[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006344445A - X-ray tube device and x-ray ct device using the same - Google Patents

X-ray tube device and x-ray ct device using the same Download PDF

Info

Publication number
JP2006344445A
JP2006344445A JP2005167867A JP2005167867A JP2006344445A JP 2006344445 A JP2006344445 A JP 2006344445A JP 2005167867 A JP2005167867 A JP 2005167867A JP 2005167867 A JP2005167867 A JP 2005167867A JP 2006344445 A JP2006344445 A JP 2006344445A
Authority
JP
Japan
Prior art keywords
ray tube
ray
anode
thermoelectric conversion
electric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005167867A
Other languages
Japanese (ja)
Inventor
Hirokazu Iijima
浩和 飯嶋
Jun Takahashi
順 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2005167867A priority Critical patent/JP2006344445A/en
Publication of JP2006344445A publication Critical patent/JP2006344445A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • X-Ray Techniques (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray tube device and X-ray CT device using the same capable of reducing power consumption, improving inspection throughput, and reducing power consumption and noise of an air conditioning device in a photographing chamber. <P>SOLUTION: A thermoelectric conversion device 91 converting heat into electric power is arranged at a prescribed part where the heat generated at an anode of the X-ray tube device 9, composed of an X-ray tube 9a housing an anode 9c and a cathode 9b arranged in opposition to the anode in a vacuum container, a tube container housing the X-ray tube filled with insulation oil 9e for cooling, and cable receptacles 9i, 9j for the anode and the cathode in which bushing of a cable impressing high voltage between the anode and the cathode, are inserted, is conducted. The electric power generated by the thermoelectric conversion device is supplied to a focus movement correction device 11 and to an X-ray tube cooling device 14 by power transmission cables 9n, 9o through a low voltage circuit terminal board 9q. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,X線管装置に係り、特にX線管装置の陽極の発熱を有効利用するX線管装置及びそれを用いたX線CT装置に関する。   The present invention relates to an X-ray tube apparatus, and more particularly to an X-ray tube apparatus that effectively uses heat generated by an anode of an X-ray tube apparatus and an X-ray CT apparatus using the same.

X線CT装置において、近年、“短時間で広い範囲のスキャンが可能”、“体軸方向に連続したデータが得られ、これによって三次元画像の生成が可能”、さらに、“X線検出器を多列化して一度に多くの断層画像の撮像が可能”等の特徴を有するマルチスライス機能を備えたヘリカルスキャンやスパイラルスキャンと呼ばれるら旋CTが主流となっている。
このら旋CTは、スキャナ回転部にX線線管装置とX線検出器及を搭載し、前記スキャナ回転部を連続回転させると同時に、被検体を載置したテーブルを前記被検体の体軸方向に連続移動させて、前記X線管装置とX線検出器とを前記被検体に対し相対的にら旋運動をさせるものである。
In recent years, in X-ray CT systems, “a wide range of scanning is possible in a short time”, “continuous data can be obtained in the direction of the body axis, which enables the generation of 3D images”, and “X-ray detectors” A helical CT called a helical scan or a spiral scan having a multi-slice function having a feature such as "multiple rows of images can be taken at a time and a large number of tomographic images can be taken" has become the mainstream.
This spiral CT is equipped with an X-ray tube device and an X-ray detector on the scanner rotation unit, and continuously rotates the scanner rotation unit, and at the same time, sets the table on which the subject is placed on the body axis of the subject. The X-ray tube device and the X-ray detector are rotated relative to the subject by continuously moving in the direction.

このように、ら旋CTは、スキャナ回転部に搭載したX線管装置から連続して長時間X線を曝射しなければならないので、X線管の負荷は増大するために大容量のX線管装置が必要になるが、このX線管装置を大容量化すればX線管の陽極部から発生する熱も増大し、これによってX線源である焦点の移動量が大きくなる。
この焦点移動は、特許文献1に記載されているように、X線管の回転陽極が使用中に熱を蓄積して熱膨張により伸長することに起因するもので、これによって断層画像上にアーチファクトを発生し、X線CT装置の画質向上の妨げとなる。
In this way, the spiral CT has to continuously expose X-rays for a long time from the X-ray tube device mounted on the scanner rotating unit. An X-ray tube device is required. However, if the capacity of the X-ray tube device is increased, the heat generated from the anode part of the X-ray tube also increases, thereby increasing the amount of movement of the focal point, which is the X-ray source.
This focal shift is caused by the fact that the rotating anode of the X-ray tube accumulates heat during use and expands due to thermal expansion, as described in Patent Document 1, thereby causing artifacts on the tomographic image. This hinders the improvement of the image quality of the X-ray CT apparatus.

そこで、この問題への対処手段として、X線管装置を回転陽極X線管の管軸方向に移動する機構を付加したものがある。
これは、X線CT装置のX線管装置支持台に、モータ駆動にてX線管装置をX線管軸方向に移動させることができる機構を設け、焦点移動量の計測結果に対応させて、焦点移動の方向とは逆の方向にX線管装置を移動させて、焦点移動量を補正するものである。
上記対処手段の他の例として、焦点移動量の計測結果に対応させて、X線検出器をX線管軸方向に移動するものやX線CT装置に取付けられているコリメータを移動させて上記焦点移動量を補正するものもある。
Therefore, as a means for coping with this problem, there has been added a mechanism for moving the X-ray tube apparatus in the tube axis direction of the rotary anode X-ray tube.
This is because the X-ray tube device support base of the X-ray CT device is provided with a mechanism that can move the X-ray tube device in the X-ray tube axis direction by motor drive, and corresponding to the measurement result of the focal shift amount The X-ray tube apparatus is moved in the direction opposite to the direction of focus movement to correct the focus movement amount.
As another example of the coping means, the X-ray detector is moved in the X-ray tube axis direction or the collimator attached to the X-ray CT apparatus is moved in correspondence with the measurement result of the focal movement amount. Some correct the amount of focus movement.

また、非特許文献1に記載されているように、絶縁油で満たされたX線管装置の陽極部から発生する熱による管容器内の温度が上昇して許容温度を超えてしまうと前記絶縁油の絶縁性能が劣化するので、これを防ぐためにラジエータ(放熱器)とポンプで構成される冷却器を用いて強制的に絶縁油を冷却する手段を講じている。
特開2000-340148号公報 医歯薬出版株式会社:医用放射線科学講座13;放射線診断機器工学、第2版、311頁
Further, as described in Non-Patent Document 1, if the temperature in the tube container rises due to heat generated from the anode part of the X-ray tube device filled with insulating oil and exceeds the allowable temperature, the insulation In order to prevent the oil insulation performance from deteriorating, measures are taken to forcibly cool the insulation oil using a cooler composed of a radiator (heat radiator) and a pump.
JP 2000-340148 Ishiyaku Shuppan Publishing Co., Ltd .: Medical Radiology Course 13; Radiological Equipment Engineering, 2nd Edition, page 311

上記のように、ら旋CTによるX線管装置の大容量化によって、X線管焦点移動補正装置が必要となり、またX線管装置を冷却する冷却器の冷却能力の増大も必要となる。
したがって、前記X線管焦点移動補正装置の電源及び前記冷却器の電源容量の増大によって数百Wの電力が余分に必要となり、X線CT装置全体の電力効率の低下の要因の一つとなっている。
As described above, due to the increase in capacity of the X-ray tube apparatus by spiral CT, an X-ray tube focus movement correction device is required, and the cooling capacity of the cooler that cools the X-ray tube apparatus is also required.
Therefore, an increase in the power supply capacity of the X-ray tube focus movement correction device and the power supply of the cooler requires an extra power of several hundred watts, which is one of the causes of a decrease in power efficiency of the entire X-ray CT apparatus. Yes.

また、上記X線管装置の焦点移動補正のためには現在の焦点移動量を把握する必要があるので、そのために被検体が無い状態、あるいは被検体があっても無効曝射のないようにシャッターでしゃへいした状態でX線を曝射(以下、これを予備曝射と呼ぶ)して、X線ビームを検出するX線検出器により前記X線ビームの位置の移動量から焦点移動量を検出している。
このために、上記の予備曝射が必要となるので、これによってX線CT検査のスループットが低下する。
In addition, since it is necessary to grasp the current amount of focal movement in order to correct the focal movement of the X-ray tube device, there is no subject or no invalid exposure even if there is a subject. X-rays are exposed with a shutter (hereinafter referred to as pre-exposure), and the X-ray detector that detects the X-ray beam calculates the amount of focal movement from the amount of movement of the X-ray beam. Detected.
For this reason, the preliminary exposure described above is required, which reduces the throughput of the X-ray CT examination.

さらに、前記X線管装置を冷却する冷却器からの排熱によってX線CT装置内部の温度上昇を招くので、この温度上昇による撮影室を所定温度にするために前記撮影室の空調能力を上げる必要があり、これによって空調機の消費電力及び騒音の増大につながる。   Further, the exhaust heat from the cooler that cools the X-ray tube apparatus causes a temperature rise inside the X-ray CT apparatus, so that the air-conditioning capacity of the imaging room is increased in order to bring the imaging room to a predetermined temperature due to this temperature increase This leads to an increase in power consumption and noise of the air conditioner.

本発明の目的は、上記課題に鑑みてなされたものであって、消費電力の低減、検査のスループットの向上、撮影室の空調機の消費電力の低減、騒音の低減が可能なX線管装置及びそれを用いたX線CT装置を提供することにある。   An object of the present invention has been made in view of the above problems, and is an X-ray tube apparatus capable of reducing power consumption, improving inspection throughput, reducing power consumption of an air conditioner in a radiographing room, and reducing noise. And an X-ray CT apparatus using the same.

本発明は、X線管装置の陽極部で発生する熱を電力に変換し、この電力を有効に利用する考えに基づいて成されたもので、上記目的は以下の手段によって達成される。
(1)陽極と、該陽極と対向して配置される陰極とを真空外囲器内に収納して成るX線管と、冷却用絶縁油に満たされた前記X線管を収納する管容器と、前記陽極と陰極間に高電圧を印加するケーブルのブッシングを挿入する陽極用及び陰極用ケーブルレセプタクルとを備えたX線管装置の前記陽極の発生する熱が伝導する所定の部分に前記熱を電力に変換する熱電変換手段を備えた。
(2)前記熱電変換手段は、Bi,Te,Sb,及びSe元素のうちの少なくとも一種以上の元素を主成分として含有した材料で形成された熱電材料による熱電変換素子と、この熱電変換素子の一方の面が前記陽極の発生する熱を吸収する吸熱部と、この吸熱部の他方の面に前記吸熱部で吸収した熱を放熱する放熱部とで構成される。
(3)前記管容器と前記X線管の陰極近傍の真空外囲器との間に前記X線管を前記陽極ターゲットの焦点移動方向と逆方向に移動させる圧電素子による圧電手段を設け、この圧電手段に前記熱電変換手段の発電する電力を入力して前記X線管の焦点移動量を補正する。
(4)前記熱電変換手段で発電した電力を前記陽極用及び陰極用ケーブルレセプタクルのいずれか一方を介して外部に電送する電送手段を設けた。
(5)前記絶縁油を冷却する冷却手段をさらに備え、前記電送手段から電送される電力を前記冷却手段の電源とする。
(6)前記冷却手段に、さらに前記熱電変換手段の発電する電力と前記絶縁油に要求される冷却力との相関から前記陽極の発熱量に応じて前記冷却力を制御する制御手段を設けた。
The present invention has been made based on the idea of converting the heat generated in the anode part of the X-ray tube device into electric power and effectively using this electric power. The above object is achieved by the following means.
(1) An X-ray tube in which an anode and a cathode disposed opposite to the anode are accommodated in a vacuum envelope, and a tube container for accommodating the X-ray tube filled with cooling insulating oil And an anode and a cathode cable receptacle for inserting a cable bushing for applying a high voltage between the anode and the cathode. Thermoelectric conversion means for converting the power into electric power.
(2) The thermoelectric conversion means includes a thermoelectric conversion element made of a thermoelectric material formed of a material containing at least one element of Bi, Te, Sb, and Se as a main component, and the thermoelectric conversion element One surface is composed of a heat absorbing portion that absorbs heat generated by the anode, and a heat radiating portion that dissipates heat absorbed by the heat absorbing portion on the other surface of the heat absorbing portion.
(3) Piezoelectric means using a piezoelectric element for moving the X-ray tube in a direction opposite to the focal direction of the anode target is provided between the tube container and a vacuum envelope near the cathode of the X-ray tube, The electric power generated by the thermoelectric conversion means is input to the piezoelectric means to correct the focal shift amount of the X-ray tube.
(4) An electric transmission means for transmitting the electric power generated by the thermoelectric conversion means to the outside through one of the anode and cathode cable receptacles is provided.
(5) A cooling means for cooling the insulating oil is further provided, and electric power transmitted from the electric transmission means is used as a power source of the cooling means.
(6) The cooling means is further provided with control means for controlling the cooling power according to the amount of heat generated by the anode from the correlation between the electric power generated by the thermoelectric conversion means and the cooling power required for the insulating oil. .

上記のように、X線管の陽極から発生する熱を電力に変換する熱電変換手段をX線管装置に設け、該変換された電力を前記X線管装置を用いたX線画像診断装置やX線CT装置を構成する要素(例えば、圧電手段による焦点移動補正や絶縁油冷却手段等の電力)の電力源として利用することにより、システム全体の消費電力はより少ないものとなり効率が向上する。
また、圧電手段をX線管装置の内部に設けることにより、焦点移動量を補正する必要がないX線管装置とすることができる。
さらに、前記陽極の発熱量に応じて前記冷却力を制御する制御手段を設けたので、効率良くX線管を冷却することができる。
特に回転陽極を有するX線管装置においてはその効果が大きい。
As described above, thermoelectric conversion means for converting heat generated from the anode of the X-ray tube into electric power is provided in the X-ray tube device, and the converted electric power is converted into an X-ray diagnostic imaging device using the X-ray tube device, By using it as a power source for elements constituting the X-ray CT apparatus (for example, electric power for focus movement correction by piezoelectric means, insulating oil cooling means, etc.), the power consumption of the entire system is reduced and the efficiency is improved.
Further, by providing the piezoelectric means inside the X-ray tube apparatus, it is possible to obtain an X-ray tube apparatus that does not require correction of the focal shift amount.
Furthermore, since the control means for controlling the cooling power according to the heat generation amount of the anode is provided, the X-ray tube can be efficiently cooled.
The effect is particularly great in an X-ray tube apparatus having a rotating anode.

(7)被検体を配置する開口部を有する回転部材に前記被検体を挟んでX線発生手段とX線検出手段を対向配置し、前記回転部材を前記被検体の周りに回転させて前記X線発生手段から前記被検体にX線を照射し、前記X線検出手段で前記被検体を透過したX線を検出して、この検出信号から前記被検体の断層像を得るX線CT装置であって、前記X線発生手段に上記(3)ないし(6)のいずれかのX線管装置を用いる。
(8)前記電送手段で電送された電力をX線CTシステムの構成要素に用いる。
(9)前記陽極のターゲットから発生するX線の焦点移動量に応じて前記X線管装置を移動させる焦点移動量補正手段を備え、この焦点移動量補正手段の電源を前記電送手段からの電送電力とする。
(10)前記焦点移動量補正手段は圧電素子による補正手段であって、この補正手段を前記回転部材に設けた固定部と前記X線管装置との間に挿入し、前記電送手段からの電送電力を前記補正手段の電源とする。
(11)さらに、前記焦点移動量補正手段に、前記熱電変換手段の発電する電力と前記焦点移動量補正手段に要求される駆動力との相関から前記陽極の発熱量に応じて前記駆動力を制御する制御手段を設けた。
(12)前記X線管装置には、ら旋スキャンに対応可能とするために回転陽極X線管装置を用いる。
(7) An X-ray generation unit and an X-ray detection unit are disposed opposite to each other with the subject sandwiched between a rotation member having an opening for arranging the subject, and the rotation member is rotated around the subject to rotate the X An X-ray CT apparatus that irradiates the subject with X-rays from a ray generation means, detects X-rays transmitted through the subject with the X-ray detection means, and obtains a tomographic image of the subject from the detection signal Therefore, the X-ray tube device according to any one of (3) to (6) is used as the X-ray generation means.
(8) The power transmitted by the power transmission means is used as a component of the X-ray CT system.
(9) It has a focus movement amount correction means for moving the X-ray tube device in accordance with an X-ray focus movement amount generated from the anode target, and a power source of the focus movement amount correction means is supplied from the electric transmission means. Use electricity.
(10) The focus movement amount correction means is a correction means using a piezoelectric element, and the correction means is inserted between the fixed portion provided on the rotating member and the X-ray tube device, and the electric transmission from the electric transmission means. Electric power is used as a power source for the correction means.
(11) Further, the driving force according to the amount of heat generated by the anode from the correlation between the electric power generated by the thermoelectric conversion unit and the driving force required for the focal movement correction unit is applied to the focal movement correction unit. Control means for controlling was provided.
(12) A rotating anode X-ray tube device is used as the X-ray tube device in order to be compatible with spiral scanning.

以上のように構成されたX線CT装置は、熱電変換手段によって変換された電力をX線管の焦点移動補正装置やX線管装置の冷却装置の電力源として利用するので、X線CTシステム全体の消費電力はより少ないものとなり電力利用効率は向上する。
この場合、前記変換によって得られた電力をX線管の焦点移動補正手段やX線管装置の冷却装置の電力源として利用する以外に、X線管装置の陰極フィラメント加熱装置やX線管装置の陽極回転駆動装置等のシステム構成要素の電力源にも利用することにより、さらにX線CT装置の電力利用効率は向上するものとなる。
The X-ray CT apparatus configured as described above uses the electric power converted by the thermoelectric conversion means as the power source of the X-ray tube focus shift correction device and the cooling device of the X-ray tube device. The overall power consumption is less and the power usage efficiency is improved.
In this case, the cathode filament heating device and the X-ray tube device of the X-ray tube device can be used in addition to using the electric power obtained by the conversion as the power source of the X-ray tube focal point movement correcting means and the X-ray tube device cooling device. Further, the power utilization efficiency of the X-ray CT apparatus can be further improved by using it as a power source for system components such as the anode rotation drive apparatus.

また、前記陽極の発熱量に応じて前記焦点移動量や冷却力を制御する制御手段を設けたので、効率良く焦点移動補正やX線管を冷却することができる。
さらに、前記焦点移動制御手段を設けることによって、焦点移動補正をリアルタイムできめ細かく制御することができるので、従来技術で用いていた現在の焦点移動量を計測する必要がなくなり、そのための予備的なX線曝射も不要となって、X線CT検査のスループットを向上させることができる。
In addition, since the control means for controlling the focal movement amount and the cooling power according to the calorific value of the anode is provided, the focal movement correction and the X-ray tube can be efficiently cooled.
Further, by providing the focus movement control means, it is possible to finely control the focus movement correction in real time, so that it is not necessary to measure the current focus movement amount used in the prior art, and a preliminary X for that purpose. X-ray CT inspection throughput can be improved by eliminating the need for radiation exposure.

さらにまた、前記熱電変換装置手段によってX線管装置の陽極が冷却されるため,X線管冷却装置の冷却能力を縮小することが可能となり、この冷却装置の騒音も低減し、X線CT装置からの排熱も少ないものとなるので、撮影室の空調機の空調能力も少なく済むようになる。
さらにまた、上記X線管装置の内部に圧電手段を備えたX線管装置を用いることによって、X線管装置の外部に焦点移動補正手段を設ける必要がなくなるので、X線CT装置はより簡素で安価なものとなる。
特に、X線管装置に回転陽極X線管装置を用いることによりその効果は大きいものとなる。
Furthermore, since the anode of the X-ray tube device is cooled by the thermoelectric conversion device means, it becomes possible to reduce the cooling capacity of the X-ray tube cooling device, and the noise of this cooling device is reduced, and the X-ray CT device. Therefore, the air conditioning capacity of the air conditioner in the photographing room can be reduced.
Furthermore, by using an X-ray tube device having piezoelectric means inside the X-ray tube device, there is no need to provide a focus movement correction means outside the X-ray tube device, so the X-ray CT device is simpler. And cheap.
In particular, the use of a rotating anode X-ray tube device for the X-ray tube device has a great effect.

本発明によれば、X線管装置の陽極で発生する熱を電力に変換する手段を設けたことによって、以下の効果が得られる。
(1)前記変換された電力をX線管の焦点移動量補正装置やX線管の冷却装置等のX線CT装置を構成する要素の電力源として利用することにより、X線CTシステム全体の消費電力はより少ないものとなり電力効率が向上する。
(2)前記焦点移動補正装置に設けた制御手段により、焦点移動補正をリアルタイムできめ細かく制御することができるので、焦点移動量を計測する必要がなくなり,そのための予備的なX線曝射も不要となって、X線CT検査のスループットが向上する。
(3)前記熱電変換装置手段によってX線管装置の陽極が冷却されるため、X線管冷却装置の冷却能力を縮小することが可能となり、この冷却装置の騒音も低減し、X線CT装置からの排熱も少ないものとなるので、撮影室の空調機の空調能力も少なくなり、この結果、撮影室の騒音及び空調機の電源容量の低減を図ることができる。
(4)X線管装置の内部に圧電手段を備え、この圧電手段により焦点移動量補正を行うことによって、X線管装置の外部に焦点移動補正手段を設ける必要がなくなるので、X線CT装置はより簡素で安価なものにすることができる。
According to the present invention, by providing means for converting heat generated at the anode of the X-ray tube device into electric power, the following effects can be obtained.
(1) By using the converted electric power as a power source for elements constituting the X-ray CT apparatus such as the X-ray tube focus shift correction device and the X-ray tube cooling device, the entire X-ray CT system can be used. Less power is consumed and power efficiency is improved.
(2) Since the focus shift correction can be controlled in real time and finely by the control means provided in the focus shift correction device, it is not necessary to measure the focus shift amount, and preliminary X-ray exposure for that purpose is also unnecessary. As a result, the throughput of the X-ray CT examination is improved.
(3) Since the anode of the X-ray tube device is cooled by the thermoelectric conversion device means, the cooling capacity of the X-ray tube cooling device can be reduced, and the noise of the cooling device is reduced, and the X-ray CT device Therefore, the air conditioning capability of the air conditioner in the photo studio is also reduced, and as a result, the noise in the photo studio and the power supply capacity of the air conditioner can be reduced.
(4) Since the piezoelectric means is provided inside the X-ray tube apparatus, and the focus movement correction is performed by the piezoelectric means, it is not necessary to provide the focus movement correction means outside the X-ray tube apparatus. Can be simpler and cheaper.

以下、本発明に係るX線管装置及びこれを用いたX線CT装置の好ましい実施の形態について図を用いて詳細に説明する。
X線CT装置は、スキャナガントリィと、被検体を載置するテーブルと、画像処理装置を内蔵した操作卓とで構成される。
前記スキャナガントリィの中心部には、被検体が挿入される開口部が設けられ、該スキャナガントリィの前面には、テーブルが配置されている。
前記テーブルの高さは電動で調節できるように構成され、該テーブルの上面には被検体を載置する天板が設けられ、この天板は被検体を撮影位置に位置決めするために前記スキャナガントリィに対して電動でスライドできるように構成されている。
前記操作卓上には、キーボードやマウス等の入力装置と、患者情報、撮影条件等の各種情報と撮影された断層画像を表示する表示装置としてのモニタが配備され、この操作卓の内部には、画像処理装置やシステム全体を制御する制御装置が収納されて前記スキャナガントリィ、テーブルと接続され、これらのスキャナガントリィ、テーブルは前記制御装置により制御される。
Hereinafter, preferred embodiments of an X-ray tube apparatus and an X-ray CT apparatus using the same according to the present invention will be described in detail with reference to the drawings.
The X-ray CT apparatus includes a scanner gantry, a table on which a subject is placed, and a console with a built-in image processing apparatus.
An opening for inserting a subject is provided at the center of the scanner gantry, and a table is disposed on the front surface of the scanner gantry.
The height of the table is configured to be electrically adjustable, and a top plate on which the subject is placed is provided on the upper surface of the table, and the top plate is used to position the subject at the imaging position. It is configured so that it can slide electrically with respect to the tree.
On the console, an input device such as a keyboard and a mouse, and a monitor as a display device that displays various information such as patient information and imaging conditions and a tomographic image taken, are arranged inside the console. A control device for controlling the image processing apparatus and the entire system is accommodated and connected to the scanner gantry and table, and these scanner gantry and table are controlled by the control device.

図1は、スキャナ回転部に本発明によるX線管装置を用いたX線発生装置とX線検出装置を搭載したX線CT装置のスキャナガントリィの構成を示す図である。
図1において、スキャナガントリィ1は、スキャナ固定部(図示省略)とスキャナ回転部とで構成され、スキャナ回転部には、回転部材2にX線発生装置3とX線検出装置4及びスキャナ回転部内を制御する回転部制御装置5を搭載している。
FIG. 1 is a diagram showing a configuration of a scanner gantry of an X-ray CT apparatus in which an X-ray generation apparatus using an X-ray tube apparatus according to the present invention and an X-ray detection apparatus are mounted on a scanner rotating unit.
In FIG. 1, a scanner gantry 1 includes a scanner fixing unit (not shown) and a scanner rotating unit. The scanner rotating unit includes a rotating member 2, an X-ray generator 3, an X-ray detecting device 4, and a scanner rotating unit. A rotating unit control device 5 for controlling the inside of the unit is mounted.

前記X線発生装置3は、開口部8に挿入され撮影位置に載置された被検体(図示省略)に照射するX線発生用X線管装置9と、このX線管装置9からのX線ビームを前記被検体の照射野に制限するコリメータ10と、前記X線管装置9の焦点移動量を補正する焦点移動補正装置11とから成り、X線制御装置12からのX線制御信号に対応した高電圧を高電圧発生装置13で発生し、この高電圧を前記X線管装置9の陽極と陰極間に印加して該X線管装置9から前記X線制御信号に対応したX線を発生する。
なお、前記X線制御装置12には、前記X線管装置9の陰極であるフィラメントを加熱するフィラメント加熱装置が含まれ、前記X線発生装置3には前記X線管装置9の陽極を回転させる陽極駆動装置(図示省略)が含まれている。
また、前記回転部材2にはX線管冷却装置14が搭載されており、これにより前記X線管装置9は冷却されて所定温度以下に抑制される。
The X-ray generation device 3 includes an X-ray generation X-ray tube device 9 that irradiates a subject (not shown) inserted into the opening 8 and placed at the imaging position, and an X-ray tube device 9 Consists of a collimator 10 that limits the ray beam to the irradiation field of the subject, and a focus movement correction device 11 that corrects the focal movement amount of the X-ray tube device 9, and the X-ray control signal from the X-ray control device 12 Corresponding high voltage is generated by the high voltage generator 13, and this high voltage is applied between the anode and the cathode of the X-ray tube device 9 and the X-ray corresponding to the X-ray control signal from the X-ray tube device 9 Is generated.
The X-ray control device 12 includes a filament heating device that heats a filament that is a cathode of the X-ray tube device 9, and the X-ray generation device 3 rotates the anode of the X-ray tube device 9. An anode driving device (not shown) is included.
In addition, an X-ray tube cooling device 14 is mounted on the rotating member 2, whereby the X-ray tube device 9 is cooled and suppressed to a predetermined temperature or lower.

前記X線検出装置4は、前記被検体を挟んで前記X線発生装置3に対向する位置に配置され、前記被検体を透過したX線を検出するX線検出器15と、このX線検出器15から出力された電気信号を増幅する増幅器16とで構成され、それぞれ前記回転部材2に固着されている。   The X-ray detection device 4 is disposed at a position facing the X-ray generation device 3 with the subject interposed therebetween, and an X-ray detector 15 that detects X-rays transmitted through the subject, and this X-ray detection And an amplifier 16 that amplifies the electric signal output from the device 15, and each is fixed to the rotating member 2.

このような構成のスキャナガントリィ1において、X線管の陽極部から発生する熱による焦点移動の補正は、撮影を開始する前に予備曝射を行って前記X線検出器15と別設された焦点移動量検出器でX線ビームの位置の移動量から焦点移動量を求め、この移動量分だけ前記焦点移動とは逆方向に前記X線管装置9を焦点移動補正装置11により移動させて補正する。   In the scanner gantry 1 having such a configuration, the correction of the focal shift due to the heat generated from the anode portion of the X-ray tube is provided separately from the X-ray detector 15 by performing preliminary exposure before starting imaging. The focal movement detector detects the focal movement amount from the movement amount of the position of the X-ray beam, and moves the X-ray tube device 9 by the focal movement correction device 11 in the opposite direction to the focal movement by this movement amount. To correct.

図2は、上記X線CT装置のX線発生装置3における本発明によるX線管装置9の第1の実施形態の構造図である。
なお、この図2のX線管装置9には該X線管装置を冷却するX線冷却器14も図示されている。
FIG. 2 is a structural diagram of the first embodiment of the X-ray tube apparatus 9 according to the present invention in the X-ray generator 3 of the X-ray CT apparatus.
2 also shows an X-ray cooler 14 for cooling the X-ray tube apparatus.

前記X線管装置9のX線管9aは、加熱されたフィラメントから熱電子を放出する陰極9bと、電子を受けてX線を発生させる陽極ターゲット9cと、このターゲット9cを回転させる回転陽極9dとを真空外囲器内に収納し、冷却用絶縁油9eに満たされたX線管装置9の管容器の陽極支持体9fと陰極支持体9gにより固定される。   The X-ray tube 9a of the X-ray tube device 9 includes a cathode 9b that emits thermoelectrons from a heated filament, an anode target 9c that receives electrons to generate X-rays, and a rotating anode 9d that rotates the target 9c. Are housed in a vacuum envelope and fixed by an anode support 9f and a cathode support 9g of the tube container of the X-ray tube device 9 filled with a cooling insulating oil 9e.

X線管装置9の内側のほぼ中央部には、X線濾過性のよいエポキシ樹脂製の放射口9hが取付けられ、両端部には陽極用ケーブルレセプタクル9iと陰極用ケーブルレセプタクル9jが備えられ、ここに高電圧発生装置13から伸びてきたケーブルのブッシングを挿入する。
前記陽極用ケーブルレセプタクル9iと陰極用ケーブルレセプタクル9jからX線管9aの陽極端と陰極端側ガラスバルブのステムにリード線が伸び(図示省略)、高電圧が印加される。
陽極側は1本のケーブルで通電されるが、陰極側はフィラメントや他の共通端子など、複数本のケーブルが互いに絶縁されて用いられる。
陽極を回転駆動する回転陽極用固定子9kには、図示省略の固定子巻線が巻かれており、陽極支持体9fに設けられた低圧回路端子板(図示省略)を介して電力が供給され、前記固定子巻線は接地電位で使用される。
前記絶縁油9eは、上記X線CT装置のような大容量高入力X線管装置の場合、X線管装置9からの放熱だけでは許容温度を超えてしまうので、ラジエータ(放熱器)とポンプで構成されるX線管冷却装置14を用いて強制的に冷却する。
Near the center of the inside of the X-ray tube device 9, a radiation port 9h made of an epoxy resin with good X-ray filterability is attached, and an anode cable receptacle 9i and a cathode cable receptacle 9j are provided at both ends, A cable bushing extending from the high voltage generator 13 is inserted here.
Lead wires extend from the anode cable receptacle 9i and cathode cable receptacle 9j to the anode end of the X-ray tube 9a and the stem of the cathode end side glass bulb (not shown), and a high voltage is applied.
The anode side is energized with a single cable, while the cathode side is used with a plurality of cables insulated from each other, such as filaments and other common terminals.
An unillustrated stator winding is wound around the rotating anode stator 9k that rotates the anode, and electric power is supplied through a low-voltage circuit terminal plate (not shown) provided on the anode support 9f. The stator winding is used at ground potential.
In the case of a large-capacity, high-input X-ray tube device such as the X-ray CT device, the insulating oil 9e exceeds the allowable temperature only by heat radiation from the X-ray tube device 9, so a radiator (heat radiator) and a pump Cooling is forcibly performed using an X-ray tube cooling device 14 constituted by:

このような構成のX線管装置9において、本発明は、X線管9aの陽極ターゲット9cで発生する熱を熱電変換装置9lにより電力に変換し、この変換した電力を、例えば前記焦点移動補正装置11等のX線CT装置の構成要素の電源等に利用するものである。   In the X-ray tube device 9 having such a configuration, the present invention converts heat generated in the anode target 9c of the X-ray tube 9a into electric power by the thermoelectric conversion device 9l, and the converted electric power is, for example, the focus movement correction This is used for the power source of the components of the X-ray CT apparatus such as the apparatus 11.

一般に、X線管装置のX線発生効率は非常に低く、99%以上が熱となり、出力100kWのX線管装置では99kWの熱エネルギーが排出される。
この排出される熱エネルギーをBi,Te,Sb,及びSe元素のうちの少なくとも一種以上の元素を主成分として含有した材料で形成された熱電材料による熱電変換素子を用いた熱電変換装置9lを回転陽極9dの端部に設けた支持体9pに固着して、陽極で発生した熱を電力に変換するものである。
Generally, the X-ray generation efficiency of an X-ray tube device is very low, 99% or more is heat, and an X-ray tube device with an output of 100 kW emits 99 kW of thermal energy.
Rotating the thermoelectric conversion device 9l using a thermoelectric conversion element made of a thermoelectric material made of a material containing at least one element of Bi, Te, Sb, and Se as a main component. It adheres to the support 9p provided at the end of the anode 9d and converts the heat generated at the anode into electric power.

前記熱電変換装置9lは、図示は省略するが、前記熱電材料による熱電変換素子の一方の面が前記支持体9pの外面に面接して陽極ターゲット9cで発生した熱を吸収する吸熱部と、この吸熱部の他方の面に前記熱電変換素子の他端部が接続されて前記吸熱部で吸収した熱を放熱する放熱部とを備え、前記熱電変換素子により前記吸熱部と放熱部の温度差で起電力を発生させて発電する構成である。   Although not shown, the thermoelectric conversion device 9l has one end surface of the thermoelectric conversion element made of the thermoelectric material in contact with the outer surface of the support 9p, and an endothermic portion that absorbs heat generated in the anode target 9c, The other end of the thermoelectric conversion element is connected to the other surface of the heat absorbing part, and a heat radiating part that radiates the heat absorbed by the heat absorbing part is provided, and the thermoelectric conversion element causes a temperature difference between the heat absorbing part and the heat radiating part. In this configuration, an electromotive force is generated to generate power.

この熱電変換装置9lの熱電変換素子の変換効率は数%程度と低いが、上記X線管装置から排出される熱エネルギーを99kWとすると、この熱エネルギーの数%は電力に変換されるので、約数kWの電力を発電することができる。
この発電された数kWの電力は、上記X線CT装置の構成要素の電源等として利用するもので、例えば数十Wの電力が必要な前記焦点移動補正装置11や数百W程度の電力が必要な前記X線管冷却装置14及びその他の装置の電源等として利用する。
Although the conversion efficiency of the thermoelectric conversion element of this thermoelectric conversion device 9l is as low as several percent, if the thermal energy discharged from the X-ray tube device is 99 kW, several percent of this thermal energy is converted into electric power, It can generate about several kW of power.
The generated power of several kW is used as a power source for the components of the X-ray CT apparatus. For example, the focal point movement correction device 11 that requires several tens of watts or about several hundred watts of power is used. It is used as a power source for the necessary X-ray tube cooling device 14 and other devices.

上記図2の実施形態において、前記熱電変換装置9lで発電した電力は、リード線9mにより低圧回路端子板(陰極用レセプタクルは高圧につき使用不可)9qを介してX線管装置9の外部に取りだされ、それぞれ電送線9n,9oにより焦点移動補正装置11及びX線管冷却装置14に給電する。   In the embodiment of FIG. 2 described above, the electric power generated by the thermoelectric conversion device 9l is taken outside the X-ray tube device 9 via a low-voltage circuit terminal plate 9q (lead receptacle cannot be used for high voltage) by a lead wire 9m. However, power is supplied to the focus movement correction device 11 and the X-ray tube cooling device 14 through the transmission lines 9n and 9o, respectively.

なお、X線管装置9の内部温度は非常に高いので、上記熱電変換素子の耐熱性についても十分な配慮が必要である。
この点に関して、X線管9aの温度分布は、前記陽極ターゲット9cで最も高く1000℃にも達するが、前記熱電変換装置9lを固定する支持体9pでは150℃程度であるので、前記各熱電材料単体の融点が、Biは271℃,Teは449℃,Sbは630℃,Seは220℃であることから十分な耐熱性を確保できる。
Note that since the internal temperature of the X-ray tube device 9 is very high, sufficient consideration must be given to the heat resistance of the thermoelectric conversion element.
In this regard, the temperature distribution of the X-ray tube 9a is highest at the anode target 9c and reaches 1000 ° C., but is about 150 ° C. at the support 9p for fixing the thermoelectric conversion device 9l. Since the melting point of the simple substance is 271 ° C for Bi, 449 ° C for Te, 630 ° C for Sb, and 220 ° C for Se, sufficient heat resistance can be secured.

また、上記焦点移動補正手段としてX線管装置全体を移動させる例について説明したが、これに限定するものではなく、焦点移動量の計測結果に対応させて、上記焦点移動補正装置11とは別の対処手段であるX線検出器をX線管軸方向に移動する手段やX線CT装置に取付けられているコリメータを移動させる手段を用いた場合でも、これらの手段の駆動電源として利用できる。   Further, although an example in which the entire X-ray tube apparatus is moved as the focus movement correction unit has been described, the present invention is not limited to this, and is different from the focus movement correction apparatus 11 according to the measurement result of the focus movement amount. Even when means for moving the X-ray detector as the coping means in the X-ray tube axis direction or means for moving the collimator attached to the X-ray CT apparatus can be used as a drive power source for these means.

上記のように構成することによって、前記焦点移動補正装置11の電源(図示省略の駆動モータと制御装置)の電力及びX線管冷却装置11の電源をX線CT装置のスキャナ回転部に設けた外部電源から供給する必要がなくなる。
また、陽極ターゲット9cの発生する熱は、熱電変換装置9lの発電に相当する分だけ該熱電変換装置9lに吸収されて前記X線管装置9の回転陽極9dが冷却されるため,焦点移動量も小さくなる。
したがって、焦点移動補正装置11による焦点移動の補正量も少なくて済むようになり、該焦点移動補正装置11の補正能力を低減することが可能となる。
さらに上記と同様に、熱電変換装置9lによってX線管装置9の回転陽極9dが冷却されるため、X線管冷却器14の冷却能力を低減することが可能となるので,この冷却器14に必要な電力および該冷却器14の騒音,X線CT装置からの排熱も少ないものとなる。
この結果、本発明の第1の実施形態のX線管装置をX線CT装置に適用することによって、該X線CT装置全体の消費電力、コスト及び騒音の低減を図ることが可能となる。
By configuring as described above, the power of the focus movement correction device 11 (drive motor and control device not shown) and the power of the X-ray tube cooling device 11 are provided in the scanner rotation unit of the X-ray CT apparatus. There is no need to supply from an external power source.
Further, since the heat generated by the anode target 9c is absorbed by the thermoelectric conversion device 9l by an amount corresponding to the power generation of the thermoelectric conversion device 9l and the rotary anode 9d of the X-ray tube device 9 is cooled, the focal shift amount Becomes smaller.
Therefore, the amount of focus movement correction by the focus movement correction apparatus 11 can be reduced, and the correction capability of the focus movement correction apparatus 11 can be reduced.
Further, similarly to the above, since the rotary anode 9d of the X-ray tube device 9 is cooled by the thermoelectric conversion device 9l, the cooling capacity of the X-ray tube cooler 14 can be reduced. The necessary electric power, the noise of the cooler 14, and the exhaust heat from the X-ray CT apparatus are also reduced.
As a result, by applying the X-ray tube apparatus according to the first embodiment of the present invention to the X-ray CT apparatus, it becomes possible to reduce power consumption, cost, and noise of the entire X-ray CT apparatus.

図3は、上記X線管装置の熱電変換装置が発電する電力を焦点移動補正装置に利用する本発明の第2の実施形態を示す図である。
上記のように、X線管装置9においては、陽極ターゲット9cの発熱が大きいほど焦点移動量は大きくなるので、焦点移動補正装置11に必要とされる駆動力も大きくなる。
また、前記陽極ターゲット9cの発熱が大きいほど熱電変換装置9lの発電する電力は大きい。
したがって、焦点移動量が大きいほど熱電変換装置9lの発電する電力が大きくなるので、前記熱電変換装置9lの発電する電力を前記焦点移動補正装置11に必要とされる駆動力に対応して制御すれば良い。
FIG. 3 is a diagram showing a second embodiment of the present invention in which the electric power generated by the thermoelectric conversion device of the X-ray tube device is used for the focal movement correction device.
As described above, in the X-ray tube device 9, the greater the heat generated by the anode target 9c, the greater the focal shift amount, so the driving force required for the focal shift correction device 11 also increases.
Further, the greater the heat generated by the anode target 9c, the greater the power generated by the thermoelectric conversion device 9l.
Accordingly, since the electric power generated by the thermoelectric conversion device 9l increases as the focal point movement amount increases, the electric power generated by the thermoelectric conversion device 9l is controlled in accordance with the driving force required for the focal point movement correction device 11. It ’s fine.

図3は、この考えに基づいて焦点移動制御部11aを設け、これにより熱電変換装置9lの発電する電力に応じて焦点移動量の補正制御信号を求め、この補正制御信号で焦点移動補正装置11の駆動モータ(図示省略)を制御するものである。
すなわち、焦点移動制御部11aは、熱電変換装置9lの発電する電力と焦点移動補正装置11に必要とされる駆動力との相関を求め,この相関から回転陽極9dの発熱量に対して,必要とされる焦点移動補正装置11の駆動力を制御する。
FIG. 3 provides a focal point movement control unit 11a based on this idea, thereby obtaining a focal point movement correction control signal according to the electric power generated by the thermoelectric conversion device 9l, and using this correction control signal, the focal point movement correction device 11 The drive motor (not shown) is controlled.
That is, the focal point movement control unit 11a obtains a correlation between the electric power generated by the thermoelectric conversion device 9l and the driving force required for the focal point movement correction device 11, and is necessary for the heat generation amount of the rotary anode 9d from this correlation. The driving force of the focal point movement correction device 11 is controlled.

上記熱電変換装置9lの発電する電力と焦点移動補正装置11に必要とされる駆動力との相関は、
(1)回転陽極の発熱量と焦点移動量の関係
(2)熱電変換装置の吸熱部で吸熱する回転陽極の発熱量と前記熱電変換装置の放熱部から放熱する放熱量との関係
(3)前記吸熱部と放熱部との温度差にる起電力と前記焦点移動量の関係
(4)熱電変換装置の起電力と焦点移動補正装置に必要とされる駆動力との関係
から求めることができるので、これを焦点移動制御部11aに備え、これらの関係から熱電変換装置の発電する電力に対応した上記補正制御信号を求め、この信号により焦点移動補正装置の駆動力を制御する。
なお、上記図3の実施形態において、熱電変換装置9lの発電する電力を焦点移動補正装置11及び焦点移動制御部11aに直接給電するように図示したが、これは簡略的に示したもので、実際は図2に示したように低圧回路端子板9qを介して電送線9nにより給電するものである。
The correlation between the electric power generated by the thermoelectric conversion device 9l and the driving force required for the focal movement correction device 11 is as follows:
(1) Relationship between the amount of heat generated by the rotating anode and the amount of focus movement
(2) Relationship between the amount of heat generated by the rotating anode that absorbs heat at the heat absorbing portion of the thermoelectric converter and the amount of heat released from the heat radiating portion of the thermoelectric converter
(3) Relationship between the electromotive force due to the temperature difference between the heat absorbing part and the heat radiating part and the amount of focal movement
(4) Since it can be obtained from the relationship between the electromotive force of the thermoelectric conversion device and the driving force required for the focus movement correction device, this is provided in the focus movement control unit 11a, and the power generation of the thermoelectric conversion device is based on these relationships. The correction control signal corresponding to the power to be obtained is obtained, and the driving force of the focus movement correction apparatus is controlled by this signal.
In the embodiment of FIG. 3, the electric power generated by the thermoelectric conversion device 9l is illustrated as being directly supplied to the focal movement correction device 11 and the focal movement control unit 11a, but this is a simplified illustration. Actually, as shown in FIG. 2, power is supplied through the transmission line 9n via the low voltage circuit terminal plate 9q.

このように、焦点移動制御部11aを設けることによって、焦点移動補正をリアルタイムできめ細かく制御することができる。
したがって、現在の焦点移動量を計測する必要がなくなり、そのための予備的なX線曝射も不要となるので、X線CT検査のスループットを向上させることができる。
Thus, by providing the focal point movement control unit 11a, the focal point movement correction can be finely controlled in real time.
Therefore, it is not necessary to measure the current focal shift amount, and preliminary X-ray exposure for that purpose is not necessary, so that the throughput of X-ray CT inspection can be improved.

図4は、上記X線管装置の熱電変換装置が発電する電力を焦点移動補正に利用する本発明の第3の実施形態を示す図である。
これは、焦点移動補正に圧電素子による焦点移動補正装置17を用いたもので、スキャナ回転部に焦点移動補正装置17を固定する固定部18を設けて、該固定部18とX線管装置9の陰極側近傍との間に焦点移動補正装置17を挿入する。
熱電変換装置9lで発電した電力に応じて焦点移動補正装置17の圧電素子が伸張・収縮して圧力が発生し、焦点移動方向とは逆の方向にX線管装置9を移動させて焦点移動量を補正する。
なお、前記圧電装置17の固定は、X線管装置9の陰極側に相当するスキャナ回転部の固定部18に限定するものではなく、焦点移動を補正できる方向にX線管装置9を移動できる位置に固定するものであればどこの位置に固定しても良い。
このように、焦点移動補正装置に圧電素子を用いることによって、第1の実施形態のモータを用いるものよりも焦点移動補正装置を簡単な機構で構成できる。
FIG. 4 is a diagram showing a third embodiment of the present invention in which electric power generated by the thermoelectric conversion device of the X-ray tube device is used for focus movement correction.
This is because the focus movement correction device 17 using a piezoelectric element is used for focus movement correction. A fixing portion 18 for fixing the focus movement correction device 17 is provided on the scanner rotation portion, and the fixing portion 18 and the X-ray tube device 9 are provided. The focal point movement correction device 17 is inserted between the cathode side and the vicinity thereof.
The piezoelectric element of the focus movement correction device 17 expands / contracts according to the electric power generated by the thermoelectric conversion device 9l, and pressure is generated, and the X-ray tube device 9 is moved in the direction opposite to the focus movement direction to move the focus. Correct the amount.
Note that the fixing of the piezoelectric device 17 is not limited to the fixing unit 18 of the scanner rotation unit corresponding to the cathode side of the X-ray tube device 9, and the X-ray tube device 9 can be moved in a direction in which focal movement can be corrected It may be fixed at any position as long as it is fixed at a position.
Thus, by using a piezoelectric element for the focus movement correction apparatus, the focus movement correction apparatus can be configured with a simpler mechanism than that using the motor of the first embodiment.

図5は、上記X線管装置の熱電変換装置が発電する電力を焦点移動補正に利用する本発明の第4の実施形態を示す図である。
これは、圧電素子による圧電装置19をX線管装置9の内部に設けた固定部20に取り付けてX線管装置9内のX線管9aを移動させることによって焦点移動補正を行うもので、X線管装置9の熱電変換装置9lが発電する電力を前記圧電装置19の発生する圧力の電力源とし、これによって生じた圧力でX線管9aそのものを焦点移動とは逆方向に移動させて焦点移動補正を行うものである。
このように構成することによって、上記実施形態1,2,3のようにX線管装置9全体を移動させるのではなく、X線管9aのみを移動させて焦点移動補正を行なうので,X線管装置9の外部に焦点移動補正手段を設ける必要がなくなり、該焦点移動補正手段及びこの手段に要するスペースや配線が不要となるので、スキャナ回転部を軽量、簡素なものとすることができる。
FIG. 5 is a diagram showing a fourth embodiment of the present invention in which electric power generated by the thermoelectric conversion device of the X-ray tube device is used for focus movement correction.
This is to correct the focal movement by moving the X-ray tube 9a in the X-ray tube device 9 by attaching the piezoelectric device 19 by a piezoelectric element to the fixed portion 20 provided inside the X-ray tube device 9. The electric power generated by the thermoelectric conversion device 9l of the X-ray tube device 9 is used as a power source of pressure generated by the piezoelectric device 19, and the X-ray tube 9a itself is moved in the direction opposite to the focal point movement by the pressure generated thereby. Focus movement correction is performed.
With this configuration, the entire X-ray tube apparatus 9 is not moved as in the first, second, and third embodiments, but only the X-ray tube 9a is moved to perform focus movement correction. It is not necessary to provide a focus movement correction means outside the tube device 9, and the focus movement correction means and the space and wiring required for this means are not required. Therefore, the scanner rotating portion can be made light and simple.

図6は、図2の第1の実施形態におけるX線管装置の熱電変換装置が発電する電力をX線管冷却装置14に利用する他の実施態様である本発明の第5の実施形態を示す図である。
上記図2の実施形態に示すように、X線管装置9の熱電変換装置9lが発電する電力をX線管冷却装置14の入力電力とすると、X線管装置9の回転陽極9dの発熱量に応じてX線管冷却装置14から出力する冷却力も可変し、回転陽極9dの発熱量が大きいほどX線管冷却器14の冷却力も大きくなる。
そこで、前記X線管装置9を効率良く冷却するためには、前記熱電変換装置9lの発電する電力を前記X線管冷却装置14に必要とされる冷却力に対応して制御すれば良い。
FIG. 6 shows a fifth embodiment of the present invention which is another embodiment in which the electric power generated by the thermoelectric conversion device of the X-ray tube device in the first embodiment of FIG. 2 is used for the X-ray tube cooling device 14. FIG.
As shown in the embodiment of FIG. 2 above, assuming that the power generated by the thermoelectric conversion device 9l of the X-ray tube device 9 is the input power of the X-ray tube cooling device 14, the amount of heat generated by the rotary anode 9d of the X-ray tube device 9 Accordingly, the cooling power output from the X-ray tube cooling device 14 also varies, and the cooling power of the X-ray tube cooler 14 increases as the heating value of the rotary anode 9d increases.
Therefore, in order to efficiently cool the X-ray tube device 9, the power generated by the thermoelectric conversion device 9l may be controlled in accordance with the cooling power required for the X-ray tube cooling device 14.

図6に示す本発明の第5の実施形態は、この考えに基づいて冷却制御部14aを設け、これにより熱電変換装置9lの発電する電力に応じてX線管冷却器14の冷却力の補正制御信号を求め、この補正制御信号でラジエータ(放熱器)とポンプで構成(図示省略)されるX線管冷却器の放熱力とポンプ力を制御するものである。   The fifth embodiment of the present invention shown in FIG. 6 is provided with a cooling control unit 14a based on this idea, thereby correcting the cooling power of the X-ray tube cooler 14 according to the power generated by the thermoelectric conversion device 9l. A control signal is obtained, and the heat dissipation power and pumping force of an X-ray tube cooler (not shown) constituted by a radiator (radiator) and a pump are controlled by this correction control signal.

すなわち、冷却制御部14aは、熱電変換装置9lの発電する電力とX線管冷却装置14に必要とされる冷却力との相関を求め,この相関から回転陽極9dの発熱量に対して、必要とされるX線管冷却装置14の冷却力を制御する。   That is, the cooling control unit 14a obtains a correlation between the electric power generated by the thermoelectric conversion device 9l and the cooling power required for the X-ray tube cooling device 14, and from this correlation, it is necessary for the heat generation amount of the rotating anode 9d. The cooling power of the X-ray tube cooling device 14 is controlled.

上記熱電変換装置9lの発電する電力とX線管冷却装置14に必要とされる冷却力との相関は、
(1)X線管装置9の回転陽極9dの発熱量と該回転陽極9dの温度の関係
(2)前記回転陽極9dの温度とX線管冷却器14に必要な冷却力の関係
(3)前記冷却力と熱電変換装置の発電する電力との関係
から求めることができるので、これらの相関を冷却制御部11aに備え、これにより熱電変換装置9lの発電する電力に対応した上記冷却補正制御信号を求め、この制御信号により上記X線管冷却装置14の冷却力を制御する。
このように、冷却制御部11aを設けることによって,よりきめ細かなX線管冷却器14の制御が可能となる。
なお、図6の実施形態において、熱電変換装置9lの発電する電力をX線管冷却装置14及び冷却制御部14aに直接給電するように図示したが、これは簡略的に示したもので、実際は図2に示したように低圧回路端子板9qを介して電送線9oにより給電するものである。
The correlation between the electric power generated by the thermoelectric conversion device 9l and the cooling power required for the X-ray tube cooling device 14 is
(1) Relationship between the amount of heat generated by the rotating anode 9d of the X-ray tube device 9 and the temperature of the rotating anode 9d
(2) Relationship between the temperature of the rotating anode 9d and the cooling power required for the X-ray tube cooler 14
(3) Since it can be determined from the relationship between the cooling power and the electric power generated by the thermoelectric converter, the cooling control unit 11a is provided with these correlations, and thus the cooling corresponding to the electric power generated by the thermoelectric converter 9l. A correction control signal is obtained, and the cooling power of the X-ray tube cooling device 14 is controlled by this control signal.
Thus, by providing the cooling control unit 11a, the X-ray tube cooler 14 can be controlled more finely.
In the embodiment of FIG. 6, the electric power generated by the thermoelectric conversion device 9l is illustrated as being directly supplied to the X-ray tube cooling device 14 and the cooling control unit 14a, but this is a simplified illustration, and actually As shown in FIG. 2, power is supplied through the transmission line 9o via the low voltage circuit terminal plate 9q.

本実施形態によれば、X線管冷却器14のための外部電源が不要となり、さらにX線管装置9の回転陽極9dの発熱量に応じて該回転陽極の冷却を自動的に制御することが可能となる。   According to the present embodiment, an external power source for the X-ray tube cooler 14 is not required, and the cooling of the rotating anode is automatically controlled according to the amount of heat generated by the rotating anode 9d of the X-ray tube device 9. Is possible.

以上の実施形態では、X線管の陽極部で発生する熱エネルギーを電気エネルギーに変換する熱電変換手段を備えたX線管装置と、このX線管装置をX線CT装置に用い、前記変換した電力を前記X線管装置の焦点移動補正装置及びX線管冷却装置の駆動電源や制御電源として利用する形態について説明したが、本発明はこれらに限定するものではなく、X線管のフィラメントを加熱するフィラメント加熱装置や前記X線管の陽極を回転させる陽極回転駆動装置等の前記X線管装置の周辺要素の電源及びこれを用いたX線CT装置やX線診断装置の周辺要素の電源などにも利用して効果が得られるものである。   In the above embodiment, an X-ray tube device provided with thermoelectric conversion means for converting thermal energy generated in the anode part of the X-ray tube into electric energy, and this X-ray tube device is used for an X-ray CT device, and the conversion is performed. However, the present invention is not limited to these, and the filament of the X-ray tube is described as a power source and a control power source for the X-ray tube device focus movement correction device and the X-ray tube cooling device. Power supply for peripheral elements of the X-ray tube device such as a filament heating device for heating the anode and an anode rotation drive device for rotating the anode of the X-ray tube, and peripheral elements of the X-ray CT device and X-ray diagnostic device using the power source It can also be used for power supplies and other effects.

さらに、上記実施形態のX線管装置には陽極を回転させる大容量の回転陽極X線管装置に適用した例について説明したが、固定陽極のX線管装置にも適用することもできる。
さらに、上記実施形態のX線管装置には陽極し陰極の高電圧を印加する中性点接地型に適用した例について説明したが、陰極にのみ高電圧を印加する陽極接地型のX線管装置にも適用することもできる。
Furthermore, although the example applied to the large-capacity rotary anode X-ray tube apparatus in which the anode is rotated has been described for the X-ray tube apparatus of the above embodiment, the present invention can also be applied to a fixed anode X-ray tube apparatus.
Further, the X-ray tube apparatus of the above embodiment has been described with respect to an example in which the X-ray tube apparatus is applied to a neutral grounding type that applies an anode and a high voltage to the cathode, but an anode grounding X-ray tube that applies a high voltage only to the cathode It can also be applied to devices.

スキャナ回転部に本発明によるX線管装置を用いたX線発生装置とX線検出装置を搭載したX線CT装置のスキャナガントリィの構成を示す図。The figure which shows the structure of the scanner gantry of the X-ray CT apparatus which mounts the X-ray generator and X-ray detector which used the X-ray tube apparatus by this invention in the scanner rotation part. 本発明によるX線管装置及びX線冷却装置の第1の実施形態の構成を示す図。The figure which shows the structure of 1st Embodiment of the X-ray tube apparatus and X-ray cooling device by this invention. 焦点移動補正装置に焦点移動制御部を設けた本発明の第2の実施形態を示す図。The figure which shows the 2nd Embodiment of this invention which provided the focus movement control part in the focus movement correction apparatus. 焦点移動補正に圧電素子による焦点移動補正装置を用いた本発明の第3の実施形態を示す図。The figure which shows the 3rd Embodiment of this invention using the focus movement correction apparatus by a piezoelectric element for focus movement correction. X線管装置の内部に圧電素子による圧電装置を設けてX線管を移動させて焦点移動補正を行う本発明の第4の実施形態を示す図。The figure which shows the 4th Embodiment of this invention which provides the piezoelectric device by a piezoelectric element inside an X-ray tube apparatus, and moves an X-ray tube and correct | amends a focus movement. X線管冷却装置に冷却制御部を設けた本発明の第5の実施形態を示す図。The figure which shows the 5th Embodiment of this invention which provided the cooling control part in the X-ray tube cooling device.

符号の説明Explanation of symbols

1 スキャナガントリィ、2 回転部材、3 X線発生装置、4 X線検出装置、9 X線管装置,9a X線管、9b 陰極、9c 陽極ターゲット、9d 回転陽極、9e 絶縁油、9f 陽極支持体、9g 陰極支持体、9i 陽極用ケーブルレセプタクル、9j 陰極用ケーブルレセプタクル、9l 熱電変換装置、9m リード線、9n、9o 電力電送線、9p 支持体、9q 低圧回路端子板、10 コリメータ、11 焦点移動補正装置、11a 焦点移動制御部、14 X線管冷却装置、14a 冷却制御部、17 圧電素子による焦点移動補正装置、19 圧電素子による圧電装置   1 Scanner gantry, 2 Rotating member, 3 X-ray generator, 4 X-ray detector, 9 X-ray tube device, 9a X-ray tube, 9b Cathode, 9c Anode target, 9d Rotating anode, 9e Insulating oil, 9f Anode support Body, 9g cathode support, 9i anode cable receptacle, 9j cathode cable receptacle, 9l thermoelectric converter, 9m lead wire, 9n, 9o power transmission line, 9p support, 9q low voltage circuit terminal board, 10 collimator, 11 focus Movement correction device, 11a Focus movement control unit, 14 X-ray tube cooling device, 14a Cooling control unit, 17 Focus movement correction device using piezoelectric element, 19 Piezoelectric device using piezoelectric element

Claims (4)

陽極と、該陽極と対向して配置される陰極とを真空外囲器内に収納して成るX線管と、冷却用絶縁油に満たされた前記X線管を収納する管容器と、前記陽極と陰極間に高電圧を印加するケーブルのブッシングを挿入する陽極用及び陰極用ケーブルレセプタクルとを備えたX線管装置であって、前記陽極の発生する熱が伝導する所定の部分に前記熱を電力に変換する熱電変換手段を設けたことを特徴とするX線管装置。   An X-ray tube containing an anode and a cathode disposed opposite to the anode in a vacuum envelope, a tube container containing the X-ray tube filled with a cooling insulating oil, An X-ray tube apparatus including an anode and a cathode cable receptacle for inserting a cable bushing for applying a high voltage between an anode and a cathode, wherein the heat generated in the anode is transferred to a predetermined portion. An X-ray tube apparatus characterized by comprising thermoelectric conversion means for converting the power into electric power. 請求項1において、前記熱電変換手段は、Bi,Te,Sb,及びSe元素のうちの少なくとも一種以上の元素を主成分として含有した材料で形成された熱電材料による熱電変換素子と、この熱電変換素子の一方の面が前記陽極の発生する熱を吸収する吸熱部と、この吸熱部の他方の面に前記吸熱部で吸収した熱を放熱する放熱部とで構成されたことを特徴とするX線管装置。   2. The thermoelectric conversion device according to claim 1, wherein the thermoelectric conversion means includes a thermoelectric conversion element made of a thermoelectric material formed of a material containing at least one element of Bi, Te, Sb, and Se as a main component. X is characterized in that one surface of the element is composed of a heat absorbing portion that absorbs heat generated by the anode, and a heat radiating portion that dissipates heat absorbed by the heat absorbing portion on the other surface of the heat absorbing portion. Tube device. 請求項1,2において、前記熱電変換手段で発電した電力を前記管容器内に低圧回路端子板を設け、その低圧回路端子板を介して外部に電送する電送手段を設けたことを特徴とするX線管装置。   The electric power generated by the thermoelectric conversion means is provided in the tube container according to claim 1 or 2, and a power transmission means is provided for transmitting the electric power to the outside through the low voltage circuit terminal board. X-ray tube device. 被検体を配置する開口部を有する回転部材に前記被検体を挟んでX線発生手段とX線検出手段を対向配置し、前記回転部材を前記被検体の周りに回転させて前記X線発生手段から前記被検体にX線を照射し、前記X線検出手段で前記被検体を透過したX線を検出して、この検出信号から前記被検体の断層像を得るX線CT装置であって、前記X線発生手段は、請求項1ないし3のいずれか1項に記載のX線管装置を備えことを特徴とするX線CT装置。   An X-ray generation unit and an X-ray detection unit are arranged opposite to each other with a subject interposed between a rotation member having an opening for arranging the subject, and the rotation member is rotated around the subject to generate the X-ray generation unit. An X-ray CT apparatus that irradiates the subject with X-rays, detects X-rays transmitted through the subject with the X-ray detection means, and obtains a tomographic image of the subject from the detection signal; An X-ray CT apparatus, wherein the X-ray generation means includes the X-ray tube apparatus according to any one of claims 1 to 3.
JP2005167867A 2005-06-08 2005-06-08 X-ray tube device and x-ray ct device using the same Pending JP2006344445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005167867A JP2006344445A (en) 2005-06-08 2005-06-08 X-ray tube device and x-ray ct device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005167867A JP2006344445A (en) 2005-06-08 2005-06-08 X-ray tube device and x-ray ct device using the same

Publications (1)

Publication Number Publication Date
JP2006344445A true JP2006344445A (en) 2006-12-21

Family

ID=37641255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005167867A Pending JP2006344445A (en) 2005-06-08 2005-06-08 X-ray tube device and x-ray ct device using the same

Country Status (1)

Country Link
JP (1) JP2006344445A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128706A (en) * 2011-12-22 2013-07-04 Toshiba Corp X-ray equipment
JP2015125043A (en) * 2013-12-26 2015-07-06 株式会社島津製作所 X-ray generation device and x-ray analysis device
JP2016107074A (en) * 2014-12-09 2016-06-20 キヤノン株式会社 Tomographic system for breast
CN107393791A (en) * 2017-08-28 2017-11-24 丹东市无损检测设备有限公司 Ultra-high-pressure double-pole metal-ceramic X-ray tube
DE102022207942A1 (en) 2022-08-01 2024-02-01 Siemens Healthcare Gmbh X-ray source and mobile x-ray machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128706A (en) * 2011-12-22 2013-07-04 Toshiba Corp X-ray equipment
US9374879B2 (en) 2011-12-22 2016-06-21 Kabushiki Kaisha Toshiba X-ray equipment
JP2015125043A (en) * 2013-12-26 2015-07-06 株式会社島津製作所 X-ray generation device and x-ray analysis device
JP2016107074A (en) * 2014-12-09 2016-06-20 キヤノン株式会社 Tomographic system for breast
CN107393791A (en) * 2017-08-28 2017-11-24 丹东市无损检测设备有限公司 Ultra-high-pressure double-pole metal-ceramic X-ray tube
CN107393791B (en) * 2017-08-28 2023-09-05 丹东市无损检测设备有限公司 Ultra-high voltage bipolar metal ceramic X-ray tube
DE102022207942A1 (en) 2022-08-01 2024-02-01 Siemens Healthcare Gmbh X-ray source and mobile x-ray machine

Similar Documents

Publication Publication Date Title
US6881961B2 (en) Control of temperature of flat panel type of radiation detector
KR100992469B1 (en) Radiographic apparatus
US7924982B2 (en) Radiographic imaging apparatus and control method thereof
CN103997839B (en) It is a kind of to collimate modulated X-ray emitter
US6709156B1 (en) Cooling device and computed tomography apparatus employing same
JP2012034791A (en) X-ray computed tomographic apparatus
US6594341B1 (en) Liquid-free x-ray insert window
JP4141833B2 (en) Integration of cooling jacket and flow baffle into X-ray tube metal frame insert
JP2000340146A (en) X-ray generating device
JP3950389B2 (en) X-ray tube
JP2006344445A (en) X-ray tube device and x-ray ct device using the same
US20050226386A1 (en) Electron collector system
JP2021142145A (en) X-ray computer tomographic apparatus
JP7493944B2 (en) X-ray CT scanner
JP5106789B2 (en) X-ray tube apparatus and X-ray CT apparatus
JP2009028234A (en) Radiographic imaging system
JP6907078B2 (en) X-ray CT device
JP7171319B2 (en) X-ray CT device
JP7491756B2 (en) Rotating anode type X-ray tube device and X-ray imaging device
JP5619203B2 (en) Radiation imaging apparatus, control apparatus, and control method
US20240105415A1 (en) X-ray tube assembly and x-ray ct equipment
JP2006255089A (en) X-ray computer tomography apparatus
EP4053876A1 (en) Radiation tube and radiation source
JP6318147B2 (en) X-ray tube apparatus and X-ray imaging apparatus
JP7140500B2 (en) X-ray CT device and detector module