piercing corrosion, it can lead to serious accidents, and these corrosions must be completely prevented. When a deteriorated gasoline containing the above-mentioned corrosion promoting component was prepared and the performance under various conditions was examined, the Sn—Zn alloy plating film containing Zn of 8.8% by mass or less exhibits extremely excellent corrosion resistance. confirmed.
Znを全く含まない純SnまたはZn含有量が1質量%未満の場合、腐食環境中に暴露された初期より、めっき金属が地鉄に対し犠牲防食能を持たないため、タンク内面ではめっきピンホール部での孔食、タンク外面では早期の赤錆発生が問題となる。一方、Znが8.8質量%を超えて多量に含まれる場合、Znが優先的に溶解し、腐食生成物が短期間に多量に発生するため、キャブレターの目詰まりを起こしやすい問題がある。 When pure Sn containing no Zn or Zn content is less than 1% by mass, the plating metal has no sacrificial anti-corrosion ability against the iron from the beginning when exposed to corrosive environment. There is a problem of pitting corrosion at the part and early red rust generation on the outer surface of the tank. On the other hand, when Zn is contained in a large amount exceeding 8.8% by mass, Zn is preferentially dissolved, and a large amount of corrosion products are generated in a short time, so that there is a problem that the carburetor is easily clogged.
また、Zn含有量が多くなることによってめっき層の加工性も低下し、Sn基めっきの特長である良プレス成形性を損なう。さらにZn含有量が多くなることによってめっき層の融点上昇とZn酸化物に起因し、はんだ性が大幅に低下する。したがって、本発明におけるSn−Zn合金めっきにおけるZn含有量は、1〜8.8質量%の範囲、更により十分な犠牲防食作用を得るには3.0〜8.8質量%の範囲にすることが望ましい。 Moreover, when Zn content increases, the workability of a plating layer also falls and the good press moldability which is the characteristics of Sn group plating is impaired. Further, the increase in the Zn content causes a significant increase in the melting point of the plating layer and the Zn oxide, resulting in a significant decrease in solderability. Therefore, the Zn content in the Sn—Zn alloy plating in the present invention is in the range of 1 to 8.8% by mass, and further in the range of 3.0 to 8.8% by mass to obtain a more sufficient sacrificial anticorrosive action. It is desirable.
本発明のめっき組成域では、通常、溶融Sn−Znめっき組織は初晶Snとスパングル状の二元共晶組織の混在した凝固組織となる。このときZnはスパングル−スパングル粒界に特に偏析しやすくなっている。スパングル−スパングル粒界にZnが偏析しやすい理由は明確ではないが、Znと親和性の高い微量の不純物が影響していると考えられる。このスパングル−スパングル粒界に偏析したZnは前述のように腐食の起点になり、穿孔腐食をおこしやすい状態をひきだす。 In the plating composition region of the present invention, the molten Sn—Zn plating structure is usually a solidified structure in which primary Sn and spangled binary eutectic structure are mixed. At this time, Zn is particularly easily segregated at the spangle-spangle grain boundary. The reason why Zn is likely to segregate at the spangle-spangle grain boundary is not clear, but it is thought that a small amount of impurities having a high affinity with Zn have an influence. Zn segregated at the spangle-spangle grain boundary becomes a starting point of corrosion as described above, and causes a state in which piercing corrosion is likely to occur.
このようなZnの偏析をなくすためには、図1のように初晶のSnを積極的にアーム状のデンドライトとして発達させ、スパングルの成長を抑制することが必要である。本発明の組成域ではSnが初晶として晶出するため、アーム状のSnデンドライトがネットワーク状に凝固初期にめっき層に張りめぐらされれば、共晶反応で生成するスパングル状の二元共晶はデンドライトのアームに成長を抑制され大きく発達できない。そのため、巨大なスパングル同士がぶつかり合うことはなくなり、スパングル−スパングル粒界に偏析するZnはなくなり、タンク内外面での耐食性が著しく向上する。 In order to eliminate such segregation of Zn, it is necessary to positively develop primary crystal Sn as an arm-shaped dendrite as shown in FIG. 1 to suppress spangle growth. In the composition range of the present invention, Sn crystallizes as an initial crystal. Therefore, if the arm-shaped Sn dendrite is spread over the plating layer in the initial stage of solidification in the form of a network, the spangle-like binary eutectic formed by the eutectic reaction. The dendrite arm is restrained from growing and cannot be developed greatly. Therefore, the spangles do not collide with each other, Zn that segregates at the spangle-spangle grain boundary disappears, and the corrosion resistance on the inner and outer surfaces of the tank is remarkably improved.
Snのデンドライトを積極的に発達させるために、Snのデンドライトの成長起点を増やしてやればよい。この溶融めっきの凝固過程は鋼板側の抜熱が大きく、めっき/地鉄の界面側から凝固していく。したがって、溶融めっき層の下層の合金層に微細な凹凸をつけるか、地鉄そのものに微細な凹凸をつければ、デンドライトの成長起点をつくることができる。合金層に微細な凹凸をつけるには、溶融めっきと鋼板との合金化反応を制御すればよく、具体的にはプレめっきの種類、めっき浴温、浸漬時間を制御すればよい。プレめっきの種類としてはNi、Co、Cuの単体やFeとの合金あるいはこれらの金属同士の合金であっても良い。プレめっき量としては0.01〜2.0g/m2 程度で十分である。また、地鉄表面に凹凸をつけるには溶融めっき前の圧延工程にて表面粗度を付与してやればよい。 In order to positively develop Sn dendrite, the growth start point of Sn dendrite may be increased. In the solidification process of this hot dipping, the heat removal on the steel plate side is large and solidifies from the interface side of the plating / base metal. Therefore, a dendrite growth starting point can be created by providing fine irregularities on the alloy layer under the hot-dip plating layer or fine irregularities on the base iron itself. In order to give fine irregularities to the alloy layer, the alloying reaction between the hot dipping and the steel plate may be controlled. Specifically, the kind of pre-plating, the plating bath temperature, and the immersion time may be controlled. The kind of pre-plating may be a simple substance of Ni, Co, Cu, an alloy with Fe, or an alloy of these metals. A pre-plating amount of about 0.01 to 2.0 g / m 2 is sufficient. Moreover, what is necessary is just to provide surface roughness in the rolling process before hot dipping in order to give an unevenness | corrugation to the surface of a ground iron.
本発明では、上述めっき層表面を更に3価クロム化合物を主成分とする薬剤を塗布し、乾燥皮膜中金属クロム換算で3〜50mg/m2 を確保することで耐食性と良好な溶接性が得られる。3mg/m2 未満では防錆力不足により十分な耐食性を期待できず、50mg/m2 超では表面接触抵抗が急激に高くなるため抵抗溶接性が急激に悪化する。よって、表面処理皮膜付着量は乾燥皮膜中金属クロム換算で3〜50mg/m2 を確保することが必要である。 In the present invention, the surface of the plating layer is further coated with a chemical mainly composed of a trivalent chromium compound, and the corrosion resistance and good weldability are obtained by securing 3 to 50 mg / m 2 in terms of metal chromium in the dry film. It is done. If it is less than 3 mg / m 2 , sufficient corrosion resistance cannot be expected due to insufficient rust prevention, and if it exceeds 50 mg / m 2 , the surface contact resistance increases rapidly, and resistance weldability deteriorates rapidly. Therefore, it is necessary to secure a surface treatment film adhesion amount of 3 to 50 mg / m 2 in terms of metal chromium in the dry film.
また、前述のめっき組織と表面処理付着量からなる材料の耐食性と溶接性が高位にバランスする理由について鋭意検討した結果、溶融めっき凝固時において初晶として優先的に成長するアーム状のSnデンドライト晶と、最終凝固部であり、凝固時に体積収縮(擬似“引け巣”現象)を伴うSn−Zn二元共晶部とのめっき表面高低差に起因するクロム付着量差が溶接性・耐食性に大きく影響していることを知見した。つまり、腐食の起点となるSn−Zn二元共晶組織は、めっき表面での凹部に当たり、表面処理薬剤を塗布した際に液溜まりとなる。その結果、Sn−Zn二元共晶組織上ではCr付着量が多くなるため優れた耐食性を確保することが可能となる。 In addition, as a result of intensive studies on the reason why the corrosion resistance and weldability of the material composed of the above-described plating structure and surface treatment adhesion amount are balanced, arm-shaped Sn dendrite crystals that preferentially grow as primary crystals at the time of hot dipping are solidified. And the difference in chromium adhesion due to the difference in plating surface height from the Sn-Zn binary eutectic part, which is the final solidified part and volume shrinkage (pseudo "shrinkage" phenomenon) at the time of solidification is greatly in weldability and corrosion resistance. I found out that it had an effect. That is, the Sn—Zn binary eutectic structure that becomes the starting point of corrosion hits the concave portion on the plating surface and becomes a liquid pool when the surface treatment agent is applied. As a result, on the Sn-Zn binary eutectic structure, the Cr adhesion amount increases, so that excellent corrosion resistance can be ensured.
また、めっき表面の凸部にあたるアーム状のSnデントライト晶上には表面処理薬剤が留まり難くCr付着量が少なくなるため、表面接触抵抗を下げて優れた溶接性を確保することができる。図2に本発明に係るめっき−表面処理被膜鋼板断面模式図を示す。この図に示すように、アーム状のSnデントライト晶3の部分が凸形状になりクロム付着量差が少なくなり、Sn−Zn二元共晶部1は凹形状になるためクロム付着量差が多くなる。Snデンドライト上にも表面処理皮膜2の3価Cr化合物が被覆されないと耐食性が劣化するため、Snデンドライト晶上にもCrが残っていることが望ましい。また、Sn−Zn二元共晶組織上のクロム付着量をSnデンドライト晶上の3倍以上にすることでさらに優れた耐食性と溶接性を両立できることを知見した。
Further, since the surface treatment agent hardly stays on the arm-shaped Sn dentrite crystal corresponding to the convex portion of the plating surface and the amount of Cr adhesion decreases, the surface contact resistance can be lowered and excellent weldability can be ensured. FIG. 2 shows a schematic cross-sectional view of a plated-surface-treated coated steel sheet according to the present invention. As shown in this figure, the portion of the arm-shaped Sn dentrite crystal 3 becomes convex and the chromium adhesion amount difference decreases, and the Sn-Zn binary
さらに、上述のような3価クロム化合物を含んだ表面処理皮膜のミクロな付着量分布状況を得るためには、薬剤の液特性を最適化することが望ましく、表面張力が30〜80mN/m、かつ、粘度が1.0〜2.5mP・sであることが望ましい。薬剤の表面張力が30mN/m未満、もしくは粘度が1.0mP・s未満の場合、めっき表面に均一に表面処理薬剤が塗布されるため溶接性向上が期待できない。また、表面張力が80mN/m超、もしくは粘度が2.5mP・s超の場合、めっき表面でまったく塗布されない部分が出てくるため耐食性が悪くなりやすい。 Furthermore, in order to obtain the microscopic amount distribution of the surface treatment film containing the trivalent chromium compound as described above, it is desirable to optimize the liquid properties of the drug, and the surface tension is 30 to 80 mN / m, And it is desirable for a viscosity to be 1.0-2.5 mP * s. When the surface tension of the chemical is less than 30 mN / m or the viscosity is less than 1.0 mP · s, improvement in weldability cannot be expected because the surface treatment chemical is uniformly applied to the plating surface. Further, when the surface tension is more than 80 mN / m or the viscosity is more than 2.5 mP · s, a portion that is not applied at all on the plating surface appears, so that the corrosion resistance tends to deteriorate.
また、薬剤中の3価クロム化合物としては硫酸クロム(III)、硝酸クロム(III)、重リン酸クロム(III)、弗化クロム(III)、ハロゲン化クロム(III)などがあげられる。薬剤中の水分散性シリカとしてはコロイダルシリカや気相シリカ等が望ましい。耐食性や塗料密着性を向上のための追加成分としては硝酸金属塩の添加が望ましく、その硝酸金属塩中の金属がアルカリ土類金属、Co,Ni,ZrおよびTiからなる群から選ばれる少なくとも一種を含有することが望ましい。 Examples of the trivalent chromium compound in the drug include chromium (III) sulfate, chromium (III) nitrate, chromium (III) biphosphate, chromium (III) fluoride, and chromium (III) halide. As the water-dispersible silica in the drug, colloidal silica, vapor phase silica or the like is desirable. Addition of metal nitrate is desirable as an additional component for improving corrosion resistance and paint adhesion, and the metal in the metal nitrate is at least one selected from the group consisting of alkaline earth metals, Co, Ni, Zr and Ti It is desirable to contain.
また、表面処理皮膜とめっき表面との密着性を向上させるために追加成分としてホスホン酸またはホスホン酸化合物が望ましい。ホスホン酸化合物として特に限定はしないが、メチルジホスホン酸、メチレンホスホン酸、エチリデンジホスホン酸等、或いはこれらのアンモニウム塩、アルカリ金属塩等、分子中にホスホン酸基またはその塩を1以上有するキレート剤が挙げられ、それらの酸化体としてはこれらホスホン酸系キレート剤の内、その分子中に窒素原子を有するものが酸化されてN−オキシド体になっているものが挙げられる。さらに、耐食性、塗装性を向上させる目的で、追加成分として水溶性樹脂を配合することが望ましい。水溶性樹脂としては特に限定するものではないが、水溶性アクリル樹脂が望ましい。 Further, phosphonic acid or a phosphonic acid compound is desirable as an additional component in order to improve the adhesion between the surface treatment film and the plating surface. Although it does not specifically limit as a phosphonic acid compound, Methyl diphosphonic acid, a methylene phosphonic acid, ethylidene diphosphonic acid etc., or these ammonium salts, alkali metal salts, etc., and the chelate which has one or more phosphonic acid groups or its salt in a molecule | numerator Among these phosphonic acid chelating agents, those having a nitrogen atom in the molecule thereof are oxidized to form an N-oxide. Furthermore, for the purpose of improving corrosion resistance and paintability, it is desirable to add a water-soluble resin as an additional component. The water-soluble resin is not particularly limited, but a water-soluble acrylic resin is desirable.
本発明の燃料タンク用防錆鋼板の品質特性を実施例で示す。
板厚0.8mmの焼鈍・調圧済みの鋼板に、電気めっき法によりワット浴からNiめっきを0.1g/m2 (片面あたり)施した。この鋼板に塩化亜鉛、塩化アンモニウム及び塩酸を含むめっき用フラックスを塗布した後、Sn−Zn溶融めっき浴に導入した。めっき浴と鋼板表面を反応させた後めっき浴より鋼板を引き出し、ガスワイピング法により付着量調整を行い、めっき付着量(Sn+Znの全付着量)は40g/m2 (片面あたり)に制御した。ガスワイピングの後、エアジェットクーラーにて冷却速度を種々変化させ溶融めっき層を凝固し、Snデンドライトの面積率、アーム間隔を変更した。この鋼板の金属組織を調べるため、めっき表層より、SnとZnの分布状態をEPMA(電子プローブマイクロアナライザー)にて分析し、Snデンドライトの面積率とSnデンドライトのアーム間隔を任意の100点平均により算出した。
The quality characteristic of the antirust steel sheet for fuel tanks of the present invention will be shown in Examples.
An annealed and pressure-adjusted steel sheet having a thickness of 0.8 mm was subjected to Ni plating by 0.1 g / m 2 (per one side) from a watt bath by electroplating. After applying a plating flux containing zinc chloride, ammonium chloride and hydrochloric acid to this steel plate, it was introduced into a Sn-Zn hot dipping bath. After reacting the plating bath and the steel plate surface, the steel plate was drawn out from the plating bath, and the adhesion amount was adjusted by a gas wiping method, and the plating adhesion amount (total Sn + Zn adhesion amount) was controlled to 40 g / m 2 (per one side). After gas wiping, the cooling rate was variously changed with an air jet cooler to solidify the hot-dip plated layer, and the area ratio of the Sn dendrite and the arm interval were changed. In order to investigate the metallographic structure of this steel sheet, the distribution state of Sn and Zn is analyzed by EPMA (Electron Probe Microanalyzer) from the plating surface layer. Calculated.
発明例の一例として表1のNo.1の凝固組織を図1に示す。また、めっき上に3価クロム水溶液を主体とした薬剤をめっき表面に塗布・乾燥して表面処理皮膜を形成させた。付着量は薬剤中の3価クロム濃度を適宜変更して調節した。付着量は蛍光X線分析によりφ10mmエリアの平均値を採用した。また、めっき表層より、Crの分布状態をEPMA(電子プローブマイクロアナライザー)にて分析し、Sn−Zn2元共晶組織上とSnデンドライト組織上のCr付着量比を任意の100点平均により算出した。 As an example of the invention, No. 1 in Table 1 was used. The solidified structure of 1 is shown in FIG. Further, a surface treatment film was formed on the plating surface by applying and drying a chemical mainly composed of a trivalent chromium aqueous solution on the plating. The amount of adhesion was adjusted by appropriately changing the trivalent chromium concentration in the drug. For the amount of adhesion, an average value in the φ10 mm area was adopted by fluorescent X-ray analysis. Further, from the plating surface layer, the Cr distribution state was analyzed by EPMA (Electron Probe Microanalyzer), and the Cr adhesion amount ratio on the Sn—Zn binary eutectic structure and the Sn dendrite structure was calculated by an arbitrary 100-point average. .
タンク外面の塩害環境での耐食性はSST960時間後の赤錆発生面積率で評価し、赤錆面積率10%以下を良好とした。タンク内面の耐食性は圧力容器中にて、100℃で一昼夜放置した強制劣化ガソリンに10vol%の水を添加し腐食液を作製した。この腐食液350ml中にて、ビードつき引抜加工をおこなっためっき鋼板(板厚減少率15%、30×35mm端面・裏面シール)を45℃×3週間の腐食試験を行い、溶出した金属イオンのイオン種と溶出量を測定した。溶出量は総金属量200ppm未満を良好とした。溶接性はスポット溶接の電極寿命打点数で評価した。溶接条件は、Cr−Cu電極(16φ−DR8R−先端6φ40R)、加圧力:200kg、予備加圧:50サイクル、通電:10サイクル、ホールド:30サイクル(60Hz)、電流:チリ発生電流×95%で実施した。300点以上を良好とした。各種性能結果を表2に示す。 The corrosion resistance in the salt damage environment on the outer surface of the tank was evaluated by the area ratio of red rust generated after SST 960 hours, and the area ratio of red rust was 10% or less. Corrosion resistance of the inner surface of the tank was prepared by adding 10 vol% water to forced-deteriorated gasoline left standing at 100 ° C. for one day in a pressure vessel. In 350 ml of this corrosive solution, a plated steel sheet with a bead drawn (plate thickness reduction rate 15%, 30 x 35 mm end face / back face seal) is subjected to a corrosion test at 45 ° C for 3 weeks, and the eluted metal ions Ion species and elution amount were measured. The amount of elution was good when the total metal amount was less than 200 ppm. Weldability was evaluated by the number of electrode life points of spot welding. Welding conditions are Cr-Cu electrode (16φ-DR8R-tip 6φ40R), pressure: 200 kg, pre-pressurization: 50 cycles, energization: 10 cycles, hold: 30 cycles (60 Hz), current: dust generation current x 95% It carried out in. 300 points or more were considered good. Various performance results are shown in Table 2.
表1、2のNo.1〜5までの本発明例では、いずれも使用に十分耐えうる特性を有している。No.6の比較例ではZn質量%が低いため、十分な犠牲防食効果を有しておらず外面耐食性にやや劣る。No.7、8の比較例ではZn質量%が高く、もはやSnデンドライトが晶出せずZn偏析が助長されるため、内外面のいずれの耐食性も低下した。No.9はCr付着量が少なく、内外面のいずれの耐食性も低下した。No.10はCr付着量が多く表面接触抵抗値が高いため、電極寿命打点数が少ない。 No. in Tables 1 and 2. In Examples 1 to 5 of the present invention, all of them have characteristics that can sufficiently withstand use. No. In Comparative Example 6, the Zn mass% is low, so that it does not have a sufficient sacrificial anticorrosive effect and is slightly inferior in outer surface corrosion resistance. No. In Comparative Examples 7 and 8, the Zn mass% was high, Sn dendrite was no longer crystallized, and Zn segregation was promoted, so that the corrosion resistance of both the inner and outer surfaces was lowered. No. No. 9 had a small amount of Cr deposited, and the corrosion resistance of both the inner and outer surfaces was lowered. No. Since No. 10 has a large amount of Cr adhesion and a high surface contact resistance value, the number of electrode life hit points is small.
1 Sn−Zn二元共晶部
2 表面処理被膜
3 アーム状Snデンドライト晶
特許出願人 新日本製鐵株式会社
代理人 弁理士 椎 名 彊 他1
DESCRIPTION OF
Patent applicant: Nippon Steel Corporation
Attorney Attorney Shiina and
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005178745A JP4537894B2 (en) | 2005-06-20 | 2005-06-20 | Hot Sn-Zn plated steel sheet with good corrosion resistance and weldability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005178745A JP4537894B2 (en) | 2005-06-20 | 2005-06-20 | Hot Sn-Zn plated steel sheet with good corrosion resistance and weldability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006348365A true JP2006348365A (en) | 2006-12-28 |
JP4537894B2 JP4537894B2 (en) | 2010-09-08 |
Family
ID=37644509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005178745A Active JP4537894B2 (en) | 2005-06-20 | 2005-06-20 | Hot Sn-Zn plated steel sheet with good corrosion resistance and weldability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4537894B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102400076A (en) * | 2010-09-07 | 2012-04-04 | 鞍钢股份有限公司 | Hot-dip tin-zinc alloy plated steel plate for fuel tank and manufacturing method thereof |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08269734A (en) * | 1995-03-29 | 1996-10-15 | Nippon Steel Corp | Rust preventive steel sheet for fuel tank |
JPH08269735A (en) * | 1995-03-29 | 1996-10-15 | Nippon Steel Corp | Rust preventive steel sheet for fuel tank |
JPH08269733A (en) * | 1995-03-28 | 1996-10-15 | Nippon Steel Corp | Rust preventive steel sheet for fuel tank |
JPH10183368A (en) * | 1996-10-30 | 1998-07-14 | Nippon Steel Corp | Rust preventive steel sheet for fuel tank excellent in weldability and corrosion resistance |
JP2000017451A (en) * | 1998-07-02 | 2000-01-18 | Nippon Hyomen Kagaku Kk | Protective film-formed steel sheet, its production and composition for forming protective film |
JP2000119833A (en) * | 1998-10-09 | 2000-04-25 | Nippon Steel Corp | HOT DIP Sn-Zn PLATED STEEL SHEET FOR ELECTRICAL MEMBER |
JP2002332556A (en) * | 2001-05-14 | 2002-11-22 | Nippon Steel Corp | METHOD FOR PRODUCING HOT DIP Sn-Zn PLATED STEEL SHEET |
JP2003268521A (en) * | 2002-03-15 | 2003-09-25 | Nippon Steel Corp | HOT DIP Sn-Zn PLATED STEEL SHEET |
JP2004131819A (en) * | 2002-10-11 | 2004-04-30 | Nippon Steel Corp | Hot-dip tin-zinc base coated steel sheet having good corrosion resistance |
JP2004531639A (en) * | 2000-09-07 | 2004-10-14 | 新日本製鐵株式会社 | Hexavalent chromium-free surface treatment chemical for Sn- and Al-based plated steel sheets and surface-treated steel sheets |
JP2004360019A (en) * | 2003-06-05 | 2004-12-24 | Nippon Steel Corp | HOT DIP Sn-Zn BASED PLATED STEEL SHEET HAVING EXCELLENT JOINING PROPERTY |
-
2005
- 2005-06-20 JP JP2005178745A patent/JP4537894B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08269733A (en) * | 1995-03-28 | 1996-10-15 | Nippon Steel Corp | Rust preventive steel sheet for fuel tank |
JPH08269734A (en) * | 1995-03-29 | 1996-10-15 | Nippon Steel Corp | Rust preventive steel sheet for fuel tank |
JPH08269735A (en) * | 1995-03-29 | 1996-10-15 | Nippon Steel Corp | Rust preventive steel sheet for fuel tank |
JPH10183368A (en) * | 1996-10-30 | 1998-07-14 | Nippon Steel Corp | Rust preventive steel sheet for fuel tank excellent in weldability and corrosion resistance |
JP2000017451A (en) * | 1998-07-02 | 2000-01-18 | Nippon Hyomen Kagaku Kk | Protective film-formed steel sheet, its production and composition for forming protective film |
JP2000119833A (en) * | 1998-10-09 | 2000-04-25 | Nippon Steel Corp | HOT DIP Sn-Zn PLATED STEEL SHEET FOR ELECTRICAL MEMBER |
JP2004531639A (en) * | 2000-09-07 | 2004-10-14 | 新日本製鐵株式会社 | Hexavalent chromium-free surface treatment chemical for Sn- and Al-based plated steel sheets and surface-treated steel sheets |
JP2002332556A (en) * | 2001-05-14 | 2002-11-22 | Nippon Steel Corp | METHOD FOR PRODUCING HOT DIP Sn-Zn PLATED STEEL SHEET |
JP2003268521A (en) * | 2002-03-15 | 2003-09-25 | Nippon Steel Corp | HOT DIP Sn-Zn PLATED STEEL SHEET |
JP2004131819A (en) * | 2002-10-11 | 2004-04-30 | Nippon Steel Corp | Hot-dip tin-zinc base coated steel sheet having good corrosion resistance |
JP2004360019A (en) * | 2003-06-05 | 2004-12-24 | Nippon Steel Corp | HOT DIP Sn-Zn BASED PLATED STEEL SHEET HAVING EXCELLENT JOINING PROPERTY |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102400076A (en) * | 2010-09-07 | 2012-04-04 | 鞍钢股份有限公司 | Hot-dip tin-zinc alloy plated steel plate for fuel tank and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4537894B2 (en) | 2010-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2387735C2 (en) | STEEL PLATE WITH Sn-Zn SYSTEM COATING APPLIED BY MELT DIPPING, WHICH HAS HIGH CORROSION RESISTANCE | |
JP5000039B2 (en) | Tin-plated or aluminum-plated surface-treated steel with excellent corrosion resistance | |
CN110100036B (en) | Hot-dip galvanized steel material having excellent weldability and stamping workability, and method for producing same | |
JP2018535328A (en) | Steel sheet coated with aluminum-based titanium-containing metal coating | |
JP4860537B2 (en) | Automotive parts with excellent corrosion resistance at joints | |
JP3133231B2 (en) | Rust-proof steel plate for fuel tanks with excellent workability, corrosion resistance and weldability | |
JP4537894B2 (en) | Hot Sn-Zn plated steel sheet with good corrosion resistance and weldability | |
JP2002317233A (en) | Hot dip tin-zinc based plated steel sheet | |
JP4299591B2 (en) | Molten Sn-Zn plated steel sheet with excellent bonding characteristics | |
JP3126622B2 (en) | Rustproof steel plate for fuel tank | |
JP2001355051A (en) | HOT DIP Zn-Sn PLATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE | |
JP3135818B2 (en) | Manufacturing method of zinc-tin alloy plated steel sheet | |
KR100667140B1 (en) | HOT-DIPPED Sn-Zn PLATING PROVIDED STEEL PLATE OR SHEET EXCELLING IN CORROSION RESISTANCE AND WORKABILITY | |
JP2004277839A (en) | Zinc based metal-coated steel | |
JP5428571B2 (en) | Fuel tank for vehicles | |
JP2016169418A (en) | Member for automobile and oil filler pipe for automobile using coating and sacrificial corrosion resistance and excellent in pitting resistance | |
JP2004131819A (en) | Hot-dip tin-zinc base coated steel sheet having good corrosion resistance | |
JP2002105615A (en) | HOT-DIP Sn-Mg COATED STEEL SHEET | |
JP2756547B2 (en) | Hot-dip Zn-based plating of hard-to-plate steel sheet | |
CN115244208B (en) | Plated steel sheet for hot stamping | |
JP7290757B2 (en) | Plated steel wire and its manufacturing method | |
JP3071667B2 (en) | Rustproof steel plate for fuel tanks with excellent workability and corrosion resistance | |
JP5664408B2 (en) | Molten Sn-Zn plated steel sheet | |
JPS6348945B2 (en) | ||
JPH08269734A (en) | Rust preventive steel sheet for fuel tank |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070905 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100607 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100615 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100618 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4537894 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |