JP2006343136A - Partial pressure detector of steam, suction flow rate detector of engine and internal pressure detector of collector - Google Patents
Partial pressure detector of steam, suction flow rate detector of engine and internal pressure detector of collector Download PDFInfo
- Publication number
- JP2006343136A JP2006343136A JP2005167027A JP2005167027A JP2006343136A JP 2006343136 A JP2006343136 A JP 2006343136A JP 2005167027 A JP2005167027 A JP 2005167027A JP 2005167027 A JP2005167027 A JP 2005167027A JP 2006343136 A JP2006343136 A JP 2006343136A
- Authority
- JP
- Japan
- Prior art keywords
- water vapor
- flow rate
- partial pressure
- pressure
- engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Volume Flow (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
本発明は、大気中の水蒸気分圧(湿度)を推定で検出する技術および水蒸気分圧を考慮してエンジンの吸気流量あるいはエンジン吸気通路のコレクタ部内の圧力を検出する技術に関する。 The present invention relates to a technique for detecting an estimated water vapor partial pressure (humidity) in the atmosphere and a technique for detecting an intake air flow rate of an engine or a pressure in a collector portion of an engine intake passage in consideration of the water vapor partial pressure.
エンジン(内燃機関)の吸気流量を計測する手段として、通電により発熱させた熱線や熱膜が、吸気流に熱を奪われて温度低下しようとするのを、温度一定に維持するように通電量を制御し、この通電量が、吸気流が奪う熱量(熱流量)と比例することを利用して吸気流量を計測する熱式流量計が知られており、該計測された吸気流量を用いて燃料噴射量や点火時期を制御している。 As a means of measuring the intake air flow rate of an engine (internal combustion engine), the amount of energization is maintained so that the temperature of the hot wire or heat film generated by energization tends to decrease due to heat being taken away by the intake air flow. There is known a thermal type flow meter that measures the intake air flow rate by utilizing the fact that this energization amount is proportional to the heat amount (heat flow rate) taken by the intake flow, and using the measured intake air flow rate The fuel injection amount and ignition timing are controlled.
上記の流量計測方式では、吸気中の空気だけでなく水蒸気によっても熱を奪うことになるため、必要とする空気の流量を正確に検出することができない。特に、湿度が高くなるほど、相対的に空気の割合が減少し、また、水蒸気の比熱は空気の比熱に比べて大きいので、水蒸気が奪う熱量がより大きくなって、空気流量の検出誤差が大きくなってしまうという問題がある。 In the above flow rate measurement method, heat is taken not only by the air in the intake air but also by the water vapor, so that the required air flow rate cannot be accurately detected. In particular, the higher the humidity, the relatively lower the proportion of air, and the specific heat of water vapor is larger than that of air, so the amount of heat taken away by water vapor increases and the detection error of air flow rate increases. There is a problem that it ends up.
この問題に対し、特許文献1,2では、湿度を検出する機構を用いて、流量検出値を補正する技術を開示している。
しかしながら、特許文献1,2では、湿度検出機構の製造コストが高く、その割には、信頼性が低いため実用化には大きな障害となっている。
また、燃料噴射量算出のために吸気充填効率を演算するときに、コレクタ部の応答をモデル化することがあるが、従来は、水蒸気分圧の変化による定常状態での演算精度の悪化に加えて、過渡状態でも演算精度の悪化を生じていた。
However, in Patent Documents 1 and 2, the manufacturing cost of the humidity detection mechanism is high, and the reliability is low.
In addition, when calculating the intake charge efficiency for calculating the fuel injection amount, the response of the collector may be modeled. However, conventionally, in addition to the deterioration of the calculation accuracy in the steady state due to the change of the water vapor partial pressure, Thus, the calculation accuracy deteriorated even in the transient state.
本発明は、このような従来の課題に着目してなされたもので、低コストで簡易に水蒸気分圧(湿度)を推定し、かつ、水蒸気分圧を用いてエアフロメータで検出されるエンジンの吸気流量あるいはモデル化によって吸気流量を算出する際に用いるコレクタ内圧力を、高精度に補正して検出できるようにすることを目的とする。 The present invention has been made paying attention to such a conventional problem, and it is possible to easily estimate a partial pressure of water vapor (humidity) at low cost and to detect an engine detected by an air flow meter using the partial pressure of water vapor. An object of the present invention is to make it possible to accurately detect and correct the pressure in the collector used when calculating the intake air flow rate or modeling the intake air flow rate.
上記の課題を解決するため、本発明は、第1の発明として、大気圧中の水蒸気分圧を、大気温度に基づいて演算により検出する構成とした。
また、第2の発明として、エンジンの吸気流量を検出する吸気流量検出手段と、吸気中の水蒸気分圧を検出する水蒸気分圧検出手段と、を備え、前記検出された吸気流量と水蒸気分圧とに基づいて水蒸気分を除去した吸気流量を吸気流量算出手段によって算出する構成とした。
In order to solve the above-described problems, the present invention is configured as a first invention in which a partial pressure of water vapor in atmospheric pressure is detected by calculation based on an atmospheric temperature.
In addition, as a second invention, an intake flow rate detecting means for detecting an intake flow rate of the engine and a water vapor partial pressure detecting means for detecting a water vapor partial pressure in the intake air are provided, and the detected intake flow rate and the water vapor partial pressure are detected. Based on the above, the intake flow rate from which water vapor has been removed is calculated by the intake flow rate calculation means.
また、第3の発明として、エンジン吸気通路のコレクタ部内に流入する水蒸気を含む吸気のモル流入量と、コレクタ部外に流出する水蒸気を含む吸気のモル流出量とを算出し、これらモル流入量とモル流出量とに基づいてコレクタ部内の圧力を検出する構成とした。 Further, as a third invention, a molar inflow amount of intake air including water vapor flowing into the collector portion of the engine intake passage and a molar outflow amount of intake air including water vapor flowing out of the collector portion are calculated, and these molar inflow amounts are calculated. And the pressure in the collector portion is detected based on the molar outflow amount.
第1の発明によれば、大気温度が高くなるほど飽和水蒸気分圧が高くなる特性に基づいて、湿度センサ等を用いることなく、演算によってエンジン吸気中の水蒸気分圧など、実用に適合した水蒸気分圧を算出することができる。
第2の発明によれば、エアフロメータ等で検出された水蒸気を含む吸気流量から、上記などの吸気流量装置によって求められた水蒸気分圧を用いて水蒸気分を除去した空気のみの流量を検出することができ、ひいては、湿度に影響されることなく吸入空気量に正確に対応した燃料噴射量の算出等を行える。
According to the first invention, based on the characteristic that the saturated water vapor partial pressure increases as the atmospheric temperature increases, the water vapor content suitable for practical use, such as the water vapor partial pressure in the engine intake air, is obtained by calculation without using a humidity sensor or the like. The pressure can be calculated.
According to the second aspect of the present invention, the flow rate of only the air from which the water vapor content has been removed is detected from the intake air flow rate including the water vapor detected by an air flow meter or the like, using the water vapor partial pressure determined by the above intake flow rate device. As a result, it is possible to calculate the fuel injection amount that accurately corresponds to the intake air amount without being affected by the humidity.
第3の発明によれば、例えば、吸気系をモデル化し、コレクタからの吸気の流入量と流出量との収支演算によって算出されるコレクタ内圧を用いて吸気流量を算出するような場合に、水蒸気圧も含めたコレクタ内圧を用いることで精度よく吸気流量を算出することができ、また、気体は物質の種類によらず物質量(モル)当たりの体積が一定になる性質があるので、質量流量よりもモル流量を用いて算出することで、圧力演算が容易かつ精度よく行える。 According to the third invention, for example, when the intake system is modeled and the intake air flow rate is calculated using the collector internal pressure calculated by the balance calculation of the inflow amount and the outflow amount of the intake air from the collector, By using the collector internal pressure including the pressure, the intake flow rate can be calculated accurately, and the mass of the gas is constant regardless of the type of substance. By calculating using the molar flow rate, the pressure calculation can be performed easily and accurately.
図1は、本発明の実施形態に係る内燃機関の構成を示す。
エンジン1の燃焼室に接続されて空気を吸入する吸気通路2には、上流端部にエアクリーナ3が装着され、該エアクリーナ3の下流側に介装されたスロットル弁4を経てコレクタ部5が設けられ、該コレクタ部5に接続された気筒毎の吸気ポート6に燃料噴射弁7が装着され、吸気ポートの下流端を開閉する吸気バルブ8が装着されている。
FIG. 1 shows a configuration of an internal combustion engine according to an embodiment of the present invention.
An intake passage 2 that is connected to a combustion chamber of the engine 1 and sucks air is provided with an air cleaner 3 at an upstream end portion, and a collector portion 5 is provided via a throttle valve 4 interposed downstream of the air cleaner 3. The fuel injection valve 7 is attached to the intake port 6 of each cylinder connected to the collector unit 5, and the intake valve 8 that opens and closes the downstream end of the intake port is attached.
前記エアクリーナ3には、大気圧を検出する大気圧センサ9が装着され、エアクリーナ3とスロットル弁4との間には、吸気温度センサ10aを内蔵した熱線または熱フィルム式など熱式流量計であるエアフロメータ10が装着され、コレクタ部5には、コレクタ部5内の吸気圧(コレクタ内圧)を検出する吸気圧センサ11が装着されている。
また、エンジン1の燃焼室に接続されて排気バルブ12から燃焼排気を排出する排気通路13には、排気浄化触媒14が装着され、該触媒14の上流側に空燃比センサ15が装着されている。この他、該エンジン1が搭載される車両の速度を検出する車速センサ16が設けられる。
The air cleaner 3 is equipped with an atmospheric pressure sensor 9 for detecting atmospheric pressure, and a thermal flow meter such as a hot wire or a thermal film type incorporating an intake air temperature sensor 10 a is provided between the air cleaner 3 and the throttle valve 4. An air flow meter 10 is mounted, and the collector unit 5 is mounted with an intake pressure sensor 11 that detects the intake pressure in the collector unit 5 (collector internal pressure).
Further, an exhaust purification catalyst 14 is attached to an exhaust passage 13 connected to the combustion chamber of the engine 1 and exhausting combustion exhaust from the exhaust valve 12, and an air-fuel ratio sensor 15 is attached upstream of the catalyst 14. . In addition, a vehicle speed sensor 16 for detecting the speed of the vehicle on which the engine 1 is mounted is provided.
前記センサ類からの検出信号は、エンジンコントロールユニット(以下ECUという)20に入力され、ECU20は、これら検出信号に基づいて、吸気流量を検出し、該吸気流量に基づいて燃料噴射量を設定し、燃料噴射弁7を駆動して燃料噴射量を制御する。ここで、本発明では、水蒸気を含む吸気の流量を水蒸気分圧に基づいて補正し、水分を除去した空気流量として精度よく検出することにより、燃料噴射量の制御精度を高める。 Detection signals from the sensors are input to an engine control unit (hereinafter referred to as ECU) 20, which detects an intake air flow rate based on these detection signals and sets a fuel injection amount based on the intake air flow rate. Then, the fuel injection amount is controlled by driving the fuel injection valve 7. Here, in the present invention, the flow rate of the intake air containing water vapor is corrected based on the partial pressure of water vapor, and is accurately detected as the air flow rate from which water has been removed, thereby improving the control accuracy of the fuel injection amount.
図2は、上記のように、エンジンのシリンダに吸入される空気量を算出し、該シリンダ吸入空気量に見合った燃料噴射量を設定するシステムの制御ブロック図を示す。
概要を説明すると、大気温度を検出し、大気温度を含むパラメータに基づいて吸気中の水蒸気分圧を算出し、エアフロメータで検出した熱流量と大気圧センサ9で検出した大気圧と前記水蒸気分圧とに基づいてコレクタ部5への吸気のモル流入量を算出する。
FIG. 2 shows a control block diagram of the system for calculating the amount of air taken into the cylinder of the engine and setting the fuel injection amount corresponding to the cylinder intake air amount as described above.
In brief, the atmospheric temperature is detected, the water vapor partial pressure in the intake air is calculated based on parameters including the atmospheric temperature, the heat flow detected by the air flow meter, the atmospheric pressure detected by the atmospheric pressure sensor 9, and the water vapor content. Based on the pressure, a molar inflow amount of intake air to the collector unit 5 is calculated.
一方、エンジン回転速度に基づいてシリンダへの吸気の体積流量を算出し、該体積流量と前記コレクタ部5への吸気のモル流入量とに基づいてコレクタ内圧を算出し、該コレクタ内圧と前記モル流入量とに基づいてコレクタ部から流出しシリンダに流入する吸気のモル流量を算出し、このシリンダへの吸気のモル流量を前記水蒸気分圧を用いて補正することにより水蒸気分を除去した空気のみの流量を算出する。この空気流量とエンジン回転速度に基づいて、サイクルあたりの吸入空気量を算出し、該吸入空気量に見合った燃料噴射量を算出する。 On the other hand, the volume flow rate of the intake air to the cylinder is calculated based on the engine rotation speed, and the collector internal pressure is calculated based on the volume flow rate and the molar inflow amount of the intake air to the collector unit 5. Based on the amount of inflow, calculate the molar flow rate of the intake air that flows out from the collector and flows into the cylinder, and corrects the molar flow rate of the intake air to this cylinder by using the partial pressure of water vapor so that only air from which water vapor has been removed The flow rate is calculated. Based on the air flow rate and the engine speed, the intake air amount per cycle is calculated, and the fuel injection amount corresponding to the intake air amount is calculated.
以下、ブロック毎に説明する。
図3は、エンジン1に吸入される大気中の水蒸気分圧を、推定により検出するフローを示す。
ステップS1では、車速センサ16で検出される車速VSPが所定値VSP0以上の走行中であるかを判定し、所定値VSP0未満のときはこのルーチンを終了して大気温度を検出することなく水蒸気分圧の検出を禁止する。
Hereinafter, each block will be described.
FIG. 3 shows a flow for detecting the water vapor partial pressure in the atmosphere sucked into the engine 1 by estimation.
In step S1, it is determined whether or not the vehicle speed VSP detected by the vehicle speed sensor 16 is traveling above a predetermined value VSP0. If the vehicle speed VSP is less than the predetermined value VSP0, the routine ends and the water vapor content is detected without detecting the atmospheric temperature. Prohibit pressure detection.
これは、停車ないし停車に近い低速走行時は、エンジンルーム内の熱気など周囲の大気が淀んだ状態であり、正しい大気温度を測定できないことがある。そこで、車速が所定以上の速度で走行している条件で検出することで、エンジンルーム内に淀むことなく異常に温度上昇することのない温度を検出できるので、正確に大気温度を得ることができ、結果的に水蒸気分圧も正しく得ることができるようにする。 This is a state where the surrounding air such as hot air in the engine room is stagnant when the vehicle is stopped or is traveling at a low speed close to the stop, and the correct atmospheric temperature may not be measured. Therefore, by detecting under conditions where the vehicle speed is traveling at a predetermined speed or higher, it is possible to detect the temperature that does not rise abnormally without stagnating in the engine room, so the atmospheric temperature can be accurately obtained. As a result, the water vapor partial pressure can be obtained correctly.
ステップS1で、車速が所定値以上と判定された場合は、ステップS2へ進んで大気温度Taを検出する。
具体的には、前記吸気温度センサ10aで検出された吸気温度を用いればよい。なお、吸気温度センサを、コレクタ部5に配置してコレクタ部5内の吸気の温度を用いてもよい。
If it is determined in step S1 that the vehicle speed is equal to or higher than the predetermined value, the process proceeds to step S2 to detect the atmospheric temperature Ta.
Specifically, the intake air temperature detected by the intake air temperature sensor 10a may be used. An intake air temperature sensor may be disposed in the collector unit 5 to use the temperature of the intake air in the collector unit 5.
また、エンジン1外部のエアコン等に外気温度センサを設けている場合は、該外気温度を用いてもよいが、大気温度を検出する複数のセンサを設けている場合には、これらセンサの検出値の内で最も低温の検出値を大気温度Taとして用いるのが望ましい。
これは、検出温度が高くてもエンジンルーム内の熱気などの影響で温度上昇した可能性が高く、実際の水蒸気分圧が異常に高い可能性は低いので、低温側の検出値を用いる方がよいからである。
Further, when an outside air temperature sensor is provided in an air conditioner or the like outside the engine 1, the outside air temperature may be used. However, when a plurality of sensors for detecting the atmospheric temperature are provided, detection values of these sensors are used. Of these, it is desirable to use the lowest detected value as the atmospheric temperature Ta.
This is because even if the detection temperature is high, there is a high possibility that the temperature has risen due to the influence of hot air in the engine room, and the actual water vapor partial pressure is unlikely to be abnormally high. Because it is good.
ステップS3では、ステップS2で検出した大気温度Taに基づいて、飽和水蒸気分圧Pwh(Ta)を算出する。これは、図4に示す変換マップを参照して求めればよい。図4(対数図示)で明らかなように、大気温度が高くなるほど、飽和水蒸気分圧は高くなる。
ステップS4では、前記大気温度Taに応じた飽和水蒸気分圧Pwh(Ta)に基づいて、大気中の水蒸気分圧Pw(Ta)を以下のような推定によって算出する。
In step S3, a saturated water vapor partial pressure Pwh (Ta) is calculated based on the atmospheric temperature Ta detected in step S2. This may be obtained by referring to the conversion map shown in FIG. As is clear from FIG. 4 (logarithmic illustration), the higher the atmospheric temperature, the higher the saturated water vapor partial pressure.
In step S4, based on the saturated water vapor partial pressure Pwh (Ta) corresponding to the atmospheric temperature Ta, the atmospheric water vapor partial pressure Pw (Ta) is calculated by the following estimation.
まず、水蒸気分圧Pw(Ta)が飽和水蒸気分圧Pwh(Ta)を超えることはないので、飽和水蒸気分圧Pwh(Ta)以下に制限し、飽和水蒸気分圧Pwh(Ta)が大気温度Taの増大に応じて増大する傾向に倣って、大気温度Taが高くなるほど水蒸気分圧も高くなるように算出する。
具体的には、次式のように、吸気温度Taで定まる飽和水蒸気分圧Pwh(Ta)に対し、1より小さい係数kを乗じた値を、大気(吸気)中の水蒸気圧Pw(Ta)として算出する。
First, since the water vapor partial pressure Pw (Ta) does not exceed the saturated water vapor partial pressure Pwh (Ta), the water vapor partial pressure Pwh (Ta) is limited to the saturated water vapor partial pressure Pwh (Ta) or less, and the saturated water vapor partial pressure Pwh (Ta) is reduced to the atmospheric temperature Ta. In accordance with the tendency to increase in accordance with the increase, the water vapor partial pressure is calculated to increase as the atmospheric temperature Ta increases.
Specifically, a value obtained by multiplying a saturated water vapor partial pressure Pwh (Ta) determined by the intake air temperature Ta by a coefficient k smaller than 1 as shown in the following equation is a water vapor pressure Pw (Ta) in the atmosphere (intake). Calculate as
Pw(Ta)=k×Pwh(Ta)・・・(1)
ここで、係数kは、1より小の値に設定されるが、次式のように0.5(50%)を選択し、吸気温度Taにおいて取りうる水蒸気分圧の範囲0〜Pwh(Ta)の中央値を選択することにより、平均誤差を最小とすることができる(図4参照)。
Pw(Ta)=0.5×Pwh(Ta)・・・(2)
また、係数kを前記大気圧センサ9で検出された大気圧Paが低いときは小さい値に設定してもよい。このようにすれば、大気圧が低く(標高が高く)気温が低い場合は乾燥している場合が多いので、このような場合に実状に合わせて水蒸気分圧を小さい値とすることができる。ただし、元々水蒸気分圧の絶対値が小さい領域でのことなので、大気圧による補正を行わなくてもそれほど大きな誤差にはならない。
Pw (Ta) = k × Pwh (Ta) (1)
Here, the coefficient k is set to a value smaller than 1, but 0.5 (50%) is selected as in the following equation, and the range of the water vapor partial pressure that can be taken at the intake air temperature Ta is 0 to Pwh (Ta ) Can be selected to minimize the average error (see FIG. 4).
Pw (Ta) = 0.5 × Pwh (Ta) (2)
The coefficient k may be set to a small value when the atmospheric pressure Pa detected by the atmospheric pressure sensor 9 is low. In this way, when the atmospheric pressure is low (the altitude is high) and the temperature is low, the air is often dry. In such a case, the partial pressure of the water vapor can be set to a small value. However, since it is originally a region where the absolute value of the partial pressure of water vapor is small, it does not cause a large error even if correction by atmospheric pressure is not performed.
なお、大気圧は運転状態に応じて推定した値でもよく、カーナビで得られるGPSからの高度情報を利用してもよい。
また、図5に示すように、以上のようにして算出した水蒸気分圧に対して上限値PwLMTを設定して上限値PwLMT以下に制限するようにしてもよい。
このようにすれば、温度が高くても実質的な水蒸気分圧が異常に高い可能性は低いので、エンジンの熱気などの影響であると判断し、上限値で制限することで過補正を回避することができる。
The atmospheric pressure may be a value estimated according to the driving state, or altitude information from GPS obtained by car navigation may be used.
Further, as shown in FIG. 5, an upper limit value PwLMT may be set with respect to the water vapor partial pressure calculated as described above and limited to the upper limit value PwLMT or less.
In this way, even if the temperature is high, the possibility that the substantial water vapor partial pressure is abnormally high is low, so it is judged that it is the influence of engine hot air, etc., and over-correction is avoided by limiting with the upper limit value can do.
ここで、上記上限値PwLMTを、大気圧としてもよい。水蒸気分圧が大気圧より高くなることはないからである。ここで、用いる大気圧は、簡易的に標準状態での大気圧(≒100kPa)でもよい。
また、上限値PwLMTを、大気圧の所定割合(例えば、約10%の10kPa)に設定してもよい。本実施形態で推定される水蒸気分圧は、吸入空気流量を正確に求めるために用いられるものではあるが、吸入空気流量は燃料噴射量の算出に用いられ、水蒸気分圧が大気圧の数10%になると、本当にそうであったとしても、そのまま水蒸気分圧に応じて減少した空気量に合わせて燃料噴射量を設定すると、水分による冷却作用が相対的に大きくなって燃焼性が不安定となってしまい却って好ましくない結果となる。
Here, the upper limit value PwLMT may be atmospheric pressure. This is because the water vapor partial pressure does not become higher than the atmospheric pressure. Here, the atmospheric pressure used may be simply the atmospheric pressure in the standard state (≈100 kPa).
The upper limit value PwLMT may be set to a predetermined ratio of atmospheric pressure (for example, about 10% of 10 kPa). Although the water vapor partial pressure estimated in this embodiment is used to accurately determine the intake air flow rate, the intake air flow rate is used for calculating the fuel injection amount, and the water vapor partial pressure is several tens of atmospheric pressure. %, Even if this is the case, setting the fuel injection amount according to the amount of air decreased according to the partial pressure of water vapor will increase the cooling effect by moisture and make the combustibility unstable. It would be an unfavorable result.
そこで、水蒸気分圧が大気圧の所定割合以下に制限することで、上記事態の発生を回避できる。
図6は、コレクタ部5へ流入する吸気のモル流量を算出するフローを示す。
ステップS11では、前記エアフロメータ10の出力に基づいて熱流量Q[J/K/mol]を算出する。ここで、既述のように熱式流量計であるエアフロメータ10で検出される吸気流量は、空気と水蒸気とが奪った熱流量Qに相当する値として検出される。
Therefore, the occurrence of the above situation can be avoided by limiting the water vapor partial pressure to a predetermined ratio or less of the atmospheric pressure.
FIG. 6 shows a flow for calculating the molar flow rate of the intake air flowing into the collector unit 5.
In step S11, a heat flow rate Q [J / K / mol] is calculated based on the output of the air flow meter 10. Here, as described above, the intake flow rate detected by the air flow meter 10 which is a thermal flow meter is detected as a value corresponding to the heat flow rate Q taken by air and water vapor.
ステップS12では、図2で算出された水蒸気分圧Pw(Ta)を読み込む。
ステップS13では、吸気(空気+水蒸気)の定圧比熱Cpを次式(3)により、算出する。
Cp=Pw(Ta)×Cpw+{全圧−Pw(Ta)}×Cpa・・・(3)
ここで、Cpw:水蒸気の定圧比熱=2.04[J/K/mol]
Cpa:空気の定圧比熱=1.66[J/K/mol]
また、全圧は、スロットル上流の圧力つまり大気圧を用いるか、コレクタ内圧Pc(吸気圧センサ11の検出値または後述する算出値)を用いる。
In step S12, the water vapor partial pressure Pw (Ta) calculated in FIG. 2 is read.
In step S13, the constant pressure specific heat Cp of the intake air (air + water vapor) is calculated by the following equation (3).
Cp = Pw (Ta) × Cpw + {total pressure−Pw (Ta)} × Cpa (3)
Here, Cpw: constant pressure specific heat of water vapor = 2.04 [J / K / mol]
Cpa: constant pressure specific heat of air = 1.66 [J / K / mol]
Further, as the total pressure, the pressure upstream of the throttle, that is, the atmospheric pressure is used, or the collector internal pressure Pc (the detected value of the intake pressure sensor 11 or a calculated value described later) is used.
ステップS14では、前記熱流量Qと定圧比熱Cpとを用いて、次式(4)により、コレクタ部5に流入するモル流入量ninを算出する。
nin=Q/Cp[mol/s]・・・(4)
図7は、コレクタ部5から流出してシリンダに吸入される空気の体積流量を算出するフローを示す。
In step S14, a molar inflow amount nin flowing into the collector portion 5 is calculated by the following equation (4) using the heat flow rate Q and the constant pressure specific heat Cp.
nin = Q / Cp [mol / s] (4)
FIG. 7 shows a flow for calculating the volume flow rate of the air flowing out of the collector unit 5 and sucked into the cylinder.
ステップS21では、エンジン回転速度Ne、コレクタ内圧Pc(吸気圧センサ11の検出値または後述する算出値)を読み込む。
ステップS22では、エンジン回転速度Neに基づいて、シリンダ吸入体積効率ηを、図8に示すマップから参照して設定する。この、シリンダ吸入体積効率ηは、エンジン回転速度Neに応じた吸気の慣性によって変化するが、予め実験で求めたデータを前記マップに割り付ける。
In step S21, the engine rotational speed Ne and the collector internal pressure Pc (the detected value of the intake pressure sensor 11 or a calculated value described later) are read.
In step S22, the cylinder suction volume efficiency η is set with reference to the map shown in FIG. 8 based on the engine speed Ne. The cylinder suction volume efficiency η varies depending on the inertia of the intake air according to the engine rotational speed Ne, but data obtained through experiments in advance is assigned to the map.
ステップS23では、前記エンジン回転速度Neおよびシリンダ吸入体積効率ηに基づいて、次式(5)によりシリンダに吸入される体積流量Qcylを算出する。
Qcyl=V×Ne/120×η・・・(5)
V:エンジンの排気量
図9は、コレクタ部5から流出する吸気のモル流出量noutを算出しつつ、上記吸気圧センサ11を備えない場合に、逐次変化するコレクタ内圧Pcを算出更新するフローを示す。
In step S23, the volume flow rate Qcyl sucked into the cylinder is calculated by the following equation (5) based on the engine rotational speed Ne and the cylinder suction volume efficiency η.
Qcyl = V × Ne / 120 × η (5)
V: Engine Displacement FIG. 9 shows a flow for calculating and updating the collector internal pressure Pc that changes sequentially when the molar outflow amount nout of the intake air flowing out from the collector unit 5 is calculated and the intake pressure sensor 11 is not provided. Show.
ステップS31では、コレクタ部5内の温度Tc、および前記(5)式で算出されたコレクタ部5への吸気のモル流入量ninを読み込む。コレクタ部5に温度センサを有しない場合は、温度Tcを、前記大気温度Taで代用してよい。
ステップS32では、コレクタ部5から流出してシリンダに吸入される吸気のモル流出量noutを算出する。これは、前記(2)式で算出した体積流量Qcylを、コレクタ内圧Pcの前回算出値Pc(n−1)(初期値は大気圧Pa)と温度Taを用いて、次式(6)のように換算する。
In step S31, the temperature Tc in the collector part 5 and the molar inflow amount nin of the intake air to the collector part 5 calculated by the equation (5) are read. When the collector unit 5 does not have a temperature sensor, the temperature Tc may be substituted with the atmospheric temperature Ta.
In step S32, the molar outflow amount nout of the intake air flowing out from the collector unit 5 and sucked into the cylinder is calculated. This is because the volume flow rate Qcyl calculated by the above equation (2) is calculated using the previous calculated value Pc (n-1) (initial value is the atmospheric pressure Pa) of the collector internal pressure Pc and the temperature Ta by the following equation (6): Convert as follows.
nout=Pc(n−1)/(R・Ta)・Qcyl・・・(6)
ただし、R:一般ガス定数(≒848kgm/kmol・K)
ステップS33では、上記コレクタ部5内へのモル流入量ninとコレクタ部5からのモル流出量noutとに基づいて、以下のように、逐次変化するコレクタ内圧Pcを算出する。
nout = Pc (n-1) / (R · Ta) · Qcyl (6)
Where R: General gas constant (≈848 kgm / kmol · K)
In step S33, the collector internal pressure Pc that changes sequentially is calculated based on the molar inflow amount nin into the collector unit 5 and the molar outflow amount nout from the collector unit 5 as follows.
コレクタ内の気体(空気)の状態方程式は、次式(7)で示される。
Pc・Vc=n・R・Tc・・・(7)
Vc:コレクタ部容積
n:コレクタ部内の吸気のモル数
コレクタ部の容積Vc、温度Tc(≒Ta)一定とすると、コレクタ内圧Pcの変化量ΔPcは、次式(8)で示されるように、コレクタ部5内の吸気のモル数の変化量Δnによって定まる。
The equation of state of gas (air) in the collector is expressed by the following equation (7).
Pc · Vc = n · R · Tc (7)
Vc: collector section volume n: number of moles of intake air in the collector section When the collector section volume Vc and temperature Tc (≈Ta) are constant, the change amount ΔPc of the collector internal pressure Pc is expressed by the following equation (8): It is determined by the change amount Δn of the number of moles of intake air in the collector unit 5.
ΔPc=Δn・R・Tc/Vc・・・(8)
演算時間間隔毎のコレクタ内圧変化量はPc−Pc(n−1)、コレクタ部5内の吸気モル数nの変化量Δnは、(nin−nout)で表される。
したがって、次式(9)が成立する。
Pc−Pc(n−1)=(nin−nout)・R・Tc/Vc
→Pc=Pc(n−1)+(nin−nout)・R・Tc/Vc・・・(9)
Pc(n−1):コレクタ内圧Pcの前回演算値
このようにして、コレクタ内圧Pcを逐次算出更新しつつ、コレクタ部5からの吸気のモル流出量noutを、次式(10)のように算出更新できる。
ΔPc = Δn · R · Tc / Vc (8)
The amount of change in the collector internal pressure for each calculation time interval is represented by Pc−Pc (n−1) , and the amount of change Δn of the number of moles of intake air n in the collector unit 5 is represented by (nin−nout).
Therefore, the following equation (9) is established.
Pc-Pc (n-1) = (nin-nout) .R.Tc / Vc
→ Pc = Pc (n-1) + (nin-nout) .R.Tc / Vc (9)
Pc (n-1) : Previously calculated value of the collector internal pressure Pc In this way, the collector internal pressure Pc is successively calculated and updated, and the molar outflow amount nout of the intake air from the collector unit 5 is expressed by the following equation (10). Calculation update is possible.
nout=nin−(Pc−Pc(n−1))・Vc/(R・Tc)・・・(10)
なお、エンジン停止状態から運転開始するときのスロットル弁下流のコレクタ内圧Pcは、スロットル弁上流の大気圧Paに等しく、コレクタ部5へのモル流入量ninの初期値は0である。すなわち、初めはコレクタ部への吸気の流入は無く、下流側であるシリンダを負圧源として生じる負圧によってコレクタ部からモル流出量noutが流出することによってコレクタ内圧Pcが大気圧Paより低下し、該低下したコレクタ内圧Pcと大気圧Paとの差圧によって、コレクタ部5へのモル流入量ninを生じてコレクタ部への流入が始まる。
nout = nin- (Pc-Pc (n-1) ). Vc / (R.Tc) (10)
It should be noted that the collector internal pressure Pc downstream of the throttle valve when starting operation from the engine stop state is equal to the atmospheric pressure Pa upstream of the throttle valve, and the initial value of the molar inflow amount nin into the collector portion 5 is zero. That is, there is no inflow of intake air to the collector portion at first, and the collector internal pressure Pc is reduced from the atmospheric pressure Pa by the molar outflow amount nout flowing out from the collector portion due to the negative pressure generated from the cylinder on the downstream side as a negative pressure source. The reduced pressure difference between the collector internal pressure Pc and the atmospheric pressure Pa causes a molar inflow amount nin to the collector portion 5 to start flowing into the collector portion.
なお、吸気圧センサ11の検出値Pcを用いる場合は、上記(6)式で、Pc(n−1)の代わりに検出値Pcを用いてモル流出量noutを算出すればよい。
図10は、水蒸気を除去したシリンダ吸入空気量を算出し、該空気量に見合った燃料噴射量を算出するフローを示す。
ステップS41で、前記コレクタ部5からの吸気のモル流出量nout、エンジン回転速度Neを読み込む。
When the detected value Pc of the intake pressure sensor 11 is used, the molar outflow amount nout may be calculated using the detected value Pc instead of Pc (n−1) in the above equation (6).
FIG. 10 shows a flow of calculating the cylinder intake air amount from which water vapor has been removed and calculating the fuel injection amount corresponding to the air amount.
In step S41, the molar outflow amount nout of the intake air from the collector 5 and the engine speed Ne are read.
ステップS42では、前記吸気のモル流出量noutが空気と水蒸気とを合わせたモル流量として算出されるので、次式のように、前記水蒸気分圧Phw(Ta)を用いて、水蒸気分を除去した空気のみのモル流出量noutaを、次式(11)のように算出する。
nouta=nout・{1−Phw(Ta)/全圧}
={nin−(Pc−Pc(n−1))・Vc/(R・Tc)}
・{1−Phw(Ta)/全圧}・・・(11)
ここで、{1−Phw(Ta)/全圧}は、吸気中における空気のモル分率を表し、全圧は、大気圧Paまたはコレクタ内圧Pcを用いる
ステップS43では、上記のようにして、水蒸気分を除去したコレクタ部5から流出するモル流量nouta、つまりシリンダへ吸入される空気のモル流量ncyla(=nouta)と、エンジン回転速度Neに基づいて、サイクル周波数に同期して設定される燃料噴射量Tiを、次式(12)のように算出する。
In step S42, since the molar outflow amount noout of the intake air is calculated as a molar flow rate that combines air and water vapor, the water vapor content is removed using the water vapor partial pressure Phw (Ta) as shown in the following equation. The molar outflow amount nota of only air is calculated as in the following equation (11).
nouta = nout · {1-Phw (Ta) / total pressure}
= {Nin- (Pc-Pc (n-1) ). Vc / (R.Tc)}
・ {1-Phw (Ta) / Total pressure} (11)
Here, {1-Phw (Ta) / total pressure} represents the mole fraction of air in the intake air, and the total pressure uses atmospheric pressure Pa or collector internal pressure Pc. In step S43, as described above, Fuel set in synchronism with the cycle frequency based on the molar flow rate nouta flowing out from the collector portion 5 from which water vapor has been removed, that is, the molar flow rate ncyla (= nouta) of the air sucked into the cylinder, and the engine rotational speed Ne. The injection amount Ti is calculated as in the following equation (12).
Ti=k・ncyla/Ne、kは定数・・・(12)
なお、モル流量ncylaに空気の分子量Mを乗じることによって、一般的に用いられる質量流量mに換算することができる。
このようにすれば、水蒸気分を除去した空気流量に見合った量の燃料噴射量が設定され、水蒸気分圧(湿度)に影響されることなく、高精度な空燃比制御を行うことができる。
Ti = k · ncyla / Ne, k is a constant (12)
In addition, it can convert into the mass flow rate m generally used by multiplying the molecular weight M of air to the molar flow rate ncyla.
In this way, the fuel injection amount corresponding to the air flow rate from which the water vapor component has been removed is set, and highly accurate air-fuel ratio control can be performed without being affected by the water vapor partial pressure (humidity).
また、上記実施形態では、コレクタ部への吸気の流入量ninをエアフロメータの検出値から求めたが、スロットル弁4を通過する流量として、以下のように算出することもできる。
スロットル弁4前後の圧力比Pc/Paが臨界圧力比[=2/(κ+1)}κ/(κ−1);κは吸気の比熱比]より大きいときは、次式(13)で算出される。
In the above embodiment, the inflow amount nin of the intake air to the collector is obtained from the detected value of the air flow meter. However, the flow rate passing through the throttle valve 4 can be calculated as follows.
When the pressure ratio Pc / Pa before and after the throttle valve 4 is larger than the critical pressure ratio [= 2 / (κ + 1)} κ / (κ-1) ; κ is the specific heat ratio of the intake air], it is calculated by the following equation (13). The
ここで、ATHは、スロットル弁4の開度に応じたスロットル開口面積であり、スロットル開度を検出するスロットルセンサを設け、図11に示すようなスロットル開度−スロットル開口面積の変換マップを設定し、該マップを参照して算出すればよい。
一方、前記圧力比Pc/Paが臨界圧力比以下のときは、スロットル弁4から離れたコレクタ内圧Pcによらず、スロットル弁4近傍での前後圧力比が臨界圧力比一定に維持され、スロットル弁4を通過する吸気流速が音速一定となるソニック流状態となる。
Here, ATH is a throttle opening area corresponding to the opening degree of the throttle valve 4, a throttle sensor for detecting the throttle opening degree is provided, and a conversion map of throttle opening degree-throttle opening area as shown in FIG. 11 is set. Then, the calculation may be performed with reference to the map.
On the other hand, when the pressure ratio Pc / Pa is equal to or less than the critical pressure ratio, the front-rear pressure ratio in the vicinity of the throttle valve 4 is maintained constant regardless of the collector internal pressure Pc away from the throttle valve 4, and the throttle valve 4 becomes a sonic flow state in which the flow velocity of the intake air passing through 4 is constant in sound speed.
すなわち、(14)式において、右辺の第3項(√部分)のPc/Paを臨界圧力比{2/(κ+1)}κ/(κ−1)]に置き換えた値となり、次式(14)で表される。 That is, in the equation (14), the value obtained by replacing Pc / Pa in the third term (√ portion) on the right side with the critical pressure ratio {2 / (κ + 1)} κ / (κ-1) ] is obtained. ).
このようにして、算出したコレクタ部5への吸気の流量ninを、図7のステップS32で読み込み、以下、第1の実施形態と同様にして、コレクタ内圧Pc、シリンダ部への吸気の流量noutを算出更新後、水蒸気分を除去するため、空気のモル分率を乗じることで、空気のみの流量を検出することができ、燃料噴射量制御精度を向上することができる。
以上示した実施形態では、吸気系をモデル化してコレクタからの流出量をシリンダへの吸気流量として算出するものに適用したため、過渡状態での上流部の吸気流量検出値の遅れに対処することができる。
In this way, the calculated intake air flow rate nin to the collector unit 5 is read in step S32 of FIG. 7, and thereafter, the collector internal pressure Pc and the intake air flow rate nout to the cylinder unit are the same as in the first embodiment. After the calculation is updated, the water vapor component is removed, and by multiplying by the molar fraction of air, the flow rate of only air can be detected, and the fuel injection amount control accuracy can be improved.
In the embodiment described above, since the intake system is modeled and the outflow amount from the collector is calculated as the intake flow rate to the cylinder, it is possible to cope with the delay in the intake flow rate detection value in the upstream portion in the transient state. it can.
これに対し、簡易的な吸気流量検出では、あるいは、定常状態と過渡状態とを判別し定常状態と判別されたときは、エアフロメータの検出値または上記のスロットル部流量算出によって得られたコレクタ部5への吸気の流入量ninを用いて燃料噴射量を設定する構成としてもよい。
この場合も、水蒸気分圧Phw(Ta)を用いて、水蒸気分を除去した空気のみの流量ninaを、次式(15)のように算出することができる。
On the other hand, in the simple intake flow rate detection, or when the steady state and the transient state are discriminated and the steady state is discriminated, the detected value of the air flow meter or the collector unit obtained by the above-described throttle unit flow rate calculation The fuel injection amount may be set using the inflow amount nin of the intake air to 5.
Also in this case, using the water vapor partial pressure Phw (Ta), the flow rate nina of only the air from which the water vapor has been removed can be calculated as in the following equation (15).
nina=nin・{1−Phw(Ta)/全圧}
・{1−Phw(Ta)/全圧}・・・(15)
全圧は、大気圧Paまたはコレクタ内圧Pcを用いる
さらに、空気流量ninaを用いて、サイクル周波数に同期した燃料噴射量Tiが次式(16)のように算出される。
nina = nin · {1-Phw (Ta) / total pressure}
・ {1-Phw (Ta) / Total pressure} (15)
As the total pressure, the atmospheric pressure Pa or the collector internal pressure Pc is used. Further, the fuel injection amount Ti synchronized with the cycle frequency is calculated by the following equation (16) using the air flow rate nina.
Ti=k・nina/Ne、kは定数・・・(16)
さらに、以上示した実施形態において、コレクタ内圧Pcをコレクタ部5に圧力センサを設けて検出してもよく、また、コレクタ部5に流入する吸気の流量として、EGRやパージされた蒸発燃料を加えて演算することもできる。
Ti = k · nina / Ne, k is a constant (16)
Further, in the embodiment described above, the collector internal pressure Pc may be detected by providing a pressure sensor in the collector unit 5, and EGR or purged evaporated fuel is added as the flow rate of the intake air flowing into the collector unit 5. Can also be calculated.
1 エンジン、
2 吸気通路
4 スロットル弁
5 コレクタ部
7 燃料噴射弁
9 大気圧センサ
10 エアフロメータ
10a 吸気温度センサ
11 吸気圧センサ
16 エンジンコントロールユニット(ECU)
1 engine,
2 Intake passage 4 Throttle valve 5 Collector 7 Fuel injection valve 9 Atmospheric pressure sensor 10 Air flow meter 10a Intake temperature sensor 11 Intake pressure sensor 16 Engine control unit (ECU)
Claims (25)
車速が停車に近い低車速以上のときに検出した大気温度を用いて水蒸気分圧を検出することを特徴とする請求項1〜請求項9のいずれか1つに記載の水蒸気分圧検出装置。 In a device for detecting a partial pressure of water vapor in air sucked into an engine mounted on a vehicle,
The water vapor partial pressure detection apparatus according to any one of claims 1 to 9, wherein the water vapor partial pressure is detected using an atmospheric temperature detected when the vehicle speed is equal to or higher than a low vehicle speed close to stopping.
吸気中の水蒸気分圧を算出する水蒸気分圧算出手段と、
前記検出された吸気流量と算出された水蒸気分圧とに基づいて水蒸気分を除去した吸気流量を算出する吸気流量算出手段と、
を含んで構成したことを特徴とするエンジンの吸気流量検出装置。 An intake flow rate detection means for detecting the intake flow rate of the engine;
A water vapor partial pressure calculating means for calculating a water vapor partial pressure during intake;
An intake air flow rate calculating means for calculating an intake air flow rate from which water vapor content is removed based on the detected intake air flow rate and the calculated water vapor partial pressure;
An intake air flow rate detection device for an engine characterized by comprising:
熱流量[J/K/s]/流体の定圧比熱Cp[J/K/mol]×空気のモル分率[%]×サイクル周波数[1/s/cycle]
ただし、定圧比熱Cp={水蒸気分圧×水蒸気の定圧比熱Cpw+(全圧−水蒸気分圧)×空気の定圧比熱Cpair}/全圧 The engine according to any one of claims 11 to 13, wherein the intake flow rate detection means calculates a molar flow rate of air for each cycle sucked into a cylinder of the engine by the following equation. Intake flow rate detection device.
Heat flow rate [J / K / s] / Fixed pressure specific heat Cp [J / K / mol] × Mole fraction of air [%] × Cycle frequency [1 / s / cycle]
However, constant pressure specific heat Cp = {steam partial pressure × steam constant pressure specific heat Cpw + (total pressure−steam partial pressure) × air constant pressure specific heat Cpair} / total pressure
空気のモル分率=1−水蒸気分圧/全圧 The engine intake air flow rate detection device according to any one of claims 15 to 16, wherein the mole fraction [%] of the air is calculated by the following equation.
Molar fraction of air = 1-water vapor partial pressure / total pressure
空気のモル分率=1−水蒸気分圧/全圧 The intake air flow of the engine according to claim 18 or 19, wherein the calculation of the intake air flow rate is calculated as a flow rate of air from which water vapor has been removed using a mole fraction of air represented by the following equation. Flow rate detection device.
Molar fraction of air = 1-water vapor partial pressure / total pressure
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005167027A JP2006343136A (en) | 2005-06-07 | 2005-06-07 | Partial pressure detector of steam, suction flow rate detector of engine and internal pressure detector of collector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005167027A JP2006343136A (en) | 2005-06-07 | 2005-06-07 | Partial pressure detector of steam, suction flow rate detector of engine and internal pressure detector of collector |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006343136A true JP2006343136A (en) | 2006-12-21 |
Family
ID=37640218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005167027A Pending JP2006343136A (en) | 2005-06-07 | 2005-06-07 | Partial pressure detector of steam, suction flow rate detector of engine and internal pressure detector of collector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006343136A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011256738A (en) * | 2010-06-07 | 2011-12-22 | Mitsubishi Motors Corp | Output control device of vehicle |
KR20140009161A (en) * | 2010-10-28 | 2014-01-22 | 로베르트 보쉬 게엠베하 | Sensor device for detecting a flow property of a fluid medium |
CN105089831A (en) * | 2014-05-23 | 2015-11-25 | 福特环球技术公司 | System and method for estimating ambient humidity |
CN105571978A (en) * | 2015-12-18 | 2016-05-11 | 东南大学 | Water steam oversaturation atmosphere creating method and oversaturation degree measuring method and device |
JP2016160855A (en) * | 2015-03-03 | 2016-09-05 | トヨタ自動車株式会社 | Emission estimation device for internal combustion engine |
JP6058102B1 (en) * | 2015-10-07 | 2017-01-11 | 三菱電機株式会社 | Control device for internal combustion engine and control method for internal combustion engine |
WO2017130675A1 (en) * | 2016-01-27 | 2017-08-03 | 日立オートモティブシステムズ株式会社 | Control device |
-
2005
- 2005-06-07 JP JP2005167027A patent/JP2006343136A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011256738A (en) * | 2010-06-07 | 2011-12-22 | Mitsubishi Motors Corp | Output control device of vehicle |
KR101957133B1 (en) * | 2010-10-28 | 2019-03-14 | 로베르트 보쉬 게엠베하 | Sensor device for detecting a flow property of a fluid medium |
KR20140009161A (en) * | 2010-10-28 | 2014-01-22 | 로베르트 보쉬 게엠베하 | Sensor device for detecting a flow property of a fluid medium |
CN105089831A (en) * | 2014-05-23 | 2015-11-25 | 福特环球技术公司 | System and method for estimating ambient humidity |
CN105089831B (en) * | 2014-05-23 | 2020-01-17 | 福特环球技术公司 | System and method for estimating ambient humidity |
JP2016160855A (en) * | 2015-03-03 | 2016-09-05 | トヨタ自動車株式会社 | Emission estimation device for internal combustion engine |
DE102016203333A1 (en) | 2015-03-03 | 2016-09-08 | Toyota Jidosha Kabushiki Kaisha | EMISSION ESTIMATING DEVICE FOR INTERNAL COMBUSTION ENGINE |
DE102016203333B4 (en) | 2015-03-03 | 2022-05-05 | Toyota Jidosha Kabushiki Kaisha | EMISSION ESTIMATION DEVICE FOR INTERNAL COMBUSTION ENGINE |
JP6058102B1 (en) * | 2015-10-07 | 2017-01-11 | 三菱電機株式会社 | Control device for internal combustion engine and control method for internal combustion engine |
JP2017072059A (en) * | 2015-10-07 | 2017-04-13 | 三菱電機株式会社 | Control device of internal combustion engine and control method of internal combustion engine |
CN105571978A (en) * | 2015-12-18 | 2016-05-11 | 东南大学 | Water steam oversaturation atmosphere creating method and oversaturation degree measuring method and device |
JPWO2017130675A1 (en) * | 2016-01-27 | 2018-08-30 | 日立オートモティブシステムズ株式会社 | Control device |
US10900426B2 (en) | 2016-01-27 | 2021-01-26 | Hitachi Automotive Systems, Ltd. | Control device |
WO2017130675A1 (en) * | 2016-01-27 | 2017-08-03 | 日立オートモティブシステムズ株式会社 | Control device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6662640B2 (en) | Air amount detector for internal combustion engine | |
US20120174653A1 (en) | Pm emission amount estimation device for diesel engine | |
JP2007040108A5 (en) | ||
US8677748B2 (en) | Fresh air flow estimation | |
JP2003307152A (en) | Method and device for failure diagnosis for map sensor of vehicle | |
JP2008151145A (en) | Suction air quantity predicting device for internal combustion engine | |
US6834542B2 (en) | Method for determining the atmospheric pressure on the basis of the pressure in the intake line of an internal combustion engine | |
JP2901613B2 (en) | Fuel injection control device for automotive engine | |
KR100988190B1 (en) | Exhaust emission control device of internal combustion engine | |
CN113107656B (en) | Dew point passing identification method of Nox sensor | |
JP2006343136A (en) | Partial pressure detector of steam, suction flow rate detector of engine and internal pressure detector of collector | |
US6976475B2 (en) | Method for detecting a leakage in the intake port of a combustion engine, and a combustion engine equipped for implementing the method | |
JP3656501B2 (en) | Air-fuel ratio sensor abnormality diagnosis device | |
KR950033015A (en) | Method and apparatus for detecting cylinder inflow air of internal combustion engine, and method and apparatus for fuel control of internal combustion engine using the method and apparatus | |
JPH01280645A (en) | Fuel injection control device for engine | |
JP2007239650A (en) | Controller for internal combustion engine | |
US10677183B2 (en) | Internal combustion engine control apparatus | |
US20220058896A1 (en) | Method for modeling a compressor intake temperature and/or a compressor discharge temperature of a compressor, and a control unit, and a motor vehicle | |
JP2008002833A (en) | Device for correcting intake flow rate | |
JP2008045455A (en) | Temperature estimation device and engine control system | |
JPH09317568A (en) | Abnormality detecting device for diesel engine | |
JPS6098329A (en) | Pressure detector of internal-combustion engine | |
JP2005083345A (en) | Control device for internal combustion engine | |
JPH0742893B2 (en) | Fuel system air amount estimation control method | |
JP4650082B2 (en) | Ideal value arithmetic unit |