[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006340232A - Color image reader - Google Patents

Color image reader Download PDF

Info

Publication number
JP2006340232A
JP2006340232A JP2005164816A JP2005164816A JP2006340232A JP 2006340232 A JP2006340232 A JP 2006340232A JP 2005164816 A JP2005164816 A JP 2005164816A JP 2005164816 A JP2005164816 A JP 2005164816A JP 2006340232 A JP2006340232 A JP 2006340232A
Authority
JP
Japan
Prior art keywords
color image
main scanning
color
correction
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005164816A
Other languages
Japanese (ja)
Inventor
Masahito Ishikura
雅人 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005164816A priority Critical patent/JP2006340232A/en
Publication of JP2006340232A publication Critical patent/JP2006340232A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)
  • Image Input (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a color image reader, capable of easily and reliably preventing a color drift from occurring. <P>SOLUTION: The color image reader receives spectral light obtained by making spectral color image light into a plurality of frequency bands by a plurality of light receiving elements. The color image reader comprises: reference plates 23, 51 in which n pieces of narrow lines are depicted between a main scanning read start position and a main scanning read end position in a sub-scanning direction, respectively; and correction means 43, 50 for, of the number of pixels of each of red (R), green (G) and blue (B) in the light receiving element obtained from read image data from central narrow lines in a main scanning direction to each narrow line in the reference planes read by each of the light receiving elements, detecting the number of drift pixels of R and B when the number of G pixels is set as the number of reference pixels, to carry out a color drift correction in the main scanning direction in response to the number of drift pixels. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、デジタルカラー複写機、カラーファクシミリ装置などに適用できるカラー画像読取装置に関する。   The present invention relates to a color image reading apparatus that can be applied to a digital color copying machine, a color facsimile apparatus, and the like.

図8は従来のカラー画像読取装置の概略構成図である。原稿1は光源2によって照明され、原稿1で反射された画像光がミラー3によってレンズ4で集束されてダイクロイックミラー体5に入る。このダイクロイックミラー体5によって画像光は複数の周波数帯に分光される。例えば、赤(R)、緑(G)、青(B)の3種の周波数帯に分けられた分光光はそれぞれ3個の受光素子6、7、8に入射し、各受光素子6〜8では分光光を電気信号に変換して、画像データとして出力する。
上記のカラー画像読取装置において、前記各受光素子6〜8の位置調整を高精度で行わないと、再生時の色ずれを発生させる。前記位置調整は主走査方向と副走査方向の両方向で行っており、副走査方向の調整は装置組立時に治具を用いて行っている。また主走査方向の調整は、図9に示したような表面に細線9が描かれた原稿10などを用い、図10に示したように、この原稿10を読み取った各受光素子6〜8からの読取信号11、12、13の波形を計測器などにそれぞれ表示し、受光素子駆動パルスの1種であるシフト(SH)パルスのタイミングを変え、各読取信号11〜13の波形のピークP11、P12、P13の位置を合せることによって行っている。
特許文献1には、走査位置ずれを検出し、これに基づいて画像データを補正することにより、走査速度ムラや共振現象の有無に拘わらず良質の画像データを出力することができる画像読取装置を提供することを目的として以下の技術が提案されている。
カラー画像光を複数の周波数帯に分光した分光光を複数の受光素子で受光するカラー画像読取装置において、主走査読取開始位置と主走査読取終了位置との副走査方向に細線がそれぞれ描かれた基準板と、前記各受光素子により読み取られた前記基準板における一方の細線から他方の細線までの読取画像データにより得られた受光素子における画素数と基準画素数とによってずれ画素数を検出し、そのずれ画素数に応じて主走査方向の色ずれ補正を行う。
特開平4−172063号公報
FIG. 8 is a schematic configuration diagram of a conventional color image reading apparatus. The document 1 is illuminated by the light source 2, and the image light reflected by the document 1 is focused by the lens 4 by the mirror 3 and enters the dichroic mirror body 5. The dichroic mirror body 5 splits the image light into a plurality of frequency bands. For example, spectroscopic light divided into three frequency bands of red (R), green (G), and blue (B) is incident on three light receiving elements 6, 7, and 8, respectively, and each of the light receiving elements 6-8. Then, the spectral light is converted into an electrical signal and output as image data.
In the above color image reading apparatus, if the position adjustment of each of the light receiving elements 6 to 8 is not performed with high accuracy, color misregistration during reproduction occurs. The position adjustment is performed in both the main scanning direction and the sub-scanning direction, and the adjustment in the sub-scanning direction is performed using a jig when the apparatus is assembled. Further, the adjustment in the main scanning direction uses a document 10 or the like on which a thin line 9 is drawn on the surface as shown in FIG. 9, and the light receiving elements 6 to 8 that read the document 10 as shown in FIG. The waveforms of the read signals 11, 12, and 13 are respectively displayed on a measuring instrument, the timing of a shift (SH) pulse that is one type of light receiving element driving pulse is changed, and the peak P11 of the waveform of each of the read signals 11 to 13 is changed. This is done by matching the positions of P12 and P13.
Patent Document 1 discloses an image reading apparatus that can output high-quality image data regardless of the presence or absence of uneven scanning speed or a resonance phenomenon by detecting scanning position deviation and correcting image data based on the detected position deviation. The following techniques have been proposed for the purpose of providing.
In a color image reading apparatus that receives spectral light obtained by splitting color image light into a plurality of frequency bands with a plurality of light receiving elements, thin lines are drawn in the sub-scanning direction at the main scanning reading start position and the main scanning reading end position, respectively. Detecting the number of pixels shifted by the reference plate and the number of pixels and the reference pixel number in the light receiving element obtained from the read image data from one thin line to the other thin line in the reference plate read by each light receiving element, Color shift correction in the main scanning direction is performed according to the number of shifted pixels.
Japanese Patent Laid-Open No. 4-172063

上記の従来技術において、機械的調整が行われた受光素子6〜8に対して組立時に治具などを用いて位置ずれ量(色ずれ量)を求め、その値を内部固定スイッチなどに設定して上記の位置調整(色ずれ補正)を行っているが、組立時に内部固定スイッチなどの設定が必要であり、また組立後に受光素子6〜8に位置ずれなどが発生し、それが電気的に補正可能な程度のものであっても新たな調整が必要である。さらに色ずれが発生したことを検出する手段を具備しておらず、再生時のエラーを未然に防止できないという問題がある。
また上記の従来技術によれば、主走査方向と副走査方向との両方向の受光素子6〜8の位置調整はできるが、それらの調整のみでは不可能な要素がある。それは各受光素子6〜8からレンズ4までの距離である。図8によれば、矢印Aの方向である。このAの方向の調整は、レンズ4と受光素子6〜8とのピント合わせだけでは、高い精度での調整は不可能である。
この調整を行わないと3個の受光素子6〜8の縮率が異なってしまうことになる。縮率が異なると主走査方向の色ずれが生じてしまう。具体的には、主走査上のある点で上記の従来技術による方法で、色ずれの補正を行うと、その点では色ずれは無くても、その点から離れるに従って、色ずれが生じるという現象が起こる。
例えば、図9のような原稿10で、主走査方向の色ずれ調整を行い、また副走査方向の調整を従来技術通りに行い、次に図11のような副走査方向に数本の細線9’が描かれた原稿10’を読ませる。3個の受光素子6〜8の縮率が異なっていれば、例えば3個の受光素子6〜8の画像データは、図12のようになる。ここで14、15、16は、3個の受光素子6〜8の画像データである。
図9のような原稿10で主走査方向の色ずれ調整を行うため、主走査読取開始位置イの付近では、細線9’の位置は各画像データ14〜16共に合っているが、主走査読取終了位置ロに向うに従い、細線9’の位置は、各画像データ14〜16共に徐々にずれる。このため色ずれを発生させる。
また、レンズ4には色収差という特性があり、これは各色毎に結像位置がずれる現象であるが、この各色毎の結像位置ずれ量は、各像高により微小に異なるため、両端2点の縦細線での色ずれ補正を行う特願平2−299040号のカラー画像読取装置では、縦細線部付近(像高)は色ずれが補正されるものの、その他の位置(像高)ではレンズ色収差の影響で色ずれをおこしてしまうことになる。
さらに、特許文献1記載のカラー画像読取装置では、電源ON時に色ずれ補正を行うが、受光素子6〜8は構成上高温になるため、熱膨張によりレンズ4と受光素子6〜8の位置が微小にずれることがある。
本発明の目的は、容易かつ確実に色ずれ発生を防止できるカラー画像読取装置を提供することにある。
In the above prior art, the positional deviation amount (color misregistration amount) is obtained by using a jig or the like for the light receiving elements 6 to 8 subjected to mechanical adjustment at the time of assembly, and the value is set to an internal fixed switch or the like. The above-mentioned position adjustment (color misregistration correction) is performed, however, it is necessary to set an internal fixing switch or the like at the time of assembling, and after the assembling, the light receiving elements 6 to 8 are misaligned, which is electrically Even if it can be corrected, a new adjustment is required. Furthermore, there is a problem that no means for detecting the occurrence of color misregistration is provided, and errors during reproduction cannot be prevented.
Further, according to the above-described prior art, the position adjustment of the light receiving elements 6 to 8 in both the main scanning direction and the sub-scanning direction can be performed, but there are elements that are impossible only by these adjustments. It is the distance from each light receiving element 6 to 8 to the lens 4. According to FIG. 8, it is the direction of the arrow A. The adjustment in the direction A is impossible with high accuracy only by focusing the lens 4 and the light receiving elements 6 to 8.
If this adjustment is not performed, the reduction ratios of the three light receiving elements 6 to 8 will be different. If the reduction ratio is different, a color shift in the main scanning direction occurs. Specifically, when color misregistration correction is performed at a certain point on the main scan by the above-described conventional method, even if there is no color misregistration at that point, the color misregistration occurs as the distance from the point is increased. Happens.
For example, the color deviation adjustment in the main scanning direction is performed on the document 10 as shown in FIG. 9, the adjustment in the sub scanning direction is performed as in the prior art, and then several fine lines 9 are arranged in the sub scanning direction as shown in FIG. Read the manuscript 10 on which “is drawn”. If the reduction ratios of the three light receiving elements 6 to 8 are different, for example, the image data of the three light receiving elements 6 to 8 are as shown in FIG. Here, 14, 15 and 16 are image data of the three light receiving elements 6-8.
In order to perform color misregistration adjustment in the main scanning direction on the document 10 as shown in FIG. 9, the position of the thin line 9 'is aligned with each of the image data 14 to 16 near the main scanning reading start position a. The position of the thin line 9 ′ gradually shifts for each of the image data 14 to 16 as it goes to the end position b. For this reason, color misregistration occurs.
Further, the lens 4 has a characteristic called chromatic aberration, which is a phenomenon in which the image forming position shifts for each color. The amount of image forming position shift for each color is slightly different depending on the image height. In the color image reading apparatus of Japanese Patent Application No. 2-299040 that corrects color misregistration at vertical fine lines, the color misregistration is corrected in the vicinity of the vertical thin line portion (image height), but at other positions (image height). Color shift is caused by the influence of chromatic aberration.
Furthermore, in the color image reading apparatus described in Patent Document 1, color misregistration correction is performed when the power is turned on. However, since the light receiving elements 6 to 8 have a high temperature due to their configuration, the positions of the lens 4 and the light receiving elements 6 to 8 are caused by thermal expansion. There may be a slight shift.
An object of the present invention is to provide a color image reading apparatus that can easily and reliably prevent the occurrence of color misregistration.

前記目的を達成するために、請求項1記載の発明は、カラー画像光を複数の周波数帯に分光した分光光を複数の受光素子で受光するカラー画像読取装置において、主走査読取開始位置と主走査読取終了位置との間に数本、副走査方向に細線がそれぞれ描かれた基準板と、前記各受光素子により読み取られた前記基準板における主走査方向中央の細線から各々の細線までの読取画像データにより得られた受光素子におけるRGBそれぞれの画素数のうち、G画素数を基準画素数にした時のR画素数及びB画素数のずれ画素数を検出し、そのずれ画素数に応じて主走査方向の色ずれ補正を行う補正手段とを備えたことを特徴とする。
請求項2記載の発明では、前記補正手段は、シェーディング動作時に併せて色ずれ補正を行う請求項1記載のカラー画像読取装置を特徴とする。
請求項3記載の発明は、前記補正手段の画素ずれ計測結果を格納するメモリを備え、前記補正手段は、画素ずれ計測する度に前値と比較し、大きく異なる場合は前回値を使用する請求項2記載のカラー画像読取装置を特徴とする。
請求項4記載の発明は、前記補正手段の画素ずれ計測値を設定する操作部を備えた請求項3記載のカラー画像読取装置を特徴とする。
In order to achieve the above object, according to a first aspect of the present invention, there is provided a color image reading apparatus that receives spectral light obtained by separating color image light into a plurality of frequency bands by a plurality of light receiving elements, and a main scanning reading start position and a main scanning reading position. A reference plate in which several thin lines are drawn in the sub-scanning direction between the scanning and reading end position, and reading from the center thin line in the main scanning direction to each thin line on the reference plate read by each light receiving element Of the number of RGB pixels in the light receiving element obtained from the image data, the number of shifted pixels of the R pixel number and the B pixel number when the G pixel number is set as the reference pixel number is detected, and according to the shifted pixel number And correction means for correcting color misregistration in the main scanning direction.
The invention according to claim 2 is characterized in that the correction means performs color misregistration correction at the time of the shading operation.
According to a third aspect of the present invention, a memory for storing a pixel shift measurement result of the correction unit is provided, and the correction unit compares the previous value every time the pixel shift is measured, and uses the previous value when greatly different. The color image reading apparatus according to Item 2 is characterized.
According to a fourth aspect of the present invention, there is provided a color image reading apparatus according to the third aspect, further comprising an operation unit for setting a pixel shift measurement value of the correcting unit.

請求項1のカラー画像読取装置においては、主走査読取開始位置と主走査読取終了位置との間にn数本、副走査方向に細線がそれぞれ描かれた基準板と、前記各受光素子により読み取られた前記基準板における主走査方向中央の細線から各々の細線までの読取画像データにより得られた受光素子における赤(R)、緑(G)、青(B)それぞれの画素数のうち、G画素数を基準画素数にした時のR画素数、及びB画素数のずれ画素数を検出し、そのずれ画素数に応じて主走査方向の色ずれ補正を行う補正手段とを備えているので、細線間の理想値と実測値との差分による色ずれの影響をなくすことができ、より高精度に色ずれ補正を行うことが可能となる。
請求項2のカラー画像読取装置においては、前記補正手段が、シェーディング動作時に併せて行えるように構成されているので、CCD面が熱変動してCCD位置が経時で微小にずれても、画像取り込み度にシェーディングを行い、色ずれ補正が行われるので、常に色ずれの小さい高画質の画像を維持できる。
請求項3のカラー画像読取装置においては、前記補正手段の画素ずれ計測結果をメモリ内に格納でき、画素ずれ計測する度に、前値と比較し、大きく異なる場合は、前回値を使える構成であるので、ノイズなどの影響で計測エラーを起こした場合でも誤補正をすることがなく、色ずれの小さい高画質の画像を維持できる。
請求項4のカラー画像読取装置においては、前記補正手段の画素ずれ計測値を操作部からも設定できるので、製造工程などでは治具を使った設定が可能となる。
In the color image reading apparatus according to claim 1, the reading is performed by the reference plates each having n thin lines drawn in the sub-scanning direction between the main scanning reading start position and the main scanning reading end position, and the light receiving elements. Of the number of pixels of red (R), green (G), and blue (B) in the light receiving element obtained from the read image data from the thin line at the center in the main scanning direction to the thin line in the reference plate, Since there is a correction means for detecting the number of shifted pixels of the R pixel number and the B pixel number when the number of pixels is the reference pixel number, and correcting the color shift in the main scanning direction according to the shifted pixel number. In addition, it is possible to eliminate the influence of color misregistration due to the difference between the ideal value and the actual measurement value between the thin lines, and it is possible to perform color misregistration correction with higher accuracy.
In the color image reading apparatus according to claim 2, since the correction unit is configured so that it can be performed together with the shading operation, even if the CCD surface fluctuates and the CCD position slightly shifts with time, the image is captured. Since shading is performed every time and color misregistration correction is performed, a high-quality image with small color misregistration can always be maintained.
In the color image reading apparatus according to claim 3, the pixel deviation measurement result of the correction unit can be stored in a memory, and the pixel value measurement result is compared with the previous value every time the pixel deviation is measured. Therefore, even when a measurement error occurs due to the influence of noise or the like, a high-quality image with a small color shift can be maintained without erroneous correction.
In the color image reading apparatus according to the fourth aspect, since the pixel shift measurement value of the correction unit can be set from the operation unit, setting using a jig is possible in the manufacturing process.

以下、本発明の実施形態を図面に基づいて説明する。
図1は本発明のカラー画像読取装置の基本構成図である。装置本体20は、原稿22を載置したコンタクトガラス21、コンタクトガラス21の原稿読取範囲外に設けられた後述する指標(基準板)23、原稿22を照射する光源24、反射ミラー25、原稿22で反射された画像光を、反射ミラー25を介して入射する光学ユニット26を備える。
図2は図1の指標を示す平面図であり、指標23の表面には縦細線27がn数本、ほぼ等間隔に並んでいる。
図3は本発明の実施形態に係るカラー画像読取装置の制御ブロック図である。前記光学ユニット26内に設けられているレンズ29とダイクロイックミラー体30、ダイクロイックミラー体30によって画像光から複数の周波数帯(例えば、赤(R)、緑(G)、青(B)の3種)に分光された分光光を受光する複数(本実施形態では3個)の受光素子(CCD)31、32、33、CCD31〜33からの出力をアナログ処理するためのアナログ処理部34、35、36、アナログ処理部34〜36にそれぞれ設けられて出力信号のアナログ/デジタル(A/D)処理を行うためのA/D変換器37、38、39、ラインバッファ部40、インタフェース(I/F)部41、補正手段であるCCD制御部42、補正手段であるラインバッファ制御部43、演算手段であるCPU(中央演算処理部)44を備える。
図3において、3個のCCD31〜33から出力された読取信号は、それぞれアナログ処理部34〜36とA/D変換器37〜39を介してテジタル化されてラインバッファ部40に格納される。このラインバッファ部40に格納されたデータはCPU44で制御されるタイミングでI/F部41へ送出される。CPU44は、ラインバッファ制御部43を介してラインバッファ部40の一部もしくは全部を読み取ることが可能であり、さらにCCD制御部42を介してCCD31〜33の読取開始位置の設定などが可能である。
さらに本実施形態では、A/D変換部37〜39からのデータが入力され、CPU44の制御を受けてラインバッファ制御部43へ後述する補正アドレスポイントデータを出力する補正手段である補正アドレスポイント設定部50を備える。また、メモリ60は、補正アドレスポイント設定部50の補正アドレスポイント設定値が格納され、操作部61からメモリ60に格納されている値の制御などが可能である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a basic configuration diagram of a color image reading apparatus of the present invention. The apparatus main body 20 includes a contact glass 21 on which an original 22 is placed, an index (reference plate) 23 described later provided outside the original reading range of the contact glass 21, a light source 24 that irradiates the original 22, a reflection mirror 25, and an original 22. The optical unit 26 which injects the image light reflected by 1 through the reflection mirror 25 is provided.
FIG. 2 is a plan view showing the index of FIG. 1, and n vertical thin lines 27 are arranged on the surface of the index 23 at substantially equal intervals.
FIG. 3 is a control block diagram of the color image reading apparatus according to the embodiment of the present invention. The lens 29, the dichroic mirror body 30, and the dichroic mirror body 30 provided in the optical unit 26 are used to generate a plurality of frequency bands (for example, three types of red (R), green (G), and blue (B)) from the image light. ) Analog processing units 34, 35 for analog processing of outputs from a plurality (three in this embodiment) of light receiving elements (CCD) 31, 32, 33 and CCDs 31-33 that receive the spectral light split into 36. A / D converters 37, 38, 39, line buffer unit 40, interface (I / F) provided for analog processing units 34 to 36, respectively, for performing analog / digital (A / D) processing of output signals. ) Unit 41, a CCD control unit 42 as correction means, a line buffer control unit 43 as correction means, and a CPU (central processing unit) 44 as calculation means.
In FIG. 3, the read signals output from the three CCDs 31 to 33 are digitized via the analog processing units 34 to 36 and the A / D converters 37 to 39 and stored in the line buffer unit 40. The data stored in the line buffer unit 40 is sent to the I / F unit 41 at a timing controlled by the CPU 44. The CPU 44 can read a part or all of the line buffer unit 40 via the line buffer control unit 43, and can set the reading start position of the CCDs 31 to 33 via the CCD control unit 42. .
Furthermore, in this embodiment, correction address point setting which is correction means for inputting data from the A / D conversion units 37 to 39 and outputting correction address point data to be described later to the line buffer control unit 43 under the control of the CPU 44. Part 50 is provided. The memory 60 stores the correction address point setting value of the correction address point setting unit 50, and can control the value stored in the memory 60 from the operation unit 61.

図4は本発明のカラー画像読取装置の制御フロー図である。装置の電源が投入され(S1)、原稿読み取りが開始(S2)されると、主走査方向の照度分布ムラ補正を実施するためのシェーディング(S3)が行われた後、光学ユニット26の各CCD31〜33によって指標23のn数本の細線27を読み取り(S4)、図5に示すようにCCD31〜33の位置ずれにより生じる各読取信号DB、DR、DGのピークPB、PR、PGの位置ずれをCPU44で解析・演算して、中央線を基準とした主走査方向の色ずれ量を各々算出する(S5)。この色ずれ量を主走査補正値としてCCD制御部42でCCD31〜33の制御を行うことが可能であれば(S6のYES)、CCD制御を行う(S7)。
従って、上記の制御例では、機械的に調整された後の色ずれを電気的に補正する際、その補正作業を組立時に行う必要がなくなり、組立工程を減少することができる。また画像読み取り時に毎回、色ずれ補正を行うことにより、組立後に機械的、雰囲気温度によりずれが生じても電気的補正が可能であれば自動的に補正がなされるため、再調整を行う必要がなくなる。
また色ずれ量がCPU44で算出されるため、補正不可能な色ずれが生じた場合にはエラー表示処理(S8)を行うが、この場合メモリ60に保持されている前補正値を用いて(S9)そのまま画像を読み込む(S10)か、あるいは原稿22の読取動作を停止させるようにできる。
図6は図2に示した指標23に代えて使用される基準板の平面図であり、基準板51の表面には主走査読取開始位置付近と主走査読取終了位置付近とに副走査方向に細線52がn数本形成されている。
FIG. 4 is a control flow diagram of the color image reading apparatus of the present invention. When the power of the apparatus is turned on (S1) and document reading is started (S2), shading (S3) is performed to correct illuminance distribution unevenness in the main scanning direction, and then each CCD 31 of the optical unit 26 is scanned. ˜33 reads n thin lines 27 of the index 23 (S4), and as shown in FIG. 5, the position shifts of the peaks PB, PR, PG of the read signals DB, DR, DG caused by the position shifts of the CCDs 31-33, as shown in FIG. Are analyzed and calculated by the CPU 44, and the amount of color misregistration in the main scanning direction with respect to the center line is calculated (S5). If the CCD control unit 42 can control the CCDs 31 to 33 using this color misregistration amount as a main scanning correction value (YES in S6), CCD control is performed (S7).
Therefore, in the above control example, when the color misregistration after mechanical adjustment is electrically corrected, it is not necessary to perform the correction work at the time of assembly, and the assembly process can be reduced. In addition, by performing color misregistration correction every time an image is read, even if there is a mechanical or atmospheric temperature misalignment after assembly, it is automatically corrected if electrical correction is possible, so readjustment is necessary. Disappear.
Further, since the color misregistration amount is calculated by the CPU 44, an error display process (S8) is performed when an uncorrectable color misregistration occurs. In this case, the precorrection value held in the memory 60 is used ( S9) The image can be read as it is (S10), or the reading operation of the document 22 can be stopped.
FIG. 6 is a plan view of a reference plate used in place of the index 23 shown in FIG. 2. The surface of the reference plate 51 has a main scanning reading start position and a main scanning reading end position in the sub-scanning direction. N fine lines 52 are formed.

図3に示すカラー画像読取装置の制御系の動作を説明する。まず基準板51の中央にある細線52を基準として主走査方向の位置ずれ調整を行う。この時、CCD31〜33の縮率が異なると、各CCD31〜33で読み取られた読取終了位置側の細線52’(図6)の画像データにずれが生じ、図7に示すように、各CCD31〜33における画像データ53、54、55の中央細線52の中央から各々の細線52’までの画像数l1、l2、l3がそれぞれ異なることになる。
補正アドレスポイント設定部50では、基準画素数(本実施形態では画素数l1)に対して他の画素数l2、l3が何画素ずれているかを検出し、その後、検出されたずれ画素数に応じて補正すべき主走査上のアドレスポイントを設定する。
具体的に説明すると、例えば、図7において、画素数l2に対する補正アドレスポイントの設定の仕方は、画素数l1に対する画素数l2のずれを△nx画素とすれば、補正アドレスポイントを△nx個に設定する。
即ち、第1個目の補正アドレスポイントをHAx1とすると、HAx1=l2/(Δnx+1)となり、第2個目の補正アドレスポイントをHAx2とし、以下の補正アドレスポイントを順次HAx3,HAx4,記号HAxnとすると、HAx2=2HAx1、HAx3=3HAxl、HAx4=4HAxl・・HAxn=nHAxlのように第n個目までの補正アドレスポイントを設定する。
上述のように補正アドレスポイント設定部50で補正アドレスポイント(HAx1〜HAxn)を設定し、ラインバッファ制御部43でラインバッファ部40の補正アドレスポイントにあたる画素を補正する。
The operation of the control system of the color image reading apparatus shown in FIG. 3 will be described. First, the positional deviation adjustment in the main scanning direction is performed using the thin line 52 at the center of the reference plate 51 as a reference. At this time, if the reduction ratios of the CCDs 31 to 33 are different, the image data of the thin line 52 ′ (FIG. 6) on the reading end position side read by the CCDs 31 to 33 is shifted, and as shown in FIG. The image numbers l1, l2, and l3 from the center of the central thin line 52 of the image data 53, 54, and 55 to the thin lines 52 ′ in .about.33 are different from each other.
The correction address point setting unit 50 detects how many other pixel numbers l2 and l3 are deviated from the reference number of pixels (in this embodiment, the number of pixels 11), and then, according to the detected number of displaced pixels. The address point on the main scan to be corrected is set.
More specifically, for example, in FIG. 7, the method of setting the correction address point with respect to the number of pixels 12 is as follows. If the deviation of the number of pixels 12 with respect to the number of pixels 11 is Δnx pixels, the number of correction address points is Δnx. Set.
That is, assuming that the first correction address point is HAx1, HAx1 = l2 / (Δnx + 1), the second correction address point is HAx2, and the following correction address points are sequentially HAx3, HAx4 and symbol HAxn. Then, up to n-th correction address points are set such that HAx2 = 2HAx1, HAx3 = 3HAxl, HAx4 = 4HAxl · · HAxn = nHAxl.
As described above, the correction address point setting unit 50 sets correction address points (HAx1 to HAxn), and the line buffer control unit 43 corrects pixels corresponding to the correction address points of the line buffer unit 40.

前記補正により、画素数l2は全体的にΔnx画素分だけ図7のA方向へ拡大されて画素数l1と等しくなり、また画素数l3は全体的に△ny画素分だけ間引かれるため、B方向に縮小されて画素数l1と等しくなる。従って、画素数l1、l2、l3の画素数を合せることができ、CCD31〜33における主走査方向の縮率による位置ずれ、即ち色ずれを電気的に補正することができることになる。
また、主走査方向に、細線の数n本から1引いた(n−1)箇所の独立した倍率補正ができるので、レンズ色収差のように、像高により色ずれ量が異なっている場合でも、電気的に補正することができる。しかも、補正箇所を増やすことにより、より色ずれの精度を向上させることができる。さらに、操作部61から色ずれ補正値を制御できるので、製造工程で治具などを使用して色ずれ補正値の初期値の設定するなどの管理ができる。
以上説明したように、本発明によれば、複数の受光素子の主走査方向における色ずれを電気的かつ自動的に補正でき、さらに前記色ずれの補正を電源投入時に毎回行うことにより、容易かつ確実に色ずれ発生を防止することができるカラー画像読取装置を提供できる。
As a result of the correction, the number of pixels 12 is expanded in the direction A in FIG. 7 by the amount of Δnx pixels as a whole and becomes equal to the number of pixels 11, and the number of pixels 13 is entirely thinned by Δny pixels. Reduced in the direction to be equal to the number of pixels l1. Accordingly, the number of pixels 11, 12, and 13 can be matched, and a positional shift due to a reduction ratio in the main scanning direction in the CCDs 31 to 33, that is, a color shift can be corrected electrically.
In addition, since independent magnification correction can be performed at (n-1) places obtained by subtracting 1 from the number n of thin lines in the main scanning direction, even when the amount of color shift differs depending on the image height, such as lens chromatic aberration. It can be corrected electrically. Moreover, the accuracy of color misregistration can be improved by increasing the number of correction points. Furthermore, since the color misregistration correction value can be controlled from the operation unit 61, management such as setting an initial value of the color misregistration correction value using a jig or the like in the manufacturing process can be performed.
As described above, according to the present invention, color misregistration in the main scanning direction of a plurality of light receiving elements can be corrected electrically and automatically, and further, correction of the color misregistration is performed every time the power is turned on, It is possible to provide a color image reading apparatus that can reliably prevent the occurrence of color misregistration.

本発明のカラー画像読取装置の基本構成図である。1 is a basic configuration diagram of a color image reading apparatus of the present invention. 図1の指標を示す平面図である。It is a top view which shows the parameter | index of FIG. 本発明の実施形態に係るカラー画像読取装置の制御ブロック図である。It is a control block diagram of a color image reading apparatus according to an embodiment of the present invention. 本発明のカラー画像読取装置の制御フロー図である。It is a control flowchart of the color image reading apparatus of the present invention. 指標の読取信号を示す図である。It is a figure which shows the reading signal of a parameter | index. 図2に示した指標23に代えて使用される基準板の平面図である。It is a top view of the reference | standard board used instead of the parameter | index 23 shown in FIG. 画像データの画素数の違いを示す図である。It is a figure which shows the difference in the pixel number of image data. 従来のカラー画像読取装置の概略構成図である。It is a schematic block diagram of the conventional color image reading apparatus. 調整用原稿を示す図(その1)である。FIG. 3 is a diagram (part 1) illustrating an adjustment document. 調整用原稿の読取信号を示す図である。It is a figure which shows the reading signal of the original for an adjustment. 調整用原稿を示す図(その2)である。FIG. 6 is a second diagram illustrating an adjustment document. 図11の調整用原稿の画像データを示す図である。FIG. 12 is a diagram illustrating image data of the adjustment document in FIG. 11.

符号の説明Explanation of symbols

23 指標(基準板)、43 ラインバッファ制御部(補正手段構成要素)、50 補正アドレスポイント設定部(補正手段構成要素)、51 基準板、60 メモリ、61 操作部   23 Index (reference plate), 43 Line buffer control unit (correction unit component), 50 Correction address point setting unit (correction unit component), 51 Reference plate, 60 Memory, 61 Operation unit

Claims (4)

カラー画像光を複数の周波数帯に分光した分光光を複数の受光素子で受光するカラー画像読取装置において、主走査読取開始位置と主走査読取終了位置との間に数本、副走査方向に細線がそれぞれ描かれた基準板と、前記各受光素子により読み取られた前記基準板における主走査方向中央の細線から各々の細線までの読取画像データにより得られた受光素子におけるRGBそれぞれの画素数のうち、G画素数を基準画素数にした時のR画素数及びB画素数のずれ画素数を検出し、そのずれ画素数に応じて主走査方向の色ずれ補正を行う補正手段とを備えたことを特徴とするカラー画像読取装置。   In a color image reading device that receives spectral light obtained by splitting color image light into a plurality of frequency bands with a plurality of light receiving elements, several fine lines are provided between the main scanning reading start position and the main scanning reading end position in the sub-scanning direction. Out of the number of pixels for each of RGB in the light receiving element obtained from the read image data from the thin line at the center in the main scanning direction to each thin line in the reference plate read by each of the light receiving elements And a correction means for detecting a shift pixel number of the R pixel number and the B pixel number when the G pixel number is set to the reference pixel number, and correcting a color shift in the main scanning direction according to the shift pixel number. A color image reading apparatus. 前記補正手段は、シェーディング動作時に併せて色ずれ補正を行うことを特徴とする請求項1記載のカラー画像読取装置。   The color image reading apparatus according to claim 1, wherein the correction unit performs color misregistration correction in conjunction with a shading operation. 前記補正手段の画素ずれ計測結果を格納するメモリを備え、前記補正手段は、画素ずれ計測する度に前値と比較し、大きく異なる場合は前回値を使用することを特徴とする請求項2記載のカラー画像読取装置。   3. The memory according to claim 2, further comprising a memory for storing a pixel deviation measurement result of the correction means, wherein the correction means compares the previous value every time the pixel deviation is measured, and uses the previous value if the difference is greatly different. Color image reading apparatus. 前記補正手段の画素ずれ計測値を設定する操作部を備えたことを特徴とする請求項3記載のカラー画像読取装置。   The color image reading apparatus according to claim 3, further comprising an operation unit that sets a pixel shift measurement value of the correction unit.
JP2005164816A 2005-06-03 2005-06-03 Color image reader Pending JP2006340232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005164816A JP2006340232A (en) 2005-06-03 2005-06-03 Color image reader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005164816A JP2006340232A (en) 2005-06-03 2005-06-03 Color image reader

Publications (1)

Publication Number Publication Date
JP2006340232A true JP2006340232A (en) 2006-12-14

Family

ID=37560355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005164816A Pending JP2006340232A (en) 2005-06-03 2005-06-03 Color image reader

Country Status (1)

Country Link
JP (1) JP2006340232A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010068124A (en) * 2008-09-09 2010-03-25 Canon Inc Image-reading apparatus
JP2011023833A (en) * 2009-07-13 2011-02-03 Fuji Xerox Co Ltd Image reader, image formation device, and program
JP2011024135A (en) * 2009-07-17 2011-02-03 Fuji Xerox Co Ltd Image reader, image formation device, and program
US8705153B2 (en) 2010-07-07 2014-04-22 Canon Kabushiki Kaisha Original reading apparatus reading image from original

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010068124A (en) * 2008-09-09 2010-03-25 Canon Inc Image-reading apparatus
US8248675B2 (en) 2008-09-09 2012-08-21 Canon Kabushiki Kaisha Image-reading apparatus
JP2011023833A (en) * 2009-07-13 2011-02-03 Fuji Xerox Co Ltd Image reader, image formation device, and program
JP2011024135A (en) * 2009-07-17 2011-02-03 Fuji Xerox Co Ltd Image reader, image formation device, and program
US8705153B2 (en) 2010-07-07 2014-04-22 Canon Kabushiki Kaisha Original reading apparatus reading image from original

Similar Documents

Publication Publication Date Title
JP4332374B2 (en) Image reading device
JPH0548833A (en) Chromatic aberration correction structure
US7471426B2 (en) Image reading apparatus and image reading method
US7251064B2 (en) Calibration of an image scanning system
JP2006340232A (en) Color image reader
JP4878570B2 (en) Image reading apparatus and setting method thereof
US7336846B2 (en) Method and apparatus for processing images using black character substitution
EP1615421B1 (en) Image scanner
JP2006260526A (en) Image processing apparatus and image processing method
JP2005323103A (en) Image reader
JP3178718B2 (en) Color image reader
JP3680427B2 (en) Image reading device
KR20050058221A (en) Signal processing method and image acquisition device
JPH05122542A (en) Image processor
JPH1169105A (en) Image reader
JP2014103461A (en) Image reading apparatus with aberration correction function
JP3900837B2 (en) Image reading apparatus and image forming apparatus
JPH07288653A (en) Image reader
JP2005168044A (en) Image scanner
JP4414276B2 (en) Image reading device
JP2010021727A (en) Image reading device and control method thereof
JPH11317839A (en) Image reader
JP2005094064A (en) Image reading apparatus
JPH04258704A (en) Detection of position of photoelectric conversion element
JP2005184156A (en) Image reader

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080520

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100126