JP2006239748A - Method for producing magnesium alloy - Google Patents
Method for producing magnesium alloy Download PDFInfo
- Publication number
- JP2006239748A JP2006239748A JP2005059879A JP2005059879A JP2006239748A JP 2006239748 A JP2006239748 A JP 2006239748A JP 2005059879 A JP2005059879 A JP 2005059879A JP 2005059879 A JP2005059879 A JP 2005059879A JP 2006239748 A JP2006239748 A JP 2006239748A
- Authority
- JP
- Japan
- Prior art keywords
- reduction
- rolling
- magnesium alloy
- slab
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Continuous Casting (AREA)
Abstract
Description
本発明は、連続鋳造された薄鋳片を、その潜熱を利用し再加熱なしにインライン圧下することによって製造工程を大幅に省略して薄板とするマグネシウム合金の製造方法に関する。 The present invention relates to a magnesium alloy manufacturing method in which a continuously cast thin slab is reduced in-line using its latent heat without reheating, thereby greatly omitting the manufacturing process and forming a thin plate.
マグネシウム合金は、実用合金中最も軽く、また剛性に優れているため、航空機、自動車または携帯電話等へ適用されている。特に、携帯電話等の急激な普及によりマグネシウム合金に対する市場ニーズが従来にも増して高まっており、安価で高品質なマグネシウム合金の提供が望まれている。 Magnesium alloys are the lightest among practical alloys and have excellent rigidity, and are therefore applied to aircraft, automobiles, mobile phones and the like. In particular, due to the rapid spread of mobile phones and the like, market needs for magnesium alloys are increasing more than ever, and it is desired to provide inexpensive and high-quality magnesium alloys.
マグネシウム合金は高温での反応性が高く、酸化し易いと同時に、水素を吸収し易い。そのため、溶解、鋳造時にマグネシウム合金の溶湯を大気雰囲気下に存在させると、酸化が促進し酸化物を生成したり、溶解したマグネシウム合金中に酸素及び水素が吸収され、これらの濃度が上昇することになる。このようにマグネシウム合金中の酸素濃度及び水素濃度が上昇すると、鋳造鋳片に気孔が生成したり、製品として要求される機械的性質を確保できないことがある。 Magnesium alloys are highly reactive at high temperatures, are easy to oxidize, and easily absorb hydrogen. Therefore, if a molten magnesium alloy is present in the atmosphere at the time of melting and casting, oxidation is promoted to generate oxides, and oxygen and hydrogen are absorbed into the molten magnesium alloy, and their concentrations increase. become. Thus, when the oxygen concentration and hydrogen concentration in the magnesium alloy are increased, pores may be generated in the cast slab, or the mechanical properties required for the product may not be ensured.
このため、マグネシウム合金は、大気と遮断した雰囲気で溶解した後、インゴット鋳造やダイカストによって製造するか、丸ビレット、または大断面(鋳片厚み150mm程度)の連続鋳造によって半製品である鋳片を製造した後、最終製品まで成型加工し、これを機械加工して仕上げる方法が採られてきた。 For this reason, after melting in an atmosphere shut off from the atmosphere, the magnesium alloy is manufactured by ingot casting or die casting, or a round billet or a slab which is a semi-finished product by continuous casting of a large cross section (slab thickness of about 150 mm). After manufacturing, a method has been adopted in which a final product is molded and machined to finish.
しかしながら、従来のインゴット鋳造や連続鋳造による製造では、粗圧延および熱間圧延という多くの工程を経て製品が製造されるため、製造コストが増大するという問題がある。 However, in the manufacturing by the conventional ingot casting or continuous casting, there is a problem that the manufacturing cost increases because the product is manufactured through many processes such as rough rolling and hot rolling.
特に、マグネシウム合金の薄板を得ようとすると、マグネシウムは常温で加工性に劣るので、粗圧延から熱間圧延までの工程では、圧延および再加熱を数十回繰り返して行わなければならず、この工程数の多いことが製造コストの削減を困難にしている最大の要因であった。 In particular, when trying to obtain a thin plate of magnesium alloy, magnesium is inferior in workability at room temperature, so in the process from rough rolling to hot rolling, rolling and reheating must be repeated several tens of times. The large number of processes was the biggest factor that made it difficult to reduce manufacturing costs.
このように、マグネシウム合金はインゴット鋳造やダイカストで製造する場合であっても、連続鋳造によって製造する場合であっても、最終製品となるまでに多くの工程を要し、製造工数が多大となって製造コストが増大するとともに、製品納期面でも不利になる。このため、マグネシウム合金の特に薄板の製造において、その抜本的な対策が望まれている。 As described above, even if the magnesium alloy is manufactured by ingot casting or die casting, or manufactured by continuous casting, many processes are required to obtain a final product, resulting in a large number of manufacturing steps. As a result, the manufacturing cost increases and the product delivery time is disadvantageous. For this reason, in the manufacture of a magnesium alloy, particularly a thin plate, a drastic countermeasure is desired.
例えば、特許文献1には、セラミックス粉末を母相合金に分散させたマグネシウム合金の製造方法が提案されている。提案された方法では、セラミックス粉末をマグネシウム合金からなる母相合金に分散させた粒子分散母合金を製造する工程と、この粒子分散母合金を150乃至500℃の温度で予熱した後、750℃以下の温度に保持した母相合金組成の溶湯に添加して撹拌する工程と、撹拌後の前記溶湯を10℃/秒以上の冷却速度で冷却して凝固させるとともに、80〜200mm/分の引抜速度で引抜いて連続鋳造する工程とを有することを特徴としている。
For example,
しかし、提案された製造方法では、鋳造速度80〜200mm/分と記載されているように生産性の著しい向上は望めず、比較的断面の大きい鋳造であるため、コスト合理化を目指すために製造工程(特に、圧延および再加熱工程)を省略しようとしても限界がある。さらにマグネシウム合金の棒材等の製造に限定されている。 However, in the proposed manufacturing method, a significant improvement in productivity cannot be expected as described in the casting speed of 80 to 200 mm / min, and since the casting has a relatively large cross section, the manufacturing process is aimed at cost rationalization. Even if it is attempted to omit (especially rolling and reheating steps), there is a limit. Furthermore, it is limited to the production of magnesium alloy bars.
一方、製造コストを大幅に削減するために、ニアネットシェープ化(ストリップキャスティングなど)が志向され、実用化を目指して開発が行われている。しかし、未だ実用化には至っていない。 On the other hand, near net shaping (strip casting, etc.) is aimed at in order to drastically reduce the manufacturing cost, and development is being carried out aiming at practical use. However, it has not yet been put to practical use.
これに関連する技術として、特許文献2では、鋳型内にマグネシウム合金溶湯を供給するに際し、鋳型に振動を付加しながらマグネシウム合金を凝固させた後、直ちに圧下ロール対を用いて所定厚みに熱間圧延し、コイラーに巻き取る、すなわちインラインで薄鋳片を熱間圧延する、マグネシウム合金薄板の製造方法が記載されている。
As a technology related to this, in
この製造方法によれば、溶融マグネシウム合金を連続鋳造し、直ちに薄板に熱間圧延することによって、高い生産性で、かつ低い製造コストでマグネシウム合金薄板を製造することができる。しかし、望ましいとされる圧下率が大きいため、例えば、鋳片表面のオシレーション・マークや引き抜きマークが顕著な場合等においては、圧下の際にそれを起点に割れが発生することもある。 According to this manufacturing method, a magnesium alloy thin plate can be manufactured with high productivity and low manufacturing cost by continuously casting a molten magnesium alloy and immediately hot-rolling the molten magnesium alloy into a thin plate. However, since the desired reduction ratio is large, for example, when an oscillation mark or a drawing mark on the surface of the slab is remarkable, cracking may occur at the start of the reduction.
本発明は、前述したマグネシウム合金の特に薄板の製造において、工程数が多く、それにより製造コストが嵩むという問題に鑑みてなされたものであり、ニアネットシェープ化(薄鋳片鋳造+インライン圧下)を志向し、インライン圧下での割れ発生を抑え、効率的に圧下することにより薄板を得るマグネシウム合金の製造方法を提供することを目的としている。 The present invention has been made in view of the problem that the number of steps in manufacturing the above-mentioned magnesium alloy, particularly a thin plate, is increased, thereby increasing the manufacturing cost, and forming a near-net shape (thin slab casting + in-line reduction). The purpose of the present invention is to provide a method for producing a magnesium alloy that obtains a thin plate by efficiently suppressing the occurrence of cracking under in-line pressure.
本発明が解決しようとするマグネシウム合金の薄板の製造方法における課題は、前記のように、連続的に鋳造される薄鋳片をインラインで圧下する際に発生し易い割れの抑制と、圧下効率の促進である。 As described above, the problems in the method of manufacturing a magnesium alloy thin plate to be solved by the present invention are the suppression of cracking that is likely to occur when a continuously cast thin slab is reduced in-line, and the reduction efficiency. It is promotion.
鋳造中の鋳片をインラインで圧下するためには、鋳片表面の手入れを行わずに(すなわち、無手入れで)圧下することが先ず重要である。表面手入れを実施すれば、良好な圧延板を得ることは可能であるが、手入れコスト、さらには鋳片再加熱のためのコストなどが必要になり、製造コストが増大するからである。 In order to reduce the slab being cast in-line, it is first important to reduce the slab surface without performing maintenance (that is, without maintenance). If surface care is carried out, it is possible to obtain a good rolled sheet, but it requires maintenance costs, costs for reheating the slab, and the like, which increases manufacturing costs.
その場合、圧下の対象が連続鋳造される鋼であれば、鋳片引き抜き時に形成される鋳片表面の引き抜きマーク等は圧下によって容易に延ばされ、通常は割れ等の問題は発生しない。しかし、本発明者らが検討した結果、圧下の対象がマグネシウム合金の場合は、常温での加工性が悪く、さらに延性が劣るため、高温下での加工が一般的である。しかし、鋳片温度が高温であっても、鋳片表面に形成される引き抜きマークのような凹凸によっても圧下時に割れが発生する場合があることを確認した。すなわち、鋳片の表面状況にもよるが、割れ発生の限界圧下率があることが判明した。 In that case, if the object to be reduced is steel that is continuously cast, the drawing mark on the surface of the slab formed at the time of drawing the slab is easily extended by the reduction, and usually problems such as cracking do not occur. However, as a result of investigations by the present inventors, when the object of reduction is a magnesium alloy, workability at normal temperature is poor and ductility is inferior, and therefore processing at high temperature is common. However, even when the slab temperature is high, it was confirmed that cracks may occur during the reduction due to unevenness such as a drawn mark formed on the surface of the slab. That is, it has been found that there is a critical rolling reduction rate of cracking, depending on the surface condition of the slab.
そして、鋳造後の圧下を多段圧下により行い、1パス当たりの圧下率を割れ発生の限界圧下率内に抑えることとすれば、圧下時に割れを発生させずに、しかもパス毎の圧下率の累積によりトータルで大きな圧下率を確保することが可能であることを確認した。すなわち、無手入れのインライン圧下において割れ発生を抑制することができる。 Then, if the reduction after casting is performed by multistage reduction, and the reduction rate per pass is kept within the critical reduction rate of crack generation, it is possible to accumulate the reduction rate for each pass without causing cracks during reduction. As a result, it was confirmed that it was possible to secure a large reduction ratio in total. That is, it is possible to suppress the occurrence of cracks under uncleaned inline pressure.
さらに、表面部の温度を高めた加熱圧下ロールの採用が有効であることを知見した。すなわち、連続多段圧下を実施する間に鋳片からの放熱と圧下ロールによる抜熱で、鋳片の表面温度は低下するが、加熱圧下ロールを採用することにより、圧下中における圧下ロールからの抜熱を抑制し、鋳片温度が低下した場合には、逆に圧下中に熱付与を行うことができる。これにより、鋳造中の鋳片の潜熱を利用し再加熱せずに圧下できるというインライン圧下の利点を生かし、より効率的に圧下することが可能となる。 Furthermore, it has been found that it is effective to employ a roll under a heating pressure with the surface temperature increased. In other words, the surface temperature of the slab decreases due to heat release from the slab and heat removal by the reduction roll during continuous multi-stage reduction, but by using the heating reduction roll, it is possible to remove from the reduction roll during the reduction. When heat is suppressed and the slab temperature is lowered, heat can be applied during the reduction. This makes it possible to reduce the pressure more efficiently by taking advantage of the in-line reduction that enables the reduction without reheating using the latent heat of the slab during casting.
本発明はこのような知見に基づきなされたものであり、その要旨は、下記のマグネシウム合金の薄板の製造方法にある。 This invention is made | formed based on such knowledge, The summary exists in the manufacturing method of the following thin plate of a magnesium alloy.
すなわち、連続鋳造された熱間状態の薄鋳片を、圧下ロール対を用いてインライン圧下することにより薄板を得るマグネシウム合金の製造方法であって、前記鋳造後の薄鋳片の厚みを5〜50mmとし、表面部を250〜400℃に加熱した前記圧下ロール対を用いて、2回以上の多段圧下を行うとともに、1回当たりの圧下量A1(mm)を圧下前の薄鋳片の厚さA0(mm)で除した百分比である圧下率「(A1/A0)×100(%)」を15%未満とし、厚み25mm以下の薄板を得るマグネシウム合金の製造方法である。なお、以下において、「本発明のマグネシウム合金の製造方法」、または単に「本発明の製造方法」といえば、この厚み25mm以下の薄板を得るマグネシウム合金の製造方法を意味する。 That is, a method for producing a magnesium alloy that obtains a thin plate by in-line rolling a continuously cast thin slab in a roll using a pair of rolling rolls, wherein the thickness of the cast slab after the casting is 5 to Using the above-described pair of rolling rolls having a surface portion heated to 250 to 400 ° C., the multi-stage rolling is performed twice or more, and the amount of rolling A 1 (mm) per rolling of the thin slab before rolling is reduced. This is a method for producing a magnesium alloy in which a reduction ratio “(A 1 / A 0 ) × 100 (%)”, which is a percentage divided by a thickness A 0 (mm), is less than 15%, and a thin plate having a thickness of 25 mm or less is obtained. In the following, “the manufacturing method of the magnesium alloy of the present invention” or simply “the manufacturing method of the present invention” means a manufacturing method of the magnesium alloy for obtaining a thin plate having a thickness of 25 mm or less.
本発明が対象とするマグネシウム合金は、マグネシウム純金属に合金元素を添加して溶製されたマグネシウム合金であるが、マグネシウム純金属も含むものである。 The magnesium alloy targeted by the present invention is a magnesium alloy prepared by adding an alloying element to pure magnesium metal, but also includes pure magnesium metal.
前記の「表面部を250〜400℃に加熱」における「表面部」の温度とは、圧下の際に、少なくとも薄鋳片と接する圧下ロールの表面の温度をいう。 The temperature of the “surface portion” in the “heating the surface portion to 250 to 400 ° C.” means the temperature of the surface of the reduction roll that is in contact with at least the thin cast slab during the reduction.
本発明のマグネシウム合金の製造方法によれば、連続的に鋳造される薄鋳片をインラインで圧下することにより製造工程を省略し簡素化するとともに、割れ発生を抑え、効率的に圧下して、マグネシウム合金の薄板を得ることができる。これにより、製造コストの大幅な削減が可能である。 According to the method for producing a magnesium alloy of the present invention, the production process is omitted and simplified by in-line rolling a thin slab that is continuously cast, and cracking is suppressed and efficiently reduced. A magnesium alloy sheet can be obtained. Thereby, the manufacturing cost can be significantly reduced.
以下に、本発明のマグネシウム合金の製造方法を、図面を参照して説明する。 Below, the manufacturing method of the magnesium alloy of this invention is demonstrated with reference to drawings.
図1は、本発明の製造方法を実施することができる装置の要部の構成を模式的に示す図である。同図に示すように、連続鋳造鋳型2の上方には、マグネシウム合金溶湯の供給装置(図示せず)から該溶湯を鋳型2へ供給するための浸漬ノズル1が配置され、連続鋳造鋳型2の出側(下方)には、鋳型2内で表面部分が凝固したマグネシウム合金を圧延する多段の圧下ロール対3が配設されている。
FIG. 1 is a diagram schematically showing a configuration of a main part of an apparatus capable of carrying out the manufacturing method of the present invention. As shown in the figure, above the
浸漬ノズル1を介して連続鋳造鋳型2に供給されたマグネシウム合金溶湯4は、鋳型2内で表面部分が凝固した熱間状態の薄鋳片として鋳型2の下方から連続的に排出され、多段圧下ロール対3により圧下され、薄板5となる。なお、前述のように、マグネシウム合金は高温での反応性が高く、酸化し易いので、マグネシウム合金の溶解、保持、鋳型への注湯は、大気雰囲気と遮断された、例えばアルゴンガス雰囲気中で行われる。
The
本発明のマグネシウム合金の製造方法は、このような方法において、前記鋳造後の薄鋳片の厚みを5〜50mmとし、表面部を250〜400℃に加熱した前記圧下ロール対を用いて、2回以上の多段圧下を行うとともに、1回当たりの圧下量A1(mm)を圧下前の薄鋳片の厚さA0(mm)で除した百分比である圧下率「(A1/A0)×100(%)」を15%未満とし、厚み25mm以下の薄板を得る方法である。
The manufacturing method of the magnesium alloy of the present invention is such a method that the thickness of the cast slab after the casting is 5 to 50 mm and the surface portion is heated to 250 to 400 ° C., using the pair of
前記の薄鋳片の厚みを5〜50mmとするのは、厚みが50mmを超えると、インライン圧延で薄板を得ることは困難で、再加熱と熱間圧延を繰り返し行うことが必要となるからである。一方、厚みが5mm未満の薄鋳片を得るには技術的困難を伴い、不可能ではないにしても、実用的ではない。 The reason why the thickness of the thin slab is 5 to 50 mm is that when the thickness exceeds 50 mm, it is difficult to obtain a thin plate by in-line rolling, and it is necessary to repeat reheating and hot rolling. is there. On the other hand, it is technically difficult to obtain a thin slab having a thickness of less than 5 mm, and it is not practical if not impossible.
前記圧下ロール対の表面部を250〜400℃に加熱するのは、圧延中における圧下ロールを介しての抜熱による鋳片温度の低下を抑制し、鋳片温度の低下した場合には、逆に圧下中に鋳片に熱付与を行うためである。前記表面部の温度が250℃未満ではこのような効果が顕著ではなく、400℃を超えて加熱するのは、その効果および加熱のための所要エネルギー等を勘案すると、必ずしも得策とは言えない。 Heating the surface portion of the pair of rolling rolls to 250 to 400 ° C. suppresses a decrease in slab temperature due to heat removal through the rolling roll during rolling, and reverses when the slab temperature decreases. This is because heat is applied to the slab during rolling. Such an effect is not remarkable when the temperature of the surface portion is less than 250 ° C., and heating above 400 ° C. is not necessarily a good idea in consideration of the effect, required energy for heating, and the like.
圧下ロールの加熱には、誘導発熱方式や、ヒートパイプ方式等による加熱方法を利用すればよい。誘導発熱方式は、従来から多くの分野で用いられている加熱方式である。また、ヒートパイプ方式は、ロール表皮下に、エチレンを封入して循環させるためのパイプをロール軸方向に向けて多数配置して用いる加熱方式であり、ロールの幅方向および厚み方向に均一に加熱できるという特徴を有している。 A heating method using an induction heat generation method, a heat pipe method, or the like may be used for heating the reduction roll. The induction heating method is a heating method that has been used in many fields. In addition, the heat pipe method is a heating method in which a large number of pipes for enclosing and circulating ethylene are placed under the roll surface in the roll axis direction, and heated uniformly in the width direction and thickness direction of the roll. It has the feature that it can.
「圧下ロール対の表面部」の温度とは、前記のように、少なくとも薄鋳片と接する圧下ロールの表面の温度である。上記ヒートパイプ方式で加熱する場合には、圧下ロールの表面温度とその内部の温度がほぼ同じになるので、たとえば、圧下ロールのロール幅中央で表面から深さ20mmの部位にまで達する細孔を軸方向に設けておき、その細孔内に熱電対を挿入することによって、その部位の温度を測定することにより、圧下ロールの表面部の温度を知ることができる。実際には、表面部の温度と採用する加熱方法での昇温のための諸条件(設定電圧、電流等)との関係をあらかじめ把握しておき、前記設定電圧等による間接的な温度管理を行ってもよい。
As described above, the temperature of the “surface portion of the reduction roll pair” is at least the temperature of the surface of the reduction roll in contact with the thin cast slab. When heating by the above heat pipe method, the surface temperature of the rolling roll and the temperature inside the rolling roll are almost the same. For example, the pores reaching the
本発明のマグネシウム合金の製造方法においては、前記圧下ロール対を用いて、2回以上の多段圧下を行う。これは、1パス当たりの圧下率を小さくして割れの発生を抑制するとともに、圧下パス回数を増やしてトータルの大きな圧下率を確保し、インラインで薄板とするためである。 In the method for producing a magnesium alloy of the present invention, the multi-stage reduction is performed two or more times using the pair of reduction rolls. This is because the reduction rate per pass is reduced to suppress the occurrence of cracks, and the number of reduction passes is increased to ensure a large total reduction rate, thereby forming a thin plate inline.
多段圧下における圧下パス数の上限は特に規定しない。次に述べるように、圧下率の上限が決められているので、薄鋳片の厚みと、製造しようとする薄板の厚みによってロール対の段数は自ずと定まるからである。例えば、厚みが35mmの薄鋳片を多段圧下して厚みが5mmの薄板にする場合は、12パスの圧下が必要となる。つまり、12段のロール対を配置することになる。 There is no particular upper limit on the number of reduction passes under multistage pressure. This is because the upper limit of the rolling reduction is determined as described below, and the number of roll pairs is naturally determined by the thickness of the thin cast slab and the thickness of the thin plate to be manufactured. For example, when a thin cast slab having a thickness of 35 mm is subjected to multistage pressing to form a thin plate having a thickness of 5 mm, 12 passes of reduction are required. That is, 12 roll pairs are arranged.
本発明の製造方法においては、さらに、前記2回以上の多段圧下における1回当たりの圧下率、すなわち圧下量A1(mm)を圧下前の薄鋳片の厚さA0(mm)で除した百分比「(A1/A0)×100(%)」を15%未満とする。前記圧下率を15%未満とすることにより、後述する実施例に示すように、インラインでの圧下時における割れの発生を抑えることができる。 In the production method of the present invention, the reduction rate per one time under the multi-stage pressure of two or more times, that is, the reduction amount A 1 (mm) is divided by the thickness A 0 (mm) of the thin slab before reduction. The percentage “(A 1 / A 0 ) × 100 (%)” is less than 15%. By setting the rolling reduction to less than 15%, it is possible to suppress the occurrence of cracks during in-line rolling, as shown in examples described later.
圧下率の下限は特に規定しない。割れ発生を防止するには上限を規定すればよいからで、圧下率は、薄鋳片および製造しようとする薄板の厚み、ロール対の設置数等を勘案して前記15%未満の範囲内で適宜定めればよい。 The lower limit of the rolling reduction is not particularly specified. In order to prevent the occurrence of cracking, the upper limit should be specified, so the rolling reduction is within the range of less than 15% in consideration of the thickness of the thin cast slab and the thin plate to be manufactured, the number of roll pairs installed, and the like. What is necessary is just to determine suitably.
本発明の製造方法において、得られる薄板の厚みを25mm以下とするのは、インライン圧延での圧下パス数を10数回以下にとどめ、前記圧延側での負荷(設備コスト増)を極力軽減するためである。 In the manufacturing method of the present invention, the thickness of the thin plate obtained is 25 mm or less, the number of rolling passes in in-line rolling is limited to 10 times or less, and the load on the rolling side (equipment cost increase) is reduced as much as possible. Because.
薄板の厚みの下限も規定しない。製品ニーズによるからである。実際には、最終製品として厚み1mm以下の薄板が製造の対象となる場合が多い。また、リロール用として、厚み5mm程度の薄板も対象となる。 The lower limit of the thickness of the thin plate is not specified. This is because of product needs. In practice, a thin plate having a thickness of 1 mm or less is often the object of manufacture as the final product. Further, for rerolling, a thin plate having a thickness of about 5 mm is also targeted.
表1に示す条件で鋳造した薄鋳片を用いて、多パス圧下試験を実施し、圧下時の割れ発生の有無および加熱ロールの有効性について調査した。 Using a thin slab cast under the conditions shown in Table 1, a multi-pass reduction test was conducted, and the presence or absence of cracking during reduction and the effectiveness of the heating roll was investigated.
図2は、多パス圧下試験で用いた装置の要部構成を模式的に示す図である。この装置は、圧下ロール対を模擬した一対の加熱ロール9と、鋳片6を加熱するためのヒーター7と、鋳片6をその下端部を把持して上下動させるリフター8を備えている。
FIG. 2 is a diagram schematically showing the main configuration of the apparatus used in the multipass rolling test. This apparatus includes a pair of heating rolls 9 simulating a pair of rolling rolls, a
多パス圧下試験を行う際は、先ず、所定の厚みで鋳造された鋳片6をヒーター7で所定の温度(350℃目標)に加熱した後、リフター8を下降させ、鋳片6を加熱ロール9でクランプした後、1パス目の圧下を行う。2パス目の圧下は、鋳片6を加熱ロール9から開放し、1パス目の圧下スタート部まで上昇させ、再度鋳片6を加熱ロール9でクランプし、圧下を行う。このような方法で繰り返し圧下を加えることにより、一方向の多パス圧下を模擬した試験を行うことができる。
When performing the multi-pass reduction test, first, the
図3に圧下時の割れ発生の有無についての調査結果を示す。図3において、横軸の圧下パス回数で2(つまり、2パス目)以降の圧下率は、累積の圧下率ではなく、そのパス毎の圧下率である。また、黒く塗りつぶした印(ソリッドマーク、図3では●、■印)は圧下時に割れが発生したことを意味する。 FIG. 3 shows the results of a survey on the presence or absence of cracks during rolling. In FIG. 3, the rolling reduction after 2 (that is, the second pass) in the number of rolling passes on the horizontal axis is not the cumulative rolling reduction but the rolling reduction for each pass. In addition, black marks (solid marks, ● and ■ marks in FIG. 3) indicate that cracking occurred during the reduction.
図3には、圧下率、圧下パス回数を変えたCASE1〜CASE7を示した。この図から、無手入れ鋳片を圧下率15%超える程度まで1パスで圧下すると、割れが発生する場合があることがわかる。すなわち、圧下率が15%を超える圧下を行ったCASE3の1パス目(●印)、およびCASE4の3パス目(■印)では割れが生じている。一方、CASE1、2、5〜7(本発明例)は圧下率を15%未満として多パス圧下を実施した場合であるが、この場合は割れの発生はなく、全圧下量を大きくすることが可能である。
FIG. 3 shows
図4に加熱ロールを用いた場合の圧下荷重と圧下率の関係を示す。図4において、○、◇、△および□印は、それぞれロール表面部の温度(Tr)が25℃、200℃、300℃および400℃の場合を示す。◆、▲、■印はそれぞれ前記◇、△および□印に対応し、圧下時に割れが発生したことを意味する。 FIG. 4 shows the relationship between the reduction load and reduction rate when a heating roll is used. In FIG. 4, ◯, ◇, Δ, and □ indicate cases where the roll surface temperature (Tr) is 25 ° C., 200 ° C., 300 ° C., and 400 ° C., respectively. The ◆, ▲, and ■ marks correspond to the ◇, △, and □ marks, respectively, and indicate that cracking occurred during rolling.
図4に示すように、Trが25℃(○印)の場合に比べて、加熱ロールを使用すると(△および□印)、同じ圧下率を得るための圧下荷重が大幅に減少する(図中に白抜き矢印で表示)。特に、圧下率が7.5%以上において顕著に認められる。これは、加熱ロールを使用することにより圧下ロールからの抜熱が抑制され、鋳片がより高温に保持されたことによるもので、圧下効率を促進する上で加熱ロールの使用が有効であることがわかる。なお、加熱ロールを使用した場合でも、圧下率が15%を超えると圧下時に割れが発生した。 As shown in FIG. 4, compared to the case where Tr is 25 ° C. (marked with ○), when a heated roll is used (marked with Δ and □), the rolling load for obtaining the same rolling reduction is greatly reduced (in the figure). Displayed with a white arrow). In particular, it is noticeable when the rolling reduction is 7.5% or more. This is because heat removal from the reduction roll is suppressed by using the heating roll, and the slab is kept at a higher temperature, and the use of the heating roll is effective in promoting reduction efficiency. I understand. Even when a heating roll was used, cracking occurred during the reduction when the reduction ratio exceeded 15%.
本発明のマグネシウム合金の製造方法は、連続鋳造された熱間状態の薄鋳片を、インラインで、所定の圧下率で多段圧下することにより薄板を得る方法で、割れ発生を抑え、加熱ロールの使用により効率的に圧下して、鋳片の圧延工程を省略、簡素化し、製造コストを大幅に削減することができる。したがって、この方法は、マグネシウム合金の薄板の製造方法として広く利用することができる。 The method for producing a magnesium alloy of the present invention is a method of obtaining a thin plate by continuously rolling a thin cast slab in a hot state at a predetermined reduction rate in-line. It can be efficiently reduced by use, omitting and simplifying the slab rolling process, and greatly reducing the manufacturing cost. Therefore, this method can be widely used as a method for producing a magnesium alloy thin plate.
1:浸漬ノズル
2:鋳型
3:圧下ロール対
4:マグネシウム合金溶湯
5:薄板
6:鋳片
7:ヒーター
8:リフター
9:加熱ロール
1: Immersion nozzle 2: Mold 3: Reduced roll pair 4: Magnesium alloy molten metal 5: Thin plate 6: Slab 7: Heater 8: Lifter
9: Heating roll
Claims (1)
A magnesium alloy manufacturing method for obtaining a thin sheet by in-line rolling a continuously cast thin slab in a roll using a pair of rolling rolls, wherein the thickness of the cast slab after casting is 5 to 50 mm The surface portion is heated to 250 to 400 ° C., and the multi-stage reduction is performed twice or more, and the reduction amount A 1 (mm) per time is the thickness of the thin slab before reduction. A method for producing a magnesium alloy, characterized in that a reduction ratio “(A 1 / A 0 ) × 100 (%)”, which is a percentage divided by A 0 (mm), is less than 15% and a thin plate having a thickness of 25 mm or less is obtained. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005059879A JP2006239748A (en) | 2005-03-04 | 2005-03-04 | Method for producing magnesium alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005059879A JP2006239748A (en) | 2005-03-04 | 2005-03-04 | Method for producing magnesium alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006239748A true JP2006239748A (en) | 2006-09-14 |
Family
ID=37046651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005059879A Pending JP2006239748A (en) | 2005-03-04 | 2005-03-04 | Method for producing magnesium alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006239748A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012115191A1 (en) * | 2011-02-24 | 2012-08-30 | 住友電気工業株式会社 | Magnesium alloy and manufacturing method for same |
CN103370433A (en) * | 2011-02-24 | 2013-10-23 | 住友电气工业株式会社 | Magnesium alloy and manufacturing method for same |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001200349A (en) * | 2000-01-18 | 2001-07-24 | Nisshin Manufacturing Kk | METHOD OF HOT FINISH ROLLING FOR Mg-Al ALLOY |
JP2001252703A (en) * | 2000-01-06 | 2001-09-18 | Nippon Kinzoku Co Ltd | Warm plastic working method |
JP2002121657A (en) * | 2000-10-13 | 2002-04-26 | Sumitomo Metal Ind Ltd | Method and apparatus for heating magnesium-alloy strip |
JP2002126806A (en) * | 2000-10-24 | 2002-05-08 | Sumitomo Metal Ind Ltd | Method for manufacturing magnesium alloy plate |
JP2002348646A (en) * | 2001-05-25 | 2002-12-04 | Nippon Crose Rolling Corp | Long size coil of wrought magnesium alloy and manufacturing method therefor |
JP2003112205A (en) * | 2001-09-28 | 2003-04-15 | Sumitomo Metal Ind Ltd | METHOD AND DEVICE FOR MANUFACTURING Mg OR Mg ALLOY BAND PLATE |
JP2003112215A (en) * | 2001-09-28 | 2003-04-15 | Sumitomo Metal Ind Ltd | ROLLING OIL FOR Mg ALLOY SHEET AND METHOD FOR MANUFACTURING Mg ALLOY SHEET |
JP2003340552A (en) * | 2002-05-23 | 2003-12-02 | Sumitomo Metal Ind Ltd | Method and apparatus for manufacturing magnesium alloy sheet |
JP2003340553A (en) * | 2002-05-28 | 2003-12-02 | Sumitomo Metal Ind Ltd | Continuous casting method for magnesium alloy sheet |
JP2004060048A (en) * | 2002-06-05 | 2004-02-26 | Sumitomo Denko Steel Wire Kk | Magnesium alloy sheet and method for producing the same |
JP3503898B1 (en) * | 2003-03-07 | 2004-03-08 | 権田金属工業株式会社 | Method and apparatus for manufacturing magnesium metal sheet |
JP2004107743A (en) * | 2002-09-19 | 2004-04-08 | Sumitomo Metal Ind Ltd | Magnesium alloy sheet and its manufacturing method |
JP2004137601A (en) * | 2002-10-17 | 2004-05-13 | General Motors Corp <Gm> | Method for continuously producing cast aluminum sheet |
WO2004076097A1 (en) * | 2003-02-28 | 2004-09-10 | Commonwealth Scientific And Industrial Research Organisation | Magnesium alloy sheet and its production |
JP2005002378A (en) * | 2003-06-10 | 2005-01-06 | Sumitomo Metal Ind Ltd | Method of producing magnesium alloy sheet |
-
2005
- 2005-03-04 JP JP2005059879A patent/JP2006239748A/en active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001252703A (en) * | 2000-01-06 | 2001-09-18 | Nippon Kinzoku Co Ltd | Warm plastic working method |
JP2001200349A (en) * | 2000-01-18 | 2001-07-24 | Nisshin Manufacturing Kk | METHOD OF HOT FINISH ROLLING FOR Mg-Al ALLOY |
JP2002121657A (en) * | 2000-10-13 | 2002-04-26 | Sumitomo Metal Ind Ltd | Method and apparatus for heating magnesium-alloy strip |
JP2002126806A (en) * | 2000-10-24 | 2002-05-08 | Sumitomo Metal Ind Ltd | Method for manufacturing magnesium alloy plate |
JP2002348646A (en) * | 2001-05-25 | 2002-12-04 | Nippon Crose Rolling Corp | Long size coil of wrought magnesium alloy and manufacturing method therefor |
JP2003112215A (en) * | 2001-09-28 | 2003-04-15 | Sumitomo Metal Ind Ltd | ROLLING OIL FOR Mg ALLOY SHEET AND METHOD FOR MANUFACTURING Mg ALLOY SHEET |
JP2003112205A (en) * | 2001-09-28 | 2003-04-15 | Sumitomo Metal Ind Ltd | METHOD AND DEVICE FOR MANUFACTURING Mg OR Mg ALLOY BAND PLATE |
JP2003340552A (en) * | 2002-05-23 | 2003-12-02 | Sumitomo Metal Ind Ltd | Method and apparatus for manufacturing magnesium alloy sheet |
JP2003340553A (en) * | 2002-05-28 | 2003-12-02 | Sumitomo Metal Ind Ltd | Continuous casting method for magnesium alloy sheet |
JP2004060048A (en) * | 2002-06-05 | 2004-02-26 | Sumitomo Denko Steel Wire Kk | Magnesium alloy sheet and method for producing the same |
JP2004107743A (en) * | 2002-09-19 | 2004-04-08 | Sumitomo Metal Ind Ltd | Magnesium alloy sheet and its manufacturing method |
JP2004137601A (en) * | 2002-10-17 | 2004-05-13 | General Motors Corp <Gm> | Method for continuously producing cast aluminum sheet |
WO2004076097A1 (en) * | 2003-02-28 | 2004-09-10 | Commonwealth Scientific And Industrial Research Organisation | Magnesium alloy sheet and its production |
JP3503898B1 (en) * | 2003-03-07 | 2004-03-08 | 権田金属工業株式会社 | Method and apparatus for manufacturing magnesium metal sheet |
JP2005002378A (en) * | 2003-06-10 | 2005-01-06 | Sumitomo Metal Ind Ltd | Method of producing magnesium alloy sheet |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012115191A1 (en) * | 2011-02-24 | 2012-08-30 | 住友電気工業株式会社 | Magnesium alloy and manufacturing method for same |
JP2012172255A (en) * | 2011-02-24 | 2012-09-10 | Sumitomo Electric Ind Ltd | Magnesium alloy material and method for producing the same |
CN103370433A (en) * | 2011-02-24 | 2013-10-23 | 住友电气工业株式会社 | Magnesium alloy and manufacturing method for same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5531109B2 (en) | Martensitic stainless steel produced by twin roll thin plate casting process and method for producing the same | |
EP2982777B1 (en) | Titanium slab for hot rolling and method for manufacturing same | |
JP4082217B2 (en) | Magnesium alloy material and method for producing the same | |
JP2016128171A (en) | Titanium hot rolling slab being hard to cause surface flaw and its manufacturing method | |
JP5945370B2 (en) | Method for producing aluminum-zinc-magnesium-copper alloy sheet with refined crystal grains | |
JP6778943B2 (en) | Hot-rolled lightweight martensite steel sheet and its manufacturing method | |
WO2014163086A1 (en) | Titanium slab for hot rolling and production method therefor | |
JP2008163361A (en) | Method for producing magnesium alloy thin sheet having uniformly fine crystal grain | |
JP2014233753A (en) | Industrial pure titanium ingot excellent in surface properties after hot rolling even if blooming process or fine arrangement process is omitted and method for manufacturing the same | |
JP2010121165A (en) | Magnesium alloy sheet and method for producing the same | |
CN104313298A (en) | Cold-charge heating method of bearing steel continuous casting billet | |
KR101953042B1 (en) | Cast titanium slab for use in hot rolling and exhibiting excellent surface properties after hot rolling, even when omitting blooming and purifying steps, and method for producing same | |
JP5085451B2 (en) | Billet continuous casting method | |
JP2007245232A (en) | Method for preventing surface crack of continuously cast slab | |
JP6075387B2 (en) | Titanium slab for hot rolling in which surface flaws are unlikely to occur and method for producing the same | |
JP2006239748A (en) | Method for producing magnesium alloy | |
JP6324549B2 (en) | Titanium slab for surface melting treatment | |
JP2004237291A (en) | Method of manufacturing continuous casting slab and steel material obtained by working the cast slab | |
JP2001049349A (en) | Production of steel sheet for drawing by subjecting thin strip to direct casting and steel sheet obtained by the method | |
JP2013252558A (en) | Method of manufacturing martensitic stainless steel thin sheet with suppressed generation of coarse carbide | |
JP7320512B2 (en) | Method for softening high-strength Q&P steel hot-rolled coil | |
JP2006239750A (en) | Method for manufacturing magnesium alloy | |
JP2010065262A (en) | Soaking annealing treatment method for high carbon steel | |
KR20160012231A (en) | Method for manufacturing of Al-Zn-Mg-Cu alloy sheet with refined crystal grains | |
JP7460894B2 (en) | HOT-ROLLED STEEL SHEET MANUFACTURING METHOD AND HOT-ROLLED STEEL SHEET MANUFACTURING APPARATUS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070322 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070829 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090224 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090630 |